
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

Quickstart Guide

©2005–2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, February 20, 2014

Ten Steps to Developing a QNX Neutrino Program

This guide will help you install and configure the QNX Software Development Platform,

which includes the QNX Neutrino RTOS and the QNX Momentics Tool Suite, so you

can start developing right away!

1. Requirements (p. 4)

2. Installing QNX SDP on the development host (p. 6)

3. Installing the QNX Neutrino RTOS on the target system (p. 7)

4. Networking with the QNX Neutrino RTOS (p. 8)

5. Creating a program project (p. 9)

6. Communicating with the QNX Neutrino RTOS (p. 12)

7. Compiling and linking (p. 14)

8. Preparing to launch the program (p. 17)

9. Starting and debugging (p. 19)

10. Making the program your own (p. 22)

Copyright © 2014, QNX Software Systems Limited 3

1. Requirements

To write programs that run under the QNX Neutrino RTOS, the first thing you need is

the QNX Software Development Platform. This includes the QNX Momentics Tool

Suite, which contains everything you need to develop programs that run under the

QNX Neutrino RTOS: compiler, linker, libraries, and other QNX Neutrino components,

precompiled for all CPU architectures that the QNX Neutrino RTOS supports. This

tool suite features an extensive Integrated Development Environment, the QNX

Momentics IDE.

You can install QNX SDP on a Windows or Linux development host and deploy the

QNX Neutrino RTOS on a target system:

Communications
channel

Development host Target system

The development host runs the QNX Momentics Tool Suite; the target system runs the

QNX Neutrino RTOS itself plus all the programs you're going to develop:

QNX Momentics Tool Suite Target system

Development
tools

Documentation

Libraries

Your embedded
application

QNX Neutrino
RTOS

Drivers,
filesystems,

etc.

IDE

If you don't have the QNX Software Development Platform, you can download an

evaluation version from www.qnx.com/products/evaluation/.

You have several choices for the target system that will run the QNX Neutrino RTOS:

• Embedded hardware: You can run the QNX Neutrino RTOS on a reference platform,

a reference design made by a CPU vendor. You'll need a QNX Board Support

Package (BSP) for your platform. The documentation that comes with each BSP

explains how to build a QNX Neutrino image and install it on that target system.

For more information about BSPs, see the BSPs and Drivers project on our

Foundry27 website, http://community.qnx.com, as well as the Working with

a BSP chapter of the Building Embedded Systems guide.

• Virtual machine: You can install and run the QNX Neutrino RTOS as a virtual

machine in a VMware session.

4 Copyright © 2014, QNX Software Systems Limited

Ten Steps to Developing a QNX Neutrino Program

http://www.qnx.com/products/evaluation/
http://community.qnx.com/sf/projects/bsp
http://community.qnx.com

Although VMware is a handy way to try QNX Neutrino, note that virtual

machines don't necessarily support hard realtime.

• PC target: You can run the QNX Neutrino on a normal PC, but this is a more

advanced task because you have to start the drivers that are appropriate for the

hardware. The procnto microkernel itself requires only about 700 KB.

Since the QNX Neutrino RTOS is designed the same way for all platforms and is used

in the same way, for this Quickstart guide we'll use Linux or Windows as a development

host, and a virtual machine as the target.

Copyright © 2014, QNX Software Systems Limited 5

1. Requirements

2. Installing QNX SDP on the development host

Boot your Linux or Windows system and download QNX SDP 6.6 from the Download

area on our website, www.qnx.com/. Follow the instructions given in the installation

note and on the screen.

The installation program will ask you for a license key. If you downloaded an evaluation

version of QNX SDP from our website, you should have received an email containing

the key. Otherwise, you'll find your key on your license certificate.

6 Copyright © 2014, QNX Software Systems Limited

Ten Steps to Developing a QNX Neutrino Program

http://www.qnx.com/

3. Installing the QNX Neutrino RTOS on the target system

Next, set up your QNX Neutrino RTOS target as a virtual machine.

We provide a VMware image that's compatible with VMware Workstation 9.0 and

VMware Player 5.0. This image is a minimal QNX Neutrino system. You can download

a VMware image from:

http://www.qnx.com/products/evaluation/eval-target.html

After you start the virtual machine, you're automatically logged in a root. To see a

list of the processes that currently exist in your system, type the following on the QNX

Neutrino target's console:

pidin | less

Each process is optional, which means that later in your design, you can remove

processes to save resources—or you can add other processes to increase the system's

functionality. This also applies for graphics, networking, or audio; each QNX Neutrino

is a single process that you can load dynamically.

One of the programs you should see in the list is qconn, which you'll need later. Type

q to exit the less command.

Copyright © 2014, QNX Software Systems Limited 7

3. Installing the QNX Neutrino RTOS on the target system

http://www.qnx.com/products/evaluation/eval-target.html

4. Networking with the QNX Neutrino RTOS

We've set up the virtual machine to use Network Address Translation (NAT), so that

it uses the same IP address as your development host. To determine the target system's

IP address, you can use the ifconfig command on the target's console:

On your development host, use ping IP_address to check that it can reach your QNX

Neutrino target on the network:

If your host machine uses a firewall, you might not be able to ping it from

the target. On Windows, you might have to enable Allow incoming echo requests

in the ICMP settings.

If you're using a Virtual Private Network (VPN), you might have to disconnect

it.

8 Copyright © 2014, QNX Software Systems Limited

Ten Steps to Developing a QNX Neutrino Program

5. Creating a program project

Start the QNX Momentics IDE on your development host:

• on a Windows development host, choose QNX Software Development Platform 6.6

➝ run-qde.vbs from the Start menu, or run base_directory\run-qde.vbs from

the command line

• on a Linux development host, run base_directory/run-qde.sh

where base_directory is where you installed QNX SDP. The first time you start the IDE,

it asks you to choose a workspace, a folder where it can store your projects and other

files. The IDE then displays its Welcome page. When you're ready to start, click the

Workbench icon:

Now create a QNX C Project: from the File menu, select New ➝ Project.... In the New

Project dialog, expand QNX, and then select QNX C Project:

Click Next. In the resulting dialog, give your project a name:

Copyright © 2014, QNX Software Systems Limited 9

5. Creating a program project

Make sure that Generate default file is checked, leave Add project to working sets

unchecked, and then click Next.

You now need to select a CPU architecture for the binary you're creating. To do this,

go to the Build Variants tab. Select the appropriate CPU type: ARM or x86. You can

also select compilation with or without debug information; we'll be using both later,

so make sure the debug and release variants are both checked.

Click Finish. A ready-to-use project structure with a Makefile is created for you,

including a small program (“Welcome to the QNX Momentics IDE”), which you'll find

in an automatically generated source code file.

10 Copyright © 2014, QNX Software Systems Limited

Ten Steps to Developing a QNX Neutrino Program

The IDE now switches to the C/C++ perspective, which features the navigator, the

editor, and other useful views, areas that display information that's relevant to the

task at hand:

Copyright © 2014, QNX Software Systems Limited 11

5. Creating a program project

6. Communicating with the QNX Neutrino RTOS

Your target system must be able to respond to requests from the development

environment. To make this possible, the target must be running the qconn program.

If you didn't see it earlier in the output of pidin, you can start qconn from the

console:

qconn &

To access your target system from the IDE, you have to create a target project. Open

the System Information perspective: in the Window menu, select Open Perspective

➝ QNX System Information. In the empty Target Navigator view, press the right mouse

button and select New QNX Target... from the context menu:

If you wish, you can uncheck Same as hostname and provide a name for your target

system. Enter its IP address in the corresponding field:

Click Finish, and then select your new target in the Target Navigator. You will now see

a list of all the processes in your QNX Neutrino RTOS system. The views (the tabs at

the top) provide other information to you. You can find even more useful views in the

Window menu under Show View.

12 Copyright © 2014, QNX Software Systems Limited

Ten Steps to Developing a QNX Neutrino Program

Copyright © 2014, QNX Software Systems Limited 13

6. Communicating with the QNX Neutrino RTOS

7. Compiling and linking

Now switch back to the C/C++ perspective by choosing its icon in the right side of the

toolbar:

If you didn't do so when you created the project, you need to select compilation with

or without debug information. To do this, right-click the project name in the Project

Explorer view, and then choose Properties. Click QNX C/C++ Project, click Build

Variants, and then expand the x86 item. Make sure that both the debug and release

variants are checked. Click OK; the IDE offers to rebuild the project.

During the creation of the QNX C Project, a QNX-made directory structure with

Makefiles was generated. Now to create a binary, please right-click the project name,

and then select Build Project. The compiler and linker will now do their work.

You will find the compiler output in the C-Build output in the Console view, including

any errors (you shouldn't see any errors, but we've added one in the examples below):

However, if errors occur during compiling, you will find the Problems view more useful,

because it displays the output of the compiler in an interpreted and more readable

fashion than the Console view:

The Editor view also gives you information about an error if you leave the pointer over

it:

14 Copyright © 2014, QNX Software Systems Limited

Ten Steps to Developing a QNX Neutrino Program

After the build operation, your binaries will be displayed in the Binaries folder.

Physically, they're located in the CPU directory under o (for object) and o-g (-g for

the debug option passed to the compiler). The IDE automatically created the

corresponding Makefiles.

The QNX library libc.so, which contains many basic functions, is linked dynamically

to your binary by default. If you want to add other libraries later, you can do so under

the Project ➝ Properties section. From there, click on QNX C/C++ Project, then Linker,

and then choose Extra Libraries in the Category field:

Click Add, and type the name of the library, without the lib prefix or the extension.

For example, to add the math library, libm.so, you just have to type m in the Name

field:

Copyright © 2014, QNX Software Systems Limited 15

7. Compiling and linking

Click OK. The linker will now link the library when you build the project.

16 Copyright © 2014, QNX Software Systems Limited

Ten Steps to Developing a QNX Neutrino Program

8. Preparing to launch the program

To run and debug the newly built program on your target system, you need to create

a launch configuration. It consists of various settings that affect how the program

starts (e.g. command-line parameters, environment variables). You enter these once,

and then you can use this collection of settings again and again.

Now create your own launch configuration: from the dropdown menu beside the “bug”

icon on the toolbar, select Debug Configurations. . . :

A dialog window opens, where you can start existing launch configurations, change

them, or create new ones. On the left, select C/C++ QNX QConn (IP). This type of

launch configuration is meant for network-based (cross) development with the QNX

Neutrino RTOS running on the target system, using the qconn program. Now click

on the New launch configuration icon:

You will now be presented with many configuration possibilities that all deal with

starting your executable program. Right now, only the Main tab needs your input.

Later, however, you should also take a look at what the other tabs have to offer.

If you wish, you can change the name of your configuration at the top of the dialog.

If your project isn't already selected, click the Browse. . . button beside the Project

field, and select your project. Next to the C/C++ Application field, press the Search

Project button and choose your binary. The names of binaries compiled with debug

information include a suffix of _g. Since we would like to start the Debugger in the

next step, please choose the binary with the debug information. Click OK.

Make sure your target system is listed under Target Options, and then click Apply—the

launch configuration is now ready:

Copyright © 2014, QNX Software Systems Limited 17

8. Preparing to launch the program

18 Copyright © 2014, QNX Software Systems Limited

Ten Steps to Developing a QNX Neutrino Program

9. Starting and debugging

You should still be in the Debug launch configuration dialog. You just created a

configuration for launching your program, which you now can start in the debugger.

To do this, please click Debug.

The IDE now switches to the Debug perspective and transfers your program from your

development machine across the network to your target QNX Neutrino system, and

then starts it under the control of the debugger. You will see that the debugger stops

in the first line of your program. In the Debug view, you'll see an overview of your

process, including the call stack. Using the buttons in the main bar of the Debug view,

you can control the debugger.

When you run or debug your application from the IDE, any input is read from the IDE's

console, and any output goes to it. Once execution has passed the line that calls

printf(), you should see the “Welcome to the QNX Momentics IDE” message in the

Console window.

Using the Step Over button, you can jump to the next line of code:

Copyright © 2014, QNX Software Systems Limited 19

9. Starting and debugging

During debugging, you can watch the Variables view on the right, which displays how

your variables change. You can use the Step Into button to let the debugger go into

the code of a function (which, of course, is useful only if you have the source code

for this function).

To set a breakpoint, place the mouse pointer over the left border of the source display,

press the right mouse button and choose Toggle Breakpoint from the context menu.

The breakpoint is shown as a little circle, which you can also set or remove while you

write your code.

When the running program hits a breakpoint, it stops in the debugger, and you can,

for example, examine your variables. If you click the Resume button, your program

continues until it hits the next breakpoint:

To abort program execution, use the Terminate button:

After the program has finished running, you can use the Remove All Terminated

Launches button to clear all terminated launches from the Debug view:

The debugger keeps the project's files open while the program is running. Be

sure to terminate the debug session before you try to rebuild your project, or

else the build will fail.

To run your program as a standalone binary (without the debugger), open the dropdown

menu beside the Run icon and choose Run Configurations... :

20 Copyright © 2014, QNX Software Systems Limited

Ten Steps to Developing a QNX Neutrino Program

Then you can use the launch configuration (described in the previous step) to start

your program. Or create a new launch configuration and select the binary without

debug information. You can also use the System Information perspective's Target File

System Navigator (Window ➝ Show View) to manually transfer your binary, and then

run it by double-clicking on it (or by right-clicking on it and selecting Run).

It's also possible to leave the binary on a shared network drive on your development

host, mount the drive on your QNX Neutrino target (see the entry for fs-cifs in the

QNX Neutrino Utilities Reference), and run the binary from there.

Copyright © 2014, QNX Software Systems Limited 21

9. Starting and debugging

10. Making the program your own

To turn this default program into your own first QNX Neutrino program, you can modify

and extend the source code we just created. Try some of our sample programs and

copy code from them into your project. And now that you've started, you'll probably

want a lot more information, such as how to create your own threads, how the QNX

Neutrino message-passing works, which process-synchronization methods are available,

how to get access to I/O areas, or how to build a QNX Neutrino resource manager. But

don't worry: all this is (almost) as simple as the quick start you just experienced!

The IDE includes a number of tutorials to help you get started. Choose Help ➝ Welcome

from the IDE's toolbar, and then click the Tutorials icon:

The IDE's Help system includes the QNX documentation, along with information about

the Eclipse platform. In the Help menu, click Help Contents:

The roadmap for the QNX Software Development Platform will help you find out where

to look in the documentation for the information you need. We recommend browsing

the QNX Neutrino System Architecture guide, the IDE User's Guide, and the QNX

Neutrino Programmer's Guide.

22 Copyright © 2014, QNX Software Systems Limited

Ten Steps to Developing a QNX Neutrino Program

The IDE even includes source code examples covering thread creation, usage of

mutexes, message-passing and other methods of interprocess communication, as well

as a QNX Neutrino resource-manager template. Choose Help ➝ Welcome, and then

click the Samples icon:

The source features extensive comments, explaining what is done there. For every

function you are interested in, you also should consult the QNX Neutrino C Library

Reference; for utilities, see the Utilities Reference.

While you explore the QNX Neutrino RTOS and its SDK, you will probably have further

questions. Please contact your QNX Account Manager, Field Application Engineer, or

our support department, and visit our Foundry27 community website

(http://community.qnx.com). We want to be with you from the start, because

we are successful only if you are!

Copyright © 2014, QNX Software Systems Limited 23

10. Making the program your own

http://community.qnx.com

	Ten Steps to Developing a QNX Neutrino Program
	1. Requirements
	2. Installing QNX SDP on the development host
	3. Installing the QNX Neutrino RTOS on the target system
	4. Networking with the QNX Neutrino RTOS
	5. Creating a program project
	6. Communicating with the QNX Neutrino RTOS
	7. Compiling and linking
	8. Preparing to launch the program
	9. Starting and debugging
	10. Making the program your own

