QNX® Software Development Platform 6.6

Quickstart Guide

©2005-2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road

Ottawa, Ontario

K2K OB3

Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qgnx.com
Web: http://www.qgnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, February 20, 2014

Ten Steps to Developing a QNX Neutrino Program

This guide will help you install and configure the QNX Software Development Platform,
which includes the QNX Neutrino RTOS and the QNX Momentics Tool Suite, so you
can start developing right away!

. Requirements (p. 4)

. Installing QNX SDP on the development host (p. 6)

. Installing the QNX Neutrino RTOS on the target system (p. 7)
. Networking with the QNX Neutrino RTOS (p. 8)

. Creating a program project (p. 9)

Communicating with the QNX Neutrino RTOS (p. 12)

. Compiling and linking (p. 14)

. Preparing to launch the program (p. 17)

. Starting and debugging (p. 19)

0. Making the program your own (p. 22)

N O 00N ORNWN N

Copyright © 2014, QNX Software Systems Limited

Ten Steps to Developing a QNX Neutrino Program

1. Requirements

To write programs that run under the QNX Neutrino RTOS, the first thing you need is
the QNX Software Development Platform. This includes the QNX Momentics Tool
Suite, which contains everything you need to develop programs that run under the
QNX Neutrino RTOS: compiler, linker, libraries, and other QNX Neutrino components,
precompiled for all CPU architectures that the QNX Neutrino RTOS supports. This
tool suite features an extensive Integrated Development Environment, the QNX
Momentics IDE.

You can install QNX SDP on a Windows or Linux development host and deploy the
QNX Neutrino RTOS on a target system:

Communications
channel .0
<« I [
0- 00

Development host Target system

The development host runs the QNX Momentics Tool Suite; the target system runs the
QNX Neutrino RTOS itself plus all the programs you're going to develop:

IDE QNX Neutrino
AN RTOS
5]
Development Libraries Q

tools ’_ﬁ Drivers, Your embedded
D filesystems, application
etc.
Documentation

QNX Momentics Tool Suite Target system

If you don't have the QNX Software Development Platform, you can download an
evaluation version from www. qnx. coni pr oduct s/ eval uati on/ .

You have several choices for the target system that will run the QNX Neutrino RTOS:

¢ Embedded hardware: You can run the QNX Neutrino RTOS on a reference platform,
a reference design made by a CPU vendor. You'll need a QNX Board Support
Package (BSP) for your platform. The documentation that comes with each BSP
explains how to build a QNX Neutrino image and install it on that target system.

For more information about BSPs, see the BSPs and Drivers project on our
Foundry27 website, ht t p: / / communi ty. gnx. com as well as the Working with
a BSP chapter of the Building Embedded Systems guide.

¢ Virtual machine: You can install and run the QNX Neutrino RTOS as a virtual
machine in a VMware session.

4 Copyright © 2014, QNX Software Systems Limited

http://www.qnx.com/products/evaluation/
http://community.qnx.com/sf/projects/bsp
http://community.qnx.com

1. Requirements

Although VMware is a handy way to try QNX Neutrino, note that virtual
= machines don't necessarily support hard realtime.

e PC target: You can run the QNX Neutrino on a normal PC, but this is a more
advanced task because you have to start the drivers that are appropriate for the
hardware. The pr ocnt o microkernel itself requires only about 700 KB.

Since the QNX Neutrino RTOS is designed the same way for all platforms and is used
in the same way, for this Quickstart guide we'll use Linux or Windows as a development
host, and a virtual machine as the target.

Copyright © 2014, QNX Software Systems Limited 5

Ten Steps to Developing a QNX Neutrino Program

2. Installing QNX SDP on the development host

Boot your Linux or Windows system and download QNX SDP 6.6 from the Download
area on our website, waw. gnx. cont . Follow the instructions given in the installation

note and on the screen.

The installation program will ask you for a license key. If you downloaded an evaluation
version of QNX SDP from our website, you should have received an email containing
the key. Otherwise, you'll find your key on your license certificate.

6 Copyright © 2014, QNX Software Systems Limited

http://www.qnx.com/

3. Installing the QNX Neutrino RTOS on the target system

3. Installing the QNX Neutrino RTOS on the target system

Next, set up your QNX Neutrino RTOS target as a virtual machine.

We provide a VMware image that's compatible with VMware Workstation 9.0 and
VMware Player 5.0. This image is a minimal QNX Neutrino system. You can download
a VMware image from:

http://ww. gnx. conl product s/ eval uati on/ eval -target. htm

After you start the virtual machine, you're automatically logged in a r oot . To see a
list of the processes that currently exist in your system, type the following on the QNX
Neutrino target's console:

pidin | |less

Each process is optional, which means that later in your design, you can remove
processes to save resources—or you can add other processes to increase the system's
functionality. This also applies for graphics, networking, or audio; each QNX Neutrino
is a single process that you can load dynamically.

One of the programs you should see in the list is qconn, which you'll need later. Type
g to exit the | ess command.

Copyright © 2014, QNX Software Systems Limited 7

http://www.qnx.com/products/evaluation/eval-target.html

Ten Steps to Developing a QNX Neutrino Program

4. Networking with the QNX Neutrino RTOS

We've set up the virtual machine to use Network Address Translation (NAT), so that
it uses the same IP address as your development host. To determine the target system's
IP address, you can use the i f confi g command on the target's console:

ifconfig
¢ flags=8849<UP, LOOPBACH, RUNNING, MULTICAST> mtu 33192
inet 127.8_8.1 netmazk BxffAABERA
: flags=88888843<UP, BROADCAST, RUNNING, SIMPLEX, MULTICAST, SHIM>» mtu 1588

address: BB:Bc:29:A3:51:5a

media: Ethernet 18baseT full-duplex

status: active

inet 192.168.153.132 netmHask BxffffffAA@ broadcast 192.168.153.255

On your development host, use pi ng /P_address to check that it can reach your QNX
Neutrino target on the network:

Hz“2>ping 192_.168.153.132

Pinging 192.168.153.132 with 32 hytes of data:c

Reply from 122.168.153.132: hytes=32 time<ims TTL=255
Reply from 1922.168.153.132: hyte==32 time<ims TTL=255G
Reply from 122.168.153.132: hytesz=32 time<ims TTL=255

Reply from 192.168.153.132: hyte==32 time<ims TTL=255

Ping statistics for 192.168.153.132:

Packetz: Sent = 4. Received = 4, Lost = B8 (8 loss?.
Approximate round trip times in milli-—seconds:

Minimum = Bmz, Maximum = Bms, Average = Bms

If your host machine uses a firewall, you might not be able to pi ng it from
the target. On Windows, you might have to enable Allow incoming echo requests
in the ICMP settings.

If you're using a Virtual Private Network (VPN), you might have to disconnect
it.

8 Copyright © 2014, QNX Software Systems Limited

5. Creating a program project

5. Creating a program project

Start the QNX Momentics IDE on your development host:

¢ on a Windows development host, choose QNX Software Development Platform 6.6
[ruh-qde.vbs from the Start menu, or run base_directorA r un- qde. vbs from
the command line

e on a Linux development host, run base_directoryl/ r un- gde. sh

where base_directory is where you installed QNX SDP. The first time you start the IDE,
it asks you to choose a workspace, a folder where it can store your projects and other
files. The IDE then displays its Welcome page. When you're ready to start, click the
Workbench icon:

Now create a QNX C Project: from the File menu, select New [Prbject.... In the New
Project dialog, expand QNX, and then select QNX C Project:

- [= General
» 2= CfC++
» [CV5
a = QMNX
&) QNX C Project
3 QMK C/C++ Container Project
a_f—.-"J QMX C++ Project
& QMX Target System Project
- = QMNX Systern Builder

Click Next. In the resulting dialog, give your project a name:

Copyright © 2014, QNX Software Systems Limited 9

Ten Steps to Developing a QNX Neutrino Program

10

5 New Project | 5 | o

Project name: my_first_proj Ecﬂ

[¥] Use default location

C\Users\stever\ide-5.0-workspace\my first_project Browse

Type [App\ication -

Stand-alone executable which is supposed to be launched.

[¥] Generate default file

Working sets

[7] Add project to working sets

@ <Back || _Near [Finich Cancel

QNX New Project Wizard -
This wizard creates a new QNX project i /

Make sure that Generate default file is checked,

unchecked, and then click Next.

leave Add project to working sets

You now need to select a CPU architecture for the binary you're creating. To do this,
go to the Build Variants tab. Select the appropriate CPU type: ARM or x86. You can
also select compilation with or without debug information; we'll be using both later,

so make sure the debug and release variants are both checked.

Select build configuratien(s).

% Options * Bmld\c’armn& . B Make Builder | Error Parsers | I=* Projects

Build variants

o [|45 ARM v7 (Little Endian] Select All

[C] 4 deb

B e Deselect All

[4 release
a [7] 48 86 (Little Endian) Add

(7] 48 debug

(7] 48 release > This variant's symbols and include pa; Delete

Set Indexer Variant

1 [. = 3

@ ‘ < Back Mext > [Finish] | Cancel

¥ New Project e
QNX C/C++ Project Settings 3
Define the QNX C/C++ Project Settings i 7

Click Finish. A ready-to-use project structure with a Makef i | e is created for you,
including a small program (“Welcome to the QNX Momentics IDE"”), which you'll find

in an automatically generated source code file.

Copyright © 2014, QNX Software Systems Limited

5. Creating a program project

The IDE now switches to the C/C++ perspective, which features the navigator, the

editor, and other useful views, areas that display information that's relevant to the
task at hand:

r N
¥ C/C++ - my_first_project/my_first_project.c - QNX Momentics IDE =
File Edit Source Refactor Navigate Search Project Run Window Help
| ® + % - i [QNs Software Development Platform66 | G-y B0 -@-® -
SRR R oo r| Quick Access = | [E&
[Project Explorer 32 = g [] my first_project.c 52 T om | M = A
B T ?‘;:nciuge :stg]‘dbl;T B3R e %
4 5 my_first_project I -
b ¥ Includes - int main(int argc, char *argv[]) { 5 stdlibh
b = 186 printf("Welcome to the QNX Momentics IDE\n"); U sdioh
b ¥ return EXIT_SUCCESS;) .
L8, i it pioiset s g s o main(int, char'(]: ir
| & commen.mk
L& Makefile
¥ ‘ m 3
[Problems 52 Vs iE
Qitems
Description = Resource Path Location Type
| Writable | Smart Insert 1:1

Copyright © 2014, QNX Software Systems Limited 11

Ten Steps to Developing a QNX Neutrino Program

12

6. Communicating with the QNX Neutrino RTOS

Your target system must be able to respond to requests from the development
environment. To make this possible, the target must be running the gconn program.
If you didn't see it earlier in the output of pi di n, you can start gconn from the
console:

gqconn &

To access your target system from the IDE, you have to create a target project. Open
the System Information perspective: in the Window menu, select Open Perspective
[CQNX System Information. In the empty Target Navigator view, press the right mouse
button and select New QNX Target... from the context menu:

& Target Mavigator 7 ==

& [H -@. =
|l @E - B -

Refresh
Delete

& Mew QMNX Target...

%.

If you wish, you can uncheck Same as hostname and provide a name for your target
system. Enter its IP address in the corresponding field:

¥ New QNX Target |E| "

New QNX Target
Please specify the details of your QMNX target.

Target Name

[] Same as hostname
Target Name: my_Mto_machine

Cannection

Hostname orIP: 192.168.153.132] Port: 8000

':’:’:‘ Finish | Cancel

Click Finish, and then select your new target in the Target Navigator. You will now see

a list of all the processes in your QNX Neutrino RTOS system. The views (the tabs at
the top) provide other information to you. You can find even more useful views in the
Window menu under Show View.

Copyright © 2014, QNX Software Systems Limited

6. Communicating with the QNX Neutrino RTOS

File Edit Source

rs~ \

@ Target Navigator &3

.?-@vgv 4

- [my_Nto_machine/localhost

_first_project/my_first_project.c - QNX Momentics IDE

Refactor Navigate

Search

Project Run Window Help

114 | QX Software Development Platform 66~ | =

L

[System Summary 52 @, Process Informa

my_Nto machine - Last Updated:Thu Jan 16 16:14:04 EST 2014

System Specifications

CPU Usage Detta
45976ms

Start Time

Thu Jan 16 11:07:08 .
Thu Jan 16 11:07:08 .
Thu Jan 16 11:07:08 .
Thu Jan1611:07:08 .
Thu Jan 16 11:07:08 .
Thu Jan1611:07:09 .
Thu Jan 16 11:07:09 .
Thu Jan1611:07:09 .
Thu Jan 16 11:07:09 .
Thu Jan 16 11:07:09 .
ThuJan1611:07:12
Thu Jan 1611:07:09 .
Thu Jan 16 11:07:09 .
ThuJan1611:07:09 .| |
Thu Jan1611:07:09 .

Thu Jan1611:07:09 .

Thu Jan 1611

Hostname: localhost CPU Details
Board: s86pc 186 © 2018Mhz
08 Version: 6.6.0 (2014/01/15-21:04:35E5T)
Boot Date: Thu Jan 16 11:07.08 EST 2014
System Memoi
Used: 50M Free: 206M Total: 256M .
Totsl Processes: 20
All Processes | Application Processes | Server Processes|
Process Name Code Data Stack DatalsageDelta CPU Usage
procnte-smp-ins.. 628K 105.. 0O 0 6m53s609..
slogger (2) 12K 96K 8192 0 3ms
dumper @3) 108K 160K 36K 0 2ms
pei-bies (4100) 5K 06K 8192 0 §3Lms
devb-eide [1101) BBK 39M 160K 0 FTms
io-ush (4102) 14K 168K 24K 0 3ms
io-hid (4103) K 128K 32K 0 9ms
deve-pty (4104) 52K 160K 8192 0 3ms
deve-con-hid (1. BBK 132K 12K 0 149ms
deve-ser250 (1. S6K 128K 8192 0 ams
inetd (45067) HK 12K 8192 0 2ms
<h (4108) 152K 132K 8192 0 3ms
sh (4109) 15K 1326 8192 0 3ms
<h [4110) 152K 132K 8192 0 3ms
sh (4111) 152K 132K 8192 0 999us979ns
io-pkt-vd-he (41.. 128.. 64K 72K 0 556ms
pipe #113) WK 96K 44K 0 1ms
o e = .

n

4|

[my_Nto_machine]

" |+

Copyright © 2014, QNX Software Systems Limited

13

Ten Steps to Developing a QNX Neutrino Program

7. Compiling and linking

Now switch back to the C/C++ perspective by choosing its icon in the right side of the
toolbar:

ﬁ_*i‘.l %@.

(5]

If you didn't do so when you created the project, you need to select compilation with
or without debug information. To do this, right-click the project name in the Project
Explorer view, and then choose Properties. Click QNX C/C++ Project, click Build
Variants, and then expand the x86 item. Make sure that both the debug and release
variants are checked. Click OK; the IDE offers to rebuild the project.

During the creation of the QNX C Project, a QNX-made directory structure with
Makef i | es was generated. Now to create a binary, please right-click the project name,
and then select Build Project. The compiler and linker will now do their work.

You will find the compiler output in the C-Build output in the Console view, including
any errors (you shouldn't see any errors, but we've added one in the examples below):

E;_ Problems o= Tasks B Console 52 [Properties 4L 4F | B &E '.-||| F L e S
CDT Build Console [my_first_project])
cc: C:/qnx66@/host/win32/x86/usr/1ib/gcc/i486-pc-nto-qnx6.6.8/4.7.3/ccl caught signal 1 i

make.exe[2]: *** [my first_project.o] Error 1
make.exe[2]: Target "all' not remade because of errors.
make.exe[1]: [all] Error 2 (ignored)

However, if errors occur during compiling, you will find the Problems view more useful,
because it displays the output of the compiler in an interpreted and more readable
fashion than the Console view:

. Problems 37 | % Tasks [Console I Properties =
5 errors, 2 warnings, 1 other
Description 2 Resource Path Location Type ts
4 @ Errors (5 items)
3 expected ;' before '} token my_first_proj... /my_first_project line7 C/C++ Probl...
@3 expected expression before ‘return’ my_first_praj.. /my_first_project line C/C++ Probl... |z
@ make.exe[2]: ™ [my_first_project.o] Errorl my_first_proj... C/C++ Probl... |
3 make.exe[2]: Target “all' not remade because my_first_proj... C/C++ Probl...
@ missing terminating " character my_first_proj... /my_first_project line 5 C/C++ Probl...

& Warnings (2 items)
- 1 Infos (1 item) i

The Editor view also gives you information about an error if you leave the pointer over
it

14 Copyright © 2014, QNX Software Systems Limited

7. Compiling and linking

gl my_first_project.c 2 = 8

#include <stdlib.h> -~ W
#include <stdic.h>

= int main(int argc, char *argv[]) {

a WM =
a8 return EXIT AUCCESSS.
a

3 3 missing terminating " character

After the build operation, your binaries will be displayed in the Bi nari es folder.
Physically, they're located in the CPU directory under o (for object) and o- g (- g for
the debug option passed to the compiler). The IDE automatically created the
corresponding Makefi | es.

([Project Explorer &2 = 0

4 g{#ﬁ' Binaries

» 2 my_first_project - [x86/e]

3 ﬁ rmy_first_project_g - [x86/1e
s [ap) Includes

22 %86
» €] my_first_project.c

The QNX library | i bc. so, which contains many basic functions, is linked dynamically
to your binary by default. If you want to add other libraries later, you can do so under
the Project ["Préperties section. From there, click on QNX C/C++ Project, then Linker,
and then choose Extra Libraries in the Category field:

% Options | 3 Build Variants | |_Eb] General |

Category [General. options

- General options

Extra library paths
Dsenera
Extra u:uhjectfiles
Export syn post-build actions

[r‘l..-d:-...li-

Click Add, and type the name of the library, without the | i b prefix or the extension.
For example, to add the math library, | i bm so, you just have to type min the Name
field:

Copyright © 2014, QNX Software Systems Limited 15

Ten Steps to Developing a QNX Neutrino Program

QNK Cfc ++ PrﬂjECt

L -3 Options * Build Variants |_Eb] Gener

Category I Extra libraries

Mame

W m

Click OK. The linker will now link the library when you build the project.

16

Copyright © 2014, QNX Software Systems Limited

8. Preparing to launch the program

8. Preparing to launch the program

To run and debug the newly built program on your target system, you need to create
a launch configuration. It consists of various settings that affect how the program
starts (e.g. command-line parameters, environment variables). You enter these once,
and then you can use this collection of settings again and again.

Now create your own launch configuration: from the dropdown menu beside the “bug”
icon on the toolbar, select Debug Configurations. . . :

-s-0-a-®es- |1

cs (no launch history) |

Debug As 2
Debug Cenfigurations.., I}
Organize Favorites...
A dialog window opens, where you can start existing launch configurations, change
them, or create new ones. On the left, select C/C++ QNX QConn (IP). This type of
launch configuration is meant for network-based (cross) development with the QNX
Neutrino RTOS running on the target system, using the qconn program. Now click
on the New launch configuration icon:

i | (22

; [e
t'm F Y F - -
1 Mew launch configuration
c | L/L++ Application
You will now be presented with many configuration possibilities that all deal with

starting your executable program. Right now, only the Main tab needs your input.
Later, however, you should also take a look at what the other tabs have to offer.

If you wish, you can change the name of your configuration at the top of the dialog.
If your project isn't already selected, click the Browse. . . button beside the Project
field, and select your project. Next to the C/C++ Application field, press the Search
Project button and choose your binary. The names of binaries compiled with debug
information include a suffix of _g. Since we would like to start the Debugger in the
next step, please choose the binary with the debug information. Click OK.

Make sure your target system is listed under Target Options, and then click Apply—the
launch configuration is now ready:

Copyright © 2014, QNX Software Systems Limited 17

Ten Steps to Developing a QNX Neutrino Program

= B
nfigurations - % - -
e -
Create, ge, and run fig
fEaxlB - Name: my_first_project Configuration
type filter text

© Main (9= Arguments| g Environment | @ Upload | %5 Debugger| %/ Source| I Common | §f Tools|

[E] C/C++ Application
[E] C/C++ Attach to Applicatior ||| </C++ Application: g
[T] C/C++ Postmortem Debugg ||| *B6/0-g/my_first_project_g
—

(& C/C++ QNX Attach to Remc . -

4 Eﬂ C/C++ QNX PDebug (Serial) Variables...] [Search P{o}ect...] [Browse...]
i (% C/C++ QNX Postmortem De ||| Project:

4 {3 C/C++ QNX QConn (IP) ey it projec
("4 my_first_project Configu

|| [E] C/C++ Remote Application Build (if required) before launching

ul [£] GDB Hardware Debugging

Build configuration: Configuration »:
= Launch Group = B . X
E QNX File Transfer [¥] Select configuration using 'C/C++ Application =
(71 Enable auto build (") Disable auto build
@ Use workspace settings Configure Workspace Settings...

Priority/Scheduling Algorithm

| Scheduling | SCHED_RR b4

Priority 10

Target Options

Use terminal emulation on target

Filter targets based on C/C++ Application selection

‘@ my_Nto_machine (Meutrino,/%86) Add New Target...

Remove Target

Target Properties...

4| (Il ¥
Filter matched 12 of 12 items

Using DSF Debugging Framework (Mew) Launcher - Select other... | Apply | Revert

@ Debug | [Close

18 Copyright © 2014, QNX Software Systems Limited

9. Starting and debugging

9. Starting and debugging

You should still be in the Debug launch configuration dialog. You just created a
configuration for launching your program, which you now can start in the debugger.
To do this, please click Debug.

The IDE now switches to the Debug perspective and transfers your program from your
development machine across the network to your target QNX Neutrino system, and
then starts it under the control of the debugger. You will see that the debugger stops
in the first line of your program. In the Debug view, you'll see an overview of your
process, including the call stack. Using the buttons in the main bar of the Debug view,
you can control the debugger.

L
“ Debug - y_first_project.c - QNX Momentics IDE

| B

File Edit Source Refactor Mavigate Search Project Run Window Help
(51| [ss [@M Software Development Platform 66 | = &7 w i

B

R PIR R TR A C R

| =] 2 o

"

Quick Access

Br-#-0-a-
5| &I B

Copyright © 2014, QNX Software Systems Limited

©d= Variables 32 points }#f Regis =g
B @

Value

35 Debug 2 liv|dp Y= 8
a (%3 my_first_project Configuration [C/C++ QNX QConn (IP)]
4 5@ my_first_project_g [77844]
4 /P Thread [1] (STOPPED] (Suspended : Breakpoint)
= main() at my_first_project.c:5 0:8048792
o CA\qrB60\hostiwin32\xB6\usrbin\ntoxB6-gdb. exe
o /tmp/my first_project_gstever] 3899076539341 on my_Nto_machine pid 77844

s e =
Name Type
4 argc int 1

» argv char ™ 0x8047ebd

« T b

[€] my_first_project.c 52

#include <stdlib.h>
#include <stdio.h>

5= Outline 52 =
EERY o % 7
o stdlib.h
stdio.h
main(int, char'[]) : int

m

| printf(“Welcome to the QNX Momentics IDE\n"); °

= int main(int argc, char *argv[]) { o
return EXIT_SUCCESS;

H

El Console 2 =
my _first_project Configuration [C/C++ QNX QConn (IP)] my first_project g

Writable Smart Insert 5:1 I

When you run or debug your application from the IDE, any input is read from the IDE's
console, and any output goes to it. Once execution has passed the line that calls
printf(), you should see the “Welcome to the QNX Momentics IDE” message in the
Console window.

Using the Step Over button, you can jump to the next line of code:

Cu

| 2| o

Step Cwer (FG)

19

Ten Steps to Developing a QNX Neutrino Program

20

During debugging, you can watch the Variables view on the right, which displays how
your variables change. You can use the Step Into button to let the debugger go into
the code of a function (which, of course, is useful only if you have the source code
for this function).

To set a breakpoint, place the mouse pointer over the left border of the source display,
press the right mouse button and choose Toggle Breakpoint from the context menu.
The breakpoint is shown as a little circle, which you can also set or remove while you
write your code.

= int main(int argc, char *argv[]) {

—]
Toggle Breakpoint Ctrl+Shift+B |

E Add Breakpnirl%. Ctrl+Double Click
Enable Breakpoint Shift+ Double Click

When the running program hits a breakpoint, it stops in the debugger, and you can,
for example, examine your variables. If you click the Resume button, your program
continues until it hits the next breakpoint:

| [oB|] m 5

Resume (F&) £

To abort program execution, use the Terminate button:

| pu

QL] Terminate (Ctri+F2) l

After the program has finished running, you can use the Remove All Terminated
Launches button to clear all terminated launches from the Debug view:

The debugger keeps the project's files open while the program is running. Be
sure to terminate the debug session before you try to rebuild your project, or
=~ else the build will fail.

To run your program as a standalone binary (without the debugger), open the dropdown
menu beside the Run icon and choose Run Configurations... :

Copyright © 2014, QNX Software Systems Limited

9. Starting and debugging

#5-0-a- || |

b= | & %% 1 my_first_project Configuration

Run As
| Run Configurations... L}

Organize Favorites...

L T

Then you can use the launch configuration (described in the previous step) to start
your program. Or create a new launch configuration and select the binary without
debug information. You can also use the System Information perspective's Target File
System Navigator (Window [—SHow View) to manually transfer your binary, and then
run it by double-clicking on it (or by right-clicking on it and selecting Run).

It's also possible to leave the binary on a shared network drive on your development
host, mount the drive on your QNX Neutrino target (see the entry for f s- ci f s in the
QNX Neutrino Utilities Reference), and run the binary from there.

Copyright © 2014, QNX Software Systems Limited 21

Ten Steps to Developing a QNX Neutrino Program

10. Making the program your own

To turn this default program into your own first QNX Neutrino program, you can modify
and extend the source code we just created. Try some of our sample programs and
copy code from them into your project. And now that you've started, you'll probably
want a lot more information, such as how to create your own threads, how the QNX
Neutrino message-passing works, which process-synchronization methods are available,
how to get access to /0 areas, or how to build a QNX Neutrino resource manager. But
don't worry: all this is (almost) as simple as the quick start you just experienced!

The IDE includes a number of tutorials to help you get started. Choose Help ["Wdlcome
from the IDE's toolbar, and then click the Tutorials icon:

-+

The IDE's Help system includes the QNX documentation, along with information about
the Eclipse platform. In the Help menu, click Help Contents:

w | Help .

By
1 | @& Welcome

{7) Help Contents L\x’
= %7 Search

Dynamic Help

T
in

The roadmap for the QNX Software Development Platform will help you find out where
to look in the documentation for the information you need. We recommend browsing
the QNX Neutrino System Architecture guide, the IDE User's Guide, and the QNX
Neutrino Programmer's Guide.

22 Copyright © 2014, QNX Software Systems Limited

10. Making the program your own

% Help - QNX Momentics IDE =B e

i =1,Y) @ Documentation

Search:] Scope Al topics

Contents d &~ #-a[Ea [N So@ld«lsa
¥ € Workbench User Guide =
© @ (/C++ Development User Guide QNX= Software Development Platform

91 € Copyrights, Conventions, Support, and Licensit
G The tables below will help you find your way around the documentation for the QNX Software Development
Platform. Here you'll find a comprehensive library of titles to help you understand the OS and its tools so
you can develop and deploy superior realtime embedded systems. If you're new to the QNX Neutrino® 0S,
you should start with the System Architecture guide.

¥ % EGit Documentation

QNX Momentics IDE User's Guide

i
¥ @ Subversive User Guide

i

0S Core Components

Document Description

Describes how to use adaptive partitioning to control the allocation of

resources among competing processes.

Tells you how to get the OS5 running on your target embedded system,
write an IPL, customize a startup program, etc.

s | Describes how to use io-pkt-+ for networking on QNX Neutrino.

=r's | Provides a reference of all PPS objects written by device publishers and

lists the command options you can set for publishers.

How to build robust high-availability software running on the QNX
Neutrino realtime operating system.

How to set up a "minidriver” to start devices quickly when the system
boots.

How to use symmetric multiprocessing to get the most performance

m b

HTTP ERROR: 500

Done

possible out of a multiprocessor system.

The IDE even includes source code examples covering thread creation, usage of
mutexes, message-passing and other methods of interprocess communication, as well
as a QNX Neutrino resource-manager template. Choose Help [—Welcome, and then
click the Samples icon:

L]

The source features extensive comments, explaining what is done there. For every
function you are interested in, you also should consult the QNX Neutrino C Library
Reference; for utilities, see the Utilities Reference.

While you explore the QNX Neutrino RTOS and its SDK, you will probably have further
questions. Please contact your QNX Account Manager, Field Application Engineer, or
our support department, and visit our Foundry27 community website
(http://comunity. gnx. com. We want to be with you from the start, because
we are successful only if you are!

Copyright © 2014, QNX Software Systems Limited 23

http://community.qnx.com

	Ten Steps to Developing a QNX Neutrino Program
	1. Requirements
	2. Installing QNX SDP on the development host
	3. Installing the QNX Neutrino RTOS on the target system
	4. Networking with the QNX Neutrino RTOS
	5. Creating a program project
	6. Communicating with the QNX Neutrino RTOS
	7. Compiling and linking
	8. Preparing to launch the program
	9. Starting and debugging
	10. Making the program your own

