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About This Guide

This guide introduces you to the QNX Neutrino Core Networking stack and its manager,

io-pkt.

The following table may help you find information quickly in this guide:

Go to:For information on:

Overview (p. 9)io-pkt and its architecture

Packet Filtering (p. 21)Examining and modifying packets, and

creating a firewall

IP Security and Hardware Encryption (p.

29)

Setting up secure connections

Wi-Fi Configuration Using WPA and WEP

(p. 37)

802.11 a/b/g (Wi-Fi)

Transparent Distributed Processing (p.

63)

io-pkt and Qnet

Network Drivers (p. 65)Support for different types of network

drivers

Utilities, Managers, and Configuration

Files

Related utilities, etc.

Writing Network Drivers for io-pktHow to write your own network driver

A Hardware-Independent Sample Driver:

sam.c

Sample code for the above

Additional InformationMore information about writing a network

driver

GlossaryTerms used in this document

Copyright © 2014, QNX Software Systems Limited 5



Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if( stream == NULL )Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited
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Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7
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Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited
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Chapter 1
Overview

The QNX Neutrino networking stack is called io-pkt. It replaces the previous

generation of the stack, io-net, and provides the following benefits:

• performance improvements. Since io-pkt removes the npkt-to-mbuf translation

and mandatory queuing, and also reduces context switching on the packet receive

path, the IP receive performance is greatly improved.

• simplified locking of shared resources, resulting in simpler SMP support

• it closely follows the NetBSD code base and architecture, meaning:

• easier maintenance / upgrade capability of IP stack source

• existing applications that use BSD standard APIs will port more easily (e.g.

tcpdump)

• enhanced features included with NetBSD stack are also included with io-pkt

• NetBSD drivers will port in a straightforward manner

• far richer stack feature set, drawing on the latest in improvements from the NetBSD

code base

• 802.11 Wi-Fi client and access point capability

The io-pkt manager is intended to be a drop-in replacement for io-net for those

people who are dealing with the stack from an outside application point of view. It

includes stack variants, associated utilities, protocols, libraries and drivers.

The stack variants are:

io-pkt-v4

IPv4 version of the stack with no encryption or Wi-Fi capability built in. This

is a “reduced footprint” version of the stack that doesn't support the

following:

• IPv6

• Crypto / IPSec

• 802.11 a/b/g Wi-Fi

• Bridging

• GRE / GRF

• Multicast routing

• Multipoint PPP

io-pkt-v4-hc

Copyright © 2014, QNX Software Systems Limited 9



IPv4 version of the stack that has full encryption and Wi-Fi capability built

in and includes hardware-accelerated cryptography capability (Fast IPsec).

io-pkt-v6-hc

IPv6 version of the stack (includes IPv4 as part of v6) that has full encryption

and Wi-Fi capability, also with hardware-accelerated cryptography.

In this guide, we use “io-pkt” to refer to all the stack variants. When you

start the stack, use the appropriate variant (io-pkt isn't a symbolic link to

any of them).

We've designed io-pkt to follow as closely as possible the NetBSD networking stack

code base and architecture. This provides an optimal path between the IP protocol

and drivers, tightly integrating the IP layer with the rest of the stack.

The io-pkt implementation makes significant changes to the QNX Neutrino stack

architecture, including the following:

• io-net is replaced by the stack's link layer

• mbufs are used throughout, including in the drivers

• all buffer management is handled by the stack

• mount and umount capabilities:

• Only io-net drivers may be both mounted and unmounted. Other drivers may

allow you to detach the driver from the stack, by using the ifconfig iface

destroy command (if the driver supports it).

• The IP stack is an integral part of io-pkt; you can't start io-pkt without it.

This means that you don't need to specify the -ptcpip option to the stack unless

there are additional parameters (e.g. prefix=) that you need to pass to it. If you

specify the -ptcpip option without additional parameters, io-pkt accepts it

with no effect.

• Protocols and enhanced stack functionality (e.g. TDP, NAT / IP Filtering) can

be mounted, but not unmounted.

• The concepts of producers and consumers no longer exist within io-pkt. Filters

still exist, but they use a different API than with io-net. The io-pkt stack does

provide other hooks into the stack that you can use to provide a similar level of

functionality. These include:

Berkeley Packet Filter interface

Lets you read and write, but not modify or discard, both IP and Ethernet

packets from your application.

Packet Filter interface

10 Copyright © 2014, QNX Software Systems Limited
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pfil hooks, enabled when the PF filter module is loaded, let you read,

write, and modify IP and Ethernet packets within the context of the stack

process.

• Driver changes:

• The driver model has changed to provide better integration with the protocol

stack. (For example, in io-net, npkts had to be converted into mbufs for use

with the stack. In io-pkt, mbufs are used throughout.)

• The driver API and behavior have been changed to closely match those of the

NetBSD stack, allowing NetBSD drivers to be ported to io-pkt.

• A shim layer, devnp-shim.so, is provided that lets you use an io-net driver

as-is.

• By default, driver interfaces are no longer sequentially numbered with enx

designations; they're named according to driver type (e.g. fxp0 is the interface

for an Intel 10/100 driver). You can use the name= driver option (processed by

io-pkt) to specify the interface name.

• Drivers no longer present entries in the name space to be directly opened and

accessed with a devctl() command (e.g. open(/dev/io-net/en0)). Instead,

a socket file descriptor is opened and queried for interface information. The

ioctl() command is then sent to the stack using this device information.

• IP Filtering and NAT are now handled through the PF interface with pfctl. This

replaces the io-net ipf interface, which is no longer supported.

• SCTP isn't supported in the initial release of io-pkt.

• In io-net, loopback-checksumming was done with ifconfig. In io-pkt this

is controlled via sysctl:

# sysctl -a | grep do_loopback_cksum
net.inet.ip.do_loopback_cksum = 0
net.inet.tcp.do_loopback_cksum = 0
net.inet.udp.do_loopback_cksum = 0

• The nicinfo utility operates slightly differently from the way it did under io-net:

• The default operation with no arguments is to list information on all interfaces.

The behavior with io-net was to show stats for /dev/io-net/en0.

• Under io-net, all Ethernet interface names were in the form enX. Under

io-pkt, this name will vary, but you can use the name= driver option (processed

by io-pkt) to override this.

• Ported NetBSD drivers might not support the nicinfo ioctl() command.

Copyright © 2014, QNX Software Systems Limited 11



Architecture of io-pkt

The io-pkt stack is very similar in architecture to other component subsystems inside

of the QNX Neutrino operating system.

At the bottom layer are drivers that provide the mechanism for passing data to, and

receiving data from, the hardware. The drivers hook into a multi-threaded layer-2

component (that also provides fast forwarding and bridging capability) that ties them

together and provides a unified interface into the layer-3 component, which then

handles the individual IP and upper-layer protocol-processing components (TCP and

UDP).

In the QNX Neutrino RTOS, a resource manager forms a layer on top of the stack. The

resource manager acts as the message-passing intermediary between the stack and

user applications. It provides a standardized type of interface involving open(), read(),

write(), and ioctl() that uses a message stream to communicate with networking

applications. Networking applications written by the user link with the socket library.

The socket library converts the message-passing interface exposed by the stack into

a standard BSD-style socket layer API, which is the standard for most networking code

today.

One of the big differences that you'll see with this stack as compared to io-net is

that it isn't currently possible to decouple the layer 2 component from the IP stack.

This was a trade-off that we made to allow increased performance at the expense of

some reduced versatility. We might look at enabling this at some point in the future

if there's enough demand.

In addition to the socket-level API, there are also other, programmatic interfaces into

the stack that are provided for other protocols or filtering to occur. These

interfaces—used directly by Transparent Distributed Processing (TDP, also known as

Qnet)—are very different from those provided by io-net, so anyone using similar

interfaces to these in the past will have to rewrite them for io-pkt.

12 Copyright © 2014, QNX Software Systems Limited
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Figure 1: A detailed view of the io-pkt architecture.

At the driver layer, there are interfaces for Ethernet traffic (used by all Ethernet drivers),

and an interface into the stack for 802.11 management frames from wireless drivers.

The hc variants of the stack also include a separate hardware crypto API that allows

the stack to use a crypto offload engine when it's encrypting or decrypting data for

secure links. You can load drivers (built as DLLs for dynamic linking and prefixed with

devnp-) into the stack using the -d option to io-pkt.

APIs providing connection into the data flow at either the Ethernet or IP layer allow

protocols to coexist within the stack process. Protocols (such as Qnet) are also built

as DLLs. A protocol links directly into either the IP or Ethernet layer and runs within

the stack context. They're prefixed with lsm (loadable shared module) and you load

them into the stack using the -p option. The tcpip protocol (-ptcpip) is a special

option that the stack recognizes, but doesn't link a protocol module for (since the IP

stack is already present). You still use the -ptcpip option to pass additional parameters

to the stack that apply to the IP protocol layer (e.g., -ptcpip prefix=/alt to get the IP

stack to register /alt/dev/socket as the name of its resource manager).

A protocol requiring interaction from an application sitting outside of the stack process

may include its own resource manager infrastructure (this is what Qnet does) to allow

communication and configuration to occur.

In addition to drivers and protocols, the stack also includes hooks for packet filtering.

The main interfaces supported for filtering are:

Berkeley Packet Filter (BPF) interface

A socket-level interface that lets you read and write, but not modify or block,

packets, and that you access by using a socket interface at the application

layer (see

Copyright © 2014, QNX Software Systems Limited 13
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http://en.wikipedia.org/wiki/Berkeley_Packet_Filter). This

is the interface of choice for basic, raw packet interception and transmission

and gives applications outside of the stack process domain access to raw

data streams.

Packet Filter (PF) interface

A read/write/modify/block interface that gives complete control over which

packets are received by or transmitted from the upper layers and is more

closely related to the io-net filter API.

For more information, see the Packet Filtering (p. 21) chapter.

14 Copyright © 2014, QNX Software Systems Limited
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Threading model

The default mode of operation is for io-pkt to create one thread per CPU. The

io-pkt stack is fully multi-threaded at layer 2.

However, only one thread may acquire the “stack context” for upper-layer packet

processing. If multiple interrupt sources require servicing at the same time, these may

be serviced by multiple threads. Only one thread will service a particular interrupt

source at any point in time. Typically an interrupt on a network device indicates that

there are packets to be received. The same thread that handles the receive processing

may later transmit the received packets out another interface. Examples of this are

layer-2 bridging and the “ipflow” fastforwarding of IP packets.

The stack uses a thread pool to service events that are generated from other parts of

the system. These events include:

• time-outs

• ISR events

• other things generated by the stack or protocol modules

You can use a command-line option to the driver to control the priority of threads that

receive packets. Client connection requests are handled in a floating priority mode

(i.e. the thread priority matches that of the client application thread accessing the

stack resource manager).

Once a thread receives an event, it examines the event type to see if it's a hardware

event, stack event, or “other” event:

• If the event is a hardware event, the hardware is serviced and, for a receive packet,

the thread determines whether bridging or fast-forwarding is required. If so, the

thread performs the appropriate lookup to determine which interface the packet

should be queued for, and then takes care of transmitting it, after which it goes

back to check and see if the hardware needs to be serviced again.

• If the packet is meant for the local stack, the thread queues the packet on the

stack queue. The thread then goes back and continues checking and servicing

hardware events until there are no more events.

• Once a thread has completed servicing the hardware, it checks to see if there's

currently a stack thread running to service stack events that may have been

generated as a result of its actions. If there's no stack thread running, the thread

becomes the stack thread and loops, processing stack events until there are none

remaining. It then returns to the “wait for event” state in the thread pool.

This capability of having a thread change directly from being a hardware-servicing

thread to being the stack thread eliminates context switching and greatly improves

the receive performance for locally terminated IP flows.

Copyright © 2014, QNX Software Systems Limited 15
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If io-pkt runs out of threads, it sends a message to slogger, and anything

that requires a thread blocks until one becomes available. You can use

command-line options to specify the maximum and minimum number of threads

for io-pkt.

16 Copyright © 2014, QNX Software Systems Limited
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Threading priorities

There are a couple of ways that you can change the priority of the threads responsible

for receiving packets from the hardware.

You can pass the rx_prio_pulse option to the stack to set the default thread priority.

For example:

io-pkt-v4 -ptcpip rx_pulse_prio=50

This makes all the receive threads run at priority 50. The current default for these

threads is priority 21.

The second mechanism lets you change the priority on a per-interface basis. This is

an option passed to the driver and, as such, is supported only if the driver supports

it. When the driver registers for its receive interrupt, it can specify a priority for the

pulse that is returned from the ISR. This pulse priority is what the thread will use

when running. Here's some sample code for my_board:

if ((rc = interrupt_entry_init(&my_board->inter_rx, 0, NULL,
    cfg->priority)) != EOK) {
        log(LOG_ERR, "%s(): interrupt_entry_init(rx) failed: %d",
           __FUNCTION__, rc);
        my_board_destroy(my_board, 9);
                return rc;
}

Driver-specific thread priorities are assigned on a per-interface basis. The stack

normally creates one thread per CPU to allow the stack to scale appropriately

in terms of performance on an SMP system. Once you use an interface-specific

parameter with multiple interfaces, you must get the stack to create one thread

per interface in order to have that option picked up and used properly by the

stack. This is handled with the -t option to the stack.

For example, to have the stack start up and receive packets on one interface at priority

20 and on a second interface at priority 50 on a single-processor system, you would

use the following command-line options:

io-pkt-v4 -t2 -dmy_board syspage=1,priority=20,pci=0 \
-dmy_board syspage=1,priority=50,pci=1

If you've specified a per-interface priority, and there are more interfaces than threads,

the stack sends a warning to slogger. If there are insufficient threads present, the

per-interface priority is ignored (but the rx_pulse_prio option is still honored).

The actual options for setting the priority and selecting an individual card depend on

the device driver; see the driver documentation for specific option information.

Legacy io-net drivers create their own receive thread, and therefore don't require

the -t option to be used if they support the priority option. These drivers use the

devnp-shim.so shim driver to allow interoperability with the io-pkt stack.

Copyright © 2014, QNX Software Systems Limited 17
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Components of core networking

The io-pkt manager is the main component.

Other core components include:

pfctl, lsm-pf-v6.so, lsm-pf-v4.so

IP Filtering and NAT configuration and support.

ifconfig, netstat, sockstat (see the NetBSD documentation), sysctl

Stack configuration and parameter / information display.

pfctl

Priority packet queuing on Tx (QoS).

lsm-autoip.so

Auto-IP interface configuration protocol.

lsm-slip.so, slattach

Serial Line IP (SLIP) network interface.

brconfig

Bridging and STP configuration along with other layer-2 capabilities.

pppd, pppoectl

PPP support for io-pkt, including PPP, PPPOE (client), and Multilink PPP.

devnp-shim.so

io-net binary-compatibility shim layer.

nicinfo

Driver information display tool (for native and io-net drivers).

libsocket.so

BSD socket application API into the network stack.

libpcap.so, tcpdump

Low-level packet-capture capability that provides an abstraction layer into

the Berkeley Packet Filter interface.

lsm-qnet.so

18 Copyright © 2014, QNX Software Systems Limited
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Transparent Distributed Processing protocol for io-pkt.

hostapd, hostapd_cli (see the NetBSD documentation), wpa_supplicant,

wpa_cli

Authentication daemons and configuration utilities for wireless access points

and clients.

QNX Neutrino Core Networking also includes applications, services, and libraries that

interface to the stack through the socket library and are therefore not directly dependent

on the Core components. This means that they use the standard BSD socket interfaces

(BSD socket API, Routing Socket, PF_KEY, raw socket):

libssl.so, libssl.a

SSL suite ported from the source at http://www.openssl.org.

libnbdrvr.so

BSD porting library. An abstraction layer provided to allow the porting of

NetBSD drivers.

libipsec(S).a, setkey

NetBSD IPsec tools.

inetd

Updated Internet daemon.

route

Updated route-configuration utility.

ping, ping6

Updated ping utilities.

ftp, ftpd

Enhanced FTP.

Copyright © 2014, QNX Software Systems Limited 19
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Chapter 2
Packet Filtering

In principle, the pseudo-devices involved with packet filtering are as follows:

• pf is involved in filtering network traffic

• bpf is an interface that captures and accesses raw network traffic.

The pf pseudo-device is implemented using pfil hooks; bpf is implemented as a

tap in all the network drivers. We'll discuss them briefly from the point of view of their

attachment to the rest of the stack.

If you're using QNX Neutrino 6.4.1 or earlier, you should use ioctl_socket()

instead of ioctl() in your packet-filtering code. With the microkernel

message-passing architecture, ioctl() calls that have pointers embedded in

them need to be handled specially. The ioctl_socket() function uses ioctl() for

functionality that doesn't require special handling.

In QNX Neutrino 6.5.0 and later, ioctl() handles embedded pointers, so you

don't have to use ioctl_socket() instead.

Copyright © 2014, QNX Software Systems Limited 21



Packet Filter interface

The pfil interface is purely in the stack and supports packet-filtering hooks.

Packet filters can register hooks that are called when packet processing is taking place;

in essence, pfil is a list of callbacks for certain events. In addition to being able to

register a filter for incoming and outgoing packets, pfil provides support for interface

attach/detach and address change notifications.

The pfil interface is one of a number of different layers that a user-supplied

application can register for, to operate within the stack process context. These modules,

when compiled, are called Loadable Shared Modules (lsm) in QNX Neutrino

nomenclature, or Loadable Kernel Modules (lkm) in BSD nomenclature.

There are two levels of registration required with io-pkt:

• The first allows the user-supplied module to connect into the io-pkt framework

and access the stack infrastructure.

• The second is the standard NetBSD mechanism for registering functions with the

appropriate layer that sends and receives packets.

In the QNX Neutrino RTOS, shared modules are dynamically loaded into the stack.

You can do this by specifying them on the command line when you start io-pkt,

using the -p option, or you can add them subsequently to an existing io-pkt process

by using the mount command.

The application module must include an initial module entry point defined as follows:

#include "sys/io-pkt.h"
#include "nw_datastruct.h"

int mod_entry( void *dll_hdl, struct _iopkt_self *iopkt,
               char *options)
{

}

The calling parameters to the entry function are:

void * dll_hdl

An opaque pointer that identifies the shared module within io-pkt.

struct _iopkt_self * iopkt

A structure used by the stack to reference its own internals.

char * options

The options string passed by the user to be parsed by this module.

22 Copyright © 2014, QNX Software Systems Limited
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The header files aren't installed as part of the OS. If you need them, contact

your sales representative.

This is followed by the registration structure that the stack will look for after calling

dlopen() to load the module to retrieve the entry point:

struct _iopkt_lsm_entry IOPKT_LSM_ENTRY_SYM(mod) =
  IOPKT_LSM_ENTRY_SYM_INIT(mod_entry);

This entry point registration is used by all shared modules, regardless of which layer

the remainder of the code is going to hook into. Use the following functions to register

with the pfil layer:

#include <sys/param.h>
#include <sys/mbuf.h>
#include <net/if.h>
#include <net/pfil.h>

struct pfil_head *
pfil_head_get(int af, u_long dlt);

struct packet_filter_hook *
pfil_hook_get(int dir, struct pfil_head *ph);

int
pfil_add_hook(int (*func)(), void *arg, int flags,
              struct pfil_head *ph);

int
pfil_remove_hook(int (*func)(), void *arg, int flags,
                 struct pfil_head *ph);

int
(*func)(void *arg, struct mbuf **mp, struct ifnet *, int dir);

The head_get() function returns the start of the appropriate pfil hook list used for

the hook functions. The af argument can be either PFIL_TYPE_AF (for an address

family hook) or PFIL_TYPE_IFNET (for an interface hook) for the “standard”

interfaces.

If you specify PFIL_TYPE_AF, the Data Link Type (dlt) argument is a protocol family.

The current implementation has filtering points for only AF_INET (IPv4) or AF_INET6

(IPv6).

When you use the interface hook (PFIL_TYPE_IFNET), dlt is a pointer to a network

interface structure. All hooks attached in this case will be in reference to the specified

network interface.

Once you've selected the appropriate list head, you can use pfil_add_hook() to add a

hook to the filter list. This function takes as arguments a filter hook function, an

opaque pointer (which is passed into the user-supplied filter arg function), a flags

value (described below), and the associated list head returned by pfil_head_get().

The flags value indicates when the hook function should be called and may be one

of:

• PFIL_IN — call me on incoming packets.

• PFIL_OUT — call me on outgoing packets.
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• PFIL_ALL — call me on all of the above.

When a filter is invoked, the packet appears just as if it came off the wire. That is, all

protocol fields are in network-byte order. The filter returns a nonzero value if the packet

processing is to stop, or zero if the processing is to continue.

For interface hooks, the flags argument can be one of:

• PFIL_IFADDR — call me when the interface is reconfigured (mbuf ** is an ioctl()

number).

• PFIL_IFNET — call me when the interface is attached or detached (mbuf ** is

either PFIL_IFNET_ATTACH or PFIL_IFNET_DETACH)

Here's an example of what a simple pfil hook would look like. It shows when an

interface is attached or detached. Upon a detach (ifconfig iface  destroy), the

filter is unloaded.

#include <sys/types.h>
#include <errno.h>
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/socket.h>
#include <sys/mbuf.h>
#include <net/if.h>
#include <net/pfil.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include "sys/io-pkt.h"
#include "nw_datastruct.h"

static int in_bytes = 0;    
static int out_bytes = 0;   

static int input_hook(void *arg, struct mbuf **m,
                      struct ifnet *ifp, int dir)
{
    in_bytes += (*m)->m_len;
    return 0;
}

static int output_hook(void *arg, struct mbuf **m,
                       struct ifnet *ifp, int dir)
{
    out_bytes += (*m)->m_len;
    return 0;
}

static int deinit_module(void);
static int iface_hook(void *arg, struct mbuf **m,
                      struct ifnet *ifp, int dir)
{
    printf("Iface hook called ... ");   
    if ( (int)m == PFIL_IFNET_ATTACH) {
        printf("Interface attached\n");
        printf("%d bytes in, %d bytes out\n", in_bytes,
               out_bytes);
    } else if ((int)m == PFIL_IFNET_DETACH) {
        printf("Interface detached\n");
        printf("%d bytes in, %d bytes out\n", in_bytes,
               out_bytes);
        deinit_module();
    }
    return 0;
}

static int ifacecfg_hook(void *arg, struct mbuf **m,
                         struct ifnet *ifp, int dir)
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{

    printf("Iface cfg hook called with 0x%08X\n", (int)(m));    

    return 0;
}

static int deinit_module(void)
{
    struct pfil_head *pfh_inet;

    pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
    if (pfh_inet == NULL) {
        return ESRCH;
    }
    pfil_remove_hook(input_hook, NULL, PFIL_IN | PFIL_WAITOK,
                     pfh_inet);
    pfil_remove_hook(output_hook, NULL, PFIL_OUT | PFIL_WAITOK,
                     pfh_inet);

    pfh_inet = pfil_head_get(PFIL_TYPE_IFNET, 0);
    if (pfh_inet == NULL) {
        return ESRCH;
    }

    pfil_remove_hook(ifacecfg_hook, NULL, PFIL_IFNET, pfh_inet);

    pfil_remove_hook(iface_hook, NULL, PFIL_IFNET | PFIL_WAITOK,
                     pfh_inet);
    printf("Unloaded pfil hook\n" );

    return 0;
}

int pfil_entry(void *dll_hdl, struct _iopkt_self *iopkt,
               char *options)
{
    struct pfil_head *pfh_inet;

    pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
    if (pfh_inet == NULL) {
        return ESRCH;
    }
    pfil_add_hook(input_hook, NULL, PFIL_IN | PFIL_WAITOK,
                  pfh_inet);
    pfil_add_hook(output_hook, NULL, PFIL_OUT | PFIL_WAITOK,
                  pfh_inet);

    pfh_inet = pfil_head_get(PFIL_TYPE_IFNET,0);
    if (pfh_inet == NULL) {
        return ESRCH;
    }

    pfil_add_hook(iface_hook, NULL, PFIL_IFNET, pfh_inet);
    pfil_add_hook(ifacecfg_hook, NULL, PFIL_IFADDR, pfh_inet);
    printf("Loaded pfil hook\n" );

    return 0;
}

struct _iopkt_lsm_entry IOPKT_LSM_ENTRY_SYM(pfil) =
  IOPKT_LSM_ENTRY_SYM_INIT(pfil_entry);

Packet Filter (pf) module: firewalls and NAT

The pfil interface is used by the Packet Filter (pf) to hook into the packet stream

for implementing firewalls and NAT. This is a loadable module specific to either the

v4 or v6 version of the stack (lsm-pf-v4.so or lsm-pf-v6.so). When loaded (e.g.
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mount -Tio-pkt /lib/dll/lsm-pf-v4.so), the module creates a pf

pseudo-device.

The pf pseudo-device provides roughly the same functionality as ipfilter, another

filtering and NAT suite that also uses the pfil hooks.

For more information, see the following in the Utilities Reference:

pf

Packet Filter pseudo-device

pf.conf

Configuration file for pf

pfctl

Control the packet filter and network address translation (NAT) device

To start pf, use the pfctl utility, which issues a DIOCSTART ioctl() command. This

causes pf to call pf_pfil_attach(), which runs the necessary pfil attachment routines.

The key routines after this are pf_test() and pf_test6(), which are called for IPv4 and

IPv6 packets respectively. These functions test which packets should be sent, received,

or dropped. The packet filter hooks, and therefore the whole of pf, are disabled with

the DIOCSTOP ioctl() command, usually issued with pfctl -d.

For more information about using PF, see pf-faq at

ftp://ftp3.usa.openbsd.org/pub/OpenBSD/doc/ in the OpenBSD

documentation. Certain portions of the document (related to packet queueing, CARP

and others) don't apply to our stack, but the general configuration information is

relevant. This document covers both firewalling and NAT configurations that you can

apply using PF.
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Berkeley Packet Filter

The Berkeley Packet Filter (BPF) provides link-layer access to data available on the

network through interfaces attached to the system.

To use BPF, open a device node, /dev/bpf, and then issue ioctl() commands to

control the operation of the device. A popular example of a tool using BPF is tcpdump

(see the Utilities Reference).

The device /dev/bpf is a cloning device, meaning you can open it multiple times.

It is in principle similar to a cloning interface, except BPF provides no network

interface, only a method to open the same device multiple times.

To capture network traffic, you must attach a BPF device to an interface. The traffic

on this interface is then passed to BPF for evaluation. To attach an interface to an

open BPF device, use the BIOCSETIF ioctl() command. The interface is identified

by passing a struct ifreq, which contains the interface name in ASCII encoding.

This is used to find the interface from the kernel tables. BPF registers itself to the

interface's struct ifnet field, if_bpf, to inform the system that it's interested in

traffic on this particular interface. The listener can also pass a set of filtering rules to

capture only certain packets, for example ones matching a given combination of host

and port.

BPF captures packets by supplying a bpf_tap() tapping interface to link layer drivers,

and by relying on the drivers to always pass packets to it. Drivers honor this request

and commonly have code which, along both the input and output paths, does:

#if NBPFILTER > 0
    if (ifp->if_bpf)
        bpf_mtap(ifp->if_bpf, m0);
#endif

This passes the mbuf to the BPF for inspection. BPF inspects the data and decides

if anyone listening to this particular interface is interested in it. The filter inspecting

the data is highly optimized to minimize the time spent inspecting each packet. If the

filter matches, the packet is copied to await being read from the device.

The BPF tapping feature and the interfaces provided by pfil provide similar services,

but their functionality is disjoint. The BPF mtap wants to access packets right off the

wire without any alteration and possibly copy them for further use. Callers linking into

pfil want to modify and possibly drop packets. The pfil interface is more analogous

to io-net's filter interface.

BPF has quite a rich and complex syntax (e.g.

http://www.rawether.net/support/bpfhelp.htm) and is a standard interface

that is used by a lot of networking software. It should be your interface of first choice

when packet interception / transmission is required. It will also be a slightly lower

performance interface given that it does operate across process boundaries with filtered
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packets being copied before being passed outside of the stack domain and into the

application domain. The tcpdump and libpcap library operate using the BPF interface

to intercept and display packet activity. For those of you currently using something

like the nfm-nraw interface in io-net, BPF provides the equivalent functionality,

with some extra complexity involved in setting things up, but with much more versatility

in configuration.

28 Copyright © 2014, QNX Software Systems Limited

Packet Filtering



Chapter 3
IP Security and Hardware Encryption

The io-pkt-v4-hc and io-pkt-v6-hc stack variants include full, built-in support for IPsec.

You need to specify the ipsec parameter option to the stack in order to enable

IPsec when the stack starts.

There's a good reference page in the NetBSD man pages covering IPsec in general.

There are some aspects that don't apply (you obviously don't have to worry about

rebuilding the kernel), but the general usage is the same.
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Setting up an IPsec connection: examples

The following examples illustrate how to set up IPsec:

• between two boxes manually (p. 30)

• with authentication using the preshared-key method (p. 31)

Between two boxes manually

Suppose we have two boxes, A and B, and we want to establish IPsec between them.

Here's how:

1. On each box, create a script file (let's say its name is my_script) having the

following content:

#!/bin/ksh 
# args: This script takes two arguments:
#    - The first one is the IP address of the box that is to
#      run it on.  
#    - The second one is the IP address of the box that this
#      box is to establish IPsec connection to.
Myself=$1
Remote=$2

# The following two lines are to clean the database.
# They're here simply to demonstrate the "hello world" level
# connection.
#  
setkey -FP
setkey -F

# Use setkey to input all of the SA content.
setkey -c << EOF

spdadd $Myself $Remote any -P out ipsec 
esp/transport/$Myself-$Remote/require;
spdadd $Remote $Myself any -P in ipsec esp/transport/$Remote-$Myself/require;

add  $Myself $Remote esp 1234 -m any -E 3des-cbc "KeyIsTwentyFourBytesLong";
add  $Remote $Myself esp 1234 -m any -E 3des-cbc "KeyIsTwentyFourBytesLong";
EOF

2. On BoxA, run ./my_script BoxA BoxB, or give the IP address of each box if

the name can't be resolved.

3. Similarly, on BoxB, run ./my_script BoxB BoxA.

Now you can check the connection by pinging each box from the other. You can get

the IPsec status by using setkey -PD.
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With authentication using the preshared-key method

Consider the simplest case where there are two boxes, BoxA and BoxB. User A is on

BoxA, User B is on Box B, and the two users have a shared secret, which is a string

of hello_world.

1. On Box A, create a file, psk.txt, that has these related lines:

usera@qnx.com   "Hello_world"
userb@qnx.com   "Hello_world"

The IPsec IKE daemon, racoon, will use this file to do the authentication and

IPsec connection job.

2. The root user must own psk.txt and the file's permissions must be read/write

only by root. To ensure this is the case, run:

chmod 0600 psk.txt

3. The racoon daemon needs a configuration file (e.g., racoon.conf) that defines

the way that racoon is to operate. In the remote session, specify that we're going

to use the preshared key method as authentication and let racoon know where to

find the secret. For example:

...
# Let racoon know where your preshared keys are:

path pre_shared_key "your_full_path_to_psk.txt" ;
remote anonymous
{
    exchange_mode aggressive,main;
    doi ipsec_doi;
    situation identity_only;

    #my_identifier address;
    my_identifier user_fqdn "usera@qnx.com";
    peers_identifier user_fqdn "userb@qnx.com";

    nonce_size 16;
    lifetime time 1 hour;   # sec,min,hour
    initial_contact on;
    proposal_check obey;    # obey, strict or claim

    proposal {
        encryption_algorithm 3des;
        hash_algorithm sha1;
        authentication_method pre_shared_key ;
        dh_group 2 ;
    }
}
...

4. Set up the policy using setkey. You can use the following script (called

my_script) to tell the stack that the IPsec between BoxA and BoxB requires key

negotiation:

#!/bin/sh
# This is a simple configuration for testing racoon negotiation.
# 

Myself=$1
Remote=$2
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setkey -FP
setkey -F
setkey -c << EOF
#
spdadd $Remote $Myself any -P in  ipsec 
esp/transport/$Remote-$Myself/require;
spdadd $Myself $Remote any -P out ipsec 
esp/transport/$Myself-$Remote/require;
#
EOF

Run this on BoxA as ./my_script BoxA BoxB.

5. Repeat the above steps on BoxB. Needless to say, on BoxB you need to run as

./my_script BoxB BoxA (and so on).

6. On both boxes, run racoon -c full_path_to_racoon.conf. When you

initiate traffic, say by trying to ping the peer box, racoon will do its job and

establish the IPsec connection by creating Security Associations (SAs) for both

directions, and then you can see the traffic passing back and forth, which indicates

that the IPsec connection is established.
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IPsec tools

The QNX Neutrino Core Networking uses the IPsec tools from the NetBSD source base

and incorporates it into its source base.

The tools include:

libipsec

PF_KEY library routines.

setkey

Security Policy Database and Security Association Database management

tool.

racoon

IKE key-management daemon. This utility is available only in binary form

on request. Under encryption export law, we must track to whom we send

this technology and report the information to the US government.

racoonctl

A command-line tool that controls racoon.
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OpenSSL support

We've ported the OpenSSL crypto and SSL libraries (from

http://www.openssl.org) for your applications to use.
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Hardware-accelerated crypto

The io-pkt-v4-hc and io-pkt-v6-hc managers have the (hardware-independent)

infrastructure to load a (hardware-dependent) driver to take advantage of dedicated

hardware that can perform cryptographic operations at high speed. This not only speeds

up the crypto operations (such as those used by IPsec), but also reduces the CPU

load.

This interface is carefully crafted so that the stack doesn't block on the crypto operation;

rather, it continues, and later on, using a callback, the driver returns the processed

data to the stack. This is ideal for DMA-driven crypto hardware.
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Chapter 4
Wi-Fi Configuration Using WPA and WEP

802.11 a/b/g Wi-Fi capability is built into the two “hc” variants of the stack

(io-pkt-v4-hc and io-pkt-v6-hc). The NetBSD stack includes its own separate

802.11 MAC layer that's independent of the driver. Many other implementations pull

the 802.11 MAC inside the driver; as a result, every driver needs separate interfaces

and configuration utilities. If you write a driver that conforms to the stack's 802.11

layer, you can use the same set of configuration and control utilities for all wireless

drivers.

The networking Wi-Fi solution lets you join or host WLAN (Wireless LAN) networks

based on IEEE 802.11 specifications. Using io-pkt, you can:

• connect using a peer-to-peer mode called ad hoc mode, also referred to as

Independent Basic Service Set (IBSS) configuration

• either act as a client for a Wireless Access Point (WAP, also known as a base station)

or configure QNX Neutrino to act as a WAP. This second mode is referred to as

infrastructure mode or BSS (Basic Service Set).

Ad hoc mode lets you create a wireless network quickly by allowing wireless nodes

within range (for example, the wireless devices in a room) to communicate directly

with each other without the need for a wireless access point. While being easy to

construct, it may not be appropriate for a large number of nodes because of

performance degradation, limited range, non-central administration, and weak

encryption.

Infrastructure mode is the more common network configuration where all wireless

hosts (clients) connect to the wireless network via a WAP (Wireless Access Point). The

WAP centrally controls access and authentication to the wireless network and provides

access to rest of your network. More than one WAP can exist on a wireless network to

service large numbers of wireless clients.

The io-pkt manager supports WEP, WPA, WPA2, or no security for authentication

and encryption when acting as the WAP or client. WPA/WPA2 is the recommended

encryption protocol for use with your wireless network. WEP isn't as secure as

WPA/WPA2 and is known to be breakable. It's available for backward compatibility

with already deployed wireless networks.

For information on connecting your client, see “Using wpa_supplicant to manage

your wireless network connections (p. 51)” later in this chapter.
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NetBSD 802.11 layer

The net80211 layer provides functionality required by wireless cards. The code is

meant to be shared between FreeBSD and NetBSD, and you should try to keep

NetBSD-specific bits in the source file ieee80211_netbsd.c (likewise, there's

ieee80211_freebsd.c in FreeBSD).

For more information about the ieee80211 interfaces, see Chapter 9 (Kernel Internals)

of the NetBSD manual pages at http://www.netbsd.org/docs/.

The responsibilities of the net80211 layer are as follows:

• MAC-address-based access control

• crypto

• input and output frame handling

• node management

• radiotap framework for bpf and tcpdump

• rate adaption

• supplementary routines, such as conversion functions and resource management

The ieee80211 layer positions itself logically between the device driver and the

ethernet module, although for transmission it's called indirectly by the device driver

instead of control passing straight through it. For input, the ieee80211 layer receives

packets from the device driver, strips any information useful only to wireless devices,

and in case of data payload proceeds to hand the Ethernet frame up to ether_input.

Device management

The way to describe an ieee80211 device to the ieee80211 layer is by using a

struct ieee80211com, declared in <sys/net80211/ieee80211_var.h>.

You use it to register a device to the ieee80211 from the device driver by calling

ieee80211_ifattach(). Fill in the underlying struct ifnet pointer, function

callbacks, and device-capability flags. If a device is detached, the ieee80211 layer

can be notified with ieee80211_ifdetach().

Nodes

A node represents another entity in the wireless network. It's usually a base station

when operating in BSS mode, but can also represent entities in an ad hoc network.

A node is described by a struct ieee80211_node, declared in

<sys/net80211/ieee80211_node.h>. This structure includes the node unicast

encryption key, current transmit power, the negotiated rate set, and various statistics.

A list of all the nodes seen by a certain device is kept in the struct ieee80211com

instance in the field ic_sta and can be manipulated with the helper functions provided
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in sys/net80211/ieee80211_node.c. The functions include, for example, methods

to scan for nodes, iterate through the node list, and functionality for maintaining the

network structure.

Crypto support

Crypto support enables the encryption and decryption of the network frames.

It provides a framework for multiple encryption methods, such as WEP and null crypto.

Crypto keys are mostly managed through the ioctl() interface and inside the ieee80211

layer, and the only time that drivers need to worry about them is in the send routine

when they must test for an encapsulation requirement and call

ieee80211_crypto_encap() if necessary.
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Using Wi-Fi with io-pkt

When you're connecting to a Wireless Network in the QNX Neutrino RTOS, the first

step that you need to do is to start the stack process with the appropriate driver for

the installed hardware.

For information on the available drivers, see the devnp-* entries in the Utilities

Reference. For this example, we'll use the fictitious devnp-abc.so driver. After a

default installation, all driver binaries are installed under the staging directory

/cpu/lib/dll.

The io-pkt-v4 stack variant doesn't have the 802.11 layer built in, and

therefore you can't use it with Wi-Fi drivers. If you attempt to load a Wi-Fi

driver into io-pkt-v4, you'll see a number of unresolved symbol errors, and

the driver won't work.

In this example, start the stack using one of these commands:

• io-pkt-v4-hc -d /lib/dll/devnp-abc.so

or:

• io-pkt-v6-hc -d abc

If the network driver is installed in a location other than /lib/dll, you'll need to

specify the full path and filename of the driver on the command line.

Once you've started the stack and appropriate driver, you need to determine what

wireless networks are available. If you already have the name (SSID or Service Set

Identifier) of the network you want to join, you can skip these steps. You can also use

these steps to determine if the network you wish to join is within range and active:

1. To determine which wireless networks are available to join, you must first set the

interface status to up:

ifconfig abc0 up

2. Check to see which wireless networks have advertised themselves:

wlanctl abc0

This command lists the available networks and their configurations. You can use

this information to determine the network name (SSID), its mode of operation (ad

hoc or infrastructure mode), and radio channel, for example.

3. You can also force a manual scan of the network with this command:

ifconfig abc0 scan
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This will cause the wireless adapter to scan for WAP stations or ad hoc nodes within

range of the wireless adapter, and list the available networks, along with their

configurations. You can also get scan information from the wpa_supplicant

utility (described later in this document).

Once you've started the appropriate driver and located the wireless network, you'll

need to choose the network mode to use (ad hoc or infrastructure mode), the

authentication method to attach to the wireless network, and the encryption protocol

(if any) to use.

We recommend that you implement encryption on your wireless network if you

aren't using any physical security solutions.

By default, most network drivers will infrastructure mode (BSS), because most wireless

networks are configured to allow network access via a WAP. If you wish to implement

an ad hoc network, you can change the network mode by using the ifconfig

command:

• To create or join ad hoc networks, use:

ifconfig abc0 mediaopt adhoc

• If you wish to switch back to infrastructure mode, you can use this command to

connect to WAP on Infrastructure networks (note the minus sign in front of the

mediaopt command):

ifconfig abc0 -mediaopt adhoc

For information about your driver's media options, see its entry in the Utilities

Reference. When you're in ad hoc mode, you advertise your presence to other peers

that are within physical range. This means that other 802.11 devices can discover

you and connect to your network.

Whether you're a client in infrastructure mode, or you're using ad hoc mode, the steps

to implement encryption are the same. You need to make sure that you're using the

authentication method and encryption key that have been chosen for the network. If

you wish to connect with your peers using an ad hoc wireless network, all peers must

be using the same authentication method and encryption key. If you're a client

connecting to a WAP, you must use the same authentication method and encryption

key as have been configured on the WAP.
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Connecting to a wireless network

For the general case of connecting to a Wi-Fi network, we recommend that you use

the wpa_supplicant daemon.

It handles unsecure, WEP, WPA, and WPA2 networks and provides a mechanism for

saving network information in a configuration file that's scanned on startup, thereby

removing the need for you to constantly reenter network parameters after rebooting or

moving from one network domain to another. The information following covers the

more specific cases if you don't want to run the supplicant.

You can connect to a wireless network by using one of the following:

• no encryption (p. 42)

• WEP (Wired Equivalent Privacy) for authentication and encryption (p. 43)

• WPA/WPA2 for authentication and encryption (p. 45)

• wpa_supplicant to manage your wireless network connections (p. 51)

Once connected, you need to configure the interface in the standard way:

• TCP/IP configuration in a wireless network (client in Infrastructure Mode, or ad

hoc Mode)

Using no encryption

If you're creating a wireless network with no encryption, anyone who's within

range of the wireless network (e.g. someone driving by your building) can easily

view all network traffic. It's possible to create a network without using

encryption, but we don't recommend it unless the network has been secured

by some other mechanism.

Many consumer devices (wireless routers to connect your internal LAN to the

Internet for example) are shipped with security features such as encryption

turned off. We recommend that you enable encryption in these devices rather

than turn off encryption when creating a wireless network.

To connect using no encryption or authentication, type:

ifconfig abc0 ssid "network name" -nwkey

The -nwkey option disables WEP encryption and also deletes the temporary WEP key.

The io-pkt manager doesn't support a combination of Shared Key

Authentication (SKA) and WEP encryption disabled.
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Once you've entered the network name, the 802.11 network should be active. You

can verify this with ifconfig. In the case of ad hoc networks, the status will be

shown as active only if there's at least one other peer on the (SSID) network:

ifconfig abc0

abc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500%%
    ssid "network name" %%
    powersave off %%
    bssid 00:11:22:33:44:55 chan 11%%
    address: 11:44:88:44:88:44%%
    media: IEEE802.11 autoselect (OFDM36 mode 11g) %%
    status: active%%

Once the network status is active, you can send and receive packets on the wireless

link.

You can also use wpa_supplicant to associate with a security-disabled Wi-Fi network.

For example, if your /etc/wpa_supplicant.conf file can contain a network block

as follows:

network = {
    ssid = "network name"
    key_mgmt = NONE
}

you can then run:

wpa_supplicant -i abc0 -c/etc/wpa_supplicant.conf

You may also use wpa_cli to tell wpa_supplicant what you want to do. You can

use either ifconfig or wpa_cli to check the status of the network. To complete

your network configuration, see “Client in infrastructure or ad hoc mode (p. 58)” in

the section on TCP/IP interface configuration.

Using WEP (Wired Equivalent Privacy) for authentication and encryption

WEP can be used for both authentication and privacy with your wireless network.

Authentication is a required precursor to allowing a station to associate with an access

point.

The IEEE 802.11 standard defines the following types of WEP authentication:

Open system authentication

The client is always authenticated with the WAP (i.e. allowed to form an

association). Keys that are passed into the client aren't checked to see if

they're valid. This can have the peculiar effect of having the client interface

go “active” (become associated), but data won't be passed between the AP

and station if the station key used to encrypt the data doesn't match that

of the station.

If your WEP station is active, but no traffic seems to be going through

(e.g., dhcp.client doesn't work), check the key used for bringing

up the connection.
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Shared key authentication

This method involves a challenge-response handshake in which a challenge

message is encrypted by the stations keys and returned to the access point

for verification. If the encrypted challenge doesn't match that expected by

the access point, then the station is prevented from forming an association.

Unfortunately, this mechanism (in which the challenge and subsequent

encrypted response are available over the air) exposes information that could

leave the system more open to attacks, so we don't recommended you use

it. While the stack does support this mode of operation, the code hasn't

been added to ifconfig to allow it to be set.

Note that many access points offer the capability of entering a passphrase that can

be used to generate the associated WEP keys. The key-generation algorithm may vary

from vendor to vendor. In these cases, the generated hexadecimal keys must be used

for the network key (prefaced by 0x when used with ifconfig) and not the

passphrase. This is in contrast to access points, which let you enter keys in ASCII.

The conversion to the hexadecimal key in that case is a simple conversion of the text

into its corresponding ASCII hexadecimal representation. The stack supports this form

of conversion.

Given the problems with WEP in general, we recommend you use WPA / WPA2 for

authentication and encryption where possible.

The network name can be up to 32 characters long. The WEP key must be either 40

bits long or 104 bits long. This means you have to give either 5 or 13 characters for

the WEP key, or a 10- or 26-digit hexadecimal value.

You can use either ifconfig or wpa_supplicant to configure a WEP network.

If you use ifconfig, the command is in the form:

ifconfig if_name ssid the_ssid nwkey the_key

For example, if your interface is abc0, and you're using 128-bit WEP encryption, you

can run:

ifconfig abc0 ssid "corporate lan" nwkey corpseckey456 up

Once you've entered the network name and encryption method, the 802.11 network

should be active (you can verify this with ifconfig). In the case of ad hoc networks,

the status will be shown as active only if there's at least one other peer on the (SSID)

network:

ifconfig abc0 
abc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 
    ssid "corporate lan" nwkey corpseckey456
    powersave off
    bssid 00:11:22:33:44:55 chan 11
    address: 11:44:88:44:88:44
    media: IEEE802.11 autoselect (OFDM36 mode 11g)
    status: active
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Once the network status is active, you can send and receive packets on the wireless

link.

If you use wpa_supplicant, you need to edit a configuration file to tell it what you

want to do. For example:

network = {       
  ssid = "corporate lan"      # The Wi-Fi network you want to associate to.
  key_mgmt= NONE              # NONE is for WEP or no security.
  wep_key0 = "corpseckey456"  # Most of the time, you may specify a list
                              # from wep_key0 to wep_key3 and use
                              # key index to specify which one to use. 
}

Then you may run:

wpa_supplicant -i abc0 -c your_config_file

By default, the configuration file is /etc/wpa_supplicant.conf. Alternatively

you may use wpa_cli to tell the wpa_supplicant daemon what you want to do.

To complete your network configuration, see “Client in Infrastructure or ad hoc mode

(p. 58)” in the section on TCP/IP interface configuration.

Using WPA/WPA2 for authentication and encryption

The original security mechanism of the IEEE 802.11 standard wasn't designed to be

strong and has proven to be insufficient for most networks that require some kind of

security.

Task group I (Security) of the IEEE 802.11 working group

(http://www.ieee802.org/11/) has worked to address the flaws of the base

standard and has in practice completed its work in May 2004. The IEEE 802.11i

amendment to the IEEE 802.11 standard was approved in June 2004 and published

in July 2004.

The Wi-Fi Alliance used a draft version of the IEEE 802.11i work (draft 3.0) to define

a subset of the security enhancements, called Wi-Fi Protected Access (WPA), that can

be implemented with existing WLAN hardware. This has now become a mandatory

component of interoperability testing and certification done by Wi-Fi Alliance. Wi-Fi

provides information about WPA at its website, http://www.wi-fi.org/.

The IEEE 802.11 standard defined a Wired Equivalent Privacy (WEP) algorithm for

protecting wireless networks. WEP uses RC4 with 40-bit keys, a 24-bit initialization

vector (IV), and CRC32 to protect against packet forgery. All these choices have proven

to be insufficient:

• The key space is too small to guard against current attacks.

• RC4 key scheduling is insufficient (the beginning of the pseudo-random stream

should be skipped).

• The IV space is too small, and IV reuse makes attacks easier.

• There's no replay protection.

• Non-keyed authentication doesn't protect against bit-flipping packet data.
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WPA is an intermediate solution for these security issues. It uses the Temporal Key

Integrity Protocol (TKIP) to replace WEP. TKIP is a compromise on strong security,

and it's possible to use existing hardware. It still uses RC4 for the encryption as WEP

does, but with per-packet RC4 keys. In addition, it implements replay protection and

a keyed packet-authentication mechanism.

Keys can be managed using two different mechanisms; WPA can use either of the

following:

WPA-Enterprise

An external authentication server (e.g. RADIUS) and EAP, just as IEEE

802.1X is using.

WPA-Personal

Pre-shared keys without the need for additional servers.

Both mechanisms generate a master session key for the Authenticator (AP) and

Supplicant (client station).

WPA implements a new key handshake (4-Way Handshake and Group Key Handshake)

for generating and exchanging data encryption keys between the Authenticator and

Supplicant. This handshake is also used to verify that both Authenticator and

Supplicant know the master session key. These handshakes are identical regardless

of the selected key management mechanism (only the method for generating master

session key changes).

WPA utilities

The wlconfig library is a generic configuration library that interfaces to the supplicant

and provides a programmatic interface for configuring your wireless connection.

The main utilities required for Wi-Fi usage are:

wpa_supplicant

Wi-Fi Protected Access client and IEEE 802.1X supplicant. This daemon

provides client-side authentication, key management, and network

persistence.

The wpa_supplicant requires the following libraries and binaries be

present:

• libcrypto.so — crypto library

• libssl.so — Secure Socket Library (created from OpenSSL)

• random—executable that creates /dev/urandom for random-number

generation

• libm.so — math library required by random

• libz.so — compression library required by random
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The wpa_supplicant also needs a read/write filesystem for creation of a

ctrl_interface directory (see the sample wpa_supplicant.conf

configuration file).

You can't use /dev/shmem because it isn't possible to create a

directory there.

wpa_cli

WPA command-line client for interacting with wpa_supplicant.

wpa_passphrase

Set the WPA passphrase for a SSID.

hostapd

Server side (Access Point) authentication and key-management daemon.

There are also some subsidiary utilities that you likely won't need to use:

wiconfig

Configuration utility for some wireless drivers. The ifconfig utility can

handle the device configuration required without needing this utility.

wlanctl

Examine the IEEE 802.11 wireless LAN client/peer table.

Connecting with WPA or WPA2

Core Networking supports connecting to a wireless network using the more secure

option of WPA (Wi-Fi Protected Access) or WPA2 (802.11i) protocols.

The wpa_supplicant application can manage your connection to a single access

point, or it can manage a configuration that includes settings for connections to

multiple wireless networks (SSIDs) either implementing WPA, or WEP to support

roaming from network to network. The wpa_supplicant application supports

IEEE802.1X EAP Authentication (referred to as WPA), WPA-PSK, and WPA-NONE

(for ad hoc networks) key-management protocols along with encryption support for

TKIP and AES (CCMP). A WAP for a simple home or small office wireless network

would likely use WPA-PSK for the key-management protocol, while a large office

network would use WAP along with a central authentication server such as RADIUS.

To enable a wireless client (or supplicant) to connect to a WAP configured to use WPA,

you must first determine the network name (as described above) and get the

authentication and encryption methods used from your network administrator. The
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wpa_supplicant application uses a configuration file

(/etc/wpa_supplicant.conf by default) to configure its settings, and then runs

as a daemon in the background. You can also use the wpa_cli utility to change the

configuration of wpa_supplicant while it's running. Changes done by the wpa_cli

utility are saved in the /etc/wpa_supplicant.conf file.

The /etc/wpa_supplicant.conf file has a rich set of options that you can

configure, but wpa_supplicant also uses various default settings that help simplify

your wireless configuration. For more information, see

http://netbsd.gw.com/cgi-bin/man-cgi?wpa_supplicant.conf++NetBSD-4.0.

If you're connecting to a WAP, and your WPA configuration consists of a network name

(SSID) and a pre-shared key, your /etc/wpa_supplicant.conf would look like

this:

network={ 
    ssid="my_network_name"  #The name of the network you wish to join 
    psk="1234567890"        #The preshared key applied by the access point 
}

Make sure that only root can read and write this file, because it contains the

key information in clear text.

Start wpa_supplicant as:

wpa_supplicant -B -i abc0 -c /etc/wpa_supplicant.conf

The -i option specifies the network interface, and -B causes the application to run in

the background.

The wpa_supplicant application by default negotiates the use of the WPA protocol,

WPA-PSK for key-management, and TKIP or AES for encryption. It uses infrastructure

mode by default.

Once the interface status is active (use ifconfig abc0, where abc0 is the interface

name, to check), you can apply the appropriate TCP/IP configuration. For more

information, see “TCP/IP configuration in a wireless network (p. 58),” later in this

chapter.

If you were to create an ad hoc network using WPA, your

/etc/wpa_supplicant.conf file would look like this:

network={
    mode=1                   # This sets the mode to be ad hoc.
                             # 0 represents Infrastructure mode 
    ssid="my_network_name"   # The name of the ad hoc network 
    key_mgmt=NONE            # Sets WPA-NONE 
    group=CCMP               # Use AES encryption  
    psk="1234567890"         # The preshared key applied by the access point 
 }  

Again, make sure that this file is readable and writable only by root, because

it contains the key information in clear text.
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Start wpa_supplicant with:

wpa_supplicant -B -i abc0 -c /etc/wpa_supplicant.conf

where -i specifies the network interface, and -B causes the application to run in the

background.

Personal-level authentication and Enterprise-level authentication

WPA is designed to have the following authentication methods:

• WPA-Personal / WPA2-Personal, which uses a preshared key that's the same

passphrase shared by all network users

• WPA-Enterprise / WPA2-Enterprise, which uses an 802.1X authentication

RADIUS-based server to authenticate each user

This section is about the Enterprise-level authentication.

The Enterprise-level authentication methods that have been selected for use within

the Wi-Fi certification body are:

• EAP-TLS, which is the initially certified method. Both the server's certificates and

the user's certificates are needed.

• EAP-TTLS/MSCHAPv2: TTLS is short for “Tunnelled TLS.” It works by first

authenticating the server to the user via its CA certificate. The server and the user

then establish a secure connection (the tunnel), and through the secure tunnel,

the user gets authenticated. There are many ways of authenticating the user through

the tunnel. The EAP-TTLS/MSCHAPv2 uses MSCHAPv2 for this authentication.

• PEAP/MSCHAPv2: PEAP is the secondmost widely supported EAP after EAP-TLS.

It's similar to EAP-TTLS, however, it requires only a server-side CA certificate to

create a secure tunnel to protect the user authentication. Again, there are many

ways of authenticating the user through the tunnel. The PEAP/MSCHAPV2 again

uses MSCHAPV2 for authentication.

• PEAP/GTC: This uses GTC as the authentication method through the PEAP tunnel.

• EAP-SIM: This is for the GSM mobile telecom industry.

The io-pkt manager supports all the above, except for EAP-SIM. Certificates are

placed in /etc/cert/user.pem, and CA certificates in /etc/cert/root.pem.

The following example is the network definition for wpa_supplicant for each of the

above Enterprise-level authentication methods:

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
update_config=1

# 3.1.2 linksys -- WEP
network={
    ssid="linksys"
    key_mgmt=NONE
    wep_key0="LINKSYSWEPKEY"
}
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# 3.1.3 linksys -- WPA
network={
    ssid="linksys"
    key_mgmt=WPA-PSK
    psk="LINKSYSWPAKEY"
}

# 3.1.4 linksys -- WPA2
network={
    ssid="linksys"
    proto=RSN
    key_mgmt=WPA-PSK
    psk="LINKSYS_RSN_KEY"
}

# 3.1.5.1 linksys -- EAP-TLS
network={
   ssid="linksys"
   key_mgmt=WPA-EAP
   eap=TLS
   identity="client1"
   ca_cert="/etc/cert/root.pem"
   client_cert="/etc/cert/client1.pem"
   private_key="/etc/cert/client1.pem"
   private_key_passwd="wzhang"
}

# 3.1.5.2 linksys -- PEAPv1/EAP-GTC
network={
   ssid="linksys"
   key_mgmt=WPA-EAP
   eap=PEAP
   identity="client1"
   password="wzhang"
   ca_cert="/etc/cert/root.pem"
   phase1="peaplabel=0"
   phase2="autheap=GTC"
}

# 3.1.5.3 linksys -- EAP-TTLS/MSCHAPv2
network={
   ssid="linksys"
   key_mgmt=WPA-EAP
   eap=TTLS
   identity="client1"
   password="wzhang"
   ca_cert="/etc/cert/root.pem"
   phase2="autheap=MSCHAPV2"
}

# 3.1.5.4 linksys -- PEAPv1/EAP-MSCHAPV2
network={
   ssid="linksys"
   key_mgmt=WPA-EAP
   eap=PEAP
   identity="client1"
   password="wzhang"
   ca_cert="/etc/cert/root.pem"
   phase1="peaplabel=0"
   phase2="auth=MSCHAPV2"
}

Run wpa_supplicant as follows:

wpa_supplicant -i if_name -c full_path_to_your_config_file

to pick up the configuration file and get the supplicant to perform the required

authentication to get access to the Wi-Fi network.

50 Copyright © 2014, QNX Software Systems Limited

Wi-Fi Configuration Using WPA and WEP



Using wpa_supplicant to manage your wireless network connections

The wpa_supplicant daemon is the “standard” mechanism used to provide

persistence of wireless networking information as well as manage automated

connections into networks without user intervention.

The supplicant is based on the open-source supplicant (albeit an earlier revision that

matches that used by the NetBSD distribution) located at

http://hostap.epitest.fi/wpa_supplicant/.

In order to support wireless connectivity, the supplicant:

• provides a consistent interface for configuring all authentication and encryption

mechanisms (unsecure, wep, WPA, WPA2)

• supports configuration of ad hoc and infrastructure modes of operation

• maintains the network configuration information in a configuration file (by default

/etc/wpa_supplicant.conf)

• provides auto-connectivity capability allowing a client to connect into a WAP without

user intervention

A sample wpa_supplicant.conf file is installed in /etc for you. It contains a

detailed description of the basic supplicant configuration parameters and network

parameter descriptions (and there are lots of them) and sample network configuration

blocks.

In conjunction with the supplicant is a command-line configuration tool called

wpa_cli. This tool lets you query the stack for information on wireless networks, as

well as update the configuration file on the fly.

If you want wpa_cli to be capable of updating the wpa_supplicant.conf file,

edit the file and uncomment the update_config=1 option. (Note that when wpa_cli

rewrites the configuration file, it strips all of the comments.) Copy the file into /etc

and make sure that root owns it and is the only user who can read or write it, because

it contains clear-text keys and password information.

Given a system with a USB-Wi-Fi dongle based on the fictitious ABC chips, here's a

sample session showing how to get things working with a WEP-based WAP:

# cp $HOME/stage/etc/wpa_supplicant.conf /etc
# chown root:root /etc/wpa_supplicant.conf
# chmod 600 /etc/wpa_supplicant.conf
# io-pkt-v4-hc -dabc
# ifconfig
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33192
    inet 127.0.0.1 netmask 0xff000000
abc0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500
    ssid ""
    powersave off
    address: 00:ab:cd:ef:d7:ac
    media: IEEE802.11 autoselect
    status: no network
# wpa_supplicant -B -iabc0
# wpa_cli
wpa_cli v0.4.9
Copyright (c) 2004-2005, Jouni Malinen <jkmaline@cc.hut.fi> and contributors
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This program is free software. You can distribute it and/or modify it
under the terms of the GNU General Public License version 2.

Alternatively, this software may be distributed under the terms of the
BSD license. See README and COPYING for more details.

Selected interface 'abc0'

Interactive mode

> scan
OK
> scan_results
bssid / frequency / signal level / flags / ssid
00:02:34:45:65:76   2437    10  [WPA-EAP-CCMP]  A_NET
00:23:44:44:55:66   2412    10  [WPA-PSK-CCMP]  AN_OTHERNET
00:12:4c:56:a7:8c   2412    10  [WEP]   MY_NET
> list_networks
network id / ssid / bssid / flags
0   simple  any 
1   second ssid any 
2   example any 
> remove_network 0
OK
> remove_network 1
OK
> remove_network 2
OK
> add_network
0
> set_network 0 ssid "MY_NET"
OK
> set_network 0 key_mgmt NONE
OK
> set_network 0 wep_key0 "My_Net_Key234"
OK
> enable_network 0
OK
> save
OK
> list_network
network id / ssid / bssid / flags
0   QWA_NET any 
> status
<2>Trying to associate with 00:12:4c:56:a7:8c (SSID='MY_NET' freq=2412 MHz)
<2>Trying to associate with 00:12:4c:56:a7:8c (SSID='MY_NET' freq=2412 MHz)
wpa_state=ASSOCIATING
> status
<2>Trying to associate with 00:12:4c:56:a7:8c (SSID='MY_NET' freq=2462 MHz)
<2>Associated with 00:12:4c:56:a7:8c
<2>CTRL-EVENT-CONNECTED - Connection to 00:12:4c:56:a7:8c completed (auth)
bssid=00:12:4c:56:a7:8c
ssid=MY_NET
pairwise_cipher=WEP-104
group_cipher=WEP-104
key_mgmt=NONE
wpa_state=COMPLETED
> quit
# dhcp.client -i abc0
# ifconfig
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33192
    inet 127.0.0.1 netmask 0xff000000
abc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
    ssid MY_NET nwkey My_Net_Key234
    powersave off
    bssid 00:12:4c:56:a7:8c chan 11
    address: 00:ab:cd:ef:d7:ac
    media: IEEE802.11 autoselect (OFDM54 mode 11g)
    status: active
    inet 10.42.161.233 netmask 0xfffffc00 broadcast 10.42.160.252
# 
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Using a Wireless Access Point (WAP)

A Wireless Access Point (WAP) is a system that allows wireless clients to access the

rest of the network or the Internet.

Your WAP will operate in BSS mode. A WAP will have at least one wireless network

interface to provide a connection point for your wireless clients, and one wired network

interface that connects to the rest of your network. Your WAP will act as a bridge or

gateway between the wireless clients, and the wired intranet or Internet.

Creating A WAP

To set up your wireless access point, you first need to start the appropriate driver for

your network adapters.

Not all network adapter hardware will support operating as an access point.

Refer to the documentation for your specific hardware for further information.

For the wireless access point samples, we'll use the fictitious devnp-abc.so driver

for the wireless chipsets, and the equally fictitious devnp-xyz.so driver for the

wired interface. After a default installation, all driver binaries are installed under the

directory $QNX_TARGET/cpu/lib/dll.

Use one of the following commands:

• io-pkt-v4-hc -d abc -d xyz

or:

• io-pkt-v4-hc -d /lib/dll/devnp-abc.so -d /lib/dll/devnp-xyz.so

or:

• io-pkt-v6-hc -d abc -d xyz

If the driver is installed in a location other than /lib/dll, you need to specify the

full path and filename of the driver on the command line.

The next step to configure your WAP is to determine whether it will be acting as a

gateway or a bridge to the rest of the network, as described below.

Acting as a gateway

When your WAP acts as a gateway, it forwards traffic between two subnets (your wireless

network and the wired network).

For TCP/IP, this means that the wireless TCP/IP clients can't directly reach the wired

TCP/IP clients without first sending their packets to the gateway (your WAP). Your

WAP network interfaces will also each be assigned an IP address.
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This type of configuration is common for SOHO (small office, home office) or home

use, where the WAP is directly connected to your Internet service provider. Using this

type of configuration lets you:

• keep all of your network hosts behind a firewall/NAT

• define and administer your own TCP/IP network

The TCP/IP configuration of a gateway and firewall is the same whether your network

interfaces are wired or wireless. For details of how to configure a NAT, visit

http://www.netbsd.org/docs/.

Once your network is active, you will assign each interface of your WAP an IP address,

enable forwarding of IP packets between interfaces, and apply the appropriate firewall

and NAT configuration. For more information, see “DHCP server on WAP acting as a

gateway (p. 59)” in the section on TCP/IP interface configuration.

Acting as a bridge

When your WAP acts as a bridge, it's connecting your wireless and wired networks as

if they were one physically connected network (broadcast domain, layer 2). In this

case, all the wired and wireless hosts are on the same TCP/IP subnet and can directly

exchange TCP/IP packets without the need for the WAP to act as a gateway.

In this case, you don't need to assign your WAP network interfaces an IP address to

be able to exchange packets between the wireless and wired networks. A bridged WAP

could be used to allow wireless clients onto your corporate or home network and have

them configured in the same manner as the wireless hosts. You don't need to add

more services (such as DHCP) or manipulate routing tables. The wireless clients use

the same network resources that the wired network hosts use.

While it isn't necessary to assign your WAP network interfaces an IP address

for TCP/IP connectivity between the wireless clients and wired hosts, you

probably will want to assign at least one of your WAP interfaces an IP address

so that you can address the device in order to manage it or gather statistics.

To enable your WAP to act as a bridge, you first need to create a bridge interface:

ifconfig bridge0 create

In this case, bridge is the specific interface type, while 0 is a unique instance of

the interface type. There can be no space between bridge and 0; bridge0 becomes

the new interface name.

Use the brconfig command to create a logical link between the interfaces added

to the bridge (in this case bridge0). This command adds the interfaces abc0 (our

wireless interface) and wm0 (our wired interface). The up option is required to activate

the bridge:

brconfig bridge0 add abc0 add wm0 up
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Remember to mark your bridge as up, or else it won't be

activated.

To see the status of your defined bridge interface, you can use this command:

brconfig bridge0

bridge0: flags=41<UP,RUNNING>
    Configuration:
        priority 32768 hellotime 2 fwddelay 15 maxage 20
    Interfaces:
        en0 flags=3<LEARNING, DISCOVER>
            port 3 priority 128
        abc0 flags=3<LEARNING,DISCOVER>
            port 2 priority 128
    Address cache (max cache: 100, timeout: 1200):

WEP access point

Enabling WEP network authentication and data encryption is similar to configuring a

wireless client, because both the WAP and client require the same configuration

parameters.

If you're creating a new wireless network, we recommend you use WPA or WPA2

(RSN) rather than WEP, because WPA and WPA2 provide more better security.

You should use WEP only if there are devices on your network that don't support

WPA or WPA2.

To use your network adapter as a wireless access point, you must first put the network

adapter in host access point mode:

ifconfig abc0 mediaopt hostap

You will also likely need to adjust the media type (link speed) for your wireless adapter

as the auto-selected default may not be suitable. You can view all the available media

types with the ifconfig -m command. They will be listed in the supported

combinations of media type and media options. For example, if the combination of:

media OFDM54 mode 11g mediaopt hostap

is listed, you could use the command:

ifconfig abc0 media OFDM54 mediaopt hostap

to set the wireless adapter to use 54 Mbit/s.

The next parameter to specify is the network name or SSID. This can be up to 32

characters long:

ifconfig abc0 ssid "my lan"
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The final configuration parameter is the WEP key. The WEP key must be either 40

bits or 104 bits long. You can either enter 5 or 13 characters for the key, or a 10- to

26-digit hexadecimal value. For example:

ifconfig abc0 nwkey corpseckey456

You must also mark your network interface as “up” to activate it:

ifconfig abc0 up

You can also combine all of these commands:

ifconfig abc0 ssid "my lan" nwkey corpseckey456 mediaopt hostap up

Your network should now be marked as up:

ifconfig abc0

abc0: flags=8943<UP,BROADCAST, RUNNING, PROMISC, SIMPLEX, MULTICAST> mtu 1500
    ssid "my lan" apbridge nwkey corpseckey456
    powersave off
    bssid 11:22:33:44:55:66 chan 2
    address: 11:22:33:44:55:66
    media: IEEE802.11 autoselect hostap (autoselect mode 11b hostap)
    status: active

WPA access point

WPA/WPA2 support in the QNX Neutrino RTOS is provided by the hostapd daemon.

This daemon is the access point counterpart to the client side wpa_supplicant

daemon. This daemon manages your wireless network adapter when in access point

mode. The hostapd configuration is defined in the /etc/hostapd.conf

configuration file.

Before you start the hostapd process, you must put the network adapter into host

access point mode:

ifconfig abc0 mediaopt hostap

You will also likely need to adjust the media type (link speed) for your wireless adapter,

as the auto-selected default may not be suitable. You can view all the available media

types with the ifconfig -m command. They will be listed in the supported

combinations of media type and media options. For example, if the combination of:

media OFDM54 mode 11g mediaopt hostap

is listed, you could use the command:

ifconfig abc0 media OFDM54 mediaopt hostap

to set the wireless adapter to use 54 Mbit/s.

The remainder of the configuration is handled with the hostapd daemon. It

automatically sets your network interface as up, so you don't need to do this step with
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the ifconfig utility. Here's a simple hostapd configuration file

(/etc/hostapd.conf):

interface=abc0
ssid=my home lan
macaddr_acl=0
auth_algs=1
wpa=1
wpa_passphrase=myhomelanpass23456
wpa_key_mgmt=WPA-PSK
wpa_pairwise=CCMP

This configuration uses WPA-PSK for authentication, and AES for data encryption.

The auth_algs and wpa are bit fields, not numeric

values.

You can now start the hostapd utility, specifying the configuration file:

hostapd -B /etc/hostapd.conf

The ifconfig command should show that the network interface is active:

ifconfig abc0

abc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 2290
        ssid "my home lan" apbridge nwkey 2:"",0x49e2a9908872e76b3e5e0c32d09b0b52,0x00000000dc710408c04b32b07c9735b0,""
        powersave off
        bssid 00:15:e9:31:f2:5e chan 4
        address: 00:15:e9:31:f2:5e
        media: IEEE802.11 OFDM54 hostap (OFDM54 mode 11g hostap)
        status: active

Your WAP should now be available to your clients.
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TCP/IP configuration in a wireless network

Client in infrastructure or ad hoc mode

Assigning an IP address to your wireless interface is independent of the 802.11 network

configuration and uses the same utilities or daemons as a wired network.

The main issue is whether your TCP/IP configuration is dynamically assigned, or

statically configured. A static TCP/IP configuration can be applied regardless of the

state of your wireless network connection. The wireless network could be active, or it

could be unavailable until later. A dynamically assigned TCP/IP configuration (via the

DHCP protocol) requires that the wireless network configuration be active, so that it

can reach the DHCP server somewhere on the network. This is typically applied in a

network that is centrally administered (using infrastructure mode with a WAP).

The most common usage case is that you're a client using a Wireless Access Point to

connect to the network. In this kind of network, there should be a DHCP server

available. After the 802.11 network status is active, you just need to start

dhcp.client to complete your TCP/IP configuration. For example:

dhcp.client -iabc0

As an alternative, you could use lsm-autoip.so. Auto IP is a special case in that

it negotiates with its peers on the network as they become available; you don't need

to wait until the network link becomes active to launch it. Auto IP will assign your

network interface an IP address and resolve any IP address conflicts with your network

peers as they're discovered when either your host or the peer changes its current IP

address. You will be able to use this IP address once the wireless network is active.

For more information, see the documentation for Auto IP.

The last configuration option is a static configuration, which doesn't change without

intervention from the user. Here's an example of a static configuration that uses

10.0.0.5 for the wireless interface IP address, and 10.0.0.1 for the network gateway:

ifconfig abc0 10.0.0.5
route add default 10.0.0.1

cat /etc/resolv.conf

    domain company.com 
    nameserver 10.0.0.2 
    nameserver 10.0.0.3

The other usage case is an ad hoc network. This network mode is typically made up

of a number of standalone peers with no central services. Since there's no central

server, it's likely that DHCP services won't be available.

If there are Windows or Apple systems on your ad hoc network, they'll enable the Auto

IP protocol to assign an IP address. By using Auto IP, you avoid IP address conflicts

(two or more hosts using the same IP address), and you avoid having to configure a
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new IP address manually. Your IP address will be automatically configured, and you'll

be able to exchange TCP/IP packets with your peers.

If you're using a static configuration in an ad hoc network, you'll have the added task

of deciding what IP address to use on each system, making sure that there are no

conflicts, and that all the IP addresses assigned are on the same subnet, so that the

systems can communicate.

DHCP server on WAP acting as a gateway

If you've configured your WAP to act as a gateway, you will have your wireless network

on a separate subnet from your wired network. In this case, you could be using

infrastructure mode or ad hoc mode.

The instructions below could work in either mode. You'll likely be using infrastructure

mode, so that your network is centrally administered. You can implement DHCP services

by running dhcpd directly on your gateway, or by using dhcrelay to contact another

DHCP server elsewhere in the ISP or corporate network that manages DHCP services

for subnets.

If you're running dhcpd on your gateway, it could be that your gateway is for a SOHO.

In this case, your gateway is directly connected to the Internet, or to an IP network

for which you don't have control or administrative privileges. You may also be using

NAT in this case, as you've been given only one IP address by your Internet Service

Provider. Alternatively, you may have administrative privileges for your network subnet

which you manage.

If you're running dhcrelay on your gateway, your network subnet is managed

elsewhere. You're simply relaying the DHCP client requests on your subnet to the

DHCP server that exists elsewhere on the network. Your relay agent forwards the client

requests to the server, and then passes the reply packets back to the client.

These configuration examples assume that you have an interface other than the wireless

network adapter that's completely configured to exchange TCP/IP traffic and reach

any servers noted in these configurations that exist outside of the wireless network.

Your gateway will be forwarding IP traffic between this interface and the wireless

interface.

Launching the DHCP server on your gateway

Below is a simple dhcpd configuration file, dhcpd.conf.

This file includes a subnet range that's dynamically assigned to clients, but also

contains two static entries for known servers that are expected to be present at certain

IP addresses. One is a printer server, and the other is a network-enabled toaster. The

DHCP server configuration isn't specific to wireless networks, and you can apply it to

wired networks as well.

ddns-update-style none;
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#option subnet-mask 255.255.255.224;
default-lease-time 86400;
#max-lease-time 7200;

subnet 192.168.20.0 netmask 255.255.255.0 {
        range 192.168.20.41 192.168.20.254;
        option broadcast-address 192.168.20.255;
        option routers 192.168.20.1;
        option domain-name-servers 192.168.20.1;
        option domain-name "soho.com";

        host printerserver {
               hardware ethernet 00:50:BA:85:EA:30;
               fixed-address 192.168.20.2;
        }

        host networkenabledtoaster {
               hardware ethernet 00:A0:D2:11:AE:81;
               fixed-address 192.168.20.40;
        }
}

The nameserver, router IP, and IP address will be supplied to your wireless network

clients. The router IP address is the IP address of the gateway's wireless network

interface that's connected to your wireless network. The nameserver is set to the

gateway's wireless network adapter, since the gateway is also handling name serving

services. The gateway nameserver will redirect requests for unknown hostnames to the

ISP nameserver. The internal wireless network has been defined to be 192.168.20.0.

Note that we've reserved IP address range 192.168.20.1 through 192.168.20.40 for

static IP address assignment; the dynamic range starts at 192.168.20.41.

Now that we have the configuration file, we need to start dhcpd.

We need to make sure that the directory /var/run exists, as well as

/var/state/dhcp. The file /var/state/dhcp/dhcpd.leases must exist. You

can create an empty file for the initial start of the dhcpd binary.

When you start dhcpd, you must tell it where to find the configuration file if it isn't

in the default location. You also need to pass an interface name, as you want only

dhcpd to service your internal wireless network interface. If we used the fictitious

ABC adapter from the wireless discussion, this would be abc0:

dhcpd -cf /etc/dhcpd.conf abc0

Your DHCP server should now be running. If there are any issues, you can start dhcpd

in a debugging mode using the -d option. The dhcpd daemon also logs messages to

the system log, slogger.

The dhcrelay agent doesn't require a configuration file as the DHCP server does;

you just need to launch a binary on the command line.

What you must know is the IP address of the DHCP server that's located elsewhere on

the network that your gateway is connected to. Once you've launched dhcrelay, it

forwards requests and responses between the client on your wireless network and the

DHCP server located elsewhere on the ISP or corporate network:

dhcrelay -i abc0 10.42.42.42
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In this case, it relays requests from wireless interface (abc0), and forwards these

requests to the DHCP server 10.42.42.42.

Configuring an access point as a router

To configure an access point as a router:

1. Make sure the outside network interface on your access point is active. That is,

make sure your access point is active on the wired network that it's connected to.

2. Configure the access point interface. The simplest mechanism to use for this is

WEP.

Say we want our wireless network to advertise MY_WIRELESS_NET, and our WEP

secret is MYWIRELESSWEP. We have to do the following:

a. Allow packets coming in from one interface to be forwarded (routed) out another:

#sysctl -w net.inet.ip.forwarding=1

b. Place the wireless interface into access point mode:

#ifconfig in_nic mediaopt hostap

c. Configure the wireless interface to be a WEP network with an associated key:

#ifconfig in_nic ssid MY_WIRELESS_NET nwkey MYWIRELESSWEP

d. Bring up the interface:

#ifconfig in_nic 10.42.0.1 up

3. See above for how you set up DHCP to distribute IP addresses to the wireless client.

Briefly, you provide a dhcpd.conf with a configuration section as follows, which

defines the internal network:

subnet 10.42.42.0 netmask 255.255.255.0 {
    range 10.42.0.2 10.42.0.120;
    ...;
}

Then you run dhcpd:

#dhcpd -cf full_path_to_your_dhcp_config_file -lf \
full_path_to_your_release_file ni_nic

You don't need to specify where your dhcpd.conf and release file are if you put

them in the default place under /etc. For more information, see the entry for

dhcpd in the Utilities Reference.

Copyright © 2014, QNX Software Systems Limited 61

TCP/IP configuration in a wireless network



To use WPA or WPA2, you need to set up and run hostapd (the server-side

application associated with the client's wpa_supplicant) to do the authentication

and key exchange for your network.

You can also configure your access point as a NAT network router as follows:

#mount -Ttcpip lsm-pfv4.so

so that the PF module is loaded, and then use pfctl to do the configuration.

For details of how to configure a NAT, visit http://www.netbsd.org/docs/.
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Chapter 5
Transparent Distributed Processing

Transparent Distributed Processing (also known as Qnet) functions the same under

the old io-net and new io-pkt infrastructures, and the packet format and protocol

remain the same. For both io-net and io-pkt, Qnet is just another protocol (like

TCP/IP) that transmits and receives packets.

The Qnet module in Core Networking is now a loadable shared module, lsm-qnet.so.

We support only the l4_lw_lite variant; we no longer support the qnet-compat

variant that was compatible with QNX Neutrino 6.2.1.

To start the stack with Qnet, type this command:

io-pkt-v4 -ddriver -pqnet

(assuming you have your PATH and LD_LIBRARY_PATH environment variables set

up properly). You can also mount the protocol after the stack has started, like this:

mount -Tio-pkt full_path_to_dll/lsm-qnet.so

Note that mount still supports the io-net option, to provide backward compatibility

with existing scripts.

The command-line options and general configuration information are the same as they

were with io-net. For more information, see lsm-qnet.so in the Utilities Reference.
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Using TDP over IP

TDP supports two modes of communications: one directly over Ethernet, and one over

IP.

The “straight to Ethernet” L4 layer is faster and more dynamic than the IP layer, but

it isn't possible to route TDP packets out of a single layer-2 domain. By using TDP

over IP, you can connect to any remote machine over the Internet as follows:

1. TDP must use the DNS resolver to get an IP address from a hostname (i.e., use

the resolve=dns option). Configure the local host name and domain, and then make

sure that gethostbyname() can resolve all the host names that you want to talk to

(including the local machine):

• Use hostname to set the host name.

• Use setconf to set the _CS_DOMAIN configuration string to indicate your

domain.

• If the hosts aren't in a DNS database, create an appropriate name to host

resolution file in /etc/hosts which includes the fully qualified node name

(including domain) and change the resolver to use the host file instead of using

the DNS server (e.g., setconf _CS_RESOLVE lookup_file_bind).

For more information on name resolution, see the description of “Name servers”

in the TCP/IP Networking chapter of the QNX Neutrino User's Guide.

2. Start (or mount) Qnet with the bind=ip,resolve=dns options. For example:

io-pkt-v4-hc -di82544 -pqnet bind=ip,resolve=dns

or:

mount -Tio-pkt -o bind-ip,resolve=dns full_path_to_dll/lsm-qnet.so

With raw Ethernet transport, names automatically appear in the /net directory. This

doesn't happen with TDP over IP; as you perform TDP operations (e.g. ls

/net/host1), the entries are created as required.
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Chapter 6
Network Drivers

Let's take a closer look at the network drivers that you load into io-pkt.
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Types of network drivers

The networking stack supports the following types of drivers:

• Native drivers that are written specifically for the io-pkt stack and as such are

fully featured, provide high performance, and can run with multiple threads.

• io-net drivers that were written for the legacy networking stack io-net.

• Ported NetBSD drivers that were taken from the NetBSD source tree and ported

to io-pkt.

You can tell a native driver from an io-net driver by the name:

• io-net drivers are named devn-xxxxxx.so

• io-pkt native drivers are named devnp-xxxxxx.so

NetBSD drivers aren't as tightly integrated into the overall stack. In the NetBSD

operating system, these drivers operate with interrupts disabled and, as such, generally

have fewer mutexing issues to deal with on the transmit and receive path. With a

straight port of a NetBSD driver, the stack defaults to a single-threaded model, in

order to prevent possible transmit and receive synchronization issues with simultaneous

execution. If the driver has been carefully analyzed and proper synchronization

techniques applied, then a flag can be flipped during the driver attachment, saying

that the multi-threaded operation is allowed.

If one driver operates in single-threaded mode, all drivers operate in

single-threaded mode.

The native and NetBSD drivers all hook directly into the stack in a similar manner.

The io-net drivers interface through a “shim” layer that converts the io-net binary

interface into the compatible io-pkt interface. We have a special driver,

devnp-shim.so, that's automatically loaded when you start an io-net driver.

The shim layer provides binary compatibility with existing io-net drivers. As such,

these drivers are also not as tightly integrated into the stack. Features such as

dynamically setting media options or jumbo packets for example aren't supported for

these drivers. Given that the driver operates within the io-net design context, the

drivers won't perform as well as a native one. In addition to the packet receive / transmit

device drivers, device drivers are also available that integrate hardware crypto

acceleration functionality directly into the stack.

For information about specific drivers, see the Utilities Reference:

• devnp-* for native io-pkt and ported NetBSD drivers. The entry for each driver

indicates which type it is.

• devn-* for legacy io-net drivers
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We might not be able to support ported drivers for which the source is publicly

available if the vendor doesn't provide documentation to us. While we'll make

every effort to help you, we can't guarantee that we'll be able to rectify problems

that may occur with these drivers.

Differences between ported NetBSD drivers and native drivers

There's a fine line between native and ported drivers. If you do more than the initial

“make it run” port, the feature sets of a ported driver and a native driver aren't really

any different.

If you look deeper, there are some differences:

• From a source point of view, a ported driver has a very different layout from a native

io-pkt driver. The native driver source looks quite similar in terms of content and

files to what an io-net driver looks like and has all of the source for a particular

driver under one directory. The NetBSD driver source is quite different in layout,

with source for a particular driver spread out under a specific driver directory, as

well as ic, pci, usb, and other directories, depending on the driver type and bus

that it's on.

• Ported NetBSD drivers don't allow the stack to run in multi-threaded mode. NetBSD

drivers don't have to worry about Rx / Tx threads running simultaneously when run

inside of the NetBSD operating system, so there's no need to pay close attention

to appropriate locking issues between Rx and Tx.

For this reason, a configuration flag is, by default, set to indicate that the driver

doesn't support multi-threaded access. As a result, the entire stack runs in a

single-threaded mode of operation (if one driver can't run in multithreaded mode,

no drivers will run with multiple threads). You can change this flag once you've

carefully examined the driver to ensure that there are no locking issues.

• NetBSD drivers don't include support for QNX Neutrino-specific utilities, such as

nicinfo.

• The NetBSD drivers have two different delay functions, both of which take an

argument in microseconds. From the NetBSD documentation, DELAY() is reentrant

(i.e it doesn't modify any global kernel or machine state) and is safe to use in

interrupt or process context.

However, QNX Neutrino's version of delay() takes a time in milliseconds, so this

could result in very long timeouts if used directly as-is in the drivers. We've defined

DELAY() to do the appropriate conversion of the delay from microseconds to

milliseconds, so all NetBSD ported drivers should define delay() to be DELAY().

Differences between io-net drivers and other drivers

The differences between legacy io-net drivers and other drivers include the following:
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• The io-net drivers export a name space entry, /dev/io-net/enx. Native drivers

don't.

Because of this, a waitfor command for such an entry won't work properly

in buildfiles or scripts. Use if_up -p instead; for example, instead of

waitfor /dev/io-net/en0, use if_up -p en0.

• You can unmount an io-net driver (umount /dev/io-net/enx). With a native

driver, you have to destroy it (ifconfig tsec0 destroy).

• The io-net drivers are all prefixed with en. Native drivers have different prefixes

for different hardware (e.g. tsec for Freescale TSEC devices), although you can

override this with the name= driver option (processed by io-pkt).

• The io-net drivers support the io-net devctl() commands. Native drivers don't.

• The io-net drivers are slower than native drivers, since they use the same

threading model as that used in io-net.

• The io-net driver DLLs are prefixed by devn-. Core Networking drivers are

prefixed by devnp-.

• The io-net drivers used the speed and duplex command-line options to override

the auto-negotiated link defaults once. Often the use of these options caused more

problems than they fixed. Native (and most ported NetBSD drivers) allow their

speed and duplex setting to be determined at runtime via a device ioctl(), which

ifconfig uses. See ifconfig -m and ifconfig mediaopt.
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Loading and unloading a driver

You can load drivers into the stack from the command line just as with io-net.

For example:

io-pkt-v4-hc -di82544

This command-line invocation works whether or not the driver is a native driver or an

io-net-style driver. The stack automatically detects the driver type and loads the

devnp-shim.so binary if the driver is an io-net driver.

Make sure that all drivers are located in a directory that can be resolved by the

LD_LIBRARY_PATH environment variable if you don't want to have to specify

the fully qualified name of the device in the command line.

You can also mount a driver in the standard way:

mount -Tio-pkt /lib/dll/devnp-i82544.so

The mount command still supports the io-net option, to provide backward

compatibility with existing scripts:

mount -Tio-net /lib/dll/devnp-i82544.so

The standard way to remove a driver from the stack is with the ifconfig iface

destroy command. For example:

ifconfig wm0 destroy

Copyright © 2014, QNX Software Systems Limited 69

Loading and unloading a driver



Troubleshooting a driver

For native drivers and io-net drivers, the nicinfo utility is usually the first debug

tool that you'll use (aside from ifconfig) when problems with networking occur.

This will let you know whether or not the driver has properly negotiated at the link

layer and whether or not it's sending and receiving packets.

Ensure that the slogger daemon is running, and then after the problem occurs, run

the sloginfo utility to see if the driver has logged any diagnostic information. You

can increase the amount of diagnostic information that a driver logs by specifying the

verbose command-line option to the driver. Many drivers support various levels of

verbosity; you might even try specifying verbose=10.

For ported NetBSD drivers that don't include nicinfo capabilities, you can use

netstat -I iface to get very basic packet input / output information. Use ifconfig

to get the basic device information. Use ifconfig -v to get more detailed

information.
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Problems with shared interrupts

Having different devices sharing a hardware interrupt is kind of a neat idea, but unless

you really need to do it—because you've run out of hardware interrupt lines—it generally

doesn't help you much. In fact, it can cause you trouble. For example, if your driver

doesn't work (e.g., no received packets), check to see if it's sharing an interrupt with

another device, and if so, reconfigure your board so it doesn't.

Most of the time, when shared interrupts are configured, there's no good reason for it

(i.e., you haven't really run out of interrupts) and this can decrease your performance,

because when the interrupt fires, all of the devices sharing the interrupt need to run

and check to see if it's for them. Some drivers do the “right thing,” which is to read

registers in their interrupt handlers to see if the interrupt is really for them, and then

ignore it if not. But many drivers don't; they schedule their thread-level event handlers

to check their hardware, which is inefficient and reduces performance.

If you're using the PCI bus, use the pci -v utility to check the interrupt allocation.

Sharing interrupts can vastly increase interrupt latency, depending upon exactly what

each of the drivers does. After an interrupt fires, the kernel doesn't reenable it until

all driver handlers tell the kernel that they've finished handling it. So, if one driver

takes a long time servicing a shared interrupt that's masked, then if another device

on the same interrupt causes an interrupt during that time period, processing of that

interrupt can be delayed for an unknown duration of time.

Interrupt sharing can cause problems, and reduce performance, increase CPU

consumption, and seriously increase latency. Unless you really need to do it, don't. If

you must share interrupts, make sure your drivers are doing the “right thing.”
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Writing a new driver

If you're interested in writing a new network driver, see these appendixes in this guide:

• Writing Network Drivers for io-pkt

• A Hardware-Independent Sample Driver: sam.c

• Additional Information

72 Copyright © 2014, QNX Software Systems Limited

Network Drivers



Debugging a driver using gdb

If you want to use gdb to debug a driver, you first have to make sure that your source

is compiled with debugging information included.

With your driver code in the correct place in the sys tree (dev_qnx or dev), you can

do the following:

# cd sys
# make CPULIST=x86 clean
# make CPULIST=x86 CCOPTS=-O0 DEBUG=-g install

Now that you have a debug version, you can start gdb and set a breakpoint at main()

in the io-pkt binary.

Don't forget to specify your driver in the arguments, and ensure that the PATH

and LD_LIBRARY_PATH environment variables are properly set up.

After hitting the breakpoint in main(), do a sharedlibrary command in gdb. You

should see libc loaded in. Set a breakpoint in dlsym(). When that's hit, your driver

should be loaded in, but io-pkt hasn't done the first callout into it. Do a set

solib-search-path and add the path to your driver, and then do a

sharedlibrary again. The debugger should load the symbols for your driver, and

then you can set a breakpoint where you want your debugging to start.
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Dumping 802.11 debugging information

The stack's 802.11 layer can dump debugging information.

You can enable and disable the dumping by using sysctl settings. If you do:

sysctl -a | grep 80211

with a Wi-Fi driver, you'll see net.link.ieee80211.debug and

net.link.ieee80211.vap0.debug. To turn on the debug output, type the

following:

sysctl -w net.link.ieee80211.debug = 1
sysctl -w net.link.ieee80211.vap0.debug=0xffffffff

You can then use sloginfo to display the debug log.
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Jumbo packets and hardware checksumming

Jumbo packets are packets that carry more payload than the normal 1500 bytes. Even

the definition of a jumbo packet is unclear; different people use different lengths.

For jumbo packets to work, the protocol stack, the drivers, and the network switches

must all support jumbo packets:

• The io-pkt (hardware-independent) stack supports jumbo packets.

• Not all network hardware supports jumbo packets (generally, newer GiGE NICs do).

• Native drivers for io-pkt support jumbo packets. For example, devnp-i82544.so

is a native io-pkt driver for PCI, and it supports jumbo packets.

If you can use jumbo packets with io-pkt, you can see substantial performance gains

because more data can be moved per packet header processing overhead.

To configure a driver to operate with jumbo packets, do this (for example):

# ifconfig wm0 ip4csum tcp4csum udp4csum
# ifconfig wm0 mtu 8100
# ifconfig wm0 10.42.110.237

For maximum performance, we also turned on hardware packet checksumming (for

both transmit and receive) and we've arbitrarily chosen a jumbo packet MTU of 8100

bytes. A little detail: io-pkt by default allocates 2 KB clusters for packet buffers.

This works well for 1500 byte packets, but for example when an 8 KB jumbo packet

is received, we end up with 4 linked clusters. We can improve performance by telling

io-pkt (when we start it) that we're going to use jumbo packets, like this:

# io-pkt-v6-hc -d i82544 -p tcpip pagesize=8192,mclbytes=8192

If we pass the pagesize and mclbytes command-line options to the stack, we tell it to

allocate contiguous 8 KB buffers (which may end up being two adjacent 4 KB pages,

which works fine) for each 8 KB cluster to use for packet buffers. This reduces packet

processing overhead, which improves throughput and reduces CPU utilization.
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Padding Ethernet packets

If an Ethernet packet is shorter than ETHERMIN bytes, padding can be added to the

packet to reach the required minimum length. In the interests of performance, the

driver software doesn't automatically pad the packets, but leaves it to the hardware

to do so if supported. If hardware pads the packets, the contents of the padding depend

on the hardware implementation.
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Transmit Segmentation Offload (TSO)

Transmit Segmentation Offload (TSO) is a capability provided by some modern NIC

cards.

See, for example, http://en.wikipedia.org/wiki/Large_segment_offload.

Essentially, instead of the stack being responsible for breaking a large IP packet into

MTU-sized packets, the driver does it. This greatly offloads the amount of CPU required

to transmit large amounts of data.

You can tell if a driver supports TSO by typing ifconfig and looking at the capabilities

section of the interface output. It will have tso marked as one of its capabilities. To

configure the driver to use TSO, type (for example):

ifconfig wm0 tso4
ifconfig wm0 10.42.110.237
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Appendix A
Utilities, Managers, and Configuration Files

The utilities, drivers, configuration files, and so on listed below are associated with

io-pkt.

For more information, see the Utilities Reference.

brconfig

Configure network bridge parameters

hostapd

Authenticator for IEEE 802.11 networks

ifconfig

Configure network interface parameters

ifwatchd

Watch for addresses added to or deleted from interfaces and call

up/down-scripts for them

io-pkt

Network I/O support

lsm-autoip.so

AutoIP negotiation module for link-local addresses

lsm-qnet.so

Transparent Distributed Processing (native QNX network) module

nicinfo

Display information about a network interface controller

pf

Packet Filter pseudo-device

pf.conf

Configuration file for pf

pfctl

Control the packet filter (PF) and network address translation (NAT) device
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ping

Send ICMP ECHO_REQUEST packets to network hosts (UNIX)

pppoectl

Display or set parameters for a pppoe interface

setkey

Manually manipulate the IPsec SA/SP database

sysctl

Get or set the state of the socket manager

tcpdump

Dump traffic on a network

wpa_cli

WPA command-line client

wpa_passphrase

Set WPA passphrase for a SSID

wpa_supplicant

Wi-Fi Protected Access client and IEEE 802.1X supplicant

For information about drivers, see the devnp-* entries in the Utilities Reference.
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Appendix B
Writing Network Drivers for io-pkt

This appendix is intended to help you understand and write network drivers for io-pkt.

Any network driver can be viewed as the “glue” between the underlying network

hardware, and the software infrastructure of io-pkt, the operating system protocol

stack above it.

So, the “bottom half” of the driver is coded specifically for the particular hardare it

supports, and the “top half” of the driver is coded specifically for io-pkt.

This document deals specifically with the “top half” of the io-pkt driver, which deals

with the io-pkt software infrastructure.

What does the driver API to io-pkt look like?

If you look at an existing io-pkt driver, the problem is that it's going to be cluttered

up with all sorts of hardware-specific material (i.e., the “bottom half” of driver) which

is going to distract you from understanding the API to io-pkt.

With this in mind, we've provided a completely hardware-independent sample driver,

which can be found in the sam.c appendix in this guide. For more information about

writing a network driver, see the Additional Information appendix.

Any driver can be considered to have the following functional areas:

• Initialization (p. 81)

• Interrupt handling and receive packet (p. 83)

• Transmit packet (p. 84)

• Periodic timers (p. 85)

• Link status (p. 86)

• Out-of-band control (p. 86)

• Shutdown (p. 87)

This appendix also covers the following advanced topics:

• Delays (p. 88)

• Threading (p. 89)

Let's take a look at each functional area.

Initialization

Initialization is probably the trickiest part of an io-pkt driver because part of the

initialization code will be called over and over again by io-pkt, so you must code it

accordingly. It's very easy to have a driver that works at first, but stops working after

io-pkt reinitializes it.
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Initialization begins with this:

struct nw_dll_syms sam_syms[] = {
        {"iopkt_drvr_entry", &IOPKT_DRVR_ENTRY_SYM(sam)},
        {NULL, NULL}
};

This tells io-pkt to execute the sam_entry() function, which in turn calls the

dev_attach() function for every instance of the hardware, of which there may be none,

one, or several.

The dev_attach() function, through preprocessor trickery, gets a pointer to the following,

via the &sam_ca parameter:

CFATTACH_DECL(sam,
    sizeof(struct sam_dev),
    NULL,
    sam_attach,
    sam_detach,
    NULL);

So for each instance of the hardware, the sam_attach() function will be called once

and only once. The sam_attach() function basically does two things: allocate resources

(e.g., those required for the hardware) and hook itself up to io-pkt.

Looking at sam_attach() we can see it hooking itself up to io-pkt in two main ways:

• One is by setting the callout functions in its ifp structure. For example, when

io-pkt wants to transmit a packet, it calls the ifp->if_start function pointer, which

has nothing to do with initialization, by the way. In sam_attach(), we see that the

ifp->if_start function pointer is set to the address of the sam_start() packet transmit

function.

• Second is by setting up for the hardware interrupt by calling the

interrupt_entry_init() io-pkt function, which is passed as a parameter, a pointer

to the sc_inter structure in the per-instance device structure.

The sc_inter struct contains pointers to the sam_process_interrupt() and

sam_enable_interrupt() functions, and also the per-instance device structure pointer

(sam).

Note that pthread_create() isn't called. This is an important detail about the threading

model of io-pkt drivers: whenever the driver wishes to execute, it must do so under

control of (i.e., be called by) io-pkt. This quite specifically includes asynchronous

events such as hardware interrupts (as discussed above) and also periodic timers via

the callout_msec() io-pkt function.

This completes the part of the driver initialization that's called once. Note that the

network hardware won't function at this point; no packets will be received (or

transmitted) until someone executes the ifconfig utility. For example:

ifconfig sam0 10.42.107.238
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Now, io-pkt will call the ifp->if_init function pointer for the sample driver, which

in the attach function was set to be sam_init(). This is where the hardware would be

enabled.

Remember, the ifp->if_init function can and will be called over and over again by

io-pkt. For example, if someone does this:

ifconfig sam0 mtu 8100

then the ifp->if_init function in the driver will be called again by io-pkt. So, it's up

to the driver to initialize the hardware as specified.

We can clearly see from this example that it would be an error of the driver to set the

MTU in the attach function. Generally the init function should audit the current

hardware configuration and correct it to match the new configuration. It would be a

mistake to disable the hardware and initialize it all over again as a small change would

then interrupt any current traffic flows.

Summary: the attach function is called once, to allocate resources and to hook up to

io-pkt. The init function is called over and over again, to configure and enable the

hardware.

It's worth mentioning that if you wish to write a driver for a PCI NIC, there's a little

dance you need to go through for vendor and device ID tables and scanning. Of course,

since sam.c was written to be a hardware-independent example, it doesn't have any

of that code in it. The devnp-e1000.so driver includes this as well as checking the

capabilities for using MSI or MSI-X. Similar concerns apply to a USB NIC, and the

devnp-asix.so driver is an example.

Interrupt handling & receive packet

You'll note that there are two different sam_isr() functions provided. The easiest way

to handle an interrupt is to simply use the kernel InterruptMask() function. A slightly

more complicated way to handle the interrupt is to write to a hardware register to mask

the interrupt, which works better if the interrupt is being shared with another device,

and might be just a little bit faster.

Either way, the sam_isr() function needs to mask the interrupt and queue the

appropriate function to perform the interrupt work by calling interrupt_queue(). In the

case of multiple hardware functions sharing the same interrupt, it's common to have

multiple process interrupt functions, and determine in the ISR which one to enqueue.

Once the ISR completes, the return value from interrupt_queue() causes io-pkt to

wake up, and calls the driver's sam_process_interrupt() function via the

sam->sc_inter.func function pointer.

The sam_process_interrupt() function will do whatever the hardware requires: perhaps

reading count registers, error handling, etc. It might or might not service the transmit
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side of the hardware (generally not recommended because of the negative performance

impact of enabling the transmit complete interrupt, but see below).

It will however service the receive side of the hardware: any filled received packet are

drained from the hardware, new empty packets are passed down to the hardware, and

the filled received packets are passed up to io-pkt using the ifp->if_input function

pointer.

A return value of 0 implies that the interrupt processing function has returned

without completing all of its work. This will permit other interfaces to run their

interrupt processing by placing sam_process_interrupt() at the end of the run

queue.

Once sam_process_interrupt() completes all its processing and returns 1, then

sam_enable_interrupt() will be called to enable the interrupts once more.

Transmit packet

As noted above, when io-pkt wishes to transmit a packet, it will call the driver's

ifp->if_start function pointer, which was set to sam_start() in the attach function.

Generally the first thing you do here is see if you have the hardware resources

(descriptors, buffers, whatever) available to transmit a packet. If the hardware runs

out of transmit resources, it should return from the ifp->if_start function, leaving

IFF_OACTIVE set:

ifp->if_flags_tx |= IFF_OACTIVE;

but remember to release the transmit mutex as described below!

With this flag set, io-pkt will no longer call the ifp->if_start function when adding

a packet to the output queue of the interface. At this point, it'is up to the driver to

detect when the out-of-resources condition has been cleared (either through periodic

retries or through some other notification such as transmit completion interrupts). The

driver should then acquire the transmit mutex and call the start function again to

transmit the data in the output queue.

What most drivers do is loop in the ifp->if_start function, passing packets down to the

hardware until there aren't any more packets to be transmitted, or the hardware

resources aren't available to permit packet loading for transmission, whichever comes

first.

There are a couple of handy macros that you can use here:

• You can use the IFQ_POLL() macro to peek at the transmit queue and see if there

are any more packets from io-pkt ready for transmitting. If there are none, you're

done.
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• You use the IFQ_DEQUEUE() macro to unlink the first queued packet from the

transmit queue. Some drivers just use this function, and don't bother with the

IFQ_POLL() macro. But once you've dequeued the packet, you must transmit it!

This really isn't very complicated. The main thing to remember is that before you return

from this function, you must release the transmit mutex as follows:

NW_SIGUNLOCK_P(&ifp->if_snd_ex, iopkt_selfp, wtp);

Note that the sample driver, in the start function, calls m_free(m) to release the

transmitted packet. It does this to avoid a memory leak, but you probably don't want

to do that if you have a descriptor-based NIC.

If you have a NIC that unfortunately requires that you copy the transmit packet into

a buffer, then you should immediately call m_free(m), which tells io-pkt that the

buffer is available for reuse, and it will be written to.

However, if you have a descriptor-based NIC, you don't copy the transmitted packet:

the hardware does the DMA, and you want to release the packet buffer only after the

DMA has completed sometime later, to avoid this packet from being overwritten.

If you look at most driver source, any descriptor-based NIC will have a “harvest” or

“reap” function that will check for transmitted descriptors, and will at that point

release the transmit packet buffer.

This requires that you squirrel away a pointer to the transmit packet (mbuf) somewhere.

Often hardware will have a few bytes free in the descriptor for this purpose, or if not,

you must maintain a corresponding array of mbufs which you index into while harvesting

descriptors.

Note that packets typically come down as multiple buffers e.g., typically for TCP 3

buffers, first containing the headers, second containing the remnants of the previous

mbuf and the third containing the start of the next mbuf. Badly fragmented packets

may require copying in to a new contiguous buffer depending on the capabilities of

the hardware and the degree of buffer fragmentation. This will obviously have a

performance impact, so you should avoid it where possible.

Periodic timers

Network drivers frequently need periodic timers to perform such housekeeping functions

as link maintenance and transmit descriptor harvesting. An io-pkt driver shouldn't

create its own thread or asynchronous timer via an OS function. The way you set up

a periodic timer is as follows in the ifp->if_init function:

callout_msec(&dev->mii_callout, 2 * 1000, dev_monitor, dev);

This will cause the dev_monitor() function to be called by an io-pkt thread after two

seconds have elapsed.
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The gotcha is that at the end of the dev_monitor() function, it must rearm its periodic

timer call by making the above call again. It's a one-shot—not a repetitive—timer.

You may need to add a “run_timer” variable and clear it as well as calling callout_stop()

when stopping the timer, and only call callout_msec() at the end of the dev_monitor()

function if this variable isn't set. This will close the window on a race condition where

the dev_monitor() function has started running but not completed when another thread

does a callout_stop(), then at the completion of the dev_monitor() function

callout_msec() is called again restarting the timer that's supposed to be stopped.

You should create timers only once with a call to callout_init():

callout_init (&dev->mii_callout);

They can have callout_msec() called multiple times, and it will start a stopped timer

or reset a currently running timer. Calling callout_stop() on a stopped timer will not

cause any issues, but calling callout_init() more than once will break things. Typically

the callout_init() will happen in the ifp->if_attach() function, which is only called once

per device, while callout_msec() will happen in the ifp->if_init() and also the callback

itself; because it resets a running timer and starts a stopped one, there's no need for

any further locking. The callout will typically be stopped via a call to callout_stop() in

the ifp->if_stop() function.

If you call into the transmit code to harvest descriptors, you should lock the

transmit mutex to avoid corrupting your data and registers, by using the

NW_SIGLOCK() macro.

Link status events

Users should be notified about link layer state changes. This is done via the

if_link_state_change() function:

if_link_state_change(ifp, LINK_STATE_UP);
if_link_state_change(ifp, LINK_STATE_DOWN);

Out of band (control)

Out-of-band (non-data) control of the driver is accomplished by the ifp->if_ioctl function

pointer which is set to sam_ioctl() in the attach function.

The ioctl function can be very simple (empty) or quite complex, depending upon the

features supported. For backward compatibility of the nicinfo utility (for example,

nicinfo sam0), you might wish to add support for the SIOCGDRVCOM

DRVCOM_CONFIG/DRVCOM_STATS commands.

If your driver supports hardware checksumming, you probably want to support the

SIOCSIFCAP command (see examples).
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If you want your driver to display its media link speed and duplex via the ifconfig

utility:

ifconfig -v

you want to add support for the SIOCGIFMEDIA and SIOCSIFMEDIA commands,

which actually allow the media speed and duplex to be set via the ifconfig utility.

Run this:

ifconfig -m

The io-pkt drivers that support the setting of media link speed and duplex via ifconfig

will have a source file called bsd_media.c. Typically this file is similar across many

drivers; they all interface to io-pkt quite similarly, and only minor hardware-specific

differences exist.

Finally, the ioctl interface is how the multicast receive addresses are enabled. See

sam.c for examples on how these addresses are obtained from io-pkt; the

ETHER_FIRST_MULTI() and ETHER_NEXT_MULTI() macros are used for this.

Shutdown

The shutdown scenarios are:

An ifconfig sam0 down command calls sam_stop().

This should stop any transmitting and receiving and clear any in-use buffers

so stale traffic doesn't appear when bringing the interface back up. Note

that while buffers should be cleaned up and Tx/Rx stopped, the rest of the

driver structures and hardware should be left intact. The next call in to the

driver will likely be triggered by an ifconfig up command, which will call

sam_init() and have everything up and running again.

An ifconfig sam0 destroy command calls sam_detach().

This should reset the hardware and clear up all memory. The driver is about

to be unmounted from io-pkt, leaving io-pkt still running. A suggested

testcase is to loop around mounting the driver, ifconfig it with an address,

run some traffic, then ifconfig destroy the interface to unmount the

driver. It should be possible to do this multiple times with no memory leaks.

An io-pkt exit or crash calls sam_shutdown().

This should simply reset the hardware to stop any DMA. Any further cleanup

of buffers or structures should be avoided, as it could cause a further crash

(masking the original root cause in the core file) as memory is potentially

corrupted.
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The stop function is specified as one of the standard callbacks, while the detach

function is part of the same preprocessor trickery that specified the attach function:

CFATTACH_DECL(sam,
    sizeof(struct sam_dev),
    NULL,
    sam_attach,
    sam_detach,
    NULL);

The sam_shutdown() is specified a little differently:

sam->sc_sdhook = shutdownhook_establish(sam_shutdown, sam);

It's important to remember to set this in the attach function and equally to clear it in

the detach function with:

shutdownhook_disestablish(sam->sc_sdhook);

Delays

When talking to hardware, a driver often needs to delay for a short time. Recall that

in an io-pkt driver, all functions are called from the io-pkt threads, and not from

driver threads. This can lead to issues when there are multiple interfaces, and a delay

in the driver on one interface impacts data flow on another.

Internally io-pkt uses a pseudo-threading method to avoid blocking, and in certain

circumstances we can make use of this in the driver. The one scenario in which it is

impossible to delay is a timer callback (see “Periodic Timers (p. 85)”) where the only

possible way to delay would be to set a new timer. Also at io-pkt startup, the

pseudo-threading mechanism is not yet initialized, so it can't be used, however because

everything is starting up, it's acceptable to use a standard delay mechanism.

Here's an example of a 0.5 second delay:

if (!ISSTART && ISSTACK) {
    /*
     * Called from an io-pkt thread and not at startup so can't
     * use normal delay, work out what type of delay to use.
     */
    if (curproc == stk_ctl.proc0) {
 /*
  * Called from a callout, can only do another callout.
  * If ltsleep is tried it returns success without
  * actually sleeping.
  */
 callout_msec(&dev->delay_callout, 500, next_part, dev);
 return;
    }
    /*
     * Normal io-pkt thread case. Use ltsleep to avoid blocking
     * other interfaces
     */
    timo = hz / 2;
    ltsleep(&wait, 0, "delay", timo, NULL);
} else {
    /*
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     * Either io-pkt is starting up or called from a different
     * thread so will not block other interfaces. Just use delay.
     */
    delay(500);
}

Threading

Earlier we mentioned that a driver shouldn't create its own threads and should run

under the io-pkt threads. There are some rare situations where a driver needs a

thread to handle some other aspect of the hardware (e.g., a USB or SDIO interaction),

but in general extra threads should be avoided. If you're in the unlikely scenario of

needing a thread, then there are some extra steps that need to be taken with threads

in io-pkt. While it's possible to create standard threads via pthread_create(), this

isn't recommended, as they must not have anything to do with mbufs or call back in

to io-pkt functions.

In io-pkt, mbuf handling threads are created by nw_pthread_create() rather than

pthread_create():

nw_pthread_create(&tid, NULL, thread_fn, dev, 0,
    thread_init_fn, dev);

The additional thread initialization function must at a minimum set the threads name

to differentiate it from the standard io-pkt threads, and also set up the quiesce

handler. It's permissible to perform other initializations, but at a minimum you must

set up the name and the quiesce handler:

static int thread_init_fn (void *arg)
{
    struct nw_work_thread *wtp;
    dev_handle_t  *dev = (dev_handle_t *)arg;

    pthread_setname_np(0, "My driver thread");

    wtp = WTP;

    wtp->quiesce_callout = thread_quiesce;
    wtp->quiesce_arg = dev;

    return EOK;
}

The thread name should easily identify which driver it's associated with, and if there

are multiple threads, then also the threads' purpose. As an example:

# pidin -p io-pkt-v4 thread
     pid name               thread name          STATE       Blocked
    4100 sbin/io-pkt-v4     io-pkt main          SIGWAITINFO
    4100 sbin/io-pkt-v4     io-pkt#0x00          RECEIVE     1
    4100 sbin/io-pkt-v4     asixx Rx             RECEIVE     22

The threads in this example are:

io-pkt main
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Used for the signal handler and also to handle any blockop requests.

io-pkt#0x00

A thread created by io-pkt for the main io-pkt work. Further numbered

threads are created by io-pkt in the case of additional CPUs and additional

interrupt_entry_init() calls.

dm814x Rx

An example of a driver thread, in this case from the devnp-asix.so driver

and used in the Rx processing to handle special low-latency packets when

io-pkt is busy servicing other requests. Failure to provide a name will

result in the thread's being named as an additional io-pkt numbered

thread, resulting in confusion between what is an io-pkt processing thread

and what is a driver thread.

The quiesce function is called in two scenarios:

• The first is if io-pkt needs to alter certain structures (such as further

nw_pthread_create() calls), it requires all the other threads to block while the

structures are updated.

• The second case is when the threads are being killed off, for example, at io-pkt's

exit time.

The die parameter is used to differentiate between the two scenarios. Note that the

quiesce function is actually called from an io-pkt thread and needs to notify the

driver thread to call quiesce_block() through (for example) global variables or a message

pulse. Here's an example where the thread is looping around continuously, so global

variables can be used:

static int quiescing = 0;
static int quiesce_die = 0;

static void thread_quiesce (void *arg, int die)
{
    dev_handle_t *dev = (dev_handle_t *)arg;

    quiescing = 1;
    quiesce_die = die;
}

static void *thread_fn (void *arg)
{

    while (1) {
 if (quiescing) {
     if (quiesce_die) {
  /*
   * Thread will terminate on calling
   * quiesce_block(), clean up here
   * if required.
   */
     }
     quiesce_block(quiesce_die);
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     quiescing = 0;
 }

 /* Do normal thread work */
 }
    }
}
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Appendix C
A Hardware-Independent Sample Driver: sam.c

This is the sample code that's discussed in the Writing Network Drivers for io-pkt

appendix.

/*
 * $QNXtpLicenseC:
 * Copyright 2007, 2014, QNX Software Systems. All Rights Reserved.
 * 
 * You must obtain a written license from and pay applicable license fees to QNX 
 * Software Systems before you may reproduce, modify or distribute this software, 
 * or any work that includes all or part of this software.   Free development 
 * licenses are available for evaluation and non-commercial purposes.  For more 
 * information visit http://licensing.qnx.com or email licensing@qnx.com.
 *  
 * This file may contain contributions from others.  Please review this entire 
 * file for other proprietary rights or license notices, as well as the QNX 
 * Development Suite License Guide at http://licensing.qnx.com/license-guide/ 
 * for other information.
 * $
 */

#include <io-pkt/iopkt_driver.h>
#include <sys/io-pkt.h>
#include <sys/syspage.h>
#include <sys/device.h>
#include <device_qnx.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/netbyte.h>
#include <net80211/ieee80211_var.h>

int sam_entry(void *dll_hdl, struct _iopkt_self *iopkt, char *options);

int sam_init(struct ifnet *);
void sam_stop(struct ifnet *, int);

void sam_start(struct ifnet *);
int sam_ioctl(struct ifnet *, unsigned long, caddr_t);

const struct sigevent * sam_isr(void *, int);
int sam_process_interrupt(void *, struct nw_work_thread *);
int sam_enable_interrupt(void *);

void sam_shutdown(void *);

struct _iopkt_drvr_entry IOPKT_DRVR_ENTRY_SYM(sam) = IOPKT_DRVR_ENTRY_SYM_INIT(sam_entry);

#ifdef VARIANT_a
#include <nw_dl.h>
/* This is what gets specified in the stack's dl.c */
struct nw_dll_syms sam_syms[] = {
        {"iopkt_drvr_entry", &IOPKT_DRVR_ENTRY_SYM(sam)},
        {NULL, NULL}
};
#endif

const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };

struct sam_dev {
 struct device  sc_dev; /* common device */
 struct ethercom  sc_ec; /* common ethernet */
 nic_config_t  cfg; /* nic information */
 struct ieee80211com sc_ic; /* common 80211 */
 /* whatever else you need follows */
 struct _iopkt_self *sc_iopkt;
 int   sc_iid;
 int   sc_irq;
 int   sc_intr_cnt;
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 int   sc_intr_spurious;
 struct _iopkt_inter sc_inter;
 void   *sc_sdhook;
};

int sam_attach(struct device *, struct device *, void *);
int sam_detach(struct device *, int);

CFATTACH_DECL(sam,
 sizeof(struct sam_dev),
 NULL,
 sam_attach,
 sam_detach,
 NULL);

/*
 * Initial driver entry point.
 */
int
sam_entry(void *dll_hdl,  struct _iopkt_self *iopkt, char *options)
{
 int  instance, single;
 struct device *dev;
 void  *attach_args;

 /* parse options */

 /* do options imply single? */
 single = 1;

 /* initialize to whatever you want to pass to sam_attach() */
 attach_args = NULL;

 for (instance = 0;;) {
  /* Apply detection criteria */

  /* Found one */
  dev = NULL; /* No Parent */
  if (dev_attach("sam", options, &sam_ca, attach_args,
      &single, &dev, NULL) != EOK) {
   break;
  }
  dev->dv_dll_hdl = dll_hdl;
  instance++;

  if (/* done_detection || */ single)
   break;
 }

 if (instance > 0)
  return EOK;

 return ENODEV;
}

int
sam_attach(struct device *parent, struct device *self, void *aux)
{
 int   err;
 struct sam_dev  *sam;
 struct ifnet  *ifp;
 uint8_t   enaddr[ETHER_ADDR_LEN];
 struct qtime_entry *qtp;

 /* initialization and attach */

 sam = (struct sam_dev *)self;
 ifp = &sam->sc_ec.ec_if;

 sam->sc_iopkt = iopkt_selfp;

 /*
  * CAUTION: As an example we attach to the system timer interrupt.
  * This would be the network hardware interrupt in a real
  * driver. When this sample driver is run it masks and unmasks
  * the system timer interrupt in io-pkt. This may cause problems
  * with other timer calls in other drivers, potentially even
  * leading to a deadlock. It is safe to run by itself in io-pkt.
  */
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 qtp = SYSPAGE_ENTRY(qtime);
 sam->sc_irq = qtp->intr;

 if ((err = interrupt_entry_init(&sam->sc_inter, 0, NULL,
     IRUPT_PRIO_DEFAULT)) != EOK)
  return err;

 sam->sc_inter.func   = sam_process_interrupt;
 sam->sc_inter.enable = sam_enable_interrupt;
 sam->sc_inter.arg    = sam;

 sam->sc_iid = -1; /* not attached yet */

 /* set capabilities */
#if 0
 ifp->if_capabilities_rx = IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
 ifp->if_capabilities_tx = IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;

 sam->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
#endif

 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;

 /* Set callouts */
 ifp->if_ioctl = sam_ioctl;
 ifp->if_start = sam_start;
 ifp->if_init = sam_init;
 ifp->if_stop = sam_stop;
 IFQ_SET_READY(&ifp->if_snd);

 ifp->if_softc = sam;

 /* More callouts for 80211... */

 strcpy(ifp->if_xname, sam->sc_dev.dv_xname);
 if_attach(ifp);

 {
  int i;
  for (i = 0; i < ETHER_ADDR_LEN; i++)
   enaddr[i] = i;
 }
#if 1
 /* Normal ethernet */
 ether_ifattach(ifp, enaddr);
#else
 /* 80211 */
 memcpy(sam->sc_ic.ic_myaddr, enaddr, ETHER_ADDR_LEN);
 ieee80211_ifattach(&sam->sc_ic);
#endif
 sam->sc_sdhook = shutdownhook_establish(sam_shutdown, sam);

 return EOK;
}

void sam_set_multicast(struct sam_dev *sam)
{
 struct ethercom   *ec = &sam->sc_ec;
 struct ifnet   *ifp = &ec->ec_if;
 struct ether_multi  *enm;
 struct ether_multistep  step;

 ifp->if_flags &= ~IFF_ALLMULTI;

 ETHER_FIRST_MULTI(step, ec, enm);
 while (enm != NULL) {
                if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
                        /*
                         * We must listen to a range of multicast addresses.
                         * For now, just accept all multicasts, rather than
                         * trying to filter out the range.
                         * At this time, the only use of address ranges is 
                         * for IP multicast routing.
                         */
                        ifp->if_flags |= IFF_ALLMULTI;
   break;
                }
  /* Single address */
  printf("Add %2x:%2x:%2x:%2x:%2x:%2x to mcast filter\n",
         enm->enm_addrlo[0],enm->enm_addrlo[1],
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         enm->enm_addrlo[0],enm->enm_addrlo[1],
         enm->enm_addrlo[0],enm->enm_addrlo[1]);
 }

 if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
  printf("Enable multicast promiscuous\n");
 } else {
  printf("Disable multicast promiscuous\n");
 }
}

int
sam_init(struct ifnet *ifp)
{
 int  ret;
 struct sam_dev *sam;

 /*
  * - enable hardware.
  *   - look at ifp->if_capenable_[rx/tx]
  *   - enable promiscuous / multicast filter.
  * - attach to interrupt.
  */

 sam = ifp->if_softc;

 if(memcmp(sam->cfg.current_address, LLADDR(ifp->if_sadl), ifp->if_addrlen)) {
  memcpy(sam->cfg.current_address, LLADDR(ifp->if_sadl), ifp->if_addrlen);
  /* update the hardware */
 }

 if (sam->sc_iid == -1) {
  if ((ret = InterruptAttach_r(sam->sc_irq, sam_isr,
      sam, sizeof(*sam), _NTO_INTR_FLAGS_TRK_MSK)) < 0) {
   return -ret;
  }
  sam->sc_iid = ret;
 }

 sam_set_multicast(sam);
 ifp->if_flags |= IFF_RUNNING;

 return EOK;
}

void
sam_stop(struct ifnet *ifp, int disable)
{
 struct sam_dev *sam;

 /*
  * - Cancel any pending io
  * - Clear any interrupt source registers
  * - Clear any interrupt pending registers
  * - Release any queued transmit buffers.
  */

 sam = ifp->if_softc;

 if (disable) {
  if (sam->sc_iid != -1) {
   InterruptDetach(sam->sc_iid);
   sam->sc_iid = -1;
  }
  /* rxdrain */
 }

 ifp->if_flags &= ~IFF_RUNNING;
}

void
sam_start(struct ifnet *ifp)
{
 struct sam_dev  *sam;
 struct mbuf  *m;
 struct nw_work_thread *wtp;

 sam = ifp->if_softc;
 wtp = WTP;
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 for (;;) {
  IFQ_POLL(&ifp->if_snd, m);
  if (m == NULL)
   break;

  /*
   * Can look at m to see if you have the resources
   * to transmit it.
   */

  IFQ_DEQUEUE(&ifp->if_snd, m);
  /* You're now committed to transmitting it */
  if (sam->cfg.verbose) {
   printf("Packet sent\n");
  }
  m_freem(m);

  ifp->if_opackets++;  // for ifconfig -v
  // or if error:  ifp->if_oerrors++;
 }

 NW_SIGUNLOCK_P(&ifp->if_snd_ex, iopkt_selfp, wtp);
}

int
sam_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
{
 struct sam_dev *sam;
 int  error;

 sam = ifp->if_softc;
 error = 0;

 switch (cmd) {
 default:
  error = ether_ioctl(ifp, cmd, data);
  if (error == ENETRESET) {
   /*
    * Multicast list has changed; set the
    * hardware filter accordingly.
    */
   if ((ifp->if_flags & IFF_RUNNING) == 0) {
    /*
     * Interface is currently down: sam_init() 
     * will call sam_set_multicast() so
     * nothing to do
     */
   } else {
    /*
     * interface is up, recalculate and
     * reprogram the hardware.
     */
    sam_set_multicast(sam);
   }
   error = 0;
  }
  break;
 }

 return error;
}

int
sam_detach(struct device *dev, int flags)
{
 struct sam_dev *sam;
 struct ifnet *ifp;

 /*
  * Clean up everything.
  *
  * The interface is going away but io-pkt is staying up.
  */
 sam = (struct sam_dev *)dev;
 ifp = &sam->sc_ec.ec_if;

 sam_stop(ifp, 1);
#if 1
 ether_ifdetach(ifp);
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#else
 ieee80211_ifdetach(&sam->sc_ic);
#endif

 if_detach(ifp);

 shutdownhook_disestablish(sam->sc_sdhook);

 return EOK;
}

void
sam_shutdown(void *arg)
{
 struct sam_dev *sam;

 /* All of io-pkt is going away.  Just quiet hardware. */

 sam = arg;

 sam_stop(&sam->sc_ec.ec_if, 1);
}

#ifndef HW_MASK
const struct sigevent *
sam_isr(void *arg, int iid)
{
 struct sam_dev  *sam;
 struct _iopkt_inter *ient;

 sam = arg;
 ient = &sam->sc_inter;

 /*
  * Close window where this is referenced in sam_enable_interrupt().
  * We may get an interrupt, return a sigevent and have another
  * thread start processing on SMP before the InterruptAttach()
  * has returned.
  */
 sam->sc_iid = iid;

 InterruptMask(sam->sc_irq, iid);

 return interrupt_queue(sam->sc_iopkt, ient);
}
#else
const struct sigevent *
sam_isr(void *arg, int iid)
{
 struct sam_dev  *sam;
 struct _iopkt_self *iopkt;
 const struct sigevent *evp;
 struct inter_thread *itp;

 sam = arg;
 iopkt = sam->sc_iopkt;
 evp = NULL;

#ifdef READ_CAUSE_IN_ISR
 /*
  * Trade offs.
  * - Doing this here means another register read across the bus.
  * - If not sharing interrupts, this boils down to exactly the 
  *   same amount of work but doing more of it in the isr.
  * - If sharing interupts, can short circuit some work in the
  *   stack here.
  * - Maybe trade off is to only do it if we're detecting
  *   spurious interrupts which should happen under heavy
  *   shared interrupt load?
  */
#ifdef READ_CAUSE_ONLY_ON_SPURIOUS
 if (ient->spurrious) {
#endif
  if (ient->on_list == 0 &&
      (sam->sc_intr_cause = i82544->reg[I82544_ICR]) == 0) {
   return NULL; /* Not ours */
  }
  sam->sc_flag |= CAUSE_VALID;
#ifdef READ_CAUSE_ONLY_ON_SPURIOUS
 }
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#endif
#endif

 /*
  * We have to make sure the interrupt is masked regardless
  * of our on_list status.  This is because of a window where
  * a shared (spurious) interrupt comes after on_list
  * is knocked down but before the enable() callout is made.
  * If enable() then happened to run after we masked, we
  * could end up on the list without the interrupt masked
  * which would cause the kernel more than a little grief
  * if one of our real interrupts then came in.
  *
  * This window doesn't exist when using kermask since the
  * interrupt isn't unmasked until all the enable()s run
  * (mask count is tracked by kernel).
  */

 /*
  * If this was controling real hardware, mask of
  * interrupts here. eg from i82544 driver:
  */
 i82544->reg[I82544_IMC] = 0xffffffff; 

 return interrupt_queue(sam->sc_iopkt, ient);
}
#endif
int
sam_process_interrupt(void *arg, struct nw_work_thread *wtp)
{
 struct sam_dev  *sam;
 struct mbuf   *m;
 struct ifnet  *ifp;
 struct ether_header *eh;

 sam = arg;
 ifp = &sam->sc_ec.ec_if;

 if ((sam->sc_intr_cnt++ % 1000) == 0) {
  /* Send a packet up */
  m = m_getcl_wtp(M_DONTWAIT, MT_DATA, M_PKTHDR, wtp);

  if (!m) {
            ifp->if_ierrors++;  // for ifconfig -v
   return 1;
  }

  m->m_pkthdr.len = m->m_len = sizeof(*eh);

  // ip_input() needs this
  m->m_pkthdr.rcvif = ifp;

  // dummy up a broadcasted IP packet for testing
  eh = mtod(m, struct ether_header *);
  eh->ether_type = ntohs(ETHERTYPE_IP);
  memcpy(eh->ether_dhost, etherbroadcastaddr, ETHER_ADDR_LEN);

  ifp->if_ipackets++; // for ifconfig -v

  (*ifp->if_input)(ifp, m);

  printf("sam_process_interrupt %d\n", sam->sc_intr_cnt);
 }

 /*
  * return of 1 means were done.
  *
  * If we notice we're taking a long time (eg. processed
  * half our rx descriptors) we could early out with a
  * return of 0 which lets other interrupts be processed
  * without calling our interrupt_enable func.  This
  * func will be called again later.
  */
 return 1;
}
#ifndef HW_MASK
int
sam_enable_interrupt(void *arg)
{
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 struct sam_dev *sam;

 sam = arg;
 InterruptUnmask(sam->sc_irq, sam->sc_iid);

 return 1;
}
#else
int
sam_enable_interrupt(void *arg)
{
 struct sam_dev *sam;

 sam = arg;
 /* eg from i82544 driver */

 i82544->reg[I82544_IMS] = i82544->intrmask;

 return 1;
}
#endif

#if defined(__QNXNTO__) && defined(__USESRCVERSION)
#include <sys/srcversion.h>
__SRCVERSION("$URL$ $Rev$")
#endif
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Appendix D
Additional information

The io-pkt utility (io-pkt-v4, io-pkt-v4-hc, and io-pkt-v6-hc) is the

Neutrino network manager. This is a process outside of the kernel space and executes

in the application space. Along with providing the network manager framework, it also

includes TCP/IP (TCP, UDP, IPv4, IPv6) support, along with PPP services and a variety

of other services built in. DLLs can also be mounted to extend this process's

functionality. This process is provided in these versions:

io-pkt-v4

• Included services: UDP, TCP, IPv4, PPP, BPF, TUN, TAP

• Loadable modules: Qnet, Packet Filter (PF), autoIP, SLIP, shim

io-pkt-v4-hc

• Included services: UDP, TCP, IPv4, PPP, BPF, TUN, TAP, IPSec, HW

crypto offload

• Loadable modules: Qnet, PF, autoIP, SLIP, shim

io-pkt-v6-hc

• Included services: IPv6, IPv4, UDP, TCP, PPP, BPF, TUN, TAP, IPSec,

HW crypto offload

• Loadable modules: Qnet, PF, autoIP, SLIP, shim

As the io-pkt process executes in the application space, it's possible to launch more

than one instance of it (see the io-pkt documentation). This ability is limited only

by the management of the hardware interfaces, as typically only one driver instance

(in one io-pkt instance) would manage one hardware interface.

The io-pkt manager has three defined driver interface APIs: native, shim, and BSD.

Shim and BSD are typically used only to support legacy drivers and aren't intended

for new driver development.

Native

This is the primary io-pkt API for new driver development. Native io-pkt

drivers are noted by their file name prefix devnp-. This document will focus

on this interface. Developing a driver for this interface provides the best

integration with io-pkt (standard statistics and driver management) along

with the best performance.
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Shim

This is the interface supplied to support legacy io-net drivers (io-net

was the network manager that io-pkt replaced). This interface allows

io-net drivers to be loaded by io-pkt without modification. The additional

DLL devnp-shim.so must be available, and is automatically loaded by

io-pkt when an io-net driver is loaded. The io-net drivers are identified

by their file name prefix devn-.

BSD

This is the interface supplied to support legacy NetBSD drivers. It doesn't

support a native NetBSD binary, but does allow that driver's source to be

recompiled for QNX Neutrino via a supplied BSD abstraction layer library

which maps NetBSD library functions to QNX Neutrino functions where

required. BSD drivers also use the file name prefix devnp-.

Drivers using any of these interfaces can be mounted and unloaded (unmounted or

destroyed) dynamically. Loading and unloading can be performed in the following way:

• Loading drivers when starting io-pkt:

io-pkt-v4-hc -d name or full path of driver binary [option,[option,..]] [-d
 ....]

where name is the unique part of the driver file name (for example speedo vs

devnp-speedo.so). Each unique driver instance (different option set or different

driver) is specified with another -d driver option on the command line.

• Loading drivers after io-pkt process is running:

mount -T io-pkt [-o option[,option,...]] full path of driver

You don't have to specific the devnp-shim.so DLL on the command line of either

io-pkt or mount; it's loaded automatically if needed.

• Unloading driver DLLs:

ifconfig interface_name destroy

Once all the interfaces managed by a driver have been destroyed, the driver DLL

is unloaded, unless there are special actions taken by the driver to stay resident.

• Unloading shim driver DLLs: Along with ifconfig interface_name destroy,

io-net shim drivers also support umount:

umount /dev/io-net/interface_name
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io-pkt architecture

As described in the System Architecture under Networking Architecture, Threading

Model, io-pkt is a multithreaded process. We recommend that you read that section

before continuing.

From this section we have at least the following thread types:

Stack context

This isn't really a specific thread, but a context of code that's single-threaded

and can't be executing in multiple POSIX threads at the same time. It handles

the main processing of io-pkt, such as the io-pkt resource manager

dispatcher (see QNX Neutrino resource managers), which manages BSD

socket API related operations, TCP/IP stack code and layer 3 code.

Since this context of code is single threaded, you must never block it. If you

block this context of code, all the operations it performs (such as the resource

manager) will be blocked until it's released. If during testing of your driver

the ifconfig utility becomes blocked on io-pkt and doesn't terminate

with the expected output, there is a good chance that you have blocked the

stack context in your driver.

While single threaded, the stack context can manage blocking operations.

This is via pseudo-threading. A “stack” is maintained per pseudo-thread. If

a pseudo-thread is going to block, it's put to sleep, to be woken when the

required condition is met. Only pseudo-threads within the stack context can

yield execution to each other. You can't use sleep and wake routines outside

of the stack context. This includes functions that call these routines. If you

use these function outside the stack context, io-pkt can become unstable

or fault. For more information on blocking and interacting with the stack

context see the “Stack context” section below.

io-pkt-created threads

These are real POSIX threads created by io-pkt. In practice,

io-pkt-created threads can be these types:

• Main thread (thread name io-pkt main, as listed in with the pidin

utility's threads option.

This is the thread created at io-pkt process startup to initialize io-pkt.

It's generally idle after the io-pkt is initialized and its worker posix

threads are started. It will never be the stack context. While generally

idle, there is a way to leverage it for network driver blocking operations

if needed (see blockop in the later sections).

• io-pkt worker thread (thread name io-pkt#0x0N)
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These are threads created by io-pkt to service interrupts. As discussed

in the “Threading Model” of the Network Architecture guide, one thread

is created per CPU. You can use an io-pkt option to create more or

less threads based on unusual conditions, but its optimal format is one

POSIX thread per CPU.

The naming of the thread is the default io-pkt thread naming for any

io-pkt managed thread, so this naming doesn't absolutely identify one

of these threads (see “User-created io-pkt managed thread” below).

The io-pkt worker threads will also execute the stack context code,

and are the only threads that can execute the stack context code. Only

one of these thread can execute this code at a time. The stack context

may also migrate between the io-pkt worker threads, depending on the

circumstances.

User-created threads include the following:

• io-pkt user-created io-pkt tracked thread (thread name is specified

by the user; the default is io-pkt#0x0N")

These are POSIX threads that were created by a dynamically loaded library

(driver or other) or a thread created by an internal io-pkt service. These

threads are created and managed by an io-pkt-specific POSIX thread

API and can't execute the stack context code.

An io-pkt internal service example is the PPP read thread (identified

as such in the pidin threads output). These threads are typically

created to handle blocking operations (such as a blocking read()) in the

PPP case. This keeps the stack context from becoming blocked.

User-created io-pkt-managed threads should always have a thread

name assigned to them to make it easy to identify them during debugging

situations. If they aren't named, they can be hard to distinguish from

one another as well as from the io-pkt worker threads, as by default

they use the same naming convention. While these threads can't perform

operations that manipulate the pseudo-threads of the stack context, they

can allocate and free mbufs and clusters and other memory objects via

the io-pkt memory management. They can't however perform memory

allocation as a M_WAITOK operation (they must always use M_NOWAIT).

Using M_WAITOK would engage the pseudo-thread code in the stack

context.

• User-created io-pkt thread “Not Tracked” (Default thread name is

undefined)

These are threads created by the user using the default libc Posix thread

API. We don't recommended that you create threads in this manner as
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there will be no io-pkt context associated with them. This means that

they can't allocate memory using io-pkt's memory management and

can't be managed via io-pkt's thread synchronization mechanisms.

Typically the reason these threads may exist is during integration of third

party code or library functions that create threads for specific tasks (for

example USB insertion and removal event thread via libusbdi), or

legacy io-net drivers that created receive threads.

If a thread is created using this API, it should operate in a manner that

abstracts it from io-pkt API functions, so they aren't performed by this

thread. For example, if a mbuf or cluster memory buffer needs to be

created and managed, this thread could modify the data in the buffer,

but couldn't allocate or free this buffer. Thread management must also

be done by user code (starting/terminating and synchronizing), because

io-pkt isn't aware of this thread. As with the io-pkt managed threads,

these threads should be named.

For ease of debugging, it's recommended that any user-created io-pkt POSIX

threads be named (see the pthread_setname_np() function). This will make it

easy to identify the service that the thread provides in the pidin threads

output if there are any problems.

Integration considerations

When coding a new io-pkt driver or porting existing driver code, you will want to

consider how best to integrate it with io-pkt. The io-pkt program is optimized in

such a manner that the preferred driver architecture doesn't require the creation of

any driver-specific POSIX threads. This is to minimize thread switching in

high-bandwidth situations (including forwarding between interfaces). Most io-pkt

driver callback functions can potentially be called from the stack context. If this is

the case, any time you spend in your driver is time that is potentially blocking other

network operations from occurring.

The io-pkt manager is POSIX multi-threaded and can perform

packet-forwarding operations in multiple threads simultaneously. The issue is

that you can't predict when your function is being called with the stack context

or not (although it's possible to determine if you have been at that time), so

you still need to consider that it can and may often occur.

Whether you need to create a thread or take other special steps will probably depend

on a few considerations:

• Does your driver code block on certain operations for undefined periods of time?
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• Does the hardware your driver manages perform additional functions beyond network

packet TX and RX?

• Does your hardware integration contain many more steps than one interrupt per

RX packet or set of RX packets which are DMA into a descriptor ring?

If so, you may have to consider some of the advanced topics described later in this

appendix. If not, then it's likely you should be able to integrate your driver as close to

the optimized architecture as possible without using additional threads.

Examples of blocking include:

• Calling a function that requires a message pass to another manager.

A typical scenario is a read operation to the USB stack (io-usb) by a USB network

driver, or a read operation to a serial port or character-based interface (for example

io-pkt PPP code). In these cases, we don't know when data to RX will arrive, so

this could result in blocking indefinitely. You can send a message to another

process, but you will expect an immediate response.

• Performing a function not related to packet RX and TX, but that is time consuming,

or for whatever reason (HW or otherwise), TX and RX routines are extremely time

consuming.

• The HW requires that firmware be uploaded before it can function.

An example of your hardware managing additional functions could be that the hardware

services a multipurpose BUS. Ethernet frames may just be one type of data passed

on this BUS, encapsulated within specific framing associated with this BUS although

the primary data passed is network data.

You may want to create a resource manager within io-pkt to allow other types of

data along with the TCP/IP traffic to be passed on the BUS. In this case, we are

optimizing the TCP/IP traffic over other frame types. An architectural alternative could

be to create a dedicated process to manage the BUS and require the io-pkt driver

to perform message-passing to communicate with the BUS manager. This would be

a more system-wide BUS sharing consideration.

An example of complicated hardware integration could be an interface with limited or

no support of optimizations such as DMA and descriptor ring support. It may require

multiple operations to obtain packet data where each suboperation requires its own

interrupt, or multiple status requests are required. This can be time-consuming and

complicated to integrate. A thread dedicated to managing HW RX and potentially TX

may be needed.

Typical PCI network driver

See the Writing Network Drivers for io-pkt appendix and the accompanying sample

driver, sam.c.
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Managing the TX queue during resource conflict or link failure

One of the items often overlooked in io-pkt drivers is restarting transmission if some

kind of resource conflict/exhaustion occurred or the link state is down. When io-pkt

calls the driver if_start() callback function, it expects the TX queue to be drained. If

it isn't, it will not call this callback function again unless there's a new packet added

to the output queue. Also if the link state is down, the TX queue can fill up with

packets to be sent. When the link state is restored, io-pkt will wait until the next

packet transmission to call the if_start() callback, so that the packets in the send

queue are transmitted.

Often managing this behavior is overlooked and can be misinterpreted at runtime as

a lost or dropped frame, which was retransmitted simply because another packet will

likely be sent shortly afterward to cause the if_start() callback to be executed again.

Differences between the interface Up/Down state and the Link up/down state

The first place to start is the difference between the interface up and down state vs

the link up and down state. The interface up and down state is reflected in the interface

flags (IFF_UP and IFF_DOWN), which can be viewed by ifconfig. The link up and

down state is reflected in the media flags and can be viewed by ifconfig under the

“media:” heading, and can also be viewed with nicinfo under the heading “Link is

down|up.” These states are managed independently of each other, and one can be up

while the other is down and vice versa.

The interface state is set via ifconfig and its default is down until set up when

configured up explicitly, or when an IP address is assigned to the interface. It's

considered an advisory state, as it reflects whether the user has set the interface up

or down, regardless of the link's state. If the interface state is marked down, TX packets

are dropped (memory is freed) without being queued, and the application can receive

the error ENETDOWN. Likewise, RX packets are dropped by ether_input() (which is

called by the driver on RX).

The link state is set by the driver itself based on the status of the physical link. If the

link state is down, no RX packets will arrive, but on TX, the behavior is driver-specific.

The MII code may update the status to io-pkt as displayed by the routing socket,

ifconfig, and nicinfo, but otherwise io-pkt takes no specific action. On TX,

(provided that the interface state is up) the packet will be added to the interface send

queue (if it isn't already full), your driver's if_start() function will be called, and what

occurs with respect to the send queue will be driver-specific.

Managing the TX queue

As we saw in the driver sample above, on TX the if_start() driver callback obtains

packets to transmit from the ifp->if_snd queue. Packets are added to the send queue

regardless of link state or other HW resource issues. One of the first things done in

if_start() is to set the interface flag IFF_OACTIVE. This flag defines whether the

driver is actively attempting to transmit data. This is a driver-level flag and isn't limited
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to the context of the if_start() callback function itself. If this flag is set, io-pkt will

not attempt to call the if_start() callback again.

The significance of this is what occurs if there aren't enough resources to TX the

packet, or if the link state is down. What should be done?

If nothing is done, the driver clears IFF_OACTIVE and if_start() returns, the packets

remain on the send queue and if_start() will not be called again until there's another

packet to be sent, at which point everything is evaluated again as before. If the link

remains down, the send queue can fill, and applications could start getting ENOBUF

errors. The driver may first exhaust the TX descriptors. It all depends on how the driver

was coded. It can also be possible to get into this state when the link state is up simply

because the HW couldn't transmit the packets quickly enough, exhausting the TX

descriptors. We probably want the driver to continue transmission when the hardware

or descriptor ring is ready, rather than wait until io-pkt has another packet to add

to the send queue.

What needs to be decided is what to do if packets can't be transmitted: whether to

leave the packets in the buffer, for how long, and how often should the driver attempt

to send them. These parameters are specific to the driver implementation, but here

is how they can be applied.

A timer can be enabled with a callback function to execute the if_start() callback. So

for example, if the hardware isn't ready:

static void
sam_kick_tx (void *arg)
{
    sam_dev_t *sam = arg;
    NW_SIGLOCK(&sam->ecom.ec_if.if_snd_ex, sam->iopkt);
    sam_start(&sam->ecom.ec_if);
}

...

void
sam_start(struct ifnet *ifp)
{
    .....
    if (callout_pending(&sam->tx_callout))
        callout_stop(&sam->tx_callout);
    ifp->if_flags_tx |= IFF_OACTIVE;   /* Actively sending data on interface */
    .....
    if (detected_issue) {
        /* Resources aren't ready or something else is wrong */
        /* Set a callback to try again later */
        callout_msec(&sam->tx_callout, 2, sam_kick_tx, sam);
        /* Actual timeout value can be configurable or vary based on
           implementation */
        /* Leave IFF_OACTIVE set so the stack doesn't call us again */
        NW_SIGUNLOCK(&ifp->if_snd_ex, sam->iopkt);
        return;
    }
    ...

    /* Successful execution of sam_start() */
    ifp->if_flags_tx &= ~IFF_OACTIVE;
    NW_SIGUNLOCK(&ifp->if_snd_ex, sam->iopkt);
    return;
}
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You can also make a similar call when the link is detected up in your MII code. In this

case, you may perform some queries to determine if there is data to be sent; you may

want to check both the transmit descriptor list and the interface send queue:

    ...
    sam->cfg.flags &= ~NIC_FLAG_LINK_DOWN;
    if_link_state_change(ifp, LINK_STATE_UP);
    if (data_in_tx_desc || !IFQ_IS_EMPTY(&ifp->if_snd)){
        /* There is some data to send */
        if (callout_pending(&sam->tx_callout))
            callout_stop(&sam->tx_callout); /* Timer not needed calling
                                                   if_start() callback directly. */
        NW_SIGLOCK(&ifp->if_snd_ex, sam->iopkt);
        sam_start(ifp);
    }
    ...

If you set this timer, it should be stopped if an ifconfig interface_name down

occurs, or otherwise the if_stop() driver callback function is executed. When this

occurs, the following can be called early in if_stop():

static void
sam_stop(struct ifnet *ifp, int disable) {
    ... 
    /* Lock out the transmit side */
    NW_SIGLOCK(&ifp->if_snd_ex, sta2x11->iopkt);
    if (callout_pending(&sam->tx_callout)) {
        callout_stop(&sam->tx_callout);
        /* We aren't in if_start() as it stops the callout */
        ifp->if_flags_tx &= ~IFF_OACTIVE;
    }
    for (i = 0; i < 10; i++) {
        if ((ifp->if_flags_tx & IFF_OACTIVE) == 0)
            break;
        NW_SIGUNLOCK(&ifp->if_snd_ex, sam->iopkt);
        delay(50);
        NW_SIGLOCK(&ifp->if_snd_ex, sam->iopkt);
    }
    if (i < 10) {
        ifp->if_flags_tx &= ~IFF_RUNNING;
        NW_SIGUNLOCK(&ifp->if_snd_ex, sam->iopkt);
    } else {
        /* Heavy load or bad luck. Try the big gun. */
        quiesce_all();
        ifp->if_flags_tx &= ~IFF_RUNNING;
        unquiesce_all();
    }
    ...
    /* Mark the interface as down and cancel the watchdog timer. */
    ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    ifp->if_timer = 0;
    return;
}

The last point is stale data. These are packets that have accumulated in the send

queue but can't be sent. How long should attempts to retransmit this data be made

and when should the queue be flushed? You probably want to consider flushing the

queue, as you probably don't want to send packets that have sat in the send queue

for extended periods of time, as the data is probably out of date.

Above we've seen how to use a timer to resume transmission, or to use link state to

resume transmission. This is based on the idea that the issues related to TX are sporadic

and for short periods of time. A decision may have to be made when to declare the

data stale as well as to stop data from being queued. We can flush the send queue,
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but we also want io-pkt to stop queuing packets, or the send queue will just fill up

again.

Based on some kind of timing, if TX hasn't resumed, you can decide to purge the send

queue. This can be managed by a higher level or at the driver level. If managed at the

higher level, marking the interface down by clearing the IFF_UP interface flag will

cause the send queue to be purged. At the driver level you can perform the same

operation via:

IFQ_PURGE(&ifp->if_snd);

If the interface remains down, no new packets will be added to the send queue. If the

interface is marked up, io-pkt will continue to add packets to the send queue. If

the interface remains up, periodic purging may be needed if TX hasn't resumed at the

hardware level.

Advanced driver integration topics

Blocking Operations

The io-pkt manager is optimized to minimize thread switching, and as mentioned

in the architecture discussion previously, driver API callback functions can be called

from the stack context. As the stack context is single-threaded, we can't have blocking

operations being performed within the stack context. If a blocking operation occurs,

you will block the stack context (io-pkt resource manager, protocol processing) for

the duration of the time spent blocked.

If during testing of your driver, io-pkt or your driver seems unresponsive, try

executing ifconfig. If it doesn't terminate with output and is blocked on

the io-pkt process, there's a good chance that the stack context is blocked.

Check the state of the threads in the pidin output. If any threads named

0x00, 0x01, and so on (depending on the number of CPU on your system) are

blocked on a mutex, semaphore, condvar, or other resource manager, it means

the stack context is blocked, and there may be some kind of deadlock or general

blocking issue in the driver API callback functions.

What defines blocking? Basically any time spent in the driver API callback functions

may potentially be time that io-pkt can't service the resource manager (applications),

timers, and processing associated with the supported protocols in io-pkt. Time spent

in the driver API callback functions should be as little as possible.

Some examples to consider are:

• Message passing with another resource manager.

Many QNX Neutrino function calls result in a message's being sent to another

resource manager. If the message being sent will not get a immediate response (a

blocking read() or write() for example), you can block io-pkt. The typical example
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is a read operation; if it's a blocking read, the function call may not return until

there is data to read.

• Locking resources.

If the resource is already locked, can it potentially be locked for a long period of

time, blocking the callback function while the driver waits to acquire the lock?

Does your hardware require a service that can take a long period of time, such as

loading the firmware?

Block Op

If the duration of the blocking scenario is known and within a few seconds or less,

you can use the blockop services. Essentially this offloads an operation that may take

some time to the io-pkt main thread (which is typically idle). Note that blockop is

a shared service, and may have multiple operations scheduled. This is meant for

occasional time-consuming operations (such as a firmware upload that occurs once),

but not indefinite or long-term operations and not repetitive operations. It's a

convenience service that handles the complicated management of the stack context

pseudo-thread handling. As it performs these kinds of operations, it must be called

from within the stack context. The callback function however isn't called from the

stack context and shouldn't perform any operations that require the stack context or

buffer management.

The example below is taken from the PPP data link shutdown processing. In this case,

the close() function for the serial port resource manager takes an unusually long, but

predictable, amount of time to reply the the message blocking the close() function.

Since this is called in the stack context, it blocks other io-pkt operations until the

close() returns. This code moves the execution of the close() into the main io-pkt

thread, and pseudo-thread switches to other operations until the callback function

returns. The qnxppp_ttydetach() function pseudo-thread switches at the

blockop_dispatch() and resumes from the same point once the

qnxppp_tty_close_blockop() function returns.

#include <blockop.h>

struct ppp_close_blockop {
    int qnxsc_pppfdrd;
    int qnxsc_pppfdrd2;
    int qnxsc_pppfdwr;
}

void qnxppp_tty_close_blockop(void *arg);
....

void qnxppp_tty_close_blockop(void *arg)
{
    struct ppp_close_blockop *pcb = arg;

    if(pcb->qnxsc_pppfdrd != -1)
        close(pcb->qnxsc_pppfdrd);
    if(pcb->qnxsc_pppfdrd2 != -1)
        close(pcb->qnxsc_pppfdrd2);
    if(pcb->qnxsc_pppfdwr != -1)
        close(pcb->qnxsc_pppfdwr);
}
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int qnxppp_ttydetach(...)
{
    struct ppp_close_blockop pcb;
    struct bop_dispatch bop;
    .....

    pcb.qnxsc_pppfdrd = sc->qnxsc_pppfdrd;
    pcb.qnxsc_pppfdrd2 = sc->qnxsc_pppfdrd2;
    pcb.qnxsc_pppfdwr = sc->qnxsc_pppfdwr;

    bop.bop_func = qnxppp_tty_close_blockop;
    bop.bop_arg = &pcb;
    bop.bop_prio = curproc->p_ctxt.info.priority;
    blockop_dispatch(&bop);
    ....

    return;
}

Thread Creation

As stated above, there are several types of threads that can exist in an instance of

io-pkt. The two types of threads created by driver or module developers from above

are user-created threads that are either tracked (nw_pthread_create()) or not tracked

(pthread_create()) by io-pkt. Regardless of how they're created, all POSIX threads

created in io-pkt should be named for easier debugging.

Untracked threads

The only time you should be dealing with untracked threads is if you're using

a library that creates threads for the services it provides. An example of this

is the USB stack library (libusbdi), which can create a thread to call

user-provided callback functions to handle device insertion and removal.

If your code creates a thread directly, you should create a tracked thread as

described below. If you're calling library functions that create threads on

your behalf, you must manage these threads in your module code, because

io-pkt isn't aware of their existence. As stated under the io-pkt

Architecture section, threads that aren't tracked can't allocate or free an

mbuf or cluster, and can't call functions that perform any manipulation of

the stack context pseudo-threading.

Tracked threads

If you're creating a thread in your io-pkt module, you should always use

nw_pthread_create() rather than pthread_create(). The nw_pthread_create()

function creates a thread that's tracked by io-pkt. This allows the thread

to allocate and free mbuf and cluster memory buffers, and also provides a

synchronization mechanism, this being the quiesce functionality, which

either blocks all io-pkt-tracked POSIX threads for exclusive operations,

or causes these threads to exit on shutdown.

All tracked POSIX threads must register a quiesce callback function (defined

below). If your thread doesn't register a quiesce callback function, io-pkt

can end up in a deadlock situation.
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In the sample below, nw_pthread_create() is the same as pthread_create(), but for

some considerations in the initialization function. The first consideration is naming

the thread for easier debugging. The other is setting up the mechanism for your threads'

quiesce handling where io-pkt requires all threads to block for an exclusive operation.

This is required of all threads created with nw_pthread_create().

Threads can be terminated via quiesce_block handling, or using the function

nw_pthread_reap(tid), where tid is the thread ID of your tracked thread. The

nw_pthread_reap() can't be called by the thread specified by the tid argument (i.e.,

a thread can't reap itself).

Both nw_pthread_create() and nw_pthread_reap() must be called from the stack

context.

Below is an example where the user-created tracked thread creates a resource manager.

The structure of your driver can be different, but the main point is that your quiesce

callback function must cause your tracked thread to call quiesce_block().

#include <nw_thread.h>

static sam_thread_init(void *arg)
{
    struct nw_work_thread *wtp;
    sam_dev_t *sam = (sam_dev_t *)arg;

    pthread_setname_np(gettid(), "sam workthread");
    wtp = WTP;

    ...

    if ((sam->code = pulse_attach(sam->dpp, MSG_FLAG_ALLOC_PULSE, 0,
         sam_pulse_func, NULL)) == -1)
    {
        log(LOG_ERR, "sam: pulse_attach(): %s", strerror(errno));
        return errno;
    }
    if ((sam->coid = message_connect(sam->dpp, MSG_FLAG_SIDE_CHANNEL)) == -1)
    {
        pulse_detach(sam->dpp, sam->code, 0);
        log(LOG_ERR, "sam: message_connect(): %s", strerror(errno));
        return errno;
    }
    wtp->quiesce_callout = sam_thread_quiesce;
    wtp->quiesce_arg = sam;

    ...

   return EOK;
}

static int sam_pulse_func(message_context_t *ctp, int code, unsigned flags,
                          void *handle)
{
    /* If the die argument is 1, the user thread will terminate in queisce_block */

    quiesce_block(ctp->msg->pulse.value.sigval_int);
    return 0;
}

static void sam_thread_quiesce(void *arg, int die)
{
sam_dev_t *sam = (sam_dev_t *)arg;

        MsgSendPulse(sam->coid, SIGEV_PULSE_PRIO_INHERIT, sam->code, die);
} 

static void *sam_thread(void *arg)
{

Copyright © 2014, QNX Software Systems Limited 113



sam_dev_t *sam = (sam_dev_t *)arg;
        dispatch_context_t *ctp;

        if ((ctp = dispatch_context_alloc(sam->dpp)) == NULL {
                ...
                return NULL;
        }
        while(1) {
                if ((ctp = dispatch_block(ctp)) == NULL) {
                        ...
                        break;
                }
                dispatch_handler(ctp);
        }
        return NULL;
}

...

/* Likely in the sam_attach() interface attach driver callback function */

/*Need a thread to handle blocking or other special circumstance scenario */

    if (nw_pthread_create(&sam->worker_tid, NULL, sam_thread, sam, 0,
        sam_thread_init, sam) != EOK)
    {
        log(LOG_ERR, "sam: nw_pthread_create() failed\n");
        /* Clean up and likely return -1 */
    }

/* Likely in the sam_detach() interface detach driver callback function */

    ...
    if (nw_pthread_reap(sam->worker_tid))
        log(LOG_ERR, "%s(): nw_pthread_reap() failed\n", __FUNCTION__);
    ...

Quiesce handling

Quiesce handling is required by all threads that are created by nw_pthread_create().

The purpose of this functionality is to allow io-pkt to quiesce (quiet) all threads for

an exclusive operation. It also provides a mechanism for terminating the thread.

The basic structure of the mechanism is the quiesce callback function provided by

the driver (example above), and the quiesce_block() io-pkt function that the tracked

thread is required to call. The quiesce callback function is executed by io-pkt

(otherwise called from the stack context via the quiesce_all() function). This callback

function provides some kind of mechanism to trigger the tracked thread to call the

function quiesce_block() with the die argument provided to the callback function. This

argument determines if the thread blocks (die = 0) or terminates (die = 1).

If the quiesce_block() function isn't called by the tracked thread, io-pkt (and thus

the stack context) will be blocked in quiesce_all() until it does, as quiesce_all() is

intended to block all worker threads until unquiesce_all() is called to resume the

tracked threads. The unquiesce_all() function must also be called from the stack

context.

If the die argument is 1, your thread will terminate in quiesce_block(). Before

you call quiesce_block(), you may need to free any dependencies associated

with that thread.

As well, if die is 0, your thread will block for a short period of time. You may

have HW integration issues to consider that could be affected by this blocking.
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You may want to have some code around the quiesce_block() to handle this,

such as disable and enable interrupts or other hardware considerations. These

considerations would be implementation-specific.

If we continue from the example above, the callback function provided will send a

pulse to a channel managed by the tracked thread (its resource manager). That pulse

will trigger another callback function that's executed by the tracked thread. This

function calls quiesce_block() with the die argument provided.

Don't call queisce_block(die) to stop a thread without its being triggered by

your quiesce callback function; if you want to terminate your tracked thread,

call nw_pthread_reap() from the stack context.

Periodic timers

Network drivers frequently need periodic timers to perform such housekeeping functions

as maintaining links and harvesting transmit descriptors. The preferred way to set up

a periodic timer is via the callback API provided by io-pkt. This API is used to call

a user-defined function after a specified period of time. You can call callout_* functions

in io-pkt driver API callbacks, or nw_pthread_create()-created io-pkt threads. The

callout function will be called from the stack context.

The callout data type is struct callout, and includes the following functions:

void callout_init (struct callout *c)

Initialize the callout structure.

void callout_msec(struct callout *c, int msec, void

(*func)(void *), void *arg)

Schedule a function to be called after the specified number of msec have

expired.

void callout_stop(struct callout *c)

Cancel the callout.

callout_pending(struct callout *c)

If true, a callout is pending; if false, a callout isn't pending.

Here's an example:

struct sam_dev {
    ...
    /* Declare a type callout in your driver device structure */
    /* Unique to this interface */
    struct callout my_callout;
    ...
};

static void
my_function (void *arg) 
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{
     struct sam_dev *sam = arg;

     /* Do something if the timer expires */

     /* We may want to arm the callout again if we want my_function() to be
        called on a regular interval. */
     callout_msec(&sam->my_callout, 5, my_function, sam);
{

/* Before it's used, it must be initialized */
/* This can be in the if_init() or if_attach() callback for example */ 

callout_init(&sam->my_callout);   /* Initialize callout */

/* Once initialized it can be used */ 

/* Call my_function() in 5 ms */
callout_msec(&sam->my_callout, 5, my_function, sam);

callout_stop(&sam->my_callout);  /* Cancel the callout */

if (callout_pending(&sam->my_callout)) {   /* Is the callout armed */
    /* action if pending */
} else {
    /* action if not pending */
}

Driver doesn't use an RX interrupt

When the driver isn't notified via an interrupt that a packet has arrived, you will need

to mimic this functionality in your driver. There are different approaches to this, with

different limitations. In your nw_pthread_create() thread, you can either call if_input()

directly, or simulate the ISR.

Calling if_input() directly has limitations, as your interface will not be able to support

fastforward feature or bridging between interfaces if you're considering these features

for the future. You would prepare the mbuf in the same manner as the sample's

“process interrupt” function, and end with calling if_input(). The if_input() function

executed in your (nw_pthread)thread will cause the packet to be queued, and an event

will trigger the main io-pkt threads to process the packet.

The other method allows fastforward and bridging to work as in other io-pkt drivers.

In this case, you will enqueue your packets in your nw_pthread, and trigger the event

directly in your code to cause your “process interrupt” io-pkt callback to execute

in the same way it would if an ISR had occurred. In the “process interrupt” callback,

you would dequeue the packet from your internal driver queue, prepare the mbuf in

the same manner as the sample, and execute if_input(). In this case, if_input() is

executed in the io-pkt callback rather than in your nw_pthread.

For this, you will define a process interrupt callback, along with an enable-interrupt

callback as you would with an ISR. The difference is how the interrupt_queue() is

applied. In your case, you will have a queue that's accessed by two different threads,

the one receiving the packet from the HW, and the other “process interrupt” passing

the packet to upper layers in io-pkt. You will want a mutex protecting this queue

so it's modified by only one thread at a time. You will also want to protect the event

notification mechanism interrupt_queue() is using.

116 Copyright © 2014, QNX Software Systems Limited

Additional information



In your driver thread, you will lock the mutex, check if the queue is full, and if not,

enqueue the packet in your internal queue. You will now call interrupt_queue() in your

thread. If evp (event structure) isn't NULL, you will send this event yourself in your

thread:

MsgSendPulse(evp->sigev_coid, evp->sigev_priority, evp->segev_code,
             (int)evp->sigev_value.sival_ptr);

Once you have done this, you would unlock your mutex. The remainder of your function

will be hw management or descriptor management.

The io-pkt manager will now schedule your “process interrupt” callback to execute.

In your process interrupt callback, you will loop dequeueing packets until the queue

is empty. First you will lock your mutex for your internal queue, and attempt to dequeue

a packet. If you did dequeue a packet, unlock your mutex, and call if_input() (provided

the mbuf is prepared as required) and go back to the top of the loop. If there is no

packet to dequeue (IF_DEQUEUE() returns NULL), break out of your loop and return

without unlocking your mutex. You don't want to unlock your mutex here because we

don’t want your receive thread to call interrupt_queue() at this point. If it did, it would

return NULL because you're currently processing a packet. You will unlock your internal

mutex in the “enable interrupt” callback. This way a new evp structure will be returned

when your receive thread can continue as you are finished processing packets.

Your mbuf can be prepared either in your receive thread or the “process interrupt”

callback. It just depends on whether you want to store the fully formed mbuf in your

internal queue or partial buffers to be formatted later.

In the receive thread:

struct sigevent *evp;

pthread_mutex_lock(&driv->rx_mutex);
if (IF_QFULL(&driv->rx_queue))
{
    m_freem(m);
    ifp->if_ierrors++;
    ...->stats.rx_failed_allocs++;
}
else
{
   IF_ENQUEUE(&driv->rx_queue, m);
}

if (!driv->rx_running)
{
   //RX_running is mimicking interrupt masking.
   // This is for future compatibility when using interrupt_queue()

   driv->rx_running = 1;
   evp = interrupt_queue(driv->iopkt, &driv->inter);
   if (evp != NULL)
   {
       MsgSendPulse( evp->sigev_coid, evp->sigev_priority, evp->sigev_code,
                     (int)evp->sigev_value.sival_ptr);
    }
}

pthread_mutex_unlock(&driv->rx_mutex);
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In the main code:

int your_process_interrupt( void *arg, struct nw_work_thread *wtp) 
{
    driver_dev_t   *driv = arg;
    struct ifnet  *ifp;
    struct mbuf *m;

    ifp = &driv->ecom.ec_if;
    while (1)
    {
        pthread_mutex_lock(&driv->rx_mutex);
        IF_DEQUEUE(&driv->rx_queue, m);
        if (m!= NULL)
        {
             pthread_mutex_unlock(&driv->rx_mutex);
             ...
             Prepare mbuf if needed
             ...
             (*ifp->if_input)(ifp, m);
        }
        else
        {
             /* Leave mutex locked to prevent any enqueues; unlock in enable */
             break;
        }
    }
    return 1;
}

int your_enable_interrupt (void *arg)
{
    driver_dev_t *driv = arg;   
    ...
    driv->rx_running = 0;
    pthread_mutex_unlock(&driv->rx_mutex);
    return 1;
}            
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Glossary

AES

An abbreviation for Advanced Encryption Standard).

BPF

An abbreviation for Berkley Packet Filter.

BSS

An abbreviation for Basic Service Set. Also known as Infrastructure Mode.

CA

An abbreviation for Certification Authority.

EAP-TLS

An abbreviation for Extensible Authentication Protocol - Transport Layer

Security.

IBSS

An abbreviation for Independent Basic Service Set.

mbuf

An abbreviation for memory buffer, the internal representation of a packet

used by NetBSD and io-pkt.

NAT

An abbreviation for Network Address Translation.

npkt

The name of the internal representation of a packet used by io-net.

SA

An abbreviation for Security Association.

SOHO

An abbreviation for Small Office, Home Office.

SPD

An abbreviation for security policy database.

spoofing

The faking of IP addresses, typically for malicious purposes.
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SSID

An abbreviation for Service Set Identifier.

STP

An abbreviation for Spanning Tree Protocol.

TDP

An abbreviation for Transparent Distributed Processing, the QNX Neutrino

native networking (Qnet) that lets you access resources on other QNX Neutrino

systems as if they were on your own machine.

TKIP

An abbreviation for Temporal Key Integrity Protocol.

TLS

An abbreviation for Transport Layer Security.

TTLS

An abbreviation for Tunneled Transport Layer Security.

UDP

An abbreviation for User Datagram Protocol.

WAP

An abbreviation for Wireless Access Point. Also known as a base station.

WEP

An abbreviation for Wired Equivalent Privacy.

WLAN

An abbreviation for Wireless Local Area Network.

WPA

An abbreviation for Wi-Fi Protected Access.
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AES (Advanced Encryption Standard) 48
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base station 37
Berkeley Packet Filter (BPF) 10, 14, 18, 21, 27

using ioctl_socket() instead of ioctl() 21
BIOCSETIF 27
BPF (Berkeley Packet Filter) 10, 14, 18, 21, 27

using ioctl_socket() instead of ioctl() 21
brconfig 18, 54
bridges 18, 54

configuring 18, 54
WAP acting as 54

bridging 15
BSD 18, 19

porting library 19
socket API 19
socket application API 18

BSS (Basic Service Set), See infrastructure mode

C

checksumming 11, 75
hardware 75
loopback 11

components of core networking 18
configuration files 26, 31, 43, 47, 51, 56, 59, 61

dhcpd.conf 59, 61
hostapd.conf 56
pf.conf 26
racoon.conf 31
wpa_supplicant.conf 43, 47, 51

consumers 10
conventions 10

io-pkt name 10

cryptography, hardware-accelerated 10, 13, 29, 35

D

decryption 39
delay() and DELAY() 67
devctl(), not supported for native drivers 68
devices 38

managing 38
devn- prefix 66
devnp- prefix 66
devnp-shim.so 11, 18, 66, 69
dhcp.client 58
dhcpd 59, 61
dhcpd.conf 59, 61
dhcpd.leases 60
dhcrelay 59, 60
DIOCSTART 26
drivers 10, 11, 13, 15, 18, 40, 47, 66, 67, 68, 69, 70, 72, 

73, 75
debugging with gdb 73
detaching 10, 68, 69
information about, displaying 11, 18
interfaces 11, 68

names 11, 68
legacy io-net 66, 67
loading into io-pkt 13, 69
Maximum Transmission Unit (MTU), setting 75
name space, entries in 68
name space, no entries in 11
native 66, 67, 68, 75

devctl(), not supported for 68
jumbo packets 75

NetBSD 11, 67
nicinfo, support for 11, 67

ported NetBSD 66, 67
support for 67

priorities for, specifying 15
shim layer 11, 18, 66, 69
troubleshooting 70
verbose output 70
Wi-Fi 40

not supported by io-pkt-v4 40
wireless, configuring 47
writing 72

E

EAP-TLS (Extensible Authentication Protocol - Transport Layer
Security) 49
encryption 39, 41, 42, 55

implementing for Wi-Fi 41
using none 42
WEP, enabling 55

environment variables 69
LD_LIBRARY_PATH 69
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ETHERMIN 76
Ethernet 64

Transparent Distributed Processing over 64
Ethernet packets, padding 76
Ethernet traffic 13
events 15

F

Fast IPsec 10
fast-forwarding 15
filters 10
firewalls 22
FreeBSD 38
ftp 19
ftpd 19

G

gateways 53
WAP acting as 53

gdb 73
gethostbyname() 64

H

hardware 15, 75
checksumming 75
events 15

hardware-accelerated cryptography 10, 13, 29, 35
hostapd 19, 47, 56
hostapd_cli 19
hostapd.conf 56
hostname 64

I

IEEE 802.11 standard 45
ieee80211_freebsd.c 38
ieee80211_netbsd.c 38
if_up 68
ifconfig 10, 18, 40, 41, 42, 44, 54, 55, 68, 69, 75, 77

commands 10, 40, 41, 42, 44, 54, 55, 68, 69, 75, 77
create 54
destroy 10, 68, 69
ip4csum 75
media 55
mediaopt 41, 55, 68
mtu 75
nwkey 42
scan 40
ssid 44, 55
tcp4csum 75
tso4 77
udp4csum 75
up 40

detaching drivers 10, 68, 69
duplex mode 68
speed 68

ifnet 27
ifreq 27

ifwatchd 79
IKE daemon (racoon) 31, 33
Independent Basic Service Set (IBSS), See ad hoc mode
inetd 19
infrastructure mode 37, 41, 58

TCP/IP configuration 58
initialization vector (IV) 45
interfaces 11, 24, 40, 68, 79

hooks 24
names 11, 68
state, setting to up 40
watching for added or deleted addresses 79

Internet daemon (inetd) 19
interrupts 15, 71

latency 71
servicing 15
shared, problems with 71

io-net 9, 10, 11, 18, 27, 66, 67, 69
drivers 66, 67
filters, producers, and consumers no longer exist 10
migrating to io-pkt 9, 27

nfm-nraw, replacing 27
option for mount 69
shim layer 11, 18, 66, 69

io-pkt 9, 10, 12, 13, 15, 37, 40, 66, 67, 68, 69, 75
architecture 12
compatibility with NetBSD 10
drivers, loading 13, 69
IP stack 10
jumbo packets 75
migrating from io-net 9
naming convention 10
native drivers 66, 67, 68, 75

devctl(), not supported for 68
jumbo packets 75

protocols, loading 13
security 37
stack variants 9
TCP/IP included in 13
threading model 15, 66, 67
Wi-Fi, using with 40

io-pkt-v4 9, 40
Wi-Fi drivers, no support for 40

io-pkt-v4-hc 10, 29, 35, 37
io-pkt-v6-hc 29, 35, 37
ioctl_socket() 21

using instead of ioctl() for pf and bpf 21
ioctl() 21, 26, 27

using ioctl_socket() for pf and bpf 21
IP Filtering 10, 11, 18
IP stack, integral part of io-pkt 10
IP, Transparent Distributed Processing over 64
ipfilter 26
IPsec 19, 29, 30, 31, 33

IKE daemon (racoon) 31, 33
setting up 30
tools 19, 33

IPv4 9
IPv6 10
IV (initialization vector) 45
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J

jumbo packets 66, 75
disabled for io-net drivers 66

K

keys 31, 48, 56
preshared 31, 48
WEP 56

L

LD_LIBRARY_PATH 69
libipsec 33
libipsec(S).a 19
libnbdrvr.so 19
libpcap 27
libsocket.so 18
libssl.so, libssl.a 19
loadable shared modules (lsm-*) 13
loopback checksumming 11
low-level packet-capture 18
lsm-autoip.so 18, 58
lsm-pf-v4.so, lsm-pf-v6.so 18, 26
lsm-qnet.so 19, 63
lsm-slip.so 18

M

Maximum Transmission Unit (MTU), setting 75
mbuf 11, 27

inspecting 27
media options 66

disabled for io-net drivers 66
migrating from io-net 27

nfm-nraw, replacing 27
mod_entry() 22
mount 10, 63, 69

io-net option still supported 63
multithreaded operation 15, 66, 67

N

name space, entries in 11, 68
NAT (Network Address Translation) 10, 11, 18, 22
native drivers 66, 67, 68, 75

devctl(), not supported for 68
jumbo packets 75

net.inet.ip.do_loopback_cksum 11
net.inet.tcp.do_loopback_cksum 11
net.inet.udp.do_loopback_cksum 11
net.link.ieee80211.debug 74
net.link.ieee80211.vap0.debug 74
net80211 38
NetBSD 9, 11, 19, 33, 37, 38, 66, 67

802.11 37
802.11 layer 38
drivers 11, 66, 67

nicinfo, support for 11, 67
support for 67

NetBSD (continued)
IPsec tools 19, 33

netstat 18, 70
Network Address Translation (NAT) 10, 11, 18, 22
nfm-nraw 27
nicinfo 11, 18, 67, 70

NetBSD drivers might not support 11, 67
troubleshooting, using for 70

npkt 11

O

open system authentication 43
OpenSSL 34

P

Packet Filter (PF) interface 11, 14, 21, 22
using ioctl_socket() instead of ioctl() 21

packets 18, 23, 27, 45, 66, 75, 76
capturing 18
Ethernet, padding 76
filtering 27

See also BPF, PF
forgery, preventing 45
hooks 23
jumbo 66, 75

disabled for io-net drivers 66
priority queuing 18

padding Ethernet packets 76
pci 71
PEAP (Protected Extensible Authentication Protocol) 49
pf 26
PF (Packet Filter) 11, 14, 21
PF_KEY 19
pf_pfil_attach() 26
pf_test(), pf_test6() 26
pf.conf 26
pfctl 18, 26
pfil hooks 11, 21, 24

example 24
pfil_add_hook() 23
PFIL_ALL 24
pfil_head_get() 23
pfil_hook_get() 23
PFIL_IFADDR 24
PFIL_IFNET 24
PFIL_IFNET_ATTACH 24
PFIL_IFNET_DETACH 24
PFIL_IN 23
PFIL_OUT 23
pfil_remove_hook() 23
PFIL_TYPE_AF 23
PFIL_TYPE_IFNET 23
ping, ping6 19
Point-to-Point Protocol (PPP) 18
pppd 18
pppoectl 18
preshared keys 31, 48
priorities 15, 17
producers 10
protocols 13
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Qnet 10, 12, 19, 63

R

racoon 31, 33
racoon.conf 31
racoonctl 33
raw sockets 19
RC4 45
resource managers 12
route 19
router, access point as 61
Routing Socket 19
rx_prio_pulse 17

S

SA (Security Association) 32, 33
SCTP, not currently supported 11
security 29
Security Association (SA) 32, 33
Security Policy Database 33
Serial Line IP (SLIP) 18
setconf 64
setkey 30, 31, 33
shared interrupts 71
Shared Key Authentication (SKA) 42, 44
shim layer 11, 18, 66, 69
slattach 18
SLIP (Serial Line IP) 18
slogger 70
sloginfo 70, 74
sockstat 18
SOHO (small office, home office) 54, 59
SSID (Service Set Identifier) 40, 47

determining 40
passphrase, setting 47

stack 12, 15, 18
architecture 12
configuring 18
context 15
events 15

sysctl 11, 18, 61, 74
settings 11, 61, 74

net.inet.ip.do_loopback_cksum 11
net.inet.ip.forwarding 61
net.inet.tcp.do_loopback_cksum 11
net.inet.udp.do_loopback_cksum 11
net.link.ieee80211.debug 74
net.link.ieee80211.vap0.debug 74

system log 70

T

TCP/IP 13, 58
configuration in wireless networks 58
included in io-pkt 13

tcpdump 18, 27
TDP (Transparent Distributed Processing) 10, 12, 19, 63

Technical support 8
Temporal Key Integrity Protocol (TKIP) 46, 48
threads 15, 17, 66, 67

priorities 15, 17
threading model 15, 66, 67

TKIP (Temporal Key Integrity Protocol) 46
Transmit Segmentation Offload (TSO) 77
Transparent Distributed Processing (TDP) 10, 12, 19, 63
troubleshooting 70, 71

drivers 70
no received packets 71

TTLS (Tunneled Transport Layer Security) 49
Typographical conventions 6

U

umount, supported only for io-net drivers 10, 68

W

waitfor 68
WAP (Wireless Access Point) 19, 37, 53, 61

creating 53
router, acting as 61

WEP (Wired Equivalent Privacy) 43, 45, 55, 56, 61
authentication 43, 55
key 56

Wi-Fi 9, 40, 42
drivers 40

not supported by io-pkt-v4 40
networks 42

connecting to 42
Wi-Fi Protected Access, See WPA
wiconfig 47
Wired Equivalent Privacy (WEP) 45, 61
Wireless Access Point (WAP) 19, 37, 53, 61

creating 53
router, acting as 61

Wireless LAN (WLAN) 37
wireless LAN client/peer table 40, 47
wireless networks 40, 42, 58

name, determining 40
scanning 40
TCP/IP configuration 58
using no encryption 42

WLAN (Wireless LAN) 37
wlanctl 40, 47
wlconfig 46
WPA (Wi-Fi Protected Access) 42, 43, 45, 46, 47, 51, 56

passphrase 47
supplicant 42, 43, 45, 46, 47, 51

command-line client 45, 47, 51
wpa_cli 19, 45, 47, 51
wpa_passphrase 47
wpa_supplicant 19, 41, 42, 43, 46, 51
wpa_supplicant.conf 43, 45, 47, 51
WPA-Enterprise 46, 49
WPA-Personal 46, 49
WPA-PSK 48
WPA2 (802.11i) 47, 56
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