
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

Audio Manager Library Reference

©2012–2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Friday, February 7, 2014

Table of Contents

About this Reference ..5
Typographical conventions ...6

Technical support ...8

Chapter 1: Audio Manager Overview ...9

Chapter 2: Audio Manager Routing Priority ...11

Chapter 3: Audio Stream Routing Priorities by Type ...13

Chapter 4: Linking with Audio Manager ..17

Chapter 5: Audio Manager Configuration File ..19

Device attributes ..22

Audio status list attributes ...25

Routing rules ..27

Ducking rules ...29

Chapter 6: Audio Manager API ..31

Audio Concurrency (audio_manager_concurrency.h) ...32

Data types in audio_manager_concurrency.h ..32

Functions in audio_manager_concurrency.h ...35

Audio Devices (audio_manager_device.h) ..38

Constants in audio_manager_device.h ...38

Data types in audio_manager_device.h ..39

Functions in audio_manager_device.h ...48

Audio Events (audio_manager_event.h) ...64

Data types in audio_manager_event.h ..64

Functions in audio_manager_event.h ...73

Audio Routing (audio_manager_routing.h) ...96

Constants in audio_manager_routing.h ..100

Data types in audio_manager_routing.h ...101

Functions in audio_manager_routing.h ..104

Audio Voice Services (audio_manager_voice_service.h) ...122

Constants in audio_manager_voice_service.h ..122

Data types in audio_manager_voice_service.h ...123

Functions in audio_manager_voice_service.h ..125

Audio Volume (audio_manager_volume.h) ...135

Constants in audio_manager_volume.h ..135

Audio Manager Library Reference

Data types in audio_manager_volume.h ...136

Functions in audio_manager_volume.h ..137

Table of Contents

About this Reference

The audio manager is used to control audio stream routing behavior.

See:To find out about:

Audio Manager Overview (p. 9)What the audio manager does

Audio Manager Routing Priority (p. 11)How to control audio stream routing

Audio Stream Routing Priorities by Type

(p. 13)

Routing priorities for audio stream types

Linking with Audio Manager (p. 17)Linking to the audio manager library

Audio Manager Configuration File (p. 19)The audio manger configuration file and

how to use it

Audio Manager API (p. 31)The Audio Manager functions, data

structures, constants and enumerated

values

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About this Reference

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About this Reference

http://www.qnx.com

Chapter 1
Audio Manager Overview

The audio manager is used to control audio stream routing, volume, and ducking

behavior.

About the audio manager

The audio manager and its library of functions and data structures allows client

applications to set audio properties such as routing, volume, and concurrency, and to

receive events notifying them of changes to these properties for audio streams for

other applications.

The audio manager provides:

• automatic routing, and manual routing of the PCM preferred path

• audio stream type identification

• audio concurrency policy (ducking) management

• audio device monitoring and mounting (e.g., headset, A2DP, HDMI)

Applications should notify the audio manager of the types of audio streams that are

opening or closing, and can link specific PCM streams with these types in order to

support advanced concurrency use cases (e.g., using alerts to automatically trigger

audio ducking in the media player). The application can also use the audio manager

to override the default preferred routing table for an audio stream type, thus allowing

the user to choose the output device (e.g., the loudspeaker rather than the wired

headset).

Using the audio manager is optional. However, applications that require close

integration with the audio system will need to use this service. A client application

that doesn't use the audio manager will be managed as a “default” type audio stream,

and the client application will have little control over this default stream.

Using the audio manager

To play audio, an application needs to open a PCM stream. After opening the PCM

stream and getting a handle for the stream, the application should get an audio manager

handle with the same audio type as the PCM stream. This can be done by calling

audio_manager_snd_pcm_open() (p. 116), then audio_manager_get_handle() (p. 108);

or by calling audio_manager_snd_pcm_open_name() (p. 118).

Audio types are defined in audio_manager_audio_type_t (p. 101).

Copyright © 2014, QNX Software Systems Limited 9

Chapter 2
Audio Manager Routing Priority

The audio manager allows client applications to control the routing of their audio

streams.

The main audio device attached to the system supports only a single main mix. This

means that, unless client applications specify audio routing paths, the system

automatically selects for output the audio stream from the connected device with the

highest priority in the current mode of operation.

Every type of audio stream has a priority relative to other types of audio stream types.

In the event that two or more audio streams require concurrent access to an output

device, the system grants access to the output device to the stream with the highest

priority type. For example, if AUDIO_TYPE_DEFAULT is the type of the active stream,

and a second stream of type AUDIO_TYPE_VIDEO_CHAT begins, the routing, tuning,

and attenuation policies of the AUDIO_TYPE_VIDEO_CHAT stream take effect, since

this stream has the higher priority.

The table below lists the audio stream types, in descending order of priority (that is,

the higher the audio type is in the table, the higher its priority), as well as the effect

on each stream type if it is pre-empted. The pre-empted stream may be either muted

or fully attenuated:

• muted — lower priority streams are muted for a non-transient event, such as a

phone call. It might be appropriate for applications generating lower priority audio

streams to pause for the duration of the event.

• fully attenuated — lower priority streams are muted for a transient event, such as

a camera click. Other applications might not need to react in this case.

Concurrency RuleDescriptionName

Fully attenuates all lower

priority audio streams.

Sound effects that can

never be attenuated, such

as the camera click.

AUDIO_TYPE_SOUND_EFFECT

Fully attenuates all lower

priority audio streams.

Used for playback of

ringtones when an incoming

phone call occurs.

AUDIO_TYPE_RINGTONE

Fully attenuates all lower

priority audio streams.

DTMF and call progress

tones. Can also be used to

playback non-tone-based

AUIDO_TYPE_VOICE_TONES

audio during phone call

however.

Copyright © 2014, QNX Software Systems Limited 11

Concurrency RuleDescriptionName

Mutes all lower priority

audio streams.

Voice band related streams,

and specific activities

related to telephony

(cellular or VOIP).

AUDIO_TYPE_VOICE

Mutes all lower priority

audio streams.

Used by the video chat

client. This type is not

covered by

AUDIO_TYPE_VIDEO_CHAT

AUDIO_TYPE_VOICE

because of a difference in

automatic routing policy.

Fully attenuates all lower

priority audio streams.

Used to denote streams

related to push-to-talk use

cases.

AUDIO_TYPE_PUSH_TO_TALK

Mutes all lower priority

audio streams.

Voice recognition services,

such as VAD.

AUDIO_TYPE_VOICE_RECOGNITION

Attenuates lower priority

audio streams by 40%.

Text to speech services.AUDIO_TYPE_TEXT_TO_SPEECH

Attenuates lower priority

audio streams by 40%.

Notifiers, such as for

calendar events, email,

SMS, instant messaging,

and so on.

AUDIO_TYPE_ALERT

No change to other

streams.

Voice recording services,

such as focal points.

AUDIO_TYPE_VOICE_RECORDING

No change to other

streams.

Used by media player

applications.

AUDIO_TYPE_MULTIMEDIA

No change to other

streams.

Any unclassified audio

stream is of type default.

AUDIO_TYPE_DEFAULT

12 Copyright © 2014, QNX Software Systems Limited

Audio Manager Routing Priority

Chapter 3
Audio Stream Routing Priorities by Type

An audio stream (sound effect, ringtone, etc.) is routed to an output device based on

the priority ranking of the device for the audio stream type.

The following table lists audio stream types and their routing priorities. For each audio

stream type, the output devices to which the stream can be routed are listed in

descending order of priority. That is, for AUDIO_TYPE_PUSH_TO_TALK, the preferred

output device is AUDIO_DEVICE_HEADSET; if this device is not available, then the

stream will be routed to AUDIO_DEVICE_HEADPHONE, and so on.

Output device routingAudio type

AUDIO_DEVICE_SPEAKERAUDIO_TYPE_SOUND_EFFECT

AUDIO_DEVICE_SPEAKERAUDIO_TYPE_RINGTONE

AUDIO_DEVICE_TTYAUDIO_TYPE_VOICE

AUDIO_DEVICE_HEADSET

AUIDO_DEVICE_HEADPHONE

AUDIO_DEVICE_LINEOUT

AUDIO_DEVICE_BT_SCO

AUDIO_DEVICE_HAC

AUDIO_DEVICE_HANDSET

AUDIO_DEVICE_SPEAKER

AUDIO_DEVICE_HEADSETAUDIO_TYPE_VIDEO_CHAT

AUDIO_DEVICE_HEADPHONE

AUDIO_DEVICE_LINEOUT

AUDIO_DEVICE_BT_SCO

AUDIO_DEVICE_HDMI

AUDIO_DEVICE_TOSLINK

AUDIO_DEVICE_SPEAKER

AUDIO_DEVICE_HANDSET

AUDIO_DEVICE_HEADSETAUDIO_TYPE_PUSH_TO_TALK

Copyright © 2014, QNX Software Systems Limited 13

Output device routingAudio type

AUDIO_DEVICE_HEADPHONE

AUDIO_DEVICE_LINEOUT

AUDIO_DEVICE_BT_SCO

AUDIO_DEVICE_SPEAKER

AUDIO_DEVICE_HANDSET

AUDIO_DEVICE_HEADSETAUDIO_TYPE_VOICE_RECOGNITION

AUDIO_DEVICE_BT_SCO

AUDIO_DEVICE_HEADPHONE

AUDIO_DEVICE_LINEOUT

AUDIO_DEVICE_SPEAKER

AUDIO_DEVICE_HEADSETAUDIO_TYPE_TEXT_TO_SPEECH

AUDIO_DEVICE_HEADPHONE

AUDIO_DEVICE_LINEOUT

AUDIO_DEVICE_A2DP

AUDIO_DEVICE_HDMI

AUDIO_DEVICE_TOSLINK

AUDIO_DEVICE_SPEAKER

AUDIO_DEVICE_HANDSET

AUDIO_DEVICE_HEADSETAUDIO_TYPE_VOICE_RECORDING

AUDIO_DEVICE_BT_SCO

AUDIO_DEVICE_HANDSET

AUDIO_DEVICE_HEADPHONE

AUDIO_DEVICE_SPEAKER

AUDIO_DEVICE_HEADSETAUDIO_TYPE_MULTIMEDIA

AUDIO_DEVICE_HEADPHONEAUDIO_TYPE_DEFAULT

AUDIO_DEVICE_LINEOUT

AUDIO_DEVICE_A2DP

AUDIO_DEVICE_HDMI

14 Copyright © 2014, QNX Software Systems Limited

Audio Stream Routing Priorities by Type

Output device routingAudio type

AUDIO_DEVICE_TOSLINK

AUDIO_DEVICE_SPEAKER

AUDIO_DEVICE_HANDSET

AUDIO_DEVICE_HEADSETAUDIO_TYPE_VOICE_TONES

AUIDO_DEVICE_HEADPHONE

AUDIO_DEVICE_LINEOUT

AUDIO_DEVICE_SPEAKER

AUDIO_DEVICE_HANDSET

AUDIO_DEVICE_SPEAKERAUDIO_TYPE_ALERT

AUDIO_DEVICE_HEADSET

AUDIO_DEVICE_HEADPHONE

AUDIO_DEVICE_LINEOUT

AUDIO_DEVICE_A2DP

AUDIO_DEVICE_HANDSET

Copyright © 2014, QNX Software Systems Limited 15

Chapter 4
Linking with Audio Manager

Projects that use audio manager need to link against the library audio_manager (or

libaudio_manager.so for the object name) to resolve the symbolic links.

If you use a makefile project, you can link with audio manager by adding the following

code to the file common.makefile:

Add library dependency
LIBS+=audio_manager

Statically link libaudio_manager for debug builds
ifneq($(origin DEBUG),undefined)
LIBPREF_audio_manager = -Bstatic
LIBPOST_audio_manager = -Bdynamic
endif

Copyright © 2014, QNX Software Systems Limited 17

Chapter 5
Audio Manager Configuration File

The audio manager configuration file sets the behavior of audio devices and streams.

About the configuration file

The audio manager configuration file (/audioman_default.conf) sets the behavior

of audio devices and streams, including device and audio type attributes, ducking

rules, and audio routing rules and priorities.

You can change the configuration file to adjust how your system handles audio streams

and the behavior of output devices. For example, you can set the default volume for

music (as a percentage of the maximum) at system start for each type of output device

(speaker, headset, headphones, etc.), or the amount of attenuation when the phone

rings. Thus, by using different configuration files you can tune audio behavior for

specific devices or implementations (phone, in-vehicle system, etc.) without changing

or recompiling code.

Editing the configuration file

The configuration file can't be changed by applications or the audio management

service. To change values in the configuration file:

1. Stop the audio manager.

2. Edit the file.

3. Delete the /pps/services/audio/* PPS objects.

4. Restart the service so that it loads the new configuration into the PPS objects.

Organization and syntax

The audio manager configuration file is a plain text file that uses a simple syntax with

hierarchical containers of values for attributes.

The syntax for a container is as follows:

"value":{
 "attribute":"value",
}

For example, the following configures two channels for headphones:

"headphone":{
 "numchans":"2",
 }

Copyright © 2014, QNX Software Systems Limited 19

And the following configures the volume for an alert to 90 percent of the maximum

for the output device:

"Ducking Rules":{
 "alert":"90",
 },

Note that the value in a configuration can be a pair of brackets, “{ ...}” and their

contents, in which case the contents inside the brackets are the value for the attribute.

For example, the file begins by defining the language used for managing audio, the

file version number. It then begins configuring devices, as shown in the code snippet

below.

AudioManagerConfiguration:json:{
 "Version":"0.0.1",
 "Devices":{
 "Description":"Specify the default values for the audio device attributes",
 "speaker":{
 "supported":"true",
 ...
 }
 }
}

Loading the audio management configuration

At startup, the audio manager looks for the audioman_default.conf file at

/etc/system/config/audio/. If it doesn't find this file, it uses its compiled

values. If the audio manager finds a configuration file, it writes the values in the file

to its PPS objects at /pps/services/audio/. If any configurations are missing

from the configuration file, the audio manager uses the compiled values for these

configurations.

Configuration details

The following snippet from an audioman_default.conf file shows a configuration

for a headset.

"headset":{
 "supported":"true",
 "path":"/dev/snd/pcmPreferredp",
 "input.path":"/dev/snd/pcmPreferredc",
 "connected":"false",
 "numchans":"2",
 "order":"FL,FR",
 "audioconfig":"2.0",
 "inchans":"1",
 "hwinchans":"1",
 "volumecontrol":"percentage",
 "dependency":"",
 "keepalive":"false",
 "suspended":"false",
 "controlpps":"",
 "audioprocessing":"false",
 "vadsupport":"",
 "public":"false",

20 Copyright © 2014, QNX Software Systems Limited

Audio Manager Configuration File

 "mutable":"true",
 "mixer":"Master",
 "input.mixer":"Input Gain",
 "Buttons":"1"
},

Copyright © 2014, QNX Software Systems Limited 21

Device attributes

The configuration file can be used to configure device attributes.

Valid device types are defined in Definitions in audio_manager_device.h (p. 38).

You can configure the following device attributes:

DescriptionAttribute

Configuration of the audio output channels

(e.g., "2.0", "5.1"). Note that this is used

only by the hdmi device.

audioconfig

Indicates whether the device can do some

audio processing that the system won't

audioprocessing

need to handle (e.g., a headset may be

able to do noise cancellation): true or

false.

The number of buttons the device

supports. If not present, the default 0 is

assumed.

BUTTONS

This type of device is connected to the

system: true or false.

connected

The path of the device's PPS control

object. If this object exists, then the

controlpps

device is controlled by a PPS interface

instead of an actual audio driver.

Indicates whether this device depends on

another device (this device has no effect

unless the other is also connected).

dependency

Total number of input channels on the

hardware.

hwinchans

Default number of channels that the client

should use for multimedia audio capture.

inchans

For example, for a device with four

microphones, the client might use two for

multimedia, in which case inchans would

be 2 (hwinchans would be 4).

Name of the mixer group implemented by

the input device for volume control. Values

input.mixer

depend on the particular audio drivers and

22 Copyright © 2014, QNX Software Systems Limited

Audio Manager Configuration File

DescriptionAttribute

on the Audio Manager configuration.

Default names are:

• BT A2DP In

• BT SCO In

• HDMI In

• Input Gain

• Tones In

• TosLink In

• USB In

• Voice In

• WIFI In

For details about audio drivers, see the

io-audio manager and the deva-*

entries in the QNX Neutrino Utilities

Reference.

Path for the audio stream input; for

example /dev/snd/pcmPreferredc.

input.path

Indicates whether the output device is to

be kept alive when no audio stream is

active: true or false.

keepalive

Name of the mixer group implemented by

the output device for volume control. As

mixer

for input.mixer, values depend on the

particular audio drivers and on the Audio

Manager configuration. Default names are:

• BT A2DP Out

• BT SCO Out

• HDMI Out

• Output GaOut

• Tones Out

• TosLOutk Out

• USB Out

• Voice Out

• WIFI Out

For details about audio drivers, see the

io-audio manager and the deva-*

Copyright © 2014, QNX Software Systems Limited 23

Device attributes

DescriptionAttribute

entries in the QNX Neutrino Utilities

Reference.

The output device can be muted: true

or false.

mutable

Number of audio channels supported.numchans

The first audio channel; see list of audio

channels definitions in Definitions in

audio_manager_device.h (p. 38).

order

Path for the audio stream output; for

example, /dev/snd/pcmPreferredp.

path

Indicates whether the device can be heard

publicly (e.g., the value for a speaker

would be true).

public

Set to true if this device type is

supported: true or false.

supported

Indicates whether the device is

temporarily disabled by the system.: true

or false.

suspended

Voice Activity Detection (VAD) is

supported: true or false.

vadsupport

The type of volume control; see

AUDIO_VOLUME_CONTROL_NAMES in

volumecontrol

Definitions in audio_manager_device.h (p.

38).

24 Copyright © 2014, QNX Software Systems Limited

Audio Manager Configuration File

Audio status list attributes

The configuration file can be used to specify default values for the attributes of the

audio status list.

The “Status” configuration value contains configuration details that value specify the

default values for the audio status list attributes. It sets values for Attributes (p. 25)

and Devices (p. 26).

Attributes

The “Attributes” value defines default values of audio streams.

DescriptionAttribute

The type of stream. Supported values

include “audio”, “record”, “video”, and

“voice”.

audio.mode

Gain to apply to input, as percentage of

maximum possible.

input.gain

Default state for the input stream: “true”

(muted) or “false” (not muted).

input.muted

Audio-boost override is or is not

supported: “true” (supported) or “false”

(not supported).

hpoverride.supported

Audio-boost override is on: “true” (on) or

“false” (off).

hpoverride

The unsafe volume level for headphones,

as percentage of maximum possible

volume.

hpboostlevel

The unsafe volume range for headphones.

How is this expressed?

Available output device; must be a device

type defined in Definitions in

audio_manager_device.h (p. 38).

output.available

Set to “true” if the headphone output

volume is limited by regulations (e.g., the

hpoutput.regulated

setting may be 100% by an app, but the

regulation limits the volume to 90%).

Copyright © 2014, QNX Software Systems Limited 25

Audio status list attributes

DescriptionAttribute

The volume level, as a percantage of

maximum possible, when output is not

regulated.

hpoutput.unregulatedlevel

Devices

The “Devices” value defines default input and output behaviors, by device type. For

a list of device types, see Definitions in audio_manager_device.h (p. 38).

DescriptionAttribute

The deafult volume, measured as defined

by the the device type “volumecontrol”

output.speaker.volume

attribute. For example, if the

“volumecontrol” attribute value is

“percentage”, then a value of “75” sets

the deafult output speak volume to 75

percent of maximum.

Default state for the output speaker “true”

(muted) or “false” (not muted).

output.speaker.muted

The amount of gain applied to the input

speaker, as a percentage of the maximum

possible gain.

input.speaker.gain

Default state for the input speaker “true”

(muted) or “false” (not muted).

input.speaker.muted

26 Copyright © 2014, QNX Software Systems Limited

Audio Manager Configuration File

Routing rules

The configuration file can be used to specify routing behavior for the different types

of audio streams.

The “Routing Rules” configuration value specifies the routing of audio streams, in

order of priority. It contains the audio stream types listed in priority. Supported audio

stream types, in alphabetical order, are: “alert”, “default”, “inputfeedback”,

“multimedia”, “pushtotalk”, “ringtone”, “ soundeffect”, “ texttospeech”, “ videochat”,

“ voice”, “ voicerecognition”, “voicerecording”, and “ voicetones”.

Under each audio stream type, “Devices” attribute specify pairs of output and input

devices, in order of priority for the audio stream type:

DescriptionAttribute

The input and output devices where this

audio stream type is routed.

Devices

The output route for the audio stream.Output

The input route for the audio stream.Input

For a list of routing paths and priorities by audio stream type, see Supported routing

paths (p. 13). For a list of device types, see Definitions in audio_manager_device.h

(p. 38).

Example

The codes snippet below taken from the “Routing Rules” section of a configuration

file shows that for this implementation:

• A ringtone has a higher priority than a videochat (it appears earlier in the list of

audio stream types).

• Output for a ringtone will be routed to the speaker.

• Output for the videochat will be routed to the headset, and if no headset is available

to the headphones, etc.

• The system will look for ringtones coming in, first through the USB connection,

then from the handset.

• The system will look for videchat input, first from the headset, then from a USB

connection.

"ringtone":{
 "Devices":{
 "Output":"speaker",
 "Input":"usb"
 },
 "Devices":{
 "Output":"speaker",

Copyright © 2014, QNX Software Systems Limited 27

Routing rules

 "Input":"handset"
 },
 ...
"videochat":{
 "Devices":{
 "Output":"headset",
 "Input":"headset"
 },
 "Devices":{
 "Output":"headphone",
 "Input":"usb"
 },
 ...

28 Copyright © 2014, QNX Software Systems Limited

Audio Manager Configuration File

Ducking rules

The configuration file can be used to specify ducking behavior for the different types

of audio streams.

The “Ducking Rules” configuration value specifies the behavior of audio streams when

they are affected by other streams. The configuration file lists the audio stream types

in order of priority, from highest to lowest, and the behavior of each audio stream type

when it is pre-empted by a higher-priority stream.

Every audio stream can be set to one the following:

• a value from 1 to 100 specifying the volume level to which the stream with be set

when it is interrupted; this value is a percentage of the current volume.

• “mute” (-1). The stream will mute if interrupted by a higher-priority stream.

• “no effect” (INT_MIN). The stream will not be affected by any other stream.

Example

The code snippet below shows an example of ducking rules. Note that these rules are

not relevent for some audio streams, such as voice recordings.

"Devices":{
 "Description":"Specify the default values of the attributes of the audio devices",
 "speaker":{
 "supported":"true",
 "path":"/dev/snd/pcmPreferredp",
 "input.path":"/dev/snd/pcmPreferredc",
 "connected":"true",
 "numchans":"1",
 "order":"FL",
 "audioconfig":"2.0",
 "inchans":"0",
 "hwinchans":"0",
 "volumecontrol":"percentage",
 "dependency":"",
 "keepalive":"false",
 "suspended":"false",
 "controlpps":"",
 "audioprocessing":"false",
 "vadsupport":"",
 "public":"true",
 "mutable":"true",
 "mixer":"Master",
 "input.mixer":"Input Gain"
 },
 ...

Copyright © 2014, QNX Software Systems Limited 29

Ducking rules

Chapter 6
Audio Manager API

The audio manager API includes functions and data structures for defining and

managing concurrency policies and device properties, and for controlling audio routing,

concurrency, and volume.

Copyright © 2014, QNX Software Systems Limited 31

audio_manager_concurrency.h

Definitions for supported audio concurrency policies.

The audio manager maintains the audio concurrency policies for the supported audio

types. This file defines concurrency properties and provides functions for them.

Data types in audio_manager_concurrency.h

Data structures, typedefs, and enumerations for managing audio concurrency.

audio_manager_attenuation_extra_option_t

Supported extra attenuation options.

Synopsis:

#include <audio/audio_manager_concurrency.h>

typedef enum {
 ATTENUATION_VOICE_UPLINK = (1u<<0)
 ATTENUATION_VOICE_DOWNLINK = (1u<<1)
} audio_manager_attenuation_extra_option_t;

Data:

ATTENUATION_VOICE_UPLINK

Uplink attenuation option.

ATTENUATION_VOICE_DOWNLINK

Downlink attenuation option.

Library:

libaudio_manager

Description:

This enumeration defines the supported extra attenuation options.

audio_manager_attenuation_params_t

Supported audio attenuation parameters.

Synopsis:

typedef struct {
 int attenuation ;
 int attenuation_extra_options ;
}audio_manager_attenuation_params_t;

32 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Data:

int attenuation

Attenuation value from 0-100 and enum audio_manager_attenuation_type_t.

int attenuation_extra_options

Extra attenuation options, represented by a bitmask of

audio_manager_attenuation_extra_option_t.

Library:

libaudio_manager

Description:

This structure defines the parameters for setting the attenuation effect of an audio

manager handle.

audio_manager_attenuation_type_t

Supported audio attenuation types.

Synopsis:

#include <audio/audio_manager_concurrency.h>

typedef enum {
 AUDIO_ATTENUATION_MUTE = -1
 AUDIO_ATTENUATION_NO_EFFECT = 100
 AUDIO_ATTENUATION_DEFAULT = INT_MAX
} audio_manager_attenuation_type_t;

Data:

AUDIO_ATTENUATION_MUTE

Mute attenuation type.

AUDIO_ATTENUATION_NO_EFFECT

No effect attenuation type.

AUDIO_ATTENUATION_DEFAULT

Default attenuation type.

Library:

libaudio_manager

Copyright © 2014, QNX Software Systems Limited 33

audio_manager_concurrency.h

Description:

This enumeration defines the supported audio attenuation types.

audio_manager_concurrency_t

Audio concurrency settings.

Synopsis:

typedef struct {
 bool attenuated ;
 bool muted ;
 audio_manager_audio_type_t muted_by ;
 pid_t muted_by_pid ;
}audio_manager_concurrency_t;

Data:

bool attenuated

true if the audio type is currently being attenuated, false otherwise.

bool muted

true if the audio type is currently being fully muted, false otherwise.

audio_manager_audio_type_t muted_by

The audio type causing the mute policy to be applied.

pid_t muted_by_pid

The ID of the process causing the mute policy to be applied.

Library:

libaudio_manager

Description:

This structure defines the audio concurrency settings.

34 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Functions in audio_manager_concurrency.h

Functions for managing audio concurrency.

audio_manager_get_audio_type_concurrency_status()

Get the audio concurrency status of a given audio type.

Synopsis:

#include <audio/audio_manager_concurrency.h>

int audio_manager_get_audio_type_concurrency_status(audio_manager_audio_type_t
 type, audio_manager_concurrency_t *status)

Arguments:

type

The audio type to query.

status

The audio concurrency status.

Library:

libaudio_manager

Description:

The audio_manager_get_audio_type_concurrency_status() function returns the audio

concurrency status audio_manager_concurrency_t of a given audio type.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_current_audio_handle_concurrency_status()

Get the audio concurrency status of a given audio manager handle.

Synopsis:

#include <audio/audio_manager_concurrency.h>

int audio_manager_get_current_audio_handle_concurrency_status(unsigned int
audioman_handle, audio_manager_concurrency_t *status)

Arguments:

Copyright © 2014, QNX Software Systems Limited 35

audio_manager_concurrency.h

audioman_handle

The audio mananger handle to query.

status

The audio concurrency status.

Library:

libaudio_manager

Description:

The audio_manager_get_current_audio_handle_concurrency_status() function returns

the current audio concurrency status audio_manager_concurrency_t of a given audio

manager handle.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_handle_attenuation()

Override the attenuation that's associated with the type of the given audio manager

handle.

Synopsis:

#include <audio/audio_manager_concurrency.h>

int audio_manager_set_handle_attenuation(unsigned int audioman_handle,
audio_manager_attenuation_params_t params)

Arguments:

audioman_handle

The audio manager handle returned by audio_mananger_get_handle.

params

The parameters for the handle attenuation to apply.

Library:

libaudio_manager

36 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Description:

The audio_manager_set_handle_attenuation() function overrides the attenuation of

the given audio manager handle applied to the lower ducking priority audio sources.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 37

audio_manager_concurrency.h

audio_manager_device.h

Definitions for supported audio devices and their properties.

The audio manager maintains a list of supported devices on the target and their

properties. This file defines device properties and provides get and set functions for

them.

Constants in audio_manager_device.h

Constants for managing audio devices.

Definitions in audio_manager_device.h

Preprocessor macro definitions for the audio_manager_device.h header file in the

libaudio_manager library.

Definitions:

#define AUDIO_DEVICE_NAMES { \
 "speaker", \
 "headset", \
 "headphone", \
 "a2dp", \
 "handset", \
 "hac", \
 "btsco", \
 "hdmi", \
 "toslink", \
 "tty", \
 "lineout", \
 "usb", \
 "tones", \
 "voice", \
 "miracast", \
 "mirrorlink", \
 "audioshare", \
}

Names for supported audio devices.

#define AUDIO_CHANNEL_NAMES { \
 "", \
 "FL", \
 "FC", \
 "FR", \
 "RL", \
 "RR", \
 "LFE", \
}

Names for audio channels.

#define AUDIO_VOLUME_CONTROL_NAMES { \
 "unavailable", \
 "simple", \
 "percentage", \
}

Names for volume control types.

#define AUDIO_HEADSET_BUTTON_NAMES { \
 "button_play_pause", \

38 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

 "button_vol_up", \
 "button_vol_down", \
 "button_forward", \
 "button_back", \
}

Names for headset buttons.

#define AUDIO_HEADSET_BUTTON_STATE_NAMES {
 \
 "pressed", \
 "released", \
}

Names for headset button states.

Library:

libaudio_manager

Data types in audio_manager_device.h

Data structures, typedefs, and enumerations for managing audio devices.

audio_manager_channel_t

Supported audio channels.

Synopsis:

#include <audio/audio_manager_device.h>

typedef enum {
 AUDIO_CHANNEL_UNAVAILABLE
 AUDIO_CHANNEL_FRONT_LEFT
 AUDIO_CHANNEL_FRONT_CENTER
 AUDIO_CHANNEL_FRONT_RIGHT
 AUDIO_CHANNEL_REAR_LEFT
 AUDIO_CHANNEL_REAR_RIGHT
 AUDIO_CHANNEL_LOW_FREQ_EFFECTS
 AUDIO_CHANNEL_COUNT
} audio_manager_channel_t;

Data:

AUDIO_CHANNEL_UNAVAILABLE

No output channel is supported.

AUDIO_CHANNEL_FRONT_LEFT

Front left channel.

AUDIO_CHANNEL_FRONT_CENTER

Front center channel.

AUDIO_CHANNEL_FRONT_RIGHT

Copyright © 2014, QNX Software Systems Limited 39

audio_manager_device.h

Front right channel.

AUDIO_CHANNEL_REAR_LEFT

Rear left channel.

AUDIO_CHANNEL_REAR_RIGHT

Rear right channel.

AUDIO_CHANNEL_LOW_FREQ_EFFECTS

Low frequency effects channel (subwoofer).

AUDIO_CHANNEL_COUNT

The total number of audio channels supported.

Library:

libaudio_manager

Description:

This enumeration defines the supported types of audio channels (2.0/5.1).

audio_manager_channel_config_t

Supported audio device configurations.

Synopsis:

#include <audio/audio_manager_device.h>

typedef enum {
 AUDIO_CHANNEL_CONFIG_STEREO = (1u<<0)
 AUDIO_CHANNEL_CONFIG_5_1 = (1u<<1)
} audio_manager_channel_config_t;

Data:

AUDIO_CHANNEL_CONFIG_STEREO

The audio device supports stereo channels.

AUDIO_CHANNEL_CONFIG_5_1

The audio device supports 5.1 surround sound.

Library:

libaudio_manager

40 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Description:

This enumeration defines bit masks for supported audio device configurations.

audio_manager_device_t

Supported audio devices.

Synopsis:

#include <audio/audio_manager_device.h>

typedef enum {
 AUDIO_DEVICE_SPEAKER
 AUDIO_DEVICE_HEADSET
 AUDIO_DEVICE_HEADPHONE
 AUDIO_DEVICE_A2DP
 AUDIO_DEVICE_HANDSET
 AUDIO_DEVICE_HAC
 AUDIO_DEVICE_BT_SCO
 AUDIO_DEVICE_HDMI
 AUDIO_DEVICE_TOSLINK
 AUDIO_DEVICE_TTY
 AUDIO_DEVICE_LINEOUT
 AUDIO_DEVICE_USB
 AUDIO_DEVICE_TONES
 AUDIO_DEVICE_VOICE
 AUDIO_DEVICE_WIFI_DISPLAY
 AUDIO_DEVICE_MIRRORLINK
 AUDIO_DEVICE_AUDIO_SHARE
 AUDIO_DEVICE_COUNT
 AUDIO_DEVICE_DEFAULT = 0xFF
} audio_manager_device_t;

Data:

AUDIO_DEVICE_SPEAKER

The main speaker(s).

AUDIO_DEVICE_HEADSET

The mono/stereo headset with microphone.

AUDIO_DEVICE_HEADPHONE

The mono/stereo output only headphone.

AUDIO_DEVICE_A2DP

The Bluetooth A2DP streaming service.

AUDIO_DEVICE_HANDSET

The phone receiver.

AUDIO_DEVICE_HAC

Copyright © 2014, QNX Software Systems Limited 41

audio_manager_device.h

The hearing aid compatibility device.

AUDIO_DEVICE_BT_SCO

The Bluetooth hands-free profile service for voice calls.

AUDIO_DEVICE_HDMI

The HDMI connection.

AUDIO_DEVICE_TOSLINK

The TOSLINK connection.

AUDIO_DEVICE_TTY

The telecommunications device for the hearing challenged.

AUDIO_DEVICE_LINEOUT

The lineout connection through the headset jack.

AUDIO_DEVICE_USB

The USB connection.

AUDIO_DEVICE_TONES

The virtual tones port that is used for system tones.

AUDIO_DEVICE_VOICE

The virtual voice port that is used for voice stream processing such as VoIP.

AUDIO_DEVICE_WIFI_DISPLAY

The audio device exposed by the Wi-Fi display connection.

AUDIO_DEVICE_MIRRORLINK

The audio device exposed by the MirrorLink connection.

AUDIO_DEVICE_AUDIO_SHARE

The virtual audio device exposed by video share.

AUDIO_DEVICE_COUNT

The total number of devices supported.

42 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

AUDIO_DEVICE_DEFAULT

The current active output device that audio is playing out of.

Library:

libaudio_manager

Description:

This enumeration defines the types of audio devices supported.

audio_manager_device_audio_config_t

Audio configuration settings for a given audio device.

Synopsis:

typedef struct {
 int num_out_channels ;
 int num_in_channels ;
 audio_manager_channel_t channel_order [AUDIO_CHANNEL_COUNT];
 audio_manager_channel_config_t channel_config_mask ;
}audio_manager_device_audio_config_t;

Data:

int num_out_channels

The number of output channels supported.

int num_in_channels

The number of input channels supported.

audio_manager_channel_t channel_order[AUDIO_CHANNEL_COUNT]

The output channels of the audio device, listed in setup order.

audio_manager_channel_config_t channel_config_mask

The audio device configuration of the audio device.

Library:

libaudio_manager

Description:

This structure defines the audio configuration of a given audio device.

Copyright © 2014, QNX Software Systems Limited 43

audio_manager_device.h

audio_manager_device_capabilities_t

Audio capabilities that can be queried.

Synopsis:

#include <audio/audio_manager_device.h>

typedef enum {
 AUDIO_DEVICE_PROPERTY_NUM_OUT_CHANNELS
 AUDIO_DEVICE_PROPERTY_NUM_IN_CHANNELS
 AUDIO_DEVICE_PROPERTY_CHANNEL_ORDER
 AUDIO_DEVICE_PROPERTY_CHANNEL_CONFIG
 AUDIO_DEVICE_PROPERTY_SUPPORTED
 AUDIO_DEVICE_PROPERTY_CONNECTED
 AUDIO_DEVICE_PROPERTY_SUSPENDED
 AUDIO_DEVICE_PROPERTY_VOLUME_CONTROL
 AUDIO_DEVICE_PROPERTY_PUBLIC
 AUDIO_DEVICE_PROPERTY_NUM_HW_IN_CHANNELS
 AUDIO_DEVICE_PROPERTY_COUNT
} audio_manager_device_capabilities_t;

Data:

AUDIO_DEVICE_PROPERTY_NUM_OUT_CHANNELS

The number of output channels supported; of type int.

AUDIO_DEVICE_PROPERTY_NUM_IN_CHANNELS

The number of input channels supported; of type int.

AUDIO_DEVICE_PROPERTY_CHANNEL_ORDER

The output channels, listed in setup order; of type

audio_manager_channel_t[].

This parameter is only permitted if AUDIO_DEVICE_PROPER

TY_NUM_OUT_CHANNELS is requested as well. If the number of channels

is greater than the input value for AUDIO_DEVICE_PROPER

TY_NUM_OUT_CHANNELS then, at most, the input value will be written.

AUDIO_DEVICE_PROPERTY_CHANNEL_CONFIG

The audio device configuration of the audio device; of type

audio_manager_channel_config_t.

The value may be multiple values from this enum OR'ed together.

AUDIO_DEVICE_PROPERTY_SUPPORTED

Whether the device is supported on this platform; of type bool.

44 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

AUDIO_DEVICE_PROPERTY_CONNECTED

Whether the device is currently connected; of type bool.

For example, in the case of headphones, indicates whether the headphones

are plugged in.

AUDIO_DEVICE_PROPERTY_SUSPENDED

Whether the device is suspended; of type bool.

AUDIO_DEVICE_PROPERTY_VOLUME_CONTROL

The type of volume control supported by the device; of type

audio_manager_device_volume_control_t.

AUDIO_DEVICE_PROPERTY_PUBLIC

Whether the device is public; of type bool.

This means a device may be listened to by multiple listeners, such as a

speaker, as opposed to a private device listened to by one person, such as

headphones.

AUDIO_DEVICE_PROPERTY_NUM_HW_IN_CHANNELS

The number of input channels supported by the device.

This enumerator represents the true number of input channels that a device

supports and therefore differs from the AUDIO_DEVICE_PROPER

TY_NUM_IN_CHANNELS enumerator.

AUDIO_DEVICE_PROPERTY_COUNT

The total number of device properties supported.

Library:

libaudio_manager

Description:

This enumeration defines the audio capabilities that can be queried.

Copyright © 2014, QNX Software Systems Limited 45

audio_manager_device.h

audio_manager_device_capability_t

Supported audio device I/O.

Synopsis:

#include <audio/audio_manager_device.h>

typedef enum {
 AUDIO_OUTPUT = (1u<<0)
 AUDIO_INPUT = (1u<<1)
} audio_manager_device_capability_t;

Data:

AUDIO_OUTPUT

The audio device supports output (playback).

AUDIO_INPUT

The audio device supports input (recording).

Library:

libaudio_manager

Description:

This enumeration defines bit masks for the supported audio device I/O.

audio_manager_device_headset_button_t

Supported audio headset button types.

Synopsis:

#include <audio/audio_manager_device.h>

typedef enum {
 AUDIO_HEADSET_PLAY_PAUSE
 AUDIO_HEADSET_VOLUME_UP
 AUDIO_HEADSET_VOLUME_DOWN
 AUDIO_HEADSET_FORWARD
 AUDIO_HEADSET_BACKWARD
 AUDIO_HEADSET_BUTTON_COUNT
} audio_manager_device_headset_button_t;

Data:

AUDIO_HEADSET_PLAY_PAUSE

The play/pause button or the mute/unmute button.

46 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

AUDIO_HEADSET_VOLUME_UP

The volume up button.

AUDIO_HEADSET_VOLUME_DOWN

The volume down button.

AUDIO_HEADSET_FORWARD

The track forward button.

AUDIO_HEADSET_BACKWARD

The track backward button.

AUDIO_HEADSET_BUTTON_COUNT

The total number of headset button types supported.

Library:

libaudio_manager

Description:

This enumeration defines the supported types of the audio headset buttons.

audio_manager_device_volume_control_t

Supported audio volume control types.

Synopsis:

#include <audio/audio_manager_device.h>

typedef enum {
 AUDIO_VOLUME_CONTROL_UNAVAILABLE
 AUDIO_VOLUME_CONTROL_SIMPLE
 AUDIO_VOLUME_CONTROL_PERCENT
 AUDIO_VOLUME_CONTROL_COUNT
} audio_manager_device_volume_control_t;

Data:

AUDIO_VOLUME_CONTROL_UNAVAILABLE

Volume control is not supported.

AUDIO_VOLUME_CONTROL_SIMPLE

The simple (up/down) volume control is supported.

Copyright © 2014, QNX Software Systems Limited 47

audio_manager_device.h

AUDIO_VOLUME_CONTROL_PERCENT

The precise volume control in percentage is supported.

AUDIO_VOLUME_CONTROL_COUNT

The total number of volume control types supported.

Library:

libaudio_manager

Description:

This enumeration defines the supported types of the audio volume control types.

audio_manager_headset_button_state_t

The states of the headset buttons.

Synopsis:

typedef struct {
 bool button_state [AUDIO_HEADSET_BUTTON_COUNT];
}audio_manager_headset_button_state_t;

Data:

bool button_state[AUDIO_HEADSET_BUTTON_COUNT]

The state of the audio headset button.

Library:

libaudio_manager

Description:

This structure defines the supported states of the audio headset buttons.

Functions in audio_manager_device.h

Functions for managing audio devices.

audio_manager_get_default_device()

Get the current default audio output device picked by audio manager.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_get_default_device(audio_manager_device_t *dev)

48 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Arguments:

dev

The default audio device.

Library:

libaudio_manager

Description:

The audio_manager_get_default_device() function returns the type of the default audio

output device picked by the audio manager.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_default_input_device()

Get the current default audio input device picked by audio manager.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_get_default_input_device(audio_manager_device_t *dev)

Arguments:

dev

The default audio input device.

Library:

libaudio_manager

Description:

The audio_manager_get_default_input_device() function returns the type of the default

audio input device picked by the audio manager.

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 49

audio_manager_device.h

audio_manager_get_device_audio_capabilities()

Get the audio capabilities of a given audio device.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_get_device_audio_capabilities(audio_manager_device_t dev,
audio_manager_device_capabilities_t *in, void **out, int count)

Arguments:

dev

The type of the audio device to query.

in

A list of capabilities requested.

out

The output pointers must match the type required for each input.

count

The number of elements in each of the in and out arrays.

Library:

libaudio_manager

Description:

The audio_manager_get_device_audio_capabilities() function returns the requested

capabilities of the given audio device.

Returns:

EOK upon success, negative errno upon failure.

50 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

audio_manager_get_device_audio_config()

Get the audio configuration of a given audio device.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_get_device_audio_config(audio_manager_device_t dev,
audio_manager_device_audio_config_t *config)

Arguments:

dev

The type of the audio device to query. If AUDIO_DEVICE_DEFAULT is

passed in, the num_in_channels returned represents the number of input

channels of the current default input device. The rest of the fields represent

the settings of the current default output device.

config

The audio configuration.

Library:

libaudio_manager

Description:

The audio_manager_get_device_audio_config() function returns the audio configuration

of the given audio device, using audio_manager_device_audio_config_t.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_device_audio_public()

Get whether an audio output device is public.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_get_device_audio_public(audio_manager_device_t dev, bool
*pub)

Arguments:

Copyright © 2014, QNX Software Systems Limited 51

audio_manager_device.h

dev

The type of the audio device to query.

pub

true if the device is public, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_get_device_audio_public() function returns whether an audio

output device is public, which means it can be heard by many people.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_device_button_states()

Get the current button states of a given output device.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_get_device_button_states(audio_manager_device_t dev,
audio_manager_headset_button_state_t *state)

Arguments:

dev

The default audio device.

state

The current button states.

Library:

libaudio_manager

52 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Description:

The audio_manager_get_device_button_states() function returns the states of all the

supported buttons of a given device. Currently, only headset is supported.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_device_capability()

Get the capabilities of a given audio device.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_get_device_capability(audio_manager_device_t dev,
audio_manager_device_capability_t *cap_mask)

Arguments:

dev

The type of the audio device to query.

cap_mask

The capabilities of the audio device, given as a mask of

audio_manager_device_capability_t.

Library:

libaudio_manager

Description:

The audio_manager_get_device_capability() function returns the capabilities of a given

audio device indicating whether it is capable of output and/or input.

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 53

audio_manager_device.h

audio_manager_get_device_dependency()

Get the dependency of a given audio device.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_get_device_dependency(audio_manager_device_t dev,
audio_manager_device_t *dev_dependent)

Arguments:

dev

The type of the audio device to query.

dev_dependent

The associated dependent audio device.

Library:

libaudio_manager

Description:

The audio_manager_get_device_dependency() function returns the dependency of a

given audio device. An audio device with an inactive

(suspended/unsupported/disconnected) dependency is not picked by the audio manager

as a valid routing destination/source.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_device_from_name()

Get the audio device given the name of the device.

Synopsis:

#include <audio/audio_manager_device.h>

audio_manager_device_t audio_manager_get_device_from_name(const char
*device_name)

Arguments:

54 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

device_name

The name of the device being returned.

Library:

libaudio_manager

Description:

The audio_manager_get_device_from_name() function returns the audio manager

device given the name of the device.

Returns:

The device identifier.

audio_manager_get_device_name()

Get the audio device name given the type of the device.

Synopsis:

#include <audio/audio_manager_device.h>

const char* audio_manager_get_device_name(audio_manager_device_t device)

Arguments:

device

The type of the device being returned.

Library:

libaudio_manager

Description:

The audio_manager_get_device_name() function returns the audio manager device

name given the type of the device.

Returns:

The device name.

Copyright © 2014, QNX Software Systems Limited 55

audio_manager_device.h

audio_manager_get_device_volume_control()

Get the type of volume control of a given audio device.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_get_device_volume_control(audio_manager_device_t dev,
audio_manager_device_volume_control_t *control)

Arguments:

dev

The type of the audio device to query.

control

The type of the volume control.

Library:

libaudio_manager

Description:

The audio_manager_get_device_volume_control() function returns the type of the

volume control of a given audio device.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_preferred_audio_input_path()

Get the preferred system audio input path.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_get_preferred_audio_input_path(char *path, int *size)

Arguments:

path

The audio path.

56 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

size

The size of the path buffer. If not sufficient, the minimum size to store the

path is returned.

Library:

libaudio_manager

Description:

The audio_manager_get_preferred_audio_input_path() function returns the preferred

system audio input path.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_preferred_audio_output_path()

Get the preferred system audio output path.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_get_preferred_audio_output_path(char *path, int *size)

Arguments:

path

The audio path.

size

The size of the path buffer. If not sufficient, the minimum size to store the

path is returned.

Library:

libaudio_manager

Description:

The audio_manager_get_preferred_audio_output_path() function returns the preferred

system audio output path.

Copyright © 2014, QNX Software Systems Limited 57

audio_manager_device.h

Returns:

EOK upon success, negative errno upon failure.

audio_manager_is_device_connected()

Check whether a given audio device is connected to the system.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_is_device_connected(audio_manager_device_t dev, bool
*connected)

Arguments:

dev

The type of the audio device to check against.

connected

true if the specified audio device is connected, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_is_device_connected() function checks whether a given audio

device is currently connected to the system. Disconnected audio devices are not picked

by the audio manager as a valid routing destination/source.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_is_device_kept_alive()

Check whether a given audio device is kept alive by the system.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_is_device_kept_alive(audio_manager_device_t dev, bool
*keep_alive)

Arguments:

58 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

dev

The type of the audio device to check against.

keep_alive

true if the specified audio device is kept alive, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_is_device_kept_alive() function checks whether a given audio

device is currently kept alive by the system even when no audio streams are active.

This is typically done to avoid excessive audio artifacts caused by hardware transitions.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_is_device_supported()

Check whether a given audio device is supported by the system.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_is_device_supported(audio_manager_device_t dev, bool
*supported)

Arguments:

dev

The type of the audio device to check against.

supported

true if the specified audio device is supported, false otherwise.

Library:

libaudio_manager

Copyright © 2014, QNX Software Systems Limited 59

audio_manager_device.h

Description:

The audio_manager_is_device_supported() function checks whether a given audio

device is currently supported by the system. Unsupported audio devices would result

in errors when used against other audio manager interfaces, such as volume, event,

and concurrency.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_is_device_suspended()

Check whether a given audio device is suspended by the system.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_is_device_suspended(audio_manager_device_t dev, bool
*suspended)

Arguments:

dev

The type of the audio device to check against.

suspended

true if the specified audio device is suspended, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_is_device_suspended() function checks whether a given audio

device is currently suspended by the system. Suspended audio devices are not picked

by the audio manager as a valid routing destination/source.

Returns:

EOK upon success, negative errno upon failure.

60 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

audio_manager_is_hdmi_in_mirror_mode()

Check whether the mirror mode of the HDMI settings is on.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_is_hdmi_in_mirror_mode(bool *mirror_mode)

Arguments:

mirror_mode

true if the HDMI is set to mirror mode, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_is_hdmi_in_mirror_mode() function checks whether the HDMI is

currently set to mirror mode.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_device_connected()

Set any audio device as connected.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_set_device_connected(audio_manager_device_t dev, bool
connected)

Arguments:

dev

The type of the audio device.

connected

Copyright © 2014, QNX Software Systems Limited 61

audio_manager_device.h

true if the given audio device is to be marked as connected, false

otherwise.

Library:

libaudio_manager

Description:

The audio_manager_set_device_connected() function sets the connected status of a

given audio device to help the audio manager allocate proper audio devices as default.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_device_suspended()

Set a supported audio device as suspended.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_set_device_suspended(audio_manager_device_t dev, bool
suspended)

Arguments:

dev

The type of audio device.

suspended

true if the given audio device is to be marked as suspended, false

otherwise.

Library:

libaudio_manager

62 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Description:

The audio_manager_set_device_suspended() function sets the suspended status of a

given audio device to help the audio manager allocate proper audio devices as default.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_hdmi_mirror_mode()

Set HDMI audio in mirror mode.

Synopsis:

#include <audio/audio_manager_device.h>

int audio_manager_set_hdmi_mirror_mode(bool mirror_mode)

Arguments:

mirror_mode

true if the HDMI is to be put in mirror mode, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_set_hdmi_mirror_mode() function puts the HDMI audio in mirror

mode, which routes audio automatically to the HDMI.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 63

audio_manager_device.h

audio_manager_event.h

Definitions for supported audio manager events.

The audio manager controls audio routing, concurrency, and volume control

automatically. A client can subscribe to specific events to listen for changes that are

related to audio manager activities. The events are broadcast to all clients and are

asynchronous. The clients that respond to the events are subject to act within a

reasonable time frame in order to have audio transition without artifacts.

Data types in audio_manager_event.h

Data structures, typedefs, and enumerations for managing audio events.

audio_manager_concurrency_change_t

The audio concurrency change event.

Synopsis:

typedef struct {
 audio_manager_audio_type_t audio_type ;
 audio_manager_concurrency_t status ;
}audio_manager_concurrency_change_t;

Data:

audio_manager_audio_type_t audio_type

The audio type that the event is triggered for.

audio_manager_concurrency_t status

The concurrency policy status of the given audio type.

Library:

libaudio_manager

Description:

This structure defines the changes to the audio concurrency policy of a given audio

type.

64 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

audio_manager_device_button_change_t

The headset button change event.

Synopsis:

typedef struct {
 audio_manager_device_t dev ;
 audio_manager_headset_button_state_t state ;
}audio_manager_device_button_change_t;

Data:

audio_manager_device_t dev

The audio device that the event is triggered for.

audio_manager_headset_button_state_t state

The current device button states.

Library:

libaudio_manager

Description:

This structure defines the changes to the headset button presses.

audio_manager_device_change_t

The audio device change event.

Synopsis:

typedef struct {
 audio_manager_device_t dev ;
 char * diff ;
}audio_manager_device_change_t;

Data:

audio_manager_device_t dev

The audio device that the event is triggered for.

char * diff

The change in format of the audio device.

Library:

libaudio_manager

Copyright © 2014, QNX Software Systems Limited 65

audio_manager_event.h

Description:

This structure defines the changes to the attribute(s) of a given audio device.

audio_manager_event_context_t

The event loop context.

Synopsis:

#include <audio/audio_manager_event.h>

typedef struct audio_manager_event_context audio_manager_event_context_t;

Library:

libaudio_manager

Description:

This structure defines the audio event context.

audio_manager_event_type_t

The supported audio events.

Synopsis:

#include <audio/audio_manager_event.h>

typedef enum {
 AUDIO_ROUTING_CHANGE
 AUDIO_CONCURRENCY_CHANGE
 AUDIO_DEVICE_CHANGE
 AUDIO_VOLUME_CHANGE
 AUDIO_HEADPHONE_BOOST_CHANGE
 AUDIO_VOICE_VOLUME_CHANGE
 AUDIO_VOICE_SERVICE_CHANGE
 AUDIO_DEVICE_BUTTON_CHANGE
 AUDIO_HEADPHONE_UNSAFE_ZONE_CHANGE
 AUDIO_STAT_CHANGE
 AUDIO_VOICE_OPTION_CHANGE
 AUDIO_HEADPHONE_OUTPUT_VOLUME_REGULATION_CHANGE
 AUDIO_EVENT_TYPE_COUNT
} audio_manager_event_type_t;

Data:

AUDIO_ROUTING_CHANGE

Changes to the audio input/output path.

AUDIO_CONCURRENCY_CHANGE

Changes to the audio concurrent policy of a given audio type.

AUDIO_DEVICE_CHANGE

66 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Changes to the attribute(s) of a given audio device.

AUDIO_VOLUME_CHANGE

Changes to the volume of a given audio device.

AUDIO_HEADPHONE_BOOST_CHANGE

Changes to the headphone volume boost settings.

AUDIO_VOICE_VOLUME_CHANGE

Changes to the volume of a given audio device during voice calls.

AUDIO_VOICE_SERVICE_CHANGE

Changes to the status of a given voice service.

AUDIO_DEVICE_BUTTON_CHANGE

Changes to the button state of a given audio device.

AUDIO_HEADPHONE_UNSAFE_ZONE_CHANGE

Changes to the button state of a given audio device.

AUDIO_STAT_CHANGE

Changes to the statistics of audio usage.

AUDIO_VOICE_OPTION_CHANGE

Changes to the audio options of the voice services.

AUDIO_HEADPHONE_OUTPUT_VOLUME_REGULATION_CHANGE

Changes to the headphone output volume regulation.

AUDIO_EVENT_TYPE_COUNT

Total of the event types.

Library:

libaudio_manager

Description:

This enumeration defines the audio events currently supported.

Copyright © 2014, QNX Software Systems Limited 67

audio_manager_event.h

audio_manager_routing_change_t

The changes of the audio input/output path.

Synopsis:

typedef struct {
 audio_manager_device_t dev_prev ;
 audio_manager_device_t dev_now ;
 audio_manager_device_t dev_input_prev ;
 audio_manager_device_t dev_input_now ;
}audio_manager_routing_change_t;

Data:

audio_manager_device_t dev_prev

The audio output device that was previously active.

audio_manager_device_t dev_now

The audio output device currently being used as primary.

audio_manager_device_t dev_input_prev

The audio input device that was previously active.

audio_manager_device_t dev_input_now

The audio input device currently being used as primary.

Library:

libaudio_manager

Description:

This structure defines the audio routing change event.

audio_manager_stat_change_t

The audio statistics change event.

Synopsis:

typedef struct {
 char name [64];
 uint64_t value ;
}audio_manager_stat_change_t;

Data:

char name[64]

68 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

The name of the statistic entry to be monitored.

uint64_t value

The value of the statistic entry.

Library:

libaudio_manager

Description:

This structure defines the changes to the audio statistics.

audio_manager_status_headphone_boost_change_t

The audio headphone boost change event.

Synopsis:

typedef struct {
 int headphone_boost_level ;
 bool headphone_override ;
 audio_manager_headphone_volume_override_status_t headphone_boost ;
}audio_manager_status_headphone_boost_change_t;

Data:

int headphone_boost_level

The limit level of the headphone volume without boost enabled.

bool headphone_override

The current setting of headphone boost to override the limit.

audio_manager_headphone_volume_override_status_t headphone_boost

The status of the headphone volume boost.

Library:

libaudio_manager

Description:

This structure defines the changes to the headphone volume boost settings.

Copyright © 2014, QNX Software Systems Limited 69

audio_manager_event.h

audio_manager_status_headphone_output_volume_regulation_change_t

The audio headphone output volume regulation change event.

Synopsis:

typedef struct {
 audio_manager_headphone_output_regulation_t status ;
}audio_manager_status_headphone_output_volume_regulation_change_t;

Data:

audio_manager_headphone_output_regulation_t status

The status of the headphone output level regulation.

Library:

libaudio_manager

Description:

This structure defines the changes to the headphone output volume regulation status.

audio_manager_status_headphone_unsafe_zone_change_t

The audio headphone volume unsafe-zone change event.

Synopsis:

typedef struct {
 audio_manager_headphone_volume_override_status_t headphone_unsafe_zone ;
}audio_manager_status_headphone_unsafe_zone_change_t;

Data:

audio_manager_headphone_volume_override_status_t headphone_unsafe_zone

The status of the headphone volume unsafe zone.

Library:

libaudio_manager

Description:

This structure defines the changes to the headphone volume boost settings.

70 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

audio_manager_status_volume_change_t

The audio volume change event.

Synopsis:

typedef struct {
 audio_manager_device_t dev ;
 double output_level ;
 double input_level ;
 bool output_mute ;
 bool input_mute ;
}audio_manager_status_volume_change_t;

Data:

audio_manager_device_t dev

The audio device that the event is triggered for.

double output_level

The current output volume level (percentage) of the given audio device.

double input_level

The current input volume level (percentage) of the given audio device.

bool output_mute

The current output mute status of the given audio device.

bool input_mute

The current input mute status of the given audio device.

Library:

libaudio_manager

Description:

This structure defines the changes to the volume of a given audio device.

audio_manager_voice_audio_option_change_t

The voice audio options change event.

Synopsis:

typedef struct {
 audio_manager_voice_service_t service ;
 audio_manager_device_t dev ;

Copyright © 2014, QNX Software Systems Limited 71

audio_manager_event.h

 audio_manager_voice_option_t option ;
}audio_manager_voice_audio_option_change_t;

Data:

audio_manager_voice_service_t service

The voice service that the event is triggered for.

audio_manager_device_t dev

The audio device that the event is triggered for.

audio_manager_voice_option_t option

The current audio option selected.

Library:

libaudio_manager

Description:

This structure defines the changes to the audio options of a given voice service.

audio_manager_voice_service_change_t

The audio voice service change event.

Synopsis:

typedef struct {
 audio_manager_voice_service_t service ;
 audio_manager_voice_service_status_t status ;
}audio_manager_voice_service_change_t;

Data:

audio_manager_voice_service_t service

The voice service that the event is triggered for.

audio_manager_voice_service_status_t status

The current status of the voice service.

Library:

libaudio_manager

Description:

This structure defines the changes to the status of a given voice service.

72 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

audio_manager_voice_status_volume_change_t

The audio voice volume change event.

Synopsis:

#include <audio/audio_manager_event.h>

typedef audio_manager_status_volume_change_t
audio_manager_voice_status_volume_change_t;

Library:

libaudio_manager

Description:

This structure defines the changes to the volume of a given audio device during voice

calls.

Functions in audio_manager_event.h

Functions for managing audio events.

audio_manager_add_concurrency_change_event()

Add a concurrency change event to the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_add_concurrency_change_event(audio_manager_event_context_t
*context, audio_manager_audio_type_t audio_type)

Arguments:

context

The context returned by audio_manager_get_event_context().

audio_type

The audio type that the event is triggered for.

Library:

libaudio_manager

Copyright © 2014, QNX Software Systems Limited 73

audio_manager_event.h

Description:

The audio_manager_add_concurrency_change_event() function adds the change event

to the event list, which is monitored by calls to audio_manager_get_event(). The

function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_add_device_button_change_event()

Add a device button change event to the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_add_device_button_change_event(audio_manager_event_context_t
 *context, audio_manager_device_t dev)

Arguments:

context

The context returned by audio_manager_get_event_context().

dev

The audio device that the event is triggered for.

Library:

libaudio_manager

Description:

The audio_manager_add_device_button_change_event() function adds the change

event to the event list, which is monitored by calls to audio_manager_get_event(). The

function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Returns:

EOK upon success, negative errno upon failure.

74 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

audio_manager_add_device_change_event()

Add a device change event to the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_add_device_change_event(audio_manager_event_context_t
*context, audio_manager_device_t dev)

Arguments:

context

The context returned by audio_manager_get_event_context().

dev

The audio device that the event is triggered for.

Library:

libaudio_manager

Description:

The audio_manager_add_device_change_event() function adds the change event to

the event list, which is monitored by calls to audio_manager_get_event(). The function

interrupts the audio_manager_get_event() function if it is already being blocked in

another thread. The audio_manager_get_event() function is then called to include the

new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_add_routing_change_event()

Add a routing change event to the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_add_routing_change_event(audio_manager_event_context_t
*context)

Arguments:

Copyright © 2014, QNX Software Systems Limited 75

audio_manager_event.h

context

The context returned by audio_manager_get_event_context().

Library:

libaudio_manager

Description:

The audio_manager_add_routing_change_event() function adds the change event to

the event list, which is monitored by calls to audio_manager_get_event(). The function

interrupts the audio_manager_get_event() function if it is already being blocked in

another thread. The audio_manager_get_event() function is then called to include the

new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_add_stat_change_event()

Add an audio statistics change event to the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_add_stat_change_event(audio_manager_event_context_t *context,
 const char *name)

Arguments:

context

The context returned by audio_manager_get_event_context().

name

The voice service that the event is triggered for.

Library:

libaudio_manager

Description:

The audio_manager_add_stat_change_event() function adds the change event to the

event list, which is monitored by calls to audio_manager_get_event(). The function

76 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

interrupts the audio_manager_get_event() function if it is already being blocked in

another thread. The audio_manager_get_event() function is then called to include the

new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_add_status_hp_boost_change_event()

Add a headphone volume boost change event to the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_add_status_hp_boost_change_event(audio_manager_event_context_t
 *context)

Arguments:

context

The context returned by audio_manager_get_event_context().

Library:

libaudio_manager

Description:

The audio_manager_add_status_hp_boost_change_event() function adds the change

event to the event list, which is monitored by calls to audio_manager_get_event(). The

function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_add_status_hp_output_volume_regulation_change_event()

Add a headphone output volume regulation change event to the event list.

Synopsis:

#include <audio/audio_manager_event.h>

Copyright © 2014, QNX Software Systems Limited 77

audio_manager_event.h

int
audio_manager_add_status_hp_output_volume_regulation_change_event(audio_manager_event_context_t
 *context)

Arguments:

context

The context returned by audio_manager_get_event_context().

Library:

libaudio_manager

Description:

The audio_manager_add_status_hp_output_volume_regulation_change_event() function

adds the change event to the event list, which is monitored by calls to

audio_manager_get_event().

The function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_add_status_hp_unsafe_zone_change_event()

Add a headphone volume unsafe-zone change event to the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int
audio_manager_add_status_hp_unsafe_zone_change_event(audio_manager_event_context_t
 *context)

Arguments:

context

The context returned by audio_manager_get_event_context().

Library:

libaudio_manager

78 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Description:

The audio_manager_add_status_hp_unsafe_zone_change_event() function adds the

change event to the event list, which is monitored by calls to

audio_manager_get_event(). The function interrupts the audio_manager_get_event()

function if it is already being blocked in another thread. The audio_manager_get_event()

function is then called to include the new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_add_voice_audio_option_change_event()

Add a voice audio option change event to the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int
audio_manager_add_voice_audio_option_change_event(audio_manager_event_context_t
 *context, audio_manager_voice_service_t service, audio_manager_device_t dev)

Arguments:

context

The context returned by audio_manager_get_event_context().

service

The voice service that the event is triggered for.

dev

The audio device the event is triggered for.

Library:

libaudio_manager

Description:

The audio_manager_add_voice_audio_option_change_event() function adds the change

event to the event list, which is monitored by calls to audio_manager_get_event(). The

function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Copyright © 2014, QNX Software Systems Limited 79

audio_manager_event.h

Returns:

EOK upon success, negative errno upon failure.

audio_manager_add_voice_service_change_event()

Add a voice service change event to the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_add_voice_service_change_event(audio_manager_event_context_t
 *context, audio_manager_voice_service_t service)

Arguments:

context

The context returned by audio_manager_get_event_context().

service

The voice service that the event is triggered for.

Library:

libaudio_manager

Description:

The audio_manager_add_voice_service_change_event() function adds the change event

to the event list, which is monitored by calls to audio_manager_get_event(). The

function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_add_voice_volume_change_event()

Add a voice volume change event to the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_add_voice_volume_change_event(audio_manager_event_context_t
 *context, audio_manager_device_t dev)

80 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Arguments:

context

The context returned by audio_manager_get_event_context().

dev

The audio device that the event is triggered for.

Library:

libaudio_manager

Description:

The audio_manager_add_voice_volume_change_event() function adds the change

event to the event list, which is monitored by calls to audio_manager_get_event(). The

function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_add_volume_change_event()

Add a volume change event to the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_add_volume_change_event(audio_manager_event_context_t
*context, audio_manager_device_t dev)

Arguments:

context

The context returned by audio_manager_get_event_context().

dev

The audio device that the event is triggered for.

Copyright © 2014, QNX Software Systems Limited 81

audio_manager_event.h

Library:

libaudio_manager

Description:

The audio_manager_add_volume_change_event() function adds the change event to

the event list, which is monitored by calls to audio_manager_get_event(). The function

interrupts the audio_manager_get_event() function if it is already being blocked in

another thread. The audio_manager_get_event() function is then called to include the

new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_dispatch_event()

Dispatch the change event.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_dispatch_event(audio_manager_event_context_t *context,
audio_manager_event_type_t event_type, void *event_params)

Arguments:

context

The context returned by audio_manager_get_event_context().

event_type

The type of the event returned by audio_manager_peek_event().

event_params

The parameters of the event returned by audio_manager_peek_event().

Library:

libaudio_manager

82 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Description:

The audio_manager_dispatch_event() function marks an event as dispatched and it

no longer returns from audio_manager_peek_event() or

audio_manager_dispatch_event().

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_event()

Get the next change event.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_get_event(audio_manager_event_context_t *context,
audio_manager_event_type_t *event_type, void **event_params)

Arguments:

context

The context returned by audio_manager_get_event_context().

event_type

The type of the event triggered.

event_params

The parameters of the event triggered. The caller is responsible for casting

the pointer to the proper change event structure.

Library:

libaudio_manager

Description:

The audio_manager_get_event() function blocks until the next change event is available.

This function is used for typical message get/dispatch event loops. The event returned

is cleared by calling the audio_manager_dispatch_event() function.

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 83

audio_manager_event.h

audio_manager_get_event_context()

Allocate the event context.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_get_event_context(audio_manager_event_context_t **context)

Arguments:

context

The context returned to the caller.

Library:

libaudio_manager

Description:

The audio_manager_get_event_context() function allocates the context for events to

be delivered.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_event_fd()

Get the file descriptors of the events.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_get_event_fd(audio_manager_event_context_t *context, int
*fd)

Arguments:

context

The context returned by audio_manager_get_event_context().

fd

The file descriptor. This can be passed to select() or io_notify().

84 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Library:

libaudio_manager

Description:

The audio_manager_get_event_fd() function returns the current file descriptors of the

events added to the event list.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_peek_event()

Peek the next change event.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_peek_event(audio_manager_event_context_t *context, int fd,
audio_manager_event_type_t *event_type, void **event_params)

Arguments:

context

The context returned by audio_manager_get_event_context().

fd

The file descriptor returned by audio_manager_get_event_fd().

event_type

The type of the event triggered.

event_params

The parameters of the event triggered. The caller is responsible for casting

the pointer to the proper change event structure.

Library:

libaudio_manager

Copyright © 2014, QNX Software Systems Limited 85

audio_manager_event.h

Description:

The audio_manager_peek_event() function checks whether any event has occurred

and returns the event if one is found. If an event is found, the event is cleared by

calling the audio_manager_dispatch_event() function.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_release_event_context()

Free the event context.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_release_event_context(audio_manager_event_context_t **context)

Arguments:

context

The context returned by audio_manager_get_event_context().

Library:

libaudio_manager

Description:

The audio_manager_release_event_context() function frees the context allocated by

audio_manager_get_event_context().

Returns:

EOK upon success, negative errno upon failure.

audio_manager_remove_concurrency_change_event()

Remove a concurrency change event from the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_remove_concurrency_change_event(audio_manager_event_context_t
 *context, audio_manager_audio_type_t audio_type)

Arguments:

86 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

context

The context returned by audio_manager_get_event_context().

audio_type

The audio type that the event is triggered for.

Library:

libaudio_manager

Description:

The audio_manager_remove_concurrency_change_event() function removes the change

event from the event list, which is monitored by calls to audio_manager_get_event().

The function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_remove_device_button_change_event()

Remove a device button change event from the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int
audio_manager_remove_device_button_change_event(audio_manager_event_context_t
 *context, audio_manager_device_t dev)

Arguments:

context

The context returned by audio_manager_get_event_context().

dev

The audio device that the event is triggered for.

Copyright © 2014, QNX Software Systems Limited 87

audio_manager_event.h

Library:

libaudio_manager

Description:

The audio_manager_remove_device_button_change_event() function removes the

change event from the event list, which is monitored by calls to

audio_manager_get_event(). The function interrupts the audio_manager_get_event()

function if it is already being blocked in another thread. The audio_manager_get_event()

function is then called to include the new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_remove_device_change_event()

Remove a device change event from the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_remove_device_change_event(audio_manager_event_context_t
*context, audio_manager_device_t dev)

Arguments:

context

The context returned by audio_manager_get_event_context().

dev

The audio device that the event is triggered for.

Library:

libaudio_manager

Description:

The audio_manager_remove_device_change_event() function removes the change

event from the event list, which is monitored by calls to audio_manager_get_event().

The function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

88 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Returns:

EOK upon success, negative errno upon failure.

audio_manager_remove_routing_change_event()

Remove a routing change event from the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_remove_routing_change_event(audio_manager_event_context_t
*context)

Arguments:

context

The context returned by audio_manager_get_event_context().

Library:

libaudio_manager

Description:

The audio_manager_remove_routing_change_event() function removes the change

event from the event list, which is monitored by calls to audio_manager_get_event().

The function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_remove_stat_change_event()

Remove an audio statistics change event from the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_remove_stat_change_event(audio_manager_event_context_t
*context, const char *name)

Arguments:

context

Copyright © 2014, QNX Software Systems Limited 89

audio_manager_event.h

The context returned by audio_manager_get_event_context().

name

The voice service that the event is triggered for.

Library:

libaudio_manager

Description:

The audio_manager_remove_stat_change_event() function removes the event from the

event list which is monitored by calls to audio_manager_get_event(). The function

interrupts the audio_manager_get_event() function if it is already being blocked in

another thread. The audio_manager_get_event() function is then called to include the

new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_remove_status_hp_boost_change_event()

Remove a headphone volume boost change event from the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int
audio_manager_remove_status_hp_boost_change_event(audio_manager_event_context_t
 *context)

Arguments:

context

The context returned by audio_manager_get_event_context().

Library:

libaudio_manager

Description:

The audio_manager_add_status_hp_boost_change_event() function removes the event

from the event list, which is monitored by calls to audio_manager_get_event(). The

function interrupts the audio_manager_get_event() function if it is already being

90 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_remove_status_hp_unsafe_zone_change_event()

Remove a headphone volume unsafe-zone change event from the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int
audio_manager_remove_status_hp_unsafe_zone_change_event(audio_manager_event_context_t
 *context)

Arguments:

context

The context returned by audio_manager_get_event_context().

Library:

libaudio_manager

Description:

The audio_manager_remove_status_hp_unsafe_zone_change_event() function removes

the event from the event list, which is monitored by calls to audio_manager_get_event().

The function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_remove_voice_audio_option_change_event()

Remove a voice audio option change event from the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int
audio_manager_remove_voice_audio_option_change_event(audio_manager_event_context_t
 *context, audio_manager_voice_service_t service, audio_manager_device_t dev)

Copyright © 2014, QNX Software Systems Limited 91

audio_manager_event.h

Arguments:

context

The context returned by audio_manager_get_event_context().

service

The voice service that the event is triggered for.

dev

The audio device that the event is triggered for.

Library:

libaudio_manager

Description:

The audio_manager_remove_voice_audio_option_change_event() function removes the

event from the event list which is monitored by calls to audio_manager_get_event().

The function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_remove_voice_service_change_event()

Remove a voice service change event from the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int
audio_manager_remove_voice_service_change_event(audio_manager_event_context_t
 *context, audio_manager_voice_service_t service)

Arguments:

context

The context returned by audio_manager_get_event_context().

92 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

service

The voice service that the event is triggered for.

Library:

libaudio_manager

Description:

The audio_manager_remove_voice_service_change_event() function removes the event

from the event list which is monitored by calls to audio_manager_get_event(). The

function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_remove_voice_volume_change_event()

Remove a voice volume change event from the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_remove_voice_volume_change_event(audio_manager_event_context_t
 *context, audio_manager_device_t dev)

Arguments:

context

The context returned by audio_manager_get_event_context().

dev

The audio device that the event is triggered for.

Library:

libaudio_manager

Description:

The audio_manager_remove_voice_volume_change_event() function removes the event

from the event list, which is monitored by calls to audio_manager_get_event(). The

Copyright © 2014, QNX Software Systems Limited 93

audio_manager_event.h

function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_remove_volume_change_event()

Remove a volume change event from the event list.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_remove_volume_change_event(audio_manager_event_context_t
*context, audio_manager_device_t dev)

Arguments:

context

The context returned by audio_manager_get_event_context().

dev

The audio device that the event is triggered for.

Library:

libaudio_manager

Description:

The audio_manager_remove_volume_change_event() function removes the change

event from the event list, which is monitored by calls to audio_manager_get_event().

The function interrupts the audio_manager_get_event() function if it is already being

blocked in another thread. The audio_manager_get_event() function is then called to

include the new event.

Returns:

EOK upon success, negative errno upon failure.

94 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

audio_manager_wait_for_initialization()

Block until the audio manager completes initialization.

Synopsis:

#include <audio/audio_manager_event.h>

int audio_manager_wait_for_initialization()

Arguments:

Library:

libaudio_manager

Description:

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 95

audio_manager_event.h

audio_manager_routing.h

Definitions for supported audio routing configurations.

The audio manager maintains the audio routing logic based on registered audio sources.

This file defines routing properties and provides functions for them. The following are

examples of using audio routing.

Setting an audio type from libasound

This example shows how to get an audio handle and set its type for a libasound channel.

The example is for playback, but the audio manager specific steps are the same for

recording. The example acquires an audio manager handle of type

AUDIO_TYPE_ALERT, and sets it to become active only when PCM audio is actually

playing (this is done via the suspended flag). The audio manager handle is bound to

a libasound PCM handle, and freed when the program ends.

#include <audio/audio_manager_routing.h>
#include <sys/asoundlib.h>

void main(void)
{
 unsigned int audioman_handle;
 snd_pcm_t *pcm_handle;

 // Acquire an audioman handle. Start it "suspended", which means that its
 // ducking and routing rules only become active when the PCM channel is
 // actually playing.
 if (audio_manager_get_handle (AUDIO_TYPE_ALERT, // Audio Type
 0, // pid that owns handle. 0 = this process
 true, // Start "suspended"
 &audioman_handle) < 0) {
 printf("Could not get an audioman handle of the requested type\n");
 return;
 }

 // Acquire a pcm channel from libasound for playback
 snd_pcm_open (&pcm_handle, "/dev/snd/pcmPreferred", SND_PCM_OPEN_PLAYBACK);

 // Bind the pcm_handle with the audioman handle.
 if (snd_pcm_set_audioman_handle(pcm_handle, audioman_handle) < 0) {
 printf("Could not set the pcm_handle with the audioman_handle\n");
 }

 // Do what you would normally do here with libasound...
 // ...

 // Cleanup
 snd_pcm_close(pcm_handle);
 audio_manager_free_handle(audioman_handle);
}

The audio type AUDIO_TYPE_ALERT, when active, will follow the routing of other

active audio because it is lowest priority in the routing table. If nothing else is playing,

it will force routing to be through the loud speaker, regardless of what other devices

are connected.

For concurrency, if there is an AUDIO_TYPE_DEFAULT playing concurrently (which

is the case for any stream that does not explicitly use the audio manager), when the

96 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

AUDIO_TYPE_ALERT becomes active, it will cause the AUDIO_TYPE_DEFAULT stream

to become attenuated.

Alernatively, you can use utility functions in audio_manager_routing.h to

implicitly handle the setup in one call. Note that the audioman_handle starts up

suspended:

#include <audio/audio_manager_routing.h>
#include <sys/libasound.h>

void main(void)
{
 unsigned int audioman_handle;
 snd_pcm_t *pcm_handle;

 if (audio_manager_snd_pcm_open_name(AUDIO_TYPE_ALERT,
 &pcm_handle,
 &audioman_handle,
 "/dev/snd/pcmPreferred",
 SND_PCM_OPEN_PLAYBACK) < 0) {
 printf("Failed to open an audioman pcm channel\n");
 return;
 }

 // Do what you would normally do with libasound...
 // ...

 // Cleanup
 snd_pcm_close(pcm_handle);
 audio_manager_free_handle(audioman_handle);
}

Setting an audio type from mm-renderer

This example shows how to set the audio type for an mm-renderer application. The

code that follows sets the audio type of the mm-renderer context to

AUDIO_TYPE_ALERT. Currently, the "audio_type" output parameter in mm-renderer

is supported for playback only.

#include <mm/renderer.h>
#include <audio/audio_manager_routing.h>

{
 mmr_connection_t* connection;
 connection = mmr_connect(NULL);

 // Create a new mm-renderer context
 mmr_context_t* mmr_context;
 mmr_context = mmr_context_create(connection, context_name, 0, S_IRWXU|S_IRWXG|S_IRWXO);

 // Set audio type by setting "audio_type" when calling mmr_output_parameters()
 strm_dict_t* dict = strm_dict_new();
 dict = strm_dict_set(dict, "audio_type", audio_manager_get_name_from_type(AUDIO_TYPE_ALERT));
 mmr_output_parameters(context, output_id, dict);

 //

Copyright © 2014, QNX Software Systems Limited 97

audio_manager_routing.h

 // Attach input here
 //
 // Play audio
 mmr_play(context);

 //

 //
 // Cleanup
 //
 strm_dict_destroy(dict);
 mmr_context_destroy(context);
 mmr_disconnect(connection);

}

Setting an audio manager handle from mm-renderer

There may be times when an application needs to do some advanced routing. For

example, an application may want to do its own custom audio routing, instead of using

the default audio routing provided by audio manager. In that case, an application may

request a handle from audio manager and then pass this handle to mm-renderer. This

way, the mm-renderer context is bound to the audio manager handle.

Your application can pass the audio manager handle to mm-renderer by calling the

function mmr_output_parameters() and specifying "audioman_handle". Note that

setting "audioman_handle" parameter on mm-renderer is supported for playback only.

mm-renderer will not activate or suspend the audio manager handle. It is the

responsibility of the application to activate and suspend audio manager. The

audio routing and audio ducking will be in effect only when an audio manager

handle is active. In other words; when audio manager handle is suspended,

no audio routing and audio ducking effects will happen, even if the audio is

already playing.

You can activate an audio manager handle by:

• setting the suspended parameter to false when you request an audio manager

handle by calling audio_manager_get_handle(). This will activate audio manager

immediately.

• calling audio_manager_activate_handle()

You can suspend an audio manager handle by:

• freeing the audio manager handle by calling audio_manager_free_handle()

• calling audio_manager_suspend_handle()

#include <mm/renderer.h>
#include <audio/audio_manager_routing.h>

{
 mmr_connection_t* connection;

98 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

 connection = mmr_connect(NULL);

 // Create a new mm-renderer context
 mmr_context_t* mmr_context;
 mmr_context = mmr_context_create(connection, context_name, 0, S_IRWXU|S_IRWXG|S_IRWXO);

 // Get an audio manager handle from Audio Manager handle and then convert it to a string
 // so that it can be passed to mm-renderer.
 // This call will activate audio manager handle immediately (notice the suspended parameter is
 // set to false).
 uint32_t audioman_handle; audio_manager_get_handle(AUDIO_TYPE_DEFAULT, getpid(), false, &audioman_handle);
 char audioman_handle_str[15];
 itoa(audioman_handle, audioman_handle_str, 10);

 // Set audio manager handle by setting "audioman_handle" when calling mmr_output_parameters()
 strm_dict_t* dict = strm_dict_new();
 dict = strm_dict_set(dict, "audioman_handle", audioman_handle_str);
 mmr_output_parameters(context, output_id, dict);

 //
 // Attach input here
 //

 // Play audio mmr_play(context);

 //

 //
 // Cleanup
 //
 strm_dict_destroy(dict);
 mmr_context_destroy(context);
 mmr_disconnect(connection); }

Forcing the audio routing

This example shows how to override the default routing for an audio type. In this

example, because we are not actually binding a libasound pcm handle to the audioman

handle, we start the audioman handle as not suspended so that the routing and

concurrency policy changes take effect right away. This will force the output routing

to speaker, and leave the input routing up to the default routing table. The routing

override is in effect as long as the audioman_handle's type is the highest priority

routing type currently active. Note that if there are multiple handles of the same type

active at the same time, then it is a last-one-wins policy.

#include <audio/audio_manager_routing.h>

void main(void)
{
 unsigned int audioman_handle;

 // Acquire an audioman handle. Start it "unsuspended", which means that its
 // ducking and routing rules take effect immediately.
 if (audio_manager_get_handle(AUDIO_TYPE_DEFAULT, // Type default
 0, // This pid
 false, // Start "unsuspended"
 &audioman_handle) == EOK) {

 // Use audio_manager_set_handle_type to also override the routing paths
 if (audio_manager_set_handle_type(audioman_handle, // audioman handle
 AUDIO_TYPE_DEFAULT, // Use the same type
 AUDIO_DEVICE_SPEAKER, // Force routing to loud speaker for output
 AUDIO_DEVICE_DEFAULT) == EOK) { // No preference for the input routing.

 // Do what you would normally do here with libasound...
 // ...

 }
 audio_manager_free_handle(audioman_handle);

Copyright © 2014, QNX Software Systems Limited 99

audio_manager_routing.h

 } else {
 // Handle error as desired.
 // You may want to proceed with what you would normally do here
 // with libasound...
 // ...

 }
}

Constants in audio_manager_routing.h

Constants for managing audio routing.

Definitions in audio_manager_routing.h

Preprocessor macro definitions for the audio_manager_routing.h header file in the

libaudio_manager library.

Definitions:

#define AUDIO_TYPE_NAMES_EXTENDED

Names for audio types.

#define AUDIO_TYPE_NAMES { \
 "voice", \
 "ringtone", \
 "voicerecognition", \
 "texttospeech", \
 "videochat", \
 "voicerecording", \
 "multimedia", \
 "inputfeedback", \
 "default", \
 "alert", \
 "voicetones", \
 "soundeffect", \
 "pushtotalk", \
 "reserved_0", \
 "cmas", \
 "alarm", \
 AUDIO_TYPE_NAMES_EXTENDED \
}

Audio type names.

#define AUDIO_RUNTIME_NAMES { \
 "native", \
 "apkruntime" \
}

Audio runtime names.

Library:

libaudio_manager

100 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Data types in audio_manager_routing.h

Data structures, typedefs, and enumerations for managing audio routing.

audio_manager_audio_type_t

Supported audio types.

Synopsis:

#include <audio/audio_manager_routing.h>

typedef enum {
 AUDIO_TYPE_VOICE
 AUDIO_TYPE_RINGTONE
 AUDIO_TYPE_VOICE_RECOGNITION
 AUDIO_TYPE_TEXT_TO_SPEECH
 AUDIO_TYPE_VIDEO_CHAT
 AUDIO_TYPE_VOICE_RECORDING
 AUDIO_TYPE_MULTIMEDIA
 AUDIO_TYPE_INPUT_FEEDBACK
 AUDIO_TYPE_DEFAULT
 AUDIO_TYPE_ALERT
 AUDIO_TYPE_VOICE_TONES
 AUDIO_TYPE_SOUND_EFFECT
 AUDIO_TYPE_PUSH_TO_TALK
 AUDIO_TYPE_RESERVED_0
 AUDIO_TYPE_CMAS
 AUDIO_TYPE_ALARM
 AUDIO_TYPE_COUNT
} audio_manager_audio_type_t;

Data:

AUDIO_TYPE_VOICE

The audio type used by voice audio sources.

AUDIO_TYPE_RINGTONE

The audio type used by ringtone audio sources.

AUDIO_TYPE_VOICE_RECOGNITION

The audio type used by voice recognition audio sources.

AUDIO_TYPE_TEXT_TO_SPEECH

The audio type used by text-to-speech audio sources.

AUDIO_TYPE_VIDEO_CHAT

The audio type used by video chat audio sources.

AUDIO_TYPE_VOICE_RECORDING

Copyright © 2014, QNX Software Systems Limited 101

audio_manager_routing.h

The audio type used by voice recording audio sources.

AUDIO_TYPE_MULTIMEDIA

The audio type used by multimedia audio sources.

AUDIO_TYPE_INPUT_FEEDBACK

The audio type used by user input feedback.

AUDIO_TYPE_DEFAULT

The audio type used by default audio sources.

AUDIO_TYPE_ALERT

The audio type used by alert audio sources.

AUDIO_TYPE_VOICE_TONES

The audio type used by voice tone audio sources.

AUDIO_TYPE_SOUND_EFFECT

The audio type used by high priority sound effect.

AUDIO_TYPE_PUSH_TO_TALK

The audio type used by push-to-talk.

AUDIO_TYPE_RESERVED_0

The reserved audio type 0.

AUDIO_TYPE_CMAS

The audio type used by CMAS emergency broadcast systems.

AUDIO_TYPE_ALARM

The audio type used by alarms.

AUDIO_TYPE_COUNT

The total number of all audio types.

Library:

libaudio_manager

102 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Description:

This enumeration defines the supported audio types.

audio_manager_runtime_t

Supported audio runtimes.

Synopsis:

#include <audio/audio_manager_routing.h>

typedef enum {
 AUDIO_RUNTIME_NATIVE
 AUDIO_RUNTIME_APKRUNTIME
 AUDIO_RUNTIME_COUNT
} audio_manager_runtime_t;

Data:

AUDIO_RUNTIME_NATIVE

The audio type used by clients designed for QNX directly.

AUDIO_RUNTIME_APKRUNTIME

The audio type used by clients designed for APK Runtime.

AUDIO_RUNTIME_COUNT

The total number of supported runtimes.

Library:

libaudio_manager

Description:

This enumeration defines the supported audio runtimes.

audio_manager_settings_reset_condition_t

Supported reset conditions of the routing preference settings.

Synopsis:

#include <audio/audio_manager_routing.h>

typedef enum {
 SETTINGS_NEVER_RESET = 0
 SETTINGS_RESET_ON_DEVICE_DISCONNECTION = 1
 SETTINGS_RESET_ON_DEVICE_CONNECTION = (1<<1)
 SETTINGS_RESET_ON_PREFERRED_DEVICE_DISCONNECTION = (1<<2)
 SETTINGS_RESET_ON_HIGHER_PRIORITY_DEVICE_CONNECTION = (1<<3)
} audio_manager_settings_reset_condition_t;

Copyright © 2014, QNX Software Systems Limited 103

audio_manager_routing.h

Data:

SETTINGS_NEVER_RESET

The preferences are never reset.

SETTINGS_RESET_ON_DEVICE_DISCONNECTION

The preferences are reset when any device disconnects.

SETTINGS_RESET_ON_DEVICE_CONNECTION

The preferences are reset when any device connects.

SETTINGS_RESET_ON_PREFERRED_DEVICE_DISCONNECTION

The preferences are reset when the preferred device disconnects.

SETTINGS_RESET_ON_HIGHER_PRIORITY_DEVICE_CONNECTION

The preferences are reset when the higher priority device connects.

Library:

libaudio_manager

Description:

This enumeration defines the supported reset conditions of the routing preferences

set by audio_manager_set_handle_type().

Functions in audio_manager_routing.h

Functions for managing audio routing.

audio_manager_activate_bound_handle()

Activate the given audio manager handle and refresh audio ducking settings.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_activate_bound_handle(unsigned int audioman_handle, bool
refresh_ducking)

Arguments:

audioman_handle

The audio manager handle that is being activated.

104 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

refresh_ducking

true if refresh ducking should be enabled, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_activate_bound_handle() function activates the given audio

manager handle if it is already bound with a PCM handle by snd_pcm_set_au

dioman_handle.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_activate_handle()

Activate the given audio manager handle.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_activate_handle(unsigned int audioman_handle)

Arguments:

audioman_handle

The audio manager handle that is being activated.

Library:

libaudio_manager

Description:

The audio_manager_activate_handle() function activates the given audio manager

handle if it is not already bound with a PCM handle.

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 105

audio_manager_routing.h

audio_manager_check_autopause()

Check if a device switch should result in an autopause.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_check_autopause(unsigned int audioman_handle,
audio_manager_device_t from, audio_manager_device_t to, bool *result)

Arguments:

audioman_handle

The audio manager handle on which to check.

from

The device that was active at the last point in time when the associated

PCM channel was prepared.

to

The device that is now active.

result

true if the client should autopause, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_check_autopause() function indicates whether it is recommended

that a client that has been forced to switch from one device to another should

autopause.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

106 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

audio_manager_free_handle()

Free the given audio manager handle.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_free_handle(unsigned int audioman_handle)

Arguments:

audioman_handle

The audio manager handle that is being freed.

Library:

libaudio_manager

Description:

The audio_manager_free_handle() function frees the given audio manager handle.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_alias_handle()

Get an audio manager handle that is an alias of another audio manager handle.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_get_alias_handle(unsigned int target_audioman_handle, unsigned
 int *audioman_handle)

Arguments:

target_audioman_handle

The target audio manager handle that the alias is created from.

audioman_handle

The audio manager handle allocated.

Copyright © 2014, QNX Software Systems Limited 107

audio_manager_routing.h

Library:

libaudio_manager

Description:

The audio_manager_get_alias_handle() function returns the alias of a given audio

manager handle. An alias audio manager handle has no audio policy effect.

Returns:

EOK upon success, negative errno upon failure

audio_manager_get_handle()

Get the audio manager handle for a given audio type.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_get_handle(audio_manager_audio_type_t type, pid_t caller_pid,
 bool start_suspended, unsigned int *audioman_handle)

Arguments:

type

The type of the audio manager handle to query.

caller_pid

The ID of the process that the audio manager handle is allocated for (0 =

the current process ID).

start_suspended

true if the audio manager handle is suspended after allocation, false

otherwise.

audioman_handle

The audio manager handle allocated.

Library:

libaudio_manager

108 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Description:

The audio_manager_get_handle() function returns the audio manager handle of a given

type with a flag indicating whether the handle is immediately activated or not.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_handle_for_runtime()

Get the audio manager handle for a given audio type.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_get_handle_for_runtime(audio_manager_runtime_t runtime,
audio_manager_audio_type_t type, pid_t caller_pid, bool start_suspended,
unsigned int *audioman_handle)

Arguments:

runtime

The type of the runtime of the audio manager to query.

type

The type of the audio manager handle to query.

caller_pid

The ID of the process that the audio manager handle is allocated for (0 =

the current process ID).

start_suspended

true if the audio manager handle is suspended after allocation, false

otherwise.

audioman_handle

The audio manager handle allocated.

Library:

libaudio_manager

Copyright © 2014, QNX Software Systems Limited 109

audio_manager_routing.h

Description:

The audio_manager_get_handle_runtime() function returns the audio manager

handle of a given type with a flag indicating whether the handle is immediately

activated or not.

This function should be used only by different runtimes which implement their own

ducking rules. Applications should not use this function directly.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_handle_status()

Get the status of the given audio manager handle.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_get_handle_status(unsigned int audioman_handle, bool
*suspended, bool *bound)

Arguments:

audioman_handle

The audio manager handle to query.

suspended

true if the audio manager handle is suspended, false otherwise.

bound

true if the audio manager handle is bound to a PCM handle, false

otherwise.

Library:

libaudio_manager

Description:

The audio_manager_get_handle_status() function returns the activation status and

binding status of a given audio manager handle.

110 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_handle_type()

Retrieve the audio type of a given audio manager handle.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_get_handle_type(unsigned int audioman_handle,
audio_manager_audio_type_t *type, audio_manager_device_t *pref_output,
audio_manager_device_t *pref_input)

Arguments:

audioman_handle

The audio manager handle that the new type is applied to.

type

The audio type that has been set on the given audio manager handle.

pref_output

The preferred output routing of the handle.

pref_input

The preferred input routing of the handle.

Library:

libaudio_manager

Description:

The audio_manager_get_handle_type() function gets the audio type of a given audio

manager handle and the overrides of the default audio type routing policy for the

preferred output and input audio devices.

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 111

audio_manager_routing.h

audio_manager_get_name_from_type()

Get the name of an audio manager type.

Synopsis:

#include <audio/audio_manager_routing.h>

const char* audio_manager_get_name_from_type(audio_manager_audio_type_t type)

Arguments:

type

The audio manager type to query.

Library:

libaudio_manager

Description:

The audio_manager_get_name_from_type() function returns the name of an audio

manager type.

Returns:

The name of the audio manager type from AUDIO_TYPE_NAMES.

audio_manager_get_name_from_runtime()

Get the name of an audio manager runtime.

Synopsis:

#include <audio/audio_manager_routing.h>

const char* audio_manager_get_name_from_runtime(audio_manager_runtime_t runtime)

Arguments:

runtime

The audio manager runtime to query.

Library:

libaudio_manager

112 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Description:

The audio_manager_get_name_from_runtime() function returns the name of an audio

manager runtime.

Returns:

The name of the audio manager runtime from AUDIO_RUNTIME_NAMES.

audio_manager_get_runtime_from_name()

Get the audio handle runtime given the name of the runtime.

Synopsis:

#include <audio/audio_manager_routing.h>

audio_manager_runtime_t audio_manager_get_runtime_from_name(const char
*runtime_name)

Arguments:

runtime_name

The name of the runtime to query.

Library:

libaudio_manager

Description:

The audio_manager_get_runtime_from_name() function returns the audio manager

handle runtime given the name of the runtime.

Returns:

The audio manager handle runtime.

audio_manager_get_type_from_name()

Get the audio handle type given the name of the type.

Synopsis:

#include <audio/audio_manager_routing.h>

audio_manager_audio_type_t audio_manager_get_type_from_name(const char
*type_name)

Arguments:

Copyright © 2014, QNX Software Systems Limited 113

audio_manager_routing.h

type_name

The name of the type to query.

Library:

libaudio_manager

Description:

The audio_manager_get_type_from_name() function returns the audio manager handle

type given the name of the type.

Returns:

The audio manager handle type.

audio_manager_set_handle_routing_conditions()

Set the reset condition of the preferred input and output.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_set_handle_routing_conditions(unsigned int audioman_handle,
 int routing_preference_reset_conditions)

Arguments:

audioman_handle

The audio manager handle that the conditions apply to.

routing_preference_reset_conditions

The bitmask of audio_manager_settings_reset_condition_t that

specifies the condition(s) that the audio routing preference(s) gets set to.

Library:

libaudio_manager

Description:

The audio_manager_set_handle_routing_conditions() function sets the reset conditions

of the preferred output and input routing path that are specified with

audio_manager_set_handle_type().

114 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_handle_keep_alive()

Set the keep-alive status for the handle.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_set_handle_keep_alive(unsigned int audioman_handle, int
direction)

Arguments:

audioman_handle

The audio manager handle that the keep-alive status applies to.

direction

A bitmask of AUDIO_INPUT or AUDIO_OUTPUT to control keep-alive

direction. An empty bitmask will disable keep-alive.

Library:

libaudio_manager

Description:

The audio_manager_set_handle_keep_alive() function sets the keep-alive status of the

handle. When audio is being routed according to this handle, the device being routed

to will be kept ready, at a possible cost in power, even when no audio is being played

or recorded.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_handle_type()

Set the audio type of a given audio manager handle.

Synopsis:

#include <audio/audio_manager_routing.h>

Copyright © 2014, QNX Software Systems Limited 115

audio_manager_routing.h

int audio_manager_set_handle_type(unsigned int audioman_handle,
audio_manager_audio_type_t type, audio_manager_device_t pref_output,
audio_manager_device_t pref_input)

Arguments:

audioman_handle

The audio manager handle that the new type is applied to.

type

The new audio type to be set to the given audio manager handle. If AU

DIO_TYPE_UNCHANGED is specified, the audio type is unchanged.

pref_output

The preferred output routing of the new audio type. If AUDIO_DEVICE_UN

CHANGED is specified, the preferred output device is unchanged.

pref_input

The preferred input routing of the new audio type. If AUDIO_DEVICE_UN

CHANGED is specified, the preferred input device is unchanged.

Library:

libaudio_manager

Description:

The audio_manager_set_handle_type() function sets the audio type of a given audio

manager handle and gives the option to override the default audio type routing policy

by specifying the preferred output and input audio devices.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_snd_pcm_open()

Open a PCM channel with a given audio type, given audio card, and device.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_snd_pcm_open(audio_manager_audio_type_t type, snd_pcm_t
**handle, unsigned int *audioman_handle, int card, int device, int mode)

116 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Arguments:

type

The audio type of the PCM channel being allocated.

handle

The handle of the PCM channel opened

audioman_handle

The audio manager handle allocated to the PCM channel.

card

The audio card to be used to open the PCM channel.

device

The audio device to be used to open the PCM channel.

mode

The PCM channel mode defined in asoundlib.h.

Library:

libaudio_manager

Description:

The audio_manager_snd_pcm_open() function combines the snd_pcm_open() and

audio_manager_get_handle() functions and allows the allocation of a specific audio

type PCM channel in one step.

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 117

audio_manager_routing.h

audio_manager_snd_pcm_open_name()

Open a PCM channel with a given audio type and a given name of the audio path.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_snd_pcm_open_name(audio_manager_audio_type_t type, snd_pcm_t
 **handle, unsigned int *audioman_handle, char *name, int mode)

Arguments:

type

The audio type of the PCM channel being allocated.

handle

The handle of the PCM channel opened.

audioman_handle

The audio manager handle allocated to the PCM channel.

name

The name of the audio path to be used to open the PCM channel.

mode

The PCM channel mode defined in asoundlib.h.

Library:

libaudio_manager

Description:

The audio_manager_snd_pcm_open_name() function combines the

snd_pcm_open_name() and audio_manager_get_handle() functions and allows the

allocation a specific audio type PCM channel in one step.

Returns:

EOK upon success, negative errno upon failure.

118 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

audio_manager_snd_pcm_open_preferred()

Open a preferred PCM channel with a given audio type.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_snd_pcm_open_preferred(audio_manager_audio_type_t type,
snd_pcm_t **handle, unsigned int *audioman_handle, int *rcard, int *rdevice,
int mode)

Arguments:

type

The audio type of the PCM channel being allocated.

handle

The handle of the PCM channel opened.

audioman_handle

The audio manager handle allocated to the PCM channel.

rcard

The audio card used to open the PCM channel.

rdevice

The audio device used to open the PCM channel.

mode

The PCM channel mode defined in asoundlib.h.

Library:

libaudio_manager

Description:

The audio_manager_snd_pcm_open_preferred() function combines the

snd_pcm_open_preferred() and audio_manager_get_handle() functions and

allows the allocation of a specific audio type PCM channel in one step.

Copyright © 2014, QNX Software Systems Limited 119

audio_manager_routing.h

Returns:

EOK upon success, negative errno upon failure.

audio_manager_suspend_bound_handle()

Activate the given audio manager handle and refresh audio ducking settings.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_suspend_bound_handle(unsigned int audioman_handle)

Arguments:

audioman_handle

The audio manager handle that is being activated.

Library:

libaudio_manager

Description:

The audio_manager_activate_bound_handle() function activates the given audio

manager handle if it is already bound with a PCM handle by snd_pcm_set_au

dioman_handle.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_suspend_handle()

Suspend the given audio manager handle.

Synopsis:

#include <audio/audio_manager_routing.h>

int audio_manager_suspend_handle(unsigned int audioman_handle)

Arguments:

audioman_handle

120 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

The audio manager handle that is being suspended.

Library:

libaudio_manager

Description:

The audio_manager_suspend_handle() function suspends the given audio manager

handle if it is not already bound with a PCM handle.

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 121

audio_manager_routing.h

audio_manager_voice_service.h

Definitions for supported voice services.

The audio manager maintains the voice services status for devices. This file defines

voice services status properties and provides functions for them.

Constants in audio_manager_voice_service.h

Constants for managing voice services.

Definitions in audio_manager_voice_service.h

Preprocessor macro definitions for the audio_manager_voice_service.h header file in

the libaudio_manager library.

Definitions:

#define AUDIO_VOICE_SERVICE_NAMES { \
 "cellular", \
 "voip", \
}

Audio voice service names.

#define AUDIO_VOICE_STATUS_NAMES { \
 "off", \
 "ringer", \
 "on", \
}

Audio voice status names.

#define AUDIO_VOICE_OPTION_NAMES { \
 "normal", \
 "boost_treble", \
 "boost_bass", \
}

Audio voice option names.

#define AUDIO_VOICE_CODEC_NAMES { \
 "narrowband", \
 "wideband", \
}

Audio voice codec names.

Library:

libaudio_manager

122 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Data types in audio_manager_voice_service.h

Data structures, typedefs, and enumerations for managing voice services.

audio_manager_voice_option_t

Supported audio options of the voice services.

Synopsis:

#include <audio/audio_manager_voice_service.h>

typedef enum {
 AUDIO_VOICE_OPTION_NORMAL
 AUDIO_VOICE_OPTION_TREBLE
 AUDIO_VOICE_OPTION_BASS
 AUDIO_VOICE_OPTION_COUNT
} audio_manager_voice_option_t;

Data:

AUDIO_VOICE_OPTION_NORMAL

The audio option for no particular audio tuning.

AUDIO_VOICE_OPTION_TREBLE

The audio option for treble audio tuning.

AUDIO_VOICE_OPTION_BASS

The audio option for bass audio tuning.

AUDIO_VOICE_OPTION_COUNT

The total number of audio options.

Library:

libaudio_manager

Description:

This enumeration defines the supported audio options of the voice services.

audio_manager_voice_service_t

The supported voice service types.

Synopsis:

#include <audio/audio_manager_voice_service.h>

Copyright © 2014, QNX Software Systems Limited 123

audio_manager_voice_service.h

typedef enum {
 AUDIO_VOICE_CELLULAR
 AUDIO_VOICE_VOIP
 AUDIO_VOICE_SERVICE_COUNT
} audio_manager_voice_service_t;

Data:

AUDIO_VOICE_CELLULAR

The cellular voice service.

AUDIO_VOICE_VOIP

The Voice over IP (VoIP) service.

AUDIO_VOICE_SERVICE_COUNT

The total of voice services supported.

Library:

libaudio_manager

Description:

This enumeration defines the supported voice service types.

audio_manager_voice_service_status_t

The supported status of the voice services.

Synopsis:

#include <audio/audio_manager_voice_service.h>

typedef enum {
 AUDIO_VOICE_OFF
 AUDIO_VOICE_RINGTONE
 AUDIO_VOICE_ON
 AUDIO_VOICE_STATUS_COUNT
} audio_manager_voice_service_status_t;

Data:

AUDIO_VOICE_OFF

The voice service is shut down.

AUDIO_VOICE_RINGTONE

The voice service is playing a ringtone.

AUDIO_VOICE_ON

124 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

The voice service is turned on.

AUDIO_VOICE_STATUS_COUNT

The total number of status types.

Library:

libaudio_manager

Description:

This enumeration defines the supported status of the voice services.

Functions in audio_manager_voice_service.h

Functions for managing voice services.

audio_manager_get_redirector_id()

Get the ID of redirector.

Synopsis:

#include <audio/audio_manager_voice_service.h>

int audio_manager_get_redirector_id(int *redirector_id)

Arguments:

redirector_id

The ID of redirector.

Library:

libaudio_manager

Description:

The audio_manager_get_redirector_id() function gets the ID of redirector.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 125

audio_manager_voice_service.h

audio_manager_get_voice_service_from_name()

Get the audio voice service given the name of the service.

Synopsis:

#include <audio/audio_manager_voice_service.h>

audio_manager_voice_service_t audio_manager_get_voice_service_from_name(const
 char *name)

Arguments:

name

The name of the service to query.

Library:

libaudio_manager

Description:

The audio_manager_get_voice_service_from_name() function returns the audio voice

service given the name of the service.

Returns:

The audio voice service identifier.

audio_manager_get_voice_service_name()

Get the audio voice service name given the type of the service.

Synopsis:

#include <audio/audio_manager_voice_service.h>

const char* audio_manager_get_voice_service_name(audio_manager_voice_service_t
 service)

Arguments:

service

The type of the service to query.

Library:

libaudio_manager

126 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Description:

The audio_manager_get_voice_service_name() function returns the audio voice service

name given the type of the service.

Returns:

The audio voice service name.

audio_manager_get_voice_service_option()

Get the current audio option of a given voice service type and a given audio device.

Synopsis:

#include <audio/audio_manager_voice_service.h>

int audio_manager_get_voice_service_option(audio_manager_voice_service_t
service, audio_manager_device_t dev, audio_manager_voice_option_t *option)

Arguments:

service

The voice service type to query.

dev

The audio device to query.

option

The audio option returned.

Library:

libaudio_manager

Description:

The audio_manager_get_voice_service_option() function returns the audio option of a

given voice service type and a given audio device.

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 127

audio_manager_voice_service.h

audio_manager_get_voice_service_option_from_name()

Get the audio voice option given the name of the option.

Synopsis:

#include <audio/audio_manager_voice_service.h>

audio_manager_voice_option_t
audio_manager_get_voice_service_option_from_name(const char *name)

Arguments:

name

The name of the option to query.

Library:

libaudio_manager

Description:

The audio_manager_get_voice_service_option_from_name() function returns the

enhanced audio option of a voice service given the name of the option.

Returns:

The option identifier.

audio_manager_get_voice_service_option_name()

Get the enhanced audio option name given the type of the option.

Synopsis:

#include <audio/audio_manager_voice_service.h>

const char*
audio_manager_get_voice_service_option_name(audio_manager_voice_option_t option)

Arguments:

option

The type of the option to query.

Library:

libaudio_manager

128 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Description:

The audio_manager_get_voice_service_option_name() function returns the name of

the enhanced audio option for the voice service given the type of the option.

Returns:

The option name.

audio_manager_get_voice_service_status()

Get the current status of a given voice service type.

Synopsis:

#include <audio/audio_manager_voice_service.h>

int audio_manager_get_voice_service_status(audio_manager_voice_service_t
service, audio_manager_voice_service_status_t *status)

Arguments:

service

The voice service type to query.

status

The status returned.

Library:

libaudio_manager

Description:

The audio_manager_get_voice_service_status() function returns the status of a given

voice service type.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_voice_service_status_from_name()

Get the audio voice status given the name of the status.

Synopsis:

#include <audio/audio_manager_voice_service.h>

Copyright © 2014, QNX Software Systems Limited 129

audio_manager_voice_service.h

audio_manager_voice_service_status_t
audio_manager_get_voice_service_status_from_name(const char *name)

Arguments:

name

The name of the status to query.

Library:

libaudio_manager

Description:

The audio_manager_get_voice_service_status_from_name() function returns the voice

status given the name of the status.

Returns:

The service status identifier.

audio_manager_get_voice_service_status_name()

Get the audio voice service status name given the type of the status.

Synopsis:

#include <audio/audio_manager_voice_service.h>

const char*
audio_manager_get_voice_service_status_name(audio_manager_voice_service_status_t
 status)

Arguments:

status

The type of the status to query.

Library:

libaudio_manager

Description:

The audio_manager_get_voice_service_status_name() function returns the audio voice

service status name given the type of the status.

130 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Returns:

The service status name.

audio_manager_get_voice_service_status_with_codec_settings()

Get the current status and the codec settings of a given voice service type.

Synopsis:

#include <audio/audio_manager_voice_service.h>

int
audio_manager_get_voice_service_status_with_codec_settings(audio_manager_voice_service_t
 service, audio_manager_voice_service_status_t *status, char *codec_name_buf,
 int buf_size, int *codec_rate)

Arguments:

service

The voice service type to query.

status

The status returned.

codec_name_buf

The buffer to store the name of the codec the service provider uses; NULL

if not needed.

buf_size

The size of the codec_name_buf.

codec_rate

The pointer to store the audio sample rate of the service provider.

Library:

libaudio_manager

Description:

The audio_manager_get_voice_service_status_with_codec_settings() function returns

the status and the codec settings of a given voice service type.

Copyright © 2014, QNX Software Systems Limited 131

audio_manager_voice_service.h

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_voice_service_option()

Set the audio option of a given voice service type and a given audio device.

Synopsis:

#include <audio/audio_manager_voice_service.h>

int audio_manager_set_voice_service_option(audio_manager_voice_service_t
service, audio_manager_device_t dev_output, audio_manager_voice_option_t option)

Arguments:

service

The voice service type that the new audio option is applied to.

dev_output

The audio device that the new audio option is applied to.

option

The new audio option to be applied.

Library:

libaudio_manager

Description:

The audio_manager_set_voice_service_option() function sets the audio option of a

given voice service type and a given audio device.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

132 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

audio_manager_set_voice_service_status()

Set the status of a given voice service type.

Synopsis:

#include <audio/audio_manager_voice_service.h>

int audio_manager_set_voice_service_status(audio_manager_voice_service_t
service, audio_manager_voice_service_status_t status)

Arguments:

service

The voice service type that the new status is applied to.

status

The status to be applied.

Library:

libaudio_manager

Description:

The audio_manager_set_voice_service_status() function sets the status of a given voice

service type.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_voice_service_status_with_codec_settings()

Set the status and the codec settings of a given voice service type.

Synopsis:

#include <audio/audio_manager_voice_service.h>

int
audio_manager_set_voice_service_status_with_codec_settings(audio_manager_voice_service_t

Copyright © 2014, QNX Software Systems Limited 133

audio_manager_voice_service.h

 service, audio_manager_voice_service_status_t status, const char *codec_name,
 int codec_rate)

Arguments:

service

The voice service type that the new status is applied to.

status

The status to be applied.

codec_name

The name of the codec the service provider uses.

codec_rate

The audio sample rate the service provider uses.

Library:

libaudio_manager

Description:

The audio_manager_set_voice_service_status_with_codec_settings() function sets the

status and the codec settings of a given voice service type.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

134 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

audio_manager_volume.h

Definitions for supported audio volume controls.

The audio manager maintains the volume control interfaces for all supported devices.

This file defines audio volume control properties and provides functions for them.

Constants in audio_manager_volume.h

Constants for managing volume control.

Definitions in audio_manager_volume.h

Preprocessor macro definitions for the audio_manager_volume.h header file in the

libaudio_manager library.

Definitions:

#define UNSAFEZONE_TIMEOUT_ID "Audio.EU.headphone.boost.timer"

Statistic entry name used with audio_manager_get_stat_counter() for EU headphone

volume regulations.

This counter tracks the total time the user has spent in the EU unsafe volume zone

with headphones.

#define UNSAFEZONE_DEFAULT_EU_UNSAFE_LEVEL 75

The default threshold in percentage for entering the EU unsafe volume zone for

headphones.

#define UNSAFEZONE_DEFAULT_EU_UNSAFE_TIMEOUT 72000000

The default timeout of the EU unsafe volume zone for headphones.

Once the timer reaches this threshold, the user is required to acknowledge the EU

regulations again to use headphones with volume level above the UNSAFEZONE_DE

FAULT_EU_UNSAFE_LEVEL.

Library:

libaudio_manager

Copyright © 2014, QNX Software Systems Limited 135

audio_manager_volume.h

Data types in audio_manager_volume.h

Data structures, typedefs, and enumerations for managing audio volume.

audio_manager_headphone_output_regulation_t

The audio headphone output volume regulation status.

Synopsis:

typedef struct {
 bool regulated ;
 double level ;
}audio_manager_headphone_output_regulation_t;

Data:

bool regulated

The current status of whether the headphone volume is regulated.

double level

The output level in percentage that the headphone volume is regulated at.

Library:

libaudio_manager

Description:

This structure defines the status of whether and at which level the headphone output

volume is regulated.

audio_manager_headphone_volume_override_status_t

Headphone volume override status.

Synopsis:

typedef struct {
 bool supported ;
 bool enabled ;
 int level ;
}audio_manager_headphone_volume_override_status_t;

Data:

bool supported

true if the extra volume override is supported by the device or region, false

otherwise.

136 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

bool enabled

true if the extra volume range is allowed, false otherwise.

int level

The output level in percentage (0-100) that the headphone volume is limited

to if the override is false.

Library:

libaudio_manager

Description:

This structure defines the status of the configuration of a given headphone volume

override feature.

Functions in audio_manager_volume.h

Functions for managing audio volume.

audio_manager_adjust_input_level()

Adjust the audio input level of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_adjust_input_level(audio_manager_device_t dev, double level)

Arguments:

dev

The audio device the new input level is applied to.

level

The change in level of the audio input in percentage (e.g. 10.00 = 10%

increase, -10.00 = 10% decrease).

Library:

libaudio_manager

Copyright © 2014, QNX Software Systems Limited 137

audio_manager_volume.h

Description:

The audio_manager_adjust_input_level() function adjusts the audio input level of a

given audio device.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_adjust_output_level()

Adjust the audio output level of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_adjust_output_level(audio_manager_device_t dev, double level)

Arguments:

dev

The audio device that the new output level is applied to.

level

The change in level of the audio output in percentage (e.g. 10.00 = 10%

increase, -10.00 = 10% decrease).

Library:

libaudio_manager

Description:

The audio_manager_adjust_output_level() function adjusts the audio output level of

a given audio device.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_adjust_voice_output_level()

Adjust the audio output level of a given audio device during voice calls.

Synopsis:

#include <audio/audio_manager_volume.h>

138 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

int audio_manager_adjust_voice_output_level(audio_manager_device_t dev, double
 level)

Arguments:

dev

The audio device that the new output level is applied to.

level

The change in level of the audio output in percentage, 0.00 - 100.0. (e.g.

10.00 = 10% increase, -10.00 = 10% decrease)

Library:

libaudio_manager

Description:

The audio_manager_adjust_voice_output_level() function adjusts the audio output

level of a given audio device during voice calls.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_clear_stat_counter()

Clear the statistic counter of a given statistic entry name.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_clear_stat_counter(const char *name)

Arguments:

name

The name of the statistic entry to clear.

Copyright © 2014, QNX Software Systems Limited 139

audio_manager_volume.h

Library:

libaudio_manager

Description:

The audio_manager_clear_stat_counter() function clears the counter of the given

statistic entry.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_decrease_output_level()

Decrease the audio output level of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_decrease_output_level(audio_manager_device_t dev)

Arguments:

dev

The audio device that the decrease is applied to.

Library:

libaudio_manager

Description:

The audio_manager_decrease_output_level() function decreases the audio output level

of a given audio device. The step of the output level decrease is defined by the

particular audio device.

Returns:

EOK upon success, negative errno upon failure.

140 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

audio_manager_decrease_voice_output_level()

Decrease the audio output level of a given audio device during voice calls.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_decrease_voice_output_level(audio_manager_device_t dev)

Arguments:

dev

The audio device that the decrease is applied to.

Library:

libaudio_manager

Description:

The audio_manager_decrease_voice_output_level() function decreases the audio output

level of a given audio device during voice calls. The step of the output level decrease

is defined by the particular audio device.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_headphone_boost_status()

Get the headphone volume boost status.

Synopsis:

#include <audio/audio_manager_volume.h>

int
audio_manager_get_headphone_boost_status(audio_manager_headphone_volume_override_status_t
 *status)

Arguments:

status

Copyright © 2014, QNX Software Systems Limited 141

audio_manager_volume.h

The status of the volume boost as

audio_manager_headphone_volume_override_status_t.

Library:

libaudio_manager

Description:

The audio_manager_get_headphone_boost_status() function returns the headphone

volume boost status. The override allows extra volume boost to the headphone output.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_headphone_output_level_regulation_status()

Get whether the current headphone output level is restricted due to regulations.

Synopsis:

#include <audio/audio_manager_volume.h>

int
audio_manager_get_headphone_output_level_regulation_status(audio_manager_headphone_output_regulation_t
 *status)

Arguments:

status

The status of the output level as

audio_manager_headphone_output_regulation_t.

Library:

libaudio_manager

Description:

The audio_manager_get_headphone_level_regulated() function returns

whether the level of the current headphone output level is regulated to a lower level

than the user or application might have set.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

142 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_headphone_unsafe_zone_status()

Get the headphone volume unsafe zone status.

Synopsis:

#include <audio/audio_manager_volume.h>

int
audio_manager_get_headphone_unsafe_zone_status(audio_manager_headphone_volume_override_status_t
 *status)

Arguments:

status

The status of the volume unsafe zone as

audio_manager_headphone_volume_override_status_t.

Library:

libaudio_manager

Description:

The audio_manager_get_headphone_unsafe_zone_status() function returns the

headphone volume unsafe zone status.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_input_level()

Get the audio input level of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_get_input_level(audio_manager_device_t dev, double *level)

Arguments:

dev

The audio device to query.

Copyright © 2014, QNX Software Systems Limited 143

audio_manager_volume.h

level

The input level being returned in percentage, 0.00 - 100.0 (e.g. 90.00 =

90%).

Library:

libaudio_manager

Description:

The audio_manager_get_input_level() function returns the audio input level of a given

audio device.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_input_mute()

Get the mute status of the audio input of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_get_input_mute(audio_manager_device_t dev, bool *mute)

Arguments:

dev

The audio device to query.

mute

true if the input of the audio device is being muted, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_get_input_mute() function returns the mute status of the audio

input of a given audio device.

144 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_modem_output_mute()

Get the mute status of the audio output of the modem.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_get_modem_output_mute(bool *mute)

Arguments:

mute

true if the output of the modem is muted, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_get_modem_output_mute() function returns the mute status of

the audio output of the modem.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_output_level()

Get the audio output level of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_get_output_level(audio_manager_device_t dev, double *level)

Arguments:

Copyright © 2014, QNX Software Systems Limited 145

audio_manager_volume.h

dev

The audio device to query.

level

The output level being returned in percentage, 0.00 - 100.0 (e.g. 90.00 =

90%).

Library:

libaudio_manager

Description:

The audio_manager_get_output_level() function returns the audio output level of a

given audio device.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_output_mute()

Get the mute status of the audio output of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_get_output_mute(audio_manager_device_t dev, bool *mute)

Arguments:

dev

The audio device to query.

mute

true if the output of the audio device is being muted, false otherwise.

Library:

libaudio_manager

146 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Description:

The audio_manager_get_output_mute() function returns the mute status of the audio

output of a given audio device.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_output_volume_steps()

Get the number of available output volume steps.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_get_output_volume_steps(audio_manager_device_t dev, int
*steps)

Arguments:

dev

The audio device to query.

steps

The available volume steps returned.

Library:

libaudio_manager

Description:

The audio_manager_get_output_volume_steps() function returns the number of available

volume steps.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_stat_counter()

Get the statistic counter of a given statistic entry name.

Synopsis:

#include <audio/audio_manager_volume.h>

Copyright © 2014, QNX Software Systems Limited 147

audio_manager_volume.h

int audio_manager_get_stat_counter(const char *name, uint64_t *counter)

Arguments:

name

The name of the statistic entry.

counter

The counter of the selected entry returned.

Library:

libaudio_manager

Description:

The audio_manager_get_stat_counter() function returns the counter of the given

statistic entry.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_voice_input_mute()

Get the mute status of the audio input (to the far end) of the current voice call.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_get_voice_input_mute(bool *mute)

Arguments:

mute

true if the input of the voice call is being muted, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_get_voice_input_mute() function returns the mute status of the

audio input (to the far end) of the current voice call.

148 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_voice_output_level()

Get the audio output level of a given audio device during voice calls.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_get_voice_output_level(audio_manager_device_t dev, double
*level)

Arguments:

dev

The audio device to query.

level

The output level being returned in percentage, 0.00 - 100.0 (e.g. 90.00 =

90%).

Library:

libaudio_manager

Description:

The audio_manager_get_voice_output_level() function returns the audio output level

of a given audio device during voice calls.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 149

audio_manager_volume.h

audio_manager_get_voice_output_mute()

Get the mute status of the audio output of a given audio device during voice calls.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_get_voice_output_mute(audio_manager_device_t dev, bool *mute)

Arguments:

dev

The audio device to query.

mute

true if the output of the audio device is being muted, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_get_voice_output_mute() function returns the mute status of the

audio output of a given audio device during voice calls.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_get_voice_output_volume_steps()

Get the number of available voice output volume steps.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_get_voice_output_volume_steps(audio_manager_device_t dev,
int *steps)

150 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Arguments:

dev

The audio device to query.

steps

The available volume steps returned.

Library:

libaudio_manager

Description:

The audio_manager_get_voice_output_volume_steps() function returns the number of

available volume steps for voice calls.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_increase_output_level()

Increase the audio output level of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_increase_output_level(audio_manager_device_t dev)

Arguments:

dev

The audio device that the increase is applied to.

Library:

libaudio_manager

Description:

The audio_manager_increase_output_level() function increases the audio output level

of a given audio device. The step of the output level increase is defined by the particular

audio device.

Copyright © 2014, QNX Software Systems Limited 151

audio_manager_volume.h

Returns:

EOK upon success, negative errno upon failure.

audio_manager_increase_voice_output_level()

Increase the audio output level of a given audio device during voice calls.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_increase_voice_output_level(audio_manager_device_t dev)

Arguments:

dev

The audio device that the increase is applied to.

Library:

libaudio_manager

Description:

The audio_manager_increase_voice_output_level() function increases the audio output

level of a given audio device during voice calls. The step of the output level increase

is defined by the particular audio device.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_headphone_volume_boost()

Set the use of the headphone output volume boost.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_set_headphone_volume_boost(bool enable)

Arguments:

152 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

enable

true if the extra volume boost is allowed, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_set_headphone_volume_boost() function sets the enable status

of the headphone output level to allow an extra volume boost to the headphone output.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_headphone_volume_unsafe_zone()

Set the use of the unsafe range of the headphone output volume.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_set_headphone_volume_unsafe_zone(bool enable)

Arguments:

enable

true if the extra volume range is allowed, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_set_headphone_volume_unsafe_zone() function sets the enable

status of the unsafe volume range of the headphone output to allow an extra volume

range to the headphone output.

Copyright © 2014, QNX Software Systems Limited 153

audio_manager_volume.h

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_input_level()

Set the audio input level of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_set_input_level(audio_manager_device_t dev, double level)

Arguments:

dev

The audio device that the new input level is applied to.

level

The new input level in percentage, 0.00 - 100.00 (e.g. 90.00 = 90%).

Library:

libaudio_manager

Description:

The audio_manager_set_input_level() function sets the audio input level of a given

audio device.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_input_mute()

Mute the audio input of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

154 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

int audio_manager_set_input_mute(audio_manager_device_t dev, bool mute)

Arguments:

dev

The audio device to mute input.

mute

true if the input of the audio device should be muted, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_set_input_mute() function mutes the audio input of a given audio

device.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_modem_output_mute()

Mute the audio output of the modem.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_set_modem_output_mute(bool mute)

Arguments:

mute

true if the output of the modem should be muted, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_set_modem_output_mute() function mutes the audio output of

the modem.

Copyright © 2014, QNX Software Systems Limited 155

audio_manager_volume.h

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_output_level()

Set the audio output level of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_set_output_level(audio_manager_device_t dev, double level)

Arguments:

dev

The audio device that the new output level is applied to.

level

The new output level in percentage, 0.00 - 100.0 (e.g. 90.00 = 90%).

Library:

libaudio_manager

Description:

The audio_manager_set_output_level() function sets the audio output level of a given

audio device.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_output_mute()

Mute the audio output of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

156 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

int audio_manager_set_output_mute(audio_manager_device_t dev, bool mute)

Arguments:

dev

The audio device to mute output.

mute

true if the output of the audio device should be muted, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_set_output_mute() function mutes the audio output of a given

audio device.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_voice_input_mute()

Mute the audio input (to the far end) of the current voice call.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_set_voice_input_mute(bool mute)

Arguments:

mute

true if the input of the current voice call should be muted, false

otherwise.

Library:

libaudio_manager

Copyright © 2014, QNX Software Systems Limited 157

audio_manager_volume.h

Description:

The audio_manager_set_voice_input_mute() function mutes the audio input (to the

far end) of the current voice call.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_voice_output_level()

Set the audio output level of a given audio device during voice calls.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_set_voice_output_level(audio_manager_device_t dev, double
level)

Arguments:

dev

The audio device that the new output level is applied to.

level

The new output level in percentage, 0.00 - 100.0 (e.g. 90.00 = 90%).

Library:

libaudio_manager

Description:

The audio_manager_set_voice_output_level() function sets the audio output level of

a given audio device during voice calls.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

158 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

Returns:

EOK upon success, negative errno upon failure.

audio_manager_set_voice_output_mute()

Mute the audio output of a given audio device during voice calls.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_set_voice_output_mute(audio_manager_device_t dev, bool mute)

Arguments:

dev

The audio device to mute output.

mute

true if the output of the audio device should be muted, false otherwise.

Library:

libaudio_manager

Description:

The audio_manager_set_voice_output_mute() function mutes the audio output of a

given audio device during voice calls.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_toggle_input_mute()

Toggle the audio input mute status of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

Copyright © 2014, QNX Software Systems Limited 159

audio_manager_volume.h

int audio_manager_toggle_input_mute(audio_manager_device_t dev)

Arguments:

dev

The audio device that the toggle is applied to.

Library:

libaudio_manager

Description:

The audio_manager_toggle_output_mute() function toggles the mute status of the

audio input of a given audio device.

Returns:

EOK upon success, negative errno upon failure.

audio_manager_toggle_output_mute()

Toggle the audio output mute status of a given audio device.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_toggle_output_mute(audio_manager_device_t dev)

Arguments:

dev

The audio device that the toggle is applied to.

Library:

libaudio_manager

Description:

The audio_manager_toggle_output_mute() function toggles the mute status of the

audio output of a given audio device.

Returns:

EOK upon success, negative errno upon failure.

160 Copyright © 2014, QNX Software Systems Limited

Audio Manager API

audio_manager_toggle_voice_output_mute()

Toggle the audio output mute status of a given audio device during voice calls.

Synopsis:

#include <audio/audio_manager_volume.h>

int audio_manager_toggle_voice_output_mute(audio_manager_device_t dev)

Arguments:

dev

The audio device that the toggle is applied to.

Library:

libaudio_manager

Description:

The audio_manager_toggle_voice_output_mute() function toggles the mute status of

the audio output of a given audio device during voice calls.

A process must have either an effective user ID of root, or the authman capability of

access_audio_manager, to use this function.

Note that this function is intended for use by system components. Therefore, it is not

suitable for all applications.

Returns:

EOK upon success, negative errno upon failure.

Copyright © 2014, QNX Software Systems Limited 161

audio_manager_volume.h

Index

T

Technical support 8

Typographical conventions 6

Copyright © 2014, QNX Software Systems Limited 163

Audio Manager Library Reference

164 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About this Reference
	Typographical conventions
	Technical support

	Audio Manager Overview
	Audio Manager Routing Priority
	Audio Stream Routing Priorities by Type
	Linking with Audio Manager
	Audio Manager Configuration File
	Device attributes
	Audio status list attributes
	Routing rules
	Ducking rules

	Audio Manager API
	Audio Concurrency (audio_manager_concurrency.h)
	Data types in audio_manager_concurrency.h
	audio_manager_attenuation_extra_option_t
	audio_manager_attenuation_params_t
	audio_manager_attenuation_type_t
	audio_manager_concurrency_t

	Functions in audio_manager_concurrency.h
	audio_manager_get_audio_type_concurrency_status()
	audio_manager_get_current_audio_handle_concurrency_status()
	audio_manager_set_handle_attenuation()

	Audio Devices (audio_manager_device.h)
	Constants in audio_manager_device.h
	Definitions in audio_manager_device.h

	Data types in audio_manager_device.h
	audio_manager_channel_t
	audio_manager_channel_config_t
	audio_manager_device_t
	audio_manager_device_audio_config_t
	audio_manager_device_capabilities_t
	audio_manager_device_capability_t
	audio_manager_device_headset_button_t
	audio_manager_device_volume_control_t
	audio_manager_headset_button_state_t

	Functions in audio_manager_device.h
	audio_manager_get_default_device()
	audio_manager_get_default_input_device()
	audio_manager_get_device_audio_capabilities()
	audio_manager_get_device_audio_config()
	audio_manager_get_device_audio_public()
	audio_manager_get_device_button_states()
	audio_manager_get_device_capability()
	audio_manager_get_device_dependency()
	audio_manager_get_device_from_name()
	audio_manager_get_device_name()
	audio_manager_get_device_volume_control()
	audio_manager_get_preferred_audio_input_path()
	audio_manager_get_preferred_audio_output_path()
	audio_manager_is_device_connected()
	audio_manager_is_device_kept_alive()
	audio_manager_is_device_supported()
	audio_manager_is_device_suspended()
	audio_manager_is_hdmi_in_mirror_mode()
	audio_manager_set_device_connected()
	audio_manager_set_device_suspended()
	audio_manager_set_hdmi_mirror_mode()

	Audio Events (audio_manager_event.h)
	Data types in audio_manager_event.h
	audio_manager_concurrency_change_t
	audio_manager_device_button_change_t
	audio_manager_device_change_t
	audio_manager_event_context_t
	audio_manager_event_type_t
	audio_manager_routing_change_t
	audio_manager_stat_change_t
	audio_manager_status_headphone_boost_change_t
	audio_manager_status_headphone_output_volume_regulation_change_t
	audio_manager_status_headphone_unsafe_zone_change_t
	audio_manager_status_volume_change_t
	audio_manager_voice_audio_option_change_t
	audio_manager_voice_service_change_t
	audio_manager_voice_status_volume_change_t

	Functions in audio_manager_event.h
	audio_manager_add_concurrency_change_event()
	audio_manager_add_device_button_change_event()
	audio_manager_add_device_change_event()
	audio_manager_add_routing_change_event()
	audio_manager_add_stat_change_event()
	audio_manager_add_status_hp_boost_change_event()
	audio_manager_add_status_hp_output_volume_regulation_change_event()
	audio_manager_add_status_hp_unsafe_zone_change_event()
	audio_manager_add_voice_audio_option_change_event()
	audio_manager_add_voice_service_change_event()
	audio_manager_add_voice_volume_change_event()
	audio_manager_add_volume_change_event()
	audio_manager_dispatch_event()
	audio_manager_get_event()
	audio_manager_get_event_context()
	audio_manager_get_event_fd()
	audio_manager_peek_event()
	audio_manager_release_event_context()
	audio_manager_remove_concurrency_change_event()
	audio_manager_remove_device_button_change_event()
	audio_manager_remove_device_change_event()
	audio_manager_remove_routing_change_event()
	audio_manager_remove_stat_change_event()
	audio_manager_remove_status_hp_boost_change_event()
	audio_manager_remove_status_hp_unsafe_zone_change_event()
	audio_manager_remove_voice_audio_option_change_event()
	audio_manager_remove_voice_service_change_event()
	audio_manager_remove_voice_volume_change_event()
	audio_manager_remove_volume_change_event()
	audio_manager_wait_for_initialization()

	Audio Routing (audio_manager_routing.h)
	Constants in audio_manager_routing.h
	Definitions in audio_manager_routing.h

	Data types in audio_manager_routing.h
	audio_manager_audio_type_t
	audio_manager_runtime_t
	audio_manager_settings_reset_condition_t

	Functions in audio_manager_routing.h
	audio_manager_activate_bound_handle()
	audio_manager_activate_handle()
	audio_manager_check_autopause()
	audio_manager_free_handle()
	audio_manager_get_alias_handle()
	audio_manager_get_handle()
	audio_manager_get_handle_for_runtime()
	audio_manager_get_handle_status()
	audio_manager_get_handle_type()
	audio_manager_get_name_from_type()
	audio_manager_get_name_from_runtime()
	audio_manager_get_runtime_from_name()
	audio_manager_get_type_from_name()
	audio_manager_set_handle_routing_conditions()
	audio_manager_set_handle_keep_alive()
	audio_manager_set_handle_type()
	audio_manager_snd_pcm_open()
	audio_manager_snd_pcm_open_name()
	audio_manager_snd_pcm_open_preferred()
	audio_manager_suspend_bound_handle()
	audio_manager_suspend_handle()

	Audio Voice Services (audio_manager_voice_service.h)
	Constants in audio_manager_voice_service.h
	Definitions in audio_manager_voice_service.h

	Data types in audio_manager_voice_service.h
	audio_manager_voice_option_t
	audio_manager_voice_service_t
	audio_manager_voice_service_status_t

	Functions in audio_manager_voice_service.h
	audio_manager_get_redirector_id()
	audio_manager_get_voice_service_from_name()
	audio_manager_get_voice_service_name()
	audio_manager_get_voice_service_option()
	audio_manager_get_voice_service_option_from_name()
	audio_manager_get_voice_service_option_name()
	audio_manager_get_voice_service_status()
	audio_manager_get_voice_service_status_from_name()
	audio_manager_get_voice_service_status_name()
	audio_manager_get_voice_service_status_with_codec_settings()
	audio_manager_set_voice_service_option()
	audio_manager_set_voice_service_status()
	audio_manager_set_voice_service_status_with_codec_settings()

	Audio Volume (audio_manager_volume.h)
	Constants in audio_manager_volume.h
	Definitions in audio_manager_volume.h

	Data types in audio_manager_volume.h
	audio_manager_headphone_output_regulation_t
	audio_manager_headphone_volume_override_status_t

	Functions in audio_manager_volume.h
	audio_manager_adjust_input_level()
	audio_manager_adjust_output_level()
	audio_manager_adjust_voice_output_level()
	audio_manager_clear_stat_counter()
	audio_manager_decrease_output_level()
	audio_manager_decrease_voice_output_level()
	audio_manager_get_headphone_boost_status()
	audio_manager_get_headphone_output_level_regulation_status()
	audio_manager_get_headphone_unsafe_zone_status()
	audio_manager_get_input_level()
	audio_manager_get_input_mute()
	audio_manager_get_modem_output_mute()
	audio_manager_get_output_level()
	audio_manager_get_output_mute()
	audio_manager_get_output_volume_steps()
	audio_manager_get_stat_counter()
	audio_manager_get_voice_input_mute()
	audio_manager_get_voice_output_level()
	audio_manager_get_voice_output_mute()
	audio_manager_get_voice_output_volume_steps()
	audio_manager_increase_output_level()
	audio_manager_increase_voice_output_level()
	audio_manager_set_headphone_volume_boost()
	audio_manager_set_headphone_volume_unsafe_zone()
	audio_manager_set_input_level()
	audio_manager_set_input_mute()
	audio_manager_set_modem_output_mute()
	audio_manager_set_output_level()
	audio_manager_set_output_mute()
	audio_manager_set_voice_input_mute()
	audio_manager_set_voice_output_level()
	audio_manager_set_voice_output_mute()
	audio_manager_toggle_input_mute()
	audio_manager_toggle_output_mute()
	audio_manager_toggle_voice_output_mute()

	Index

