
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

Device Publishers Developer's Guide

©2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Wednesday, June 25, 2014

Table of Contents

About This Guide ..5
Typographical conventions ...6

Technical support ...8

Chapter 1: Device Publishers ..9

Running a device publisher ...10

Role of device drivers and mcd ..11

PPS object types ..13

Plugins ..14

Plugin ratings ...15

Chapter 2: The usblauncher Service ...17

Support for USB On-The-Go (OTG) ...21

Device object ...22

Device control object ...26

Driver object ..28

Mount object ..29

Command line for usblauncher ...31

Using usblauncher to mount filesystems ..34

Configuration files ..36

Starting USB stack in host and device modes ..36

USB matching rules ..38

USB descriptors ..43

Supported third-party applications and protocols ..49

Chapter 3: The mmcsdpub Publisher ...55

Device object ...57

Driver object ..58

Mount object ..59

Command line for mmcsdpub ..61

Chapter 4: The cdpub Publisher ..65

Device object ...67

Device control object ...69

Driver object ..70

Mount object ..71

Command line for cdpub ...72

Device Publishers Developer's Guide

Table of Contents

About This Guide

The Device Publishers Developer's Guide is aimed at developers who write applications

that read device information through the Persistent Publish/Subscribe (PPS) service.

This guide describes the contents of all PPS objects created and used by device

publishers and also lists the command options you can set when restarting the

publishers.

This table may help you find what you need in this guide:

Go to:To find out about:

Device Publishers (p. 9)Device publisher responsibilities and the

publishers that we ship

Running a device publisher (p. 10)Setting up PPS before running device

publishers

PPS object types (p. 13)The types of PPS objects written by the

publishers and which directories store

these objects

The usblauncher Service (p. 17)The usblauncher service, which

enumerates USB devices, mounts their

filesystems, and publishes their

information

The mmcsdpub Publisher (p. 55)The mmcsdpub publisher, which

publishes information about cards inserted

into SD slots

The cdpub Publisher (p. 65)The cdpub publisher, which publishes

information about CD devices

© 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

6 © 2014, QNX Software Systems Limited

About This Guide

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

© 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Device Publishers

Device publishers are hardware-support components that publish information on

attached devices through the Persistent Publish/Subscribe (PPS) service. Applications

use this information to access the content on devices so they can display media

information in browsers or invoke multimedia services to read metadata from those

devices.

Applications could send commands to device drivers to read device information but

this design requires developers to learn hardware interfaces, which is inconvenient.

Device publishers offer a reliable source of device information by allowing applications

to subscribe to PPS objects to receive device updates. Refer to the Persistent

Publish/Subscribe Developer's Guide for details on implementing a subscriber.

The information published for a device includes:

• its raw device name

• its mountpoint

• the names and indexes of its partitions

• connection information such as the bus number, device number, and slot number

Device publishers are designed for specific hardware types. We ship the following

device publishers:

• usblauncher, for USB storage devices

• mmcsdpub, for MMC and SD cards

• cdpub, for CDs

The usblauncher service replaces usbpub and the other USB driver-related

services with a single service for monitoring USB devices and publishing their

information.

Device publishers don't monitor the physical connection of devices. Other system

services monitor hardware events and respond when users attach or detach storage

devices (e.g., USB sticks) or when they insert or remove mediastores (e.g., SD cards)

from physical slots. For instance, the io-usb server monitors the hardware and reacts

to each USB device attachment or detachment by notifying usblauncher.

The publishers run as persistent background processes. Typically, they're launched

during bootup. You can restart publishers if they unexpectedly terminate.

© 2014, QNX Software Systems Limited 9

Running a device publisher

The PPS service must be running if you want to use the device publishers. All

publishers write to objects in the same path; you must create the root directory in this

path before starting any publisher.

To set up PPS and run a device publisher:

1. In a QNX Neutrino terminal, check whether PPS is running by viewing the list of

active processes with pidin or ps.

Depending on your system configuration, PPS may be launched at bootup.

2. If necessary, start PPS by entering pps in the same terminal.

PPS creates a root directory (/pps by default) that provides a general path for

storing all objects used by various platform services.

3. Enter mkdir -p /pps/qnx to create the PPS path required by the publishers.

For the locations of the PPS objects written by the publishers and an overview of

the object contents, see “PPS objects types (p. 13)”.

4. Enter the command line for starting the device publisher you want to use.

Suppose you want to run usblauncher to get information about USB devices.

You would then enter a command similar to:

usblauncher -c /etc/usblauncher/new_rules.lua -p 2 -vvv

The PPS and device publisher services are running. Your applications can now get

information about connected devices by reading the objects under /pps/qnx.

10 © 2014, QNX Software Systems Limited

Device Publishers

Role of device drivers and mcd

Device drivers enable communication with attached devices by supporting system

calls such as open(), read(), and write(). Publishers use these same system calls to

obtain information from drivers on the devices that they manage. Another system

service, mcd, uses the drivers to mount device filesystems.

How drivers are started

For devices that are always physically present, such as SD card readers, their drivers

are launched during system startup and run continuously.

For devices connected through standard hardware interfaces, notably USB storage

devices, their drivers are started and stopped by system services when the devices are

added and removed. For instance, the usblauncher publisher launches drivers for

USB devices when they're attached.

How publishers communicate with drivers

Drivers create entries in /dev for attached devices. For example, a USB driver creates

a file named /dev/umass0 (or something similar) when the user inserts a USB stick.

The same driver will delete that object when the user removes the USB stick.

Drivers don't send data to publishers. Instead, the publishers monitor specific device

paths and when they detect state changes to the devices represented by those paths,

the publishers invoke the operating system to learn which drivers manage those paths.

Then, the publishers communicate with those drivers to retrieve new or updated device

details, which they publish to PPS objects.

In the command lines that start the publishers, you must supply the list of device

paths to monitor. Depending on the publisher type, these paths must refer to either

individual /dev entries or to directories containing device objects of a given hardware

type. For more details, see the usage pages for individual publishers.

The exception to this design is the usblauncher utility. Because it launches drivers

in addition to publishing device information, usblauncher doesn't need to find new

driver processes to retrieve device information. For an explanation of the alternative

design that this utility uses, see “The usblauncher Service (p. 17)”.

How device filesystems are mounted

If you're using usblauncher for device publishing, you can configure that utility to

mount the filesystems of USB devices; this way, you don't need to use a separate

service to mount filesystems (unless you also need to mount non-USB devices).

To mount non-USB devices, you must use the Media Content Detector (mcd) service,

which is included with the product. The mcd service monitors the /dev directory.

When an object is added, mcd mounts the filesystem of the newly attached device

© 2014, QNX Software Systems Limited 11

Role of device drivers and mcd

based on the rules in its mountpoint file (/etc/mcd.mnt by default). See the mcd

entry in the Utilities Reference for information on the mount rules.

To mount a device's filesystem, mcd sends a mount request to the appropriate device

driver. The driver manages the paths of both the mountpoint (e.g., /fs/usb0) and

the device object (e.g., /dev/umass0).

12 © 2014, QNX Software Systems Limited

Device Publishers

PPS object types

Device publishers write device information to multiple PPS objects in fixed locations.

Applications can monitor these objects to learn of device updates and to retrieve

information that enables access to device contents.

All publishers output the following PPS objects for each device:

LocationDescriptionType

/pps/qnx/device/Contains physical and logical connectivity information

specific to the device's hardware type. This information

might include:

Device object

• the device's vendor ID

• the mediastore type

• the product serial number

• details on temperature and drive mechanism state

• slot information

/pps/qnx/device/<type>_ctrl,

where <type> is either usb or cd0
Contains commands specifying device actions to perform,

such as toggling the power on a port of a USB hub, ejecting

a disc, or enabling or disabling disc removal.

Device control

object

Can also contain command outcomes, depending on the

publisher type.

/pps/qnx/driver/Contains driver information, such as the process name and

ID (pid), and a reference to the device object associated

with this driver.

Driver object

/pps/qnx/mount/Contains information on the device's filesystem, including:Mount object

• the mountpoint

• the filesystem type

• the partition label

• other fields specific to the hardware type

© 2014, QNX Software Systems Limited 13

PPS object types

Plugins

Plugins are external components that help device publishers provide extra media-related

information.

The plugins are shipped with the QNX SDK for Apps and Media, so you must

install this product to use them. However, the plugins are useful only in systems

that support media playback and external devices. If your system has no plugins

installed, this doesn't cause an error; instead, the device publishers just write

fewer data fields to the mount objects.

The plugin manager isn't packaged as a separate service or library but instead is

integrated into all device publishers. At startup, publishers initialize the plugin manager

by providing their type (e.g., publisher-usb) and the path of the plugin directory.

The plugin manager loads, from the specified directory, all installed plugins that

support the device publisher type and then builds a list of available plugins, sorted

by rating. This last action allows the plugin manager to forward information requests

to plugins with higher ratings first. Plugins with lower ratings are invoked only when

the higher-rated plugins can't provide the requested information.

Included plugins

The QNX SDK for Apps and Media includes the following plugins:

generic

Reads volume names and generates volume IDs from the name and other

fields such as the serial number. Supports all device types and reads

WMPInfo.xml (if it's available on the filesystem).

ipod

Obtains the names and IDs of iPods.

mediafs

Obtains the names and IDs of Media FS devices.

audiocd

Extracts Table of Contents (TOC) and CD-Text information from audio CDs

to fill in fields such as artist and album name.

14 © 2014, QNX Software Systems Limited

Device Publishers

Plugin ratings

Plugins rate themselves on their ability to obtain information from various device types

and report their ratings to the plugin manager so that it can choose the best plugin

for filling in data fields.

Each plugin provides two ratings of itself:

Support for a device publisher

The plugin indicates whether or not it supports the specified device publisher.

Information extraction ability

The plugin provides a numeric score indicating its ability to read device

information. The plugin manager uses these scores to rank plugins against

each other.

The following table shows which plugins work with each of the device publishers, with

the plugins listed from highest rated to lowest rated:

Supporting pluginsDevice publisher

genericmmcsdpub

audiocd, genericcdpub

ipod, mediafs, genericusblauncher

Plugin selection

Although the plugin manager ranks the plugins based on their ability to extract

information, the particular plugin used for filling in data fields also depends on the

device type.

Suppose you connect a Media FS device through a USB port. If the usblauncher

publisher requested the device name and ID, the plugin manager would first invoke

the ipod plugin but this plugin would fail to fill in the fields because the device isn't

an iPod. Next, the plugin manager would invoke mediafs, which would try to obtain

the requested information. If that second plugin failed for whatever reason, the plugin

manager would invoke generic. So, the extra device information can come from any

plugin that supports the publisher.

© 2014, QNX Software Systems Limited 15

Plugins

Chapter 2
The usblauncher Service

The usblauncher service enumerates USB devices, launches drivers for

communicating with USB devices, and publishes device information through PPS.

This utility depends on the following services:

io-usb

The USB host stack, which monitors the USB hardware and notifies

usblauncher of device attachments and detachments. The usblauncher

service runs io-usb to act as the USB host, which means it controls

communication on the bus.

Drivers for USB host mode

When running the USB host stack (io-usb), usblauncher can start

different drivers to communicate with different types of devices. The simplest

use case is when a user plugs in a mass-storage device, in which case

usblauncher starts a devb-umass driver to communicate with it; if a

device has multiple partitions, one such driver manages all of the device's

filesystems. Other drivers that may be used in host mode include mm-ipod,

io-pkt with a USB Ethernet driver, devc-serusb, and others.

io-usb-dcd

The USB device stack, which notifies usblauncher of state changes such

as a device configuration update or a cable removal. The usblauncher

service runs io-usb-dcd to act as the USB device, which means it services

requests from the USB host.

Drivers for USB device mode

After starting the USB device stack (io-usb-dcd), usblauncher

immediately starts the appropriate driver based on the device properties

provided by the stack. For instance, the devc-serusb_dcd driver enables

serial data transfer (see “USB descriptors (p. 43)”, which explains the

USB-to-serial communication configured in usbser.lua). The

devu-umass_client-block driver supports mass storage devices when

the stack runs in device mode. Other drivers that may be used in device

mode include mm-ipod, io-pkt with usbdnet, and others.

© 2014, QNX Software Systems Limited 17

Benefits of usblauncher

The multipurpose usblauncher utility allows for a simple system setup and provides

these benefits:

Drivers can be started immediately

Because usblauncher launches the USB drivers, it knows immediately

whether a newly attached device is supported (i.e., if the system has a

suitable driver for the device's type). Thus, when creating a PPS device

object, usblauncher can publish the number of drivers it will start for the

device; this lets applications subscribed to this PPS object know right away

whether the device is supported.

Automatic filesystem mounting

The usblauncher utility can mount the filesystems of USB devices based

on the rules in the mcd mountpoint file (/etc/mcd.mnt by default). Also,

usblauncher can publish the statuses of mount operations to inform

applications whether individual filesystems were successfully mounted.

If your system setup requires it, you can still use mcd to mount USB

filesystems while running usblauncher. For information on how

to do this, see “Disabling usblauncher auto-mounter (p. 35)”.

Support for MirrorLink

A smartphone must have a Network Configuration Management (NCM)

interface to make its applications accessible through a car infotainment

system with MirrorLink. The usblauncher utility can request that a

smartphone re-enumerate itself as an NCM device. This way, the user doesn't

have to manually configure their smartphone for MirrorLink mode.

Support for Apple CarPlay

The usblauncher utility can request a device to become the USB host,

to support Apple CarPlay (formerly known as iOS in the Car). When this

role-swapping request succeeds, usblauncher can stop the USB host

stack and start the USB device stack (and do its own role-swapping). The

usblauncher utility can also probe a device to test whether it supports

iAP2, allowing you to choose a driver to launch based on the test's outcome.

18 © 2014, QNX Software Systems Limited

The usblauncher Service

Architecture

/pps/qnx/mount/umass0
/pps/qnx/driver/12345
/pps/qnx/device/usb-1.4

@umass0
mount::/fs/usb0
mnt_status::0 (No error)

USB
Publisher

PPS
Subscribers

USB stack

(devb-umass,
devc-serusb,
etc...)

(usblauncher)
USB drivers

USB
devices

(Applications)

Figure 1: Architecture of usblauncher

The arrows between components in Figure 1: Architecture of usblauncher (p. 19) show

information flow. When USB devices are attached or detached, they trigger hardware

interrupts that controllers within the USB stack (either io-usb or io-usb-dcd)

detect. These controllers then react to the device event by notifying usblauncher.

By default, usblauncher starts the USB stack in host mode, assuming

you've defined the host and device stack rules (p. 36) in the configuration file.

You can prevent the host stack from starting by using the -h command option

(p. 34), which is useful when your setup allows you to run the first stack

instance in device mode.

The usblauncher service queries the stack to retrieve the descriptors (i.e., properties)

of any newly attached devices and then publishes this information to device objects.

Next, usblauncher compares these descriptors against the USB device-matching

rules in its configuration file. When it finds a match, usblauncher launches the

appropriate driver (e.g., devb-umass, devc-serusb) and publishes the driver's

information to a driver object.

To mount filesystems, usblauncher sends mount requests to the drivers that manage

the paths in /dev for USB devices. The mountpoints requested by usblauncher

are based on the rules in the specified mountpoint file (for details, see the -M option

for usblauncher (p. 34)).

© 2014, QNX Software Systems Limited 19

Finally, usblauncher communicates with the drivers to obtain mount information,

which it writes into mount objects. Subscribed applications receive updates through

PPS when device information changes.

20 © 2014, QNX Software Systems Limited

The usblauncher Service

Support for USB On-The-Go (OTG)

The usblauncher service supports USB OTG by allowing role-swapping of the USB

stack. This way, the target system can act sometimes as the host and sometimes as

the slave device in a USB link.

Our usblauncher implementation does not support any OTG communication protocols

designed to detect device attachments (ADP), manage power on a USB link (SRP), or

negotiate the roles of two devices sharing a USB link (HNP). Instead, usblauncher

offers software support for OTG by allowing client applications running on the target

system to swap roles with devices at the other end of a USB link (i.e., a one-to-one

connection). To do this, applications can instruct usblauncher to restart the USB

stack in a different mode (i.e., host or device).

A client application must monitor the USB bus and other hardware to determine which

mode the target system should enter into. When the application knows this, it can

issue the start_stack command through PPS to the device control object (p. 26).

When requesting that the stack run in device mode, the application can specify a USB

personality to expose to the USB host at the other end of the connection. The

usblauncher service will then launch the appropriate drivers for the specified

personality.

Consider the following scenario, in which an application running on a computer detects

hardware events and responds by changing the role of the USB stack:

1. The user inserts a cable into a port on the target system

The application detects the cable attachment and tells usblauncher to start the

USB stack in device mode by sending the start_stack::device,n command

to the device control object. Here, n is a number indicating the set of USB

descriptors that usblauncher should expose to the USB host at the other end of

the connection.

2. The user removes the cable

The application detects the cable removal and instructs usblauncher to slay the

USB stack by issuing the start_stack::none command to the same PPS object.

3. The user plugs a USB stick into the target

The application detects the USB stick and tells usblauncher to start the USB

stack in host mode by issuing the start_stack::host command to the device

control object. This way, the computer can manage the USB link and download

data from the USB stick as needed.

© 2014, QNX Software Systems Limited 21

Support for USB On-The-Go (OTG)

Device object

USB device objects have names in the form: usb-bus_number.device_number.

If usblauncher is called with the -S option, the object name also includes the stack

number in front of the bus number. For instance, for a USB device with a stack number

of 0, a bus number of 1, and a device number of 3, the device control object would

be named usb-0.1.3.

We recommend learning about the PPS objects used by usblauncher by

examining their contents, not their filenames because these filenames could

change in the future.

Each device object that usblauncher writes to PPS contains the following fields:

ExampleTypeDescriptionName

USBStringBus typebus

0x00IntegerBus numberbusno

1IntegerSelected configurationconfiguration

1IntegerNumber of configurationsconfigurations

0xffIntegerDevice class IDdevice_class

0xffIntegerDevice protocol (present only if

device_class is nonzero)

device_protocol

0x00IntegerDevice subclass ID (present only if

device_class is nonzero)

device_subclass

0x04IntegerDevice numberdevno

1IntegerNumber of drivers matching the device

based on the configuration file rules. A

drivers_matched

value of 0 means the device is

unsupported.

0IntegerNumber of drivers launched for the

device. This value can be less than

drivers_running

drivers_matched if some drivers

haven't been started yet or if some have

terminated (possibly in error).

2Integer with one of

the following values:

Outcome of probe for the device's iAP2

support. This field is present only if the

iap

-1 (when the deviceUSB stack is running in host mode and

22 © 2014, QNX Software Systems Limited

The usblauncher Service

ExampleTypeDescriptionName

after the device was probed for iAP2

support.

doesn't support iAP2

or the probe failed)

or 2 (when the

device supports

iAP2)

KingstonStringManufacturer namemanufacturer

64IntegerMaximum packet sizemax_packet_size0

DataTraveler

G3

StringProduct nameproduct

0x1624IntegerOEM product IDproduct_id

AppleDeviceString with one of

the following values:

Reason for latest role swap of USB stack.

This field is present only after switching

role_swap

AppleDevice (forthe stack from host to device mode to

support a third-party application. iAP2 in client mode)

or

DigitaliPodOut

(for CarPlay)

0019E0014A16

A931953F004E

StringProduct serial numberserial_number

0Integer
USB stack number specified with -S

command-line option for usblauncher.

stack_no

This field differentiates devices when they

have the same bus number (busno) and

device number (devno) but are managed

by different io-usb stacks.

When the device

is being reset,

Integer followed by

string, in the format:
Device status. Normally, this field is

present only when the device is being

status

this fieldstatus

(message)
reset; the field is deleted when the reset

completes.
contains: -1

(Device

reset).

(2,1),(0,2)

This value

indicates a USB

String containing

integers in ordered

pairs

Duplicates upstream device and port

numbers (devno, upstream_port) and

provides upstream information for hub

chain.

topology

device is

© 2014, QNX Software Systems Limited 23

Device object

ExampleTypeDescriptionName

attached to hub

device 2, port 1,

and this hub is

connected to the

root device, port

2.

1IntegerUSB address where the device is

connected. When the device is connected

upstream_device_address

to a host controller, this field is 0. When

the device is connected to a USB hub,

this field contains the hub's device

address.

0IntegerHost controller number. This field is 0

unless you have multiple USB controllers,

upstream_host_controller

in which case it contains the number of

the controller that detected the device.

4IntegerPort number. When the device is

connected to a hub, this field contains

upstream_port

the port number on the hub. When the

device is connected to the host controller,

this field is 0.

HighString with one of

the following values:

High, Low, or Full

Port speed.upstream_port_speed

0x0951IntegerManufacturer IDvendor_id

Overcurrent condition

When an overcurrent is detected, usblauncher publishes a special type of device

object that represents the USB hub that's reporting the overcurrent condition. The

object doesn't provide information on the device causing the condition; in fact, this

device is taken off the USB bus and its device, driver, and mount PPS objects are

deleted.

The filename of the object is in this format:

usb-overcurrent-stackno.busno.devno.portno. The stack number (stackno)

is present only if you started usblauncher with the -S option.

The complete object looks like this:

status::-1 (Overcurrent)

24 © 2014, QNX Software Systems Limited

The usblauncher Service

bus::USB
stackno::0
busno::0x00
devno::0x01
portno::3

Once the overcurrent condition is cleared, the overcurrent object is deleted.

Bad devices

When io-usb can't assign a device number to a USB device, usblauncher publishes

a device object with fewer attributes than normal to describe the “bad” device. Also,

the object's filename is in a different format:

usb-overcurrent-stackno.busno.upstream_device_address.upstream_port.

The stack number (stackno) is present only if you started usblauncher with the -S

option.

The complete object looks like this:

status::48 (Not supported)
bus::USB
stackno::0
upstream_device_address::3
upstream_host_controller::0
upstream_port::7
upstream_port_speed::High

© 2014, QNX Software Systems Limited 25

Device object

Device control object

Applications can perform actions on USB hardware by writing commands to device

control objects. Each usblauncher process creates one of these server PPS objects.

By default, the object's path is /pps/qnx/device/usb_ctrl but you can change

this path through usblauncher command options.

The stack number is appended to the object name if you run usblauncher with the

-S option. For instance, if you issue the command usblauncher -S 1, the service

creates a PPS object named usb_ctrl1. You must use this command option to

distinguish between control objects if you want to run multiple usblauncher instances

and use the same PPS directory for their device control objects.

When usblauncher receives updates (i.e., data from the object), it executes the

specified commands. Commands must be written in the following format:

<name>::<parameter>

For details on publishing data to PPS objects, refer to the Persistent Publish/Subscribe

Developer's Guide. Applications can publish the following to the control object:

Parameter type and purposeDescriptionCommand

A set of integers identifying the device and

the desired power state, in the following

Set the power state on a port of a USB hub.

This command is useful to repower the port if

port_power

format:

busno,devno,power_state[,portno]

If the optional portno is omitted, then all

ports on that hub are controlled by the

the upstream hub has disabled it (e.g., as a

result of an overcurrent condition and you wish

to see if the overcurrent condition still applies).

power level. The power_state can be

either 0 (“off”) or 1 (“on”).

A string identifying the version of the USB

stack to start. Can be one of: “host”,

Start a specific version of the USB stack. There

are two versions: the host stack (io-usb) and

start_stack

“device,n”, or “none”, where n is athe device stack (io-usb-dcd). Any current

one-based index into the descriptors

list in the main configuration file.

USB stack instance is stopped (if necessary)

before the other stack version is started. You

can specify none to slay the stack without

restarting either version of it.

A set of integers identifying the device, in

the following format: busno,devno,port

Turn a USB port's power off and back on after

a fixed delay. This command works only for

ports on a USB hub capable of power switching

on individual ports.

toggle_port_power

26 © 2014, QNX Software Systems Limited

The usblauncher Service

The port_power and toggle_port_power commands aren't meant to be

used in cases when the start_stack command is being issued.

When usblauncher executes commands, it publishes device information and

command outcomes to the device control object. The usblauncher service can

output the following attributes:

ExampleTypeDescriptionAttribute

When the command was

successful, this field contains:

0 (No error)

An error string in the following format:

errno (str_error(errno)).

If the command wasn't recognized,

usblauncher doesn't publish a status to

Outcome of the

command

cmd_status

If you tried to toggle the port

power on a USB device thatthis object but instead writes an error

message to stdout or sloginfo. isn't a hub, this field contains:

48 (Not supported)

1Integer with one of the following values: 1

(for “on”), 0 (for “off”), or -1 (for

Latest power setting

for the port whose

power is being toggled

port_power

“unknown”, which means usblauncher

couldn't read the power setting).

© 2014, QNX Software Systems Limited 27

Device control object

Driver object

USB driver objects have names that match the driver process IDs. This strategy ensures

the distinctiveness of object names for different USB devices because process IDs

are unique throughout the system.

We recommend learning about the PPS objects used by usblauncher by

examining their contents, not their filenames because these filenames could

change in the future.

Each driver object that usblauncher writes to PPS contains the following fields:

ExampleTypeDescriptionName

cam quiet blk cache=1m,vnode=384,

auto=none,delwri=2:2,rmvto=none,

StringCommand-line arguments passed to

driver for the device

arguments

noatime disk name=umass cdrom

name=umasscd umass

path=/dev/otg/io-usb,

priority=21,vid=0xfca,did=0x8004,

busno=0,devno=0x2,iface=0x1,

ign_remove

1IntegerUSB interface numberinterface

0x08IntegerUSB class IDinterface_class

RIM Mass Storage DeviceStringUSB interface name. This field is

present only if the device defines it.

interface_name

0x50IntegerUSB interface protocolinterface_protocol

0x06IntegerUSB subclass IDinterface_subclass

devb-umassStringDriver process namename

593947IntegerDriver process IDpid

/pps/qnx/device/usb-0.2StringDevice object pathPPS_DEVICE_ID

28 © 2014, QNX Software Systems Limited

The usblauncher Service

Mount object

USB mount objects have names in the form rawdevice[.partition#]. For

example, if you attach a USB stick with a DOS partition and the raw device created

is /dev/umass0, the mount object is named /pps/qnx/mount/umass0.0.

We recommend learning about the PPS objects used by usblauncher by

examining their contents, not their filenames because these filenames could

change in the future.

Each mount object that usblauncher writes to PPS contains the following fields:

ExampleTypeDescriptionName

512IntegerSize of each block (in bytes)blocks_size

1622502IntegerTotal number of blocksblocks_total

dos (fat32)String with one of the

following values: dos

Filesystem type. This field is

present only if the filesystem is

mounted.

fs_type

(fat32), qnx4, qnx6,

nt, or unknown

Home movies 1StringFilesystem label. This field is

present only if the filesystem is

mounted.

label

48 (Not supported)Integer followed by string,

in the format: errno

(str_error(errno))

Outcome of the mount operationmnt_status

/fs/usb0_0StringMountpointmount

/dev/umass/umass0t6StringPartition name. This field is

present only if the mount object

represents a partition.

partition

1IntegerTotal number of partitions. This

field is present only if the mount

partition_count

object represents an entire device,

not a partition.

0IntegerPartition index. This field is

present only if the mount object

represents a partition.

partition_order

© 2014, QNX Software Systems Limited 29

Mount object

ExampleTypeDescriptionName

plugin_name::generic

name::

String in the following

format: pname

[attr_name::value]*

Here, pname is one of the

following plugin names:

Name of plugin supplying extra

mount information, followed by

mount fields returned by plugin

plugin_name

id::5d05f0df-68f4-4cfe

-b06e-ad664aad3ec8

ipod, mediafs, or

generic.

The set of attributes

written into this field

depends on the plugin.

/pps/qnx/driver/265837StringDriver object pathPPS_DRIVER_ID

/pps/qnx/mount/umass0StringMount object pathPPS_RAWMOUNT_ID

/dev/umass/umass0StringName of raw deviceraw

0 (writable)Boolean: 0 if writable or 1

if read-only

Read-only status of device. This

field is present only if the

filesystem is mounted.

read_only

302 (Corrupted file

system detected)

Integer followed by string,

in the format: errno

(str_error(errno))

Error string. This field is present

only if an error occurred when

accessing the device's mounted

filesystem.

status

30 © 2014, QNX Software Systems Limited

The usblauncher Service

Command line for usblauncher

Start usblauncher device enumerator and publisher

Synopsis:

 usblauncher [-b] [-C] [-c config_file] [-e] [-h] [-l]
 [-M mnt_rules] [-m pps_path] [-n stack_name] [-P]
 [-p seconds] [-S stack_number] [-s dll_path] [-t] [-v]

Options:

-b

Run usblauncher in the foreground. This option is handy for debugging

because you can press Ctrl–C to terminate the publisher.

By default, usblauncher runs in the background.

-C

Always set the device configuration when attaching a device. This option

should be used alongside the io-usb -C option, which tells the USB stack

never to set the device configuration at enumeration time. Note that this

stack option doesn't affect hubs—their configurations are always set by the

stack.

We recommend using the -C option for both usblauncher and io-usb

when supporting MirrorLink devices, which will make usblauncher set

the configuration after sending the NCM request.

By default, usblauncher selects a configuration only for devices with

multiple configurations, based on the first driver that matches the device.

-c config_file

The configuration file. At startup, usblauncher reads this file to learn the

USB device-matching rules for different device types. These rules indicate

which driver to launch for communicating with the device as well as which

command options to provide to the driver.

If you don't specify a configuration file, usblauncher looks for the default

file (/etc/usblauncher/rules.lua). In this case, the default file must

exist or usblauncher won't run.

The configuration file named with this command option can include other

Lua files by using the dofile() command. For example, if you use separate

© 2014, QNX Software Systems Limited 31

Command line for usblauncher

files to define various descriptors to use when running in USB device mode,

you can include these descriptor files in the main configuration file.

-e

Enable detection of extra events; specifically, bad device attachments and

detachments as well as device resets.

By default, usblauncher doesn't detect and publish information about

these extra events.

-h

Prevent the USB stack from starting in host mode, which is the default

behaviour. Use this option when you want to support OTG but your client

application will decide which stack version to start and then issue the

start_stack command through PPS to tell usblauncher when to start

a stack.

-l

Log messages to sloginfo instead of standard out.

By default, usblauncher logs messages to standard out.

-M mnt_rules

The mountpoint file, which tells usblauncher where to mount the

filesystems of devices represented by particular /dev entries. Any file named

with this option must be in the same format as the default mcd mountpoint

file (/etc/mcd.mnt). In this file, you can name not only mountpoints but

also the mount options provided to the filesystem library, such as codepage

mapping or long-filename handling in fs-dos.

Use the -M option if you want to assign nondefault mountpoints to devices.

You can also name an empty file to prevent usblauncher from mounting

USB devices (see “Disabling usblauncher auto-mounter (p. 35)” for

details).

-m pps_path

The PPS directory path. The subdirectories for storing the device, device

control, driver, and mount objects are located in this directory. The default

is /pps/qnx/.

-n stack_name

The server name of the USB stack. The default is /dev/io-usb/io-usb.

Use this option only if you don't support OTG and always run the USB host

32 © 2014, QNX Software Systems Limited

The usblauncher Service

stack (io-usb), never the USB device stack (io-usb-dcd), and if your

USB host stack is stored at a nondefault location.

If you want to support OTG and use nondefault USB stack paths, you must

define these paths in the Host_Stack and Device_Stack rules in the

configuration file.

-P

Probe the media to get the partition count only if the device is ready.

By default, usblauncher doesn't wait until the device is ready to try to

obtain the partition count.

-p seconds

The polling interval (in seconds), which is how often usblauncher checks

for changes to the mountpoints associated with the active drivers.

The default interval is three seconds.

-S stack_number

The USB stack number. The usblauncher service stores this value in the

information for each USB device it monitors, to differentiate the device from

others that have the same bus number and device number but are managed

by other io-usb servers.

-s dll_path

The plugin path. At startup, usblauncher looks in this path for plugins it

can load and then use to provide more detailed device information (see

“Plugins (p. 14)”).

If this option isn't specified, no plugins are loaded.

-t

Terminate launched drivers when exiting.

By default, usblauncher doesn't terminate driver processes while deleting

device and driver objects during shutdown.

-v

Increase output verbosity. The -v option is cumulative, so you can use

several v's to increase verbosity. Setting one v logs USB device attachments

and detachments. Setting two v's adds the logging of PPS object creation

and deletion. Setting three or four v's logs more detailed events as well as

errors that are less severe.

© 2014, QNX Software Systems Limited 33

Command line for usblauncher

Output verbosity is handy when you're trying to understand the operation of

usblauncher. However, when lots of -v arguments are used, the logging

becomes quite significant. The verbosity setting is good for systems under

development but probably shouldn't be used in production systems or during

performance testing.

Description:

You should start usblauncher with an explicit command only if the process

terminates unexpectedly. Before trying to start usblauncher manually,

always confirm that the process isn't already running by checking the list of

active processes with pidin or ps. If you want to restart only the USB stack,

send the start_stack command to the device control object (p. 26).

The usblauncher command starts a multipurpose service that enumerates USB

devices, launches drivers for communicating with those devices, and publishes their

information through PPS.

On the command line, you can override the default configuration file to provide

usblauncher with a set of custom rules for configuring different device types. You

can also name your own mountpoint file to mount filesystems to nondefault locations,

set how often usblauncher checks for mountpoint updates, and configure how it

logs error and event information.

By default, usblauncher starts the USB stack in host mode, assuming you've defined

the appropriate rules in the configuration file. You can prevent the launching of this

stack by using the -h option, if you plan to use your system as the USB device.

The usblauncher service runs as a self-contained process that doesn't require any

user input. It has no client utility for performing device-publishing tasks on request

or for adjusting any of its settings. You can restart the USB stack in a different role

by issuing the start_stack command through PPS, but to reconfigure usblauncher

in any other way, you must change the options in its command line and restart the

service. We recommend putting the usblauncher command line in a startup script

(e.g., startup.sh) to automatically launch the service during bootup.

Using usblauncher to mount filesystems

The usblauncher service can mount the filesystems of attached USB devices based

on the rules in a mountpoint file.

The usblauncher service reads either the default mcd mountpoint file

(/etc/mcd.mnt) or another file specified with the -M option in the command line

that started the service. Basically, usblauncher performs the function of the

MOUNT_FSYS rule in the mcd configuration file while using the standard mechanism

of mount to do the actual mounting.

34 © 2014, QNX Software Systems Limited

The usblauncher Service

Preventing mcd from mounting USB devices

To use the usblauncher auto-mounter feature when your system runs mcd, you must

do one of the following two actions:

• In the mcd configuration file (/etc/mcd.conf), disable any MOUNT_FSYS rule

that references a mountpoint file with USB device listings (e.g.,

/dev/umass*t[146]).

• Delete the USB device listings in any mountpoint file referenced by a MOUNT_FSYS

rule.

These actions ensure that usblauncher and mcd don't try to mount the same

filesystems, which will happen if both processes are tasked with assigning mountpoints

for the same USB-related /dev entries. For more information on mcd and its

configuration file, refer to the mcd entry in the Utilities Reference.

Disabling usblauncher auto-mounter

If your system setup requires you to use mcd for mounting all devices, you can disable

the usblauncher auto-mounter feature by specifying an empty mountpoint file with

the -M option. With no matching mountpoint entries for any attached devices,

usblauncher won't try to mount any filesystems.

This strategy is handy if you need to mount the filesystems of both USB and non-USB

devices and you prefer to use a common service (mcd) for all mounting operations.

Unfortunately, usblauncher will no longer be able to log the mount attempts and

publish accurate mnt_status values through PPS.

© 2014, QNX Software Systems Limited 35

Command line for usblauncher

Configuration files

The usblauncher configuration files contain instructions for launching drivers for

particular devices as well as descriptors to expose to USB hosts when running the

stack in device mode.

Configuration files for usblauncher are interpreted as Lua scripts (see the Lua

project homepage for information on the Lua language). By default, usblauncher

reads the file at /etc/usblauncher/rules.lua, but you can specify a nondefault

configuration file by using the -c command-line option. You can name only one

configuration file, but this file can include other Lua files by using the dofile

command. For ease of maintenance, the platform image stores the USB device mode

descriptors in separate Lua files, which are included in the main file so that

usblauncher can override the default descriptors after launching the USB device

stack.

Starting USB stack in host and device modes

Your configuration file must contain commands for launching the USB stack in each

of the host and device modes if you want to support USB On-The-Go (OTG). Switching

stack modes dynamically allows for creating devices capable of acting as either a USB

host or a USB device, without requiring separate USB controllers and ports.

The rules.lua configuration file shipped with the platform contains sample rules

for launching the USB stack in both the host and device modes:

Host_Stack = {
 cmd = 'io-usb -c -d ehci-mx28 ioport=0x02184100,irq=75,\z
 phy=0x020c9000';
 path = '/dev/otg/io-usb';
}

dofile '/etc/usblauncher/iap2.lua'
dofile '/etc/usblauncher/iap2ncm.lua'
dofile '/etc/usblauncher/umass.lua'

Device_Stack = {
 cmd = 'io-usb-dcd -d iap2-mx6sabrelite-ci \z
 ioport=0x02184000,irq=75,vbus_enable';
 path = '/dev/otg/io-usb-dcd';
 descriptors = { iap2, iap2ncm, umass };
}

These rules contain the following fields:

cmd

Stores the command line for starting the stack in a particular mode. The

command line consists of the process name followed by hardware-specific

options for configuring the stack. This excerpt shows the options for the

i.MX6Q SABRE Lite platform; your system might use different options

36 © 2014, QNX Software Systems Limited

The usblauncher Service

http://www.lua.org
http://www.lua.org

depending on the board you're running on. You can find information on all

options supported by the host and device stacks in the io-usb and

io-usb-dcd references.

path

Provides the full path of the USB stack service. In this release, there are

separate services for the host and device modes.

The usblauncher service appends the stack path to the string in cmd by

using the -n option; it's not necessary to provide this option in cmd when

using a nondefault path.

descriptors

Optional and used only with device mode.

Lists USB descriptors (p. 43) that your system can expose to a USB host.

Each descriptor specifies a set of hardware and connection properties based

on a particular device function (e.g., mass storage, serial data transfer).

These descriptors override the default descriptors compiled into the USB

device stack.

The dofile statements that include the configuration files

containing the descriptors must be placed above the Device_Stack

rule to make them visible in the descriptors list.

Based on the device function you want your system to support, you can

select a descriptor by sending the start_stack::device,n command

to the device control object. Here, n is a one-based index in the

descriptors list (i.e., 1 refers to the first list entry). If you don't define

the descriptors list or you provide an out-of-bounds index or no index

in the start_stack command, the compiled-in descriptors (but no

overridden descriptors) are used.

You can use the RoleSwap_AppleDevice and

RoleSwap_DigitaliPodOut flags to enable client-mode iAP2 and the

CarPlay application. Both these flags cause usblauncher to restart the

stack in device mode and expose a different set of descriptors. For

RoleSwap_AppleDevice, usblauncher uses the first item in the list;

for RoleSwap_DigitaliPodOut, it uses the second item. For more

information on these flags, see “Supported third-party applications and

protocols (p. 49)”.

© 2014, QNX Software Systems Limited 37

Configuration files

USB matching rules

The USB matching rules in the main configuration file (rules.lua) provide

usblauncher with commands for launching the appropriate driver with the appropriate

configuration when a device is attached through a USB port.

The matching rules specify device properties (e.g., vendor ID, device ID, USB class)

that usblauncher compares against the descriptors of newly attached devices; these

descriptors are provided by the USB stack. When usblauncher finds a matching

rule with properties matching those of a newly attached USB device, it executes the

driver command specified in that rule.

Matching rule levels

Matching rules are expressed in a hierarchy that defines different levels at which to

match device descriptors. Each level of depth is more specific than the last, meaning

that its rules match a more restricted set of devices. The five levels in device

specification rules are:

1. device

2. configuration

3. interface

4. class

5. ms_desc

When an outer (more general) rule matches a newly attached device, usblauncher

compares the inner (more specific) rules in a depth-first search order. You can omit

some or all of the inner rules if you don't care about matching any descriptors at that

level.

For rules at the same level, usblauncher applies the rule listed the earliest in the

configuration file. You can confirm the exact search order by calling show_config() at

the end of your configuration file.

The device specification that follows provides three levels of matching rules. The driver

command line is enclosed in double quotes and prefixed with the driver keyword.

The names of macro variables in the driver command line are the same as the attribute

names in PPS device objects.

device(<vid>, <did>, <rev_low>, <rev_high>) {

 configuration(1) {

 class(<class>, <subclass>, <protocol>) {

 driver"io-fs-media -dxxx,\z
 device=$(busno):$(devno):$(interface)";

 };
 };
};

38 © 2014, QNX Software Systems Limited

The usblauncher Service

Matching rule arguments

The matching rules take variable numbers of arguments so that they may be as specific

as necessary. The following table outlines the descriptors matched at each device

specification level:

Rule syntaxDescriptors matchedLevel

device(<vid>, <did>, <rev_low>, <rev_high>)

-- most specific

device(<vid>, <did>, <rev_low>)

device(<vid>, <did>)

device() -- most general

vendor ID, device ID, earliest

revision, latest revision

device

product(<vid>, <did_low>, <did_high>)

-- most specific

product(<vid>, <did_low>)

product(<vid>)

product() -- most general

vendor ID, lowest device ID,

highest device ID

product (see

Footnote.)

configuration(<num>) -- specific

configuration() -- general

configuration numberconfigura

tion

interface(<num_low>, <num_high>)

-- most specific

interface(<num>)

interface() -- most general

interface number or range

indicated by lowest and highest

numbers

interface

class(<class>, <subclass>, <protocol>)

-- most specific

class(<class>, <subclass>)

class(<class>)

class() -- most general

interface class, subclass, and

protocol

class

ms_desc(<compatibleID>, <subcompatibleID>,

<vendorID>) -- most specific

ms_desc(<compatibleID>, <subcompatibleID>)

ms_desc(<compatibleID>)

ms_desc() -- most general

Microsoft descriptorms_desc

1 The product rule is the same as the device rule except that you can specify a range of device IDs.

© 2014, QNX Software Systems Limited 39

Configuration files

Variables

You can define variables at the top of the configuration file to hold configuration values

used in the matching rules:

-- definitions of common USB properties
USB_CLASS_AUDIO = 0x01
 USB_AUDIO_SUBCLASS_CONTROL = 0x01
 USB_AUDIO_SUBCLASS_STREAMING = 0x02
 USB_AUDIO_PROTOCOL_1_0 = 0x00
 USB_AUDIO_PROTOCOL_2_0 = 0x20
USB_CLASS_PHYSICAL = 0x05
USB_CLASS_IMAGING = 0x06
 USB_IMAGING_SUBCLASS_STILL = 0x01
 USB_IMAGING_STILL_PROTOCOL_PTP = 0x01
USB_CLASS_PRINTER = 0x07
USB_CLASS_MASS_STORAGE = 0x08

The matching rules that follow demonstrate the use of variables. The first specification

matches any device that has a mass-storage class while the second specification

matches a Sony Walkman device with an MTP Microsoft descriptor.

-- generic mass storage rule
device() {
 class(USB_CLASS_MASS_STORAGE) {

 DISK_OPTS = "cam quiet blk cache=1m,vnode=384,\z
 auto=none,delwri=2:2,rmvto=none,noatime \z
 disk name=umass cdrom name=umasscd";
 UMASS_OPTS = "umass priority=21";

 driver"devb-umass $(DISK_OPTS) $(UMASS_OPTS),\z
 vid=$(vendor_id),did=$(product_id),\z
 busno=$(busno),devno=$(devno),\z
 interface=$(interface),ign_remove";
 };
};

-- Sony Walkman
device(0x054c, 0x03fd) {

 ms_desc("MTP", "", 1) {
 driver"io-fs-media -dpfs,device=$(busno):\z
 $(devno):$(interface)";
 };
};

Notice that variables can be defined in the scope of a rule and used in the driver

command line. When searching for variables, usblauncher searches the definitions

from the innermost to the outermost scope.

Flags

You can also place flags in a rule to change the range of devices matched as well as

the actions performed after matching a device.

40 © 2014, QNX Software Systems Limited

The usblauncher Service

At the device level, the Ignore flag instructs usblauncher to ignore the device

by not attaching to it and reading its descriptors. In this case, no PPS objects are

published and no driver is launched. Consider the following example:

device(0x0e0f, 0x0003) {
 Ignore; -- don't even attach to this device
}

Because it performs the Ignore check before attaching to the device, usblauncher

doesn't have any device descriptors to match against. This means that it can look at

only the vendor ID and device ID supplied by the stack when the device was physically

attached to the system. Therefore, the device rule can't be made more specific about

ignoring certain devices.

For rules at inner levels, the Ignore check is done after retrieving device descriptors,

which means that you can make these rules more specific. At any inner level, the

Ignore flag stops usblauncher from launching a driver and from matching the

device with any subsequent rules.

product(0x05AC) {
 class(USB_CLASS_AUDIO, USB_AUDIO_SUBCLASS_CONTROL) {
 driver"io-audio -dipod busno=$(busno),devno=$(devno),\z
 cap_name=ipod-$(busno)-$(devno)";
 };
 class(USB_CLASS_HID) {
 driver"io-fs-media -dipod,$(IPOD_OPTS)";
 };
 class(USB_CLASS_MASS_STORAGE) {
 Ignore;
 };
};

You can include the Default flag in a configuration rule to limit driver matching

to the device's default configuration, as demonstrated in the following example:

configuration(0x48E0) {
 Default;
 driver"io-fs-media -dipod,$(IPOD_OPTS)";
}

The Never flag means no device is matched. This flag lets you temporarily disable a

rule. The device can match another rule specified later in the configuration file and

have an alternative driver launched.

The Always flag means any device is matched (if it hasn't been matched with another

rule already). For example, although the class rule in the following device specification

indicates an interface class of 8, the rule actually matches devices of any class:

device() {
 class(8) {
 Always;
 start"echo this is busno=$(busno) devno=$(devno) inserted";
 };
};

These last two flags provide a helpful way to test a rule during development.

© 2014, QNX Software Systems Limited 41

Configuration files

Multiple interface classes

You can specify multiple interface classes for one device or product rule, as in the

sample iPod device specification that follows.

-- iPod
product(0x05AC, 0x1200, 0x12FF) {

 class(USB_CLASS_AUDIO, USB_AUDIO_SUBCLASS_CONTROL) {

 driver"io-audio -dipod busno=$(busno),devno=$(devno),\z
 cap_name=ipod-$(busno)-$(devno)";
 };

 class(USB_CLASS_HID) {
 driver"io-fs-media -dipod,transport=usb:busno=$(busno):\z
 devno=$(devno):\z
 audio=/dev/snd/ipod-$(busno)-$(devno),\z
 darates=+8000:11025:12000:16000:22050:24000,\z
 playback,acp=i2c:addr=0x11:path=/dev/i2c99,\z
 fnames=short,config=/etc/mm/ipod.cfg";
 };

 class(USB_CLASS_MASS_STORAGE) {
 Never;
 };
};

Foreach rule

With the foreach rule, you can launch a particular driver for any device in a given

list of devices. This rule saves you from having to specify many device (or product)

rules that differ only by their device or vendor IDs, as seen in the example that follows:

char_devices = {
 device(0x0557, 0x2008); -- ATEN_232A/GUC_232A
 device(0x2478, 0x2008); -- TRIPP LITE U2009-000-R
 device(0x9710, 0x7720); -- MOSCHIP 7720
 device(0x0403, 0x6001); -- FTDI 8U232AM
 device(0x1199, 0x0120); -- Sierra AirCard U595
 device(0x0681, 0x0040); -- Siemens HC25
 device(0x1bc7, 0x1003); -- Telit UC864E
 device(0x067b, 0x2303); -- Prolific
}

foreach (char_devices) {
 driver" devc-serusb -d vid=$(vendor_id),did=$(product_id),\z
 busno=$(busno),devno=$(devno)";
}

The foreach rule also works with device-specification rules of inner scopes such as

configuration or interface.

Driver and start functions

You can specify a driver with either of the driver or start functions. The difference

is that driver is used to launch programs that are expected to run as long as the

42 © 2014, QNX Software Systems Limited

The usblauncher Service

device is attached. These programs are usually daemons. Consider the following rule

for launching a daemon:

device() {
 class(USB_CLASS_MASS_STORAGE) {
 driver"devb-umass $(DISK_OPTS) $(UMASS_OPTS),\z
 vid=$(vendor_id),did=$(product_id),busno=$(busno),\z
 devno=$(devno),interface=$(interface)";
 };
};

The start function is used for launching short-lived commands, such as the echo

command shown in the following example:

device() {
 class(USB_CLASS_MASS_STORAGE) {
 start"echo Device busno=$(busno) devno=$(devno) inserted";
 };
};

USB descriptors

When your system is acting as the USB device in a link with another system acting as

the USB host, you can specify which USB descriptors you want to expose to the host.

These USB descriptors indicate your system's device function (e.g., mass storage,

serial data transfer).

Defining your own USB descriptors allows you to override the default descriptors any

time you use usblauncher to restart the USB stack in device mode. The descriptor

overriding is done by issuing the start_stack::device,n command to the device

control object (p. 26). Here, n is an index into the one-based list of descriptors (i.e.,

1 refers to the first entry). In the QNX SDP image, this list is found in the main

configuration file (rules.lua) but the individual descriptors are stored in separate

Lua files (e.g., umass.lua, usbser.lua).

You can change the USB descriptors exposed to a USB host by issuing a start_stack

command after the USB stack is started but before the link with the host is enabled

(i.e., before the host can detect the attachment and enumerate the device). Because

usblauncher doesn't monitor hardware for device or cable attachments, it's up to

client applications to detect when a USB host is trying to set up a link and to then

decide on the appropriate USB device role for the system and expose the device

descriptors based on this role (see “Support for USB On-The-Go (OTG) (p. 21)” for a

typical device role-swapping scenario).

USB descriptor levels

USB descriptors are expressed in a hierarchy that defines different levels for storing

the communication and data properties of a device. Each level of depth is more specific

than the last, meaning it describes a more specialized set of USB properties. The four

levels in USB descriptors are:

© 2014, QNX Software Systems Limited 43

Configuration files

device

Represents the entire device. A device can have only one device descriptor.

configuration

Specifies details on device power usage and stores interface descriptors.

Currently, usblauncher supports only one configuration per device.

interface

Groups endpoint descriptors to define a single device feature.

endpoint

Acts as a single channel for USB data, similar to a socket in a program. The

USB host uses endpoint information to determine bandwidth requirements.

You can find detailed information on these four descriptor levels, including

lists of USB fields applicable to each level, on the USB Descriptors page of

the USB in a NutShell online blog.

Variables

You can store common USB descriptor values in variables and later refer to these

variables when defining USB fields. Here are the variables defined at the top of

usbser.lua:

-- Sample USB descriptors for a USB Serial device

USB_CONFIG_SELFPOWERED = 0xC0
USB_CONFIG_REMOTEWAKEUP = 0x20
USB_MAX_CURRENT = 0

Class-specific descriptors

Some interfaces require class-specific descriptors, which provide information specific

to the communication or data class supported by the interface. Class-specific

descriptors are expressed as the concatenation of all functional descriptors for the

class. Functional descriptors provide information such as call management capabilities,

supported network control notifications, and so on.

In usbser.lua, we define class-specific descriptors for a communication device.

Because there are many class-specific descriptor formats, which are defined outside

the core USB specification, we don't include any helper templates for them. Therefore,

you need to define these descriptors as an array of bytes, in the same order they would

be sent over the wire. You can refer to this array later when defining the descriptor for

an interface.

44 © 2014, QNX Software Systems Limited

The usblauncher Service

http://www.beyondlogic.org/usbnutshell/usb5.shtml

There is one exception to the strict byte-by-byte copying and data transfering done by

usblauncher: when it finds a string in your array of bytes, usblauncher converts

the string to double-byte format, stores it in a table of strings, and then replaces the

raw bytes in the array with the corresponding index from the strings table. For all other

bytes, you must hand-code them:

comm_descriptors = {
-- Header Functional Descriptor
 0x05, -- bFunctionLength
 0x24, -- bDescriptorType
 0x00, -- bDescriptorSubType
 0x10, -- bcdCDC (LSB)
 0x01, -- bcdCDC (MSB)

-- Call Managment Functional Descriptor
 0x05, -- bFunctionLength
 0x24, -- bDescriptorType
 0x01, -- bDescriptorSubType
 0x00, -- bmCapabilities - ENOSUP
 0x01, -- bDataInterface

-- Abstract Control Model Function Descriptor
 0x04, -- bFunctionLength
 0x24, -- bDescriptorType
 0x02, -- bDescriptorSubType
 0x02, -- bmCapabilities

-- Abstract Control Model Union Descriptor
 0x05, -- bFunctionLength
 0x24, -- bDescriptorType
 0x06, -- bDescriptorSubType
 0x00, -- bControlInterface
 0x01, -- bSubordinate interface
}

Descriptor templates

Before you can fill in the templates that correspond to the four USB descriptor levels,

you must first create an empty table:

usbser = {}

You can now define the USB device properties that you want to expose to a USB host.

The Device{} construct lets you specify device descriptor fields, which list

manufacturer information and the device's supported USB classes and protocols. The

sample rules.lua file provides some predefined variables (p. 40) for USB class and

subclass types. To improve readability, you can refer to these variables instead of

putting in literal integer values. In all descriptor templates, the bLength and

bDescriptorType fields are filled in for you. Depending on the descriptor type,

other fields may also be filled in.

When you assign strings to the table entries for the iManufacturer, iProduct,

and iSerialNumber device descriptor fields, usblauncher stores a double-byte

version of each string in a special strings table and replaces the literal values of those

© 2014, QNX Software Systems Limited 45

Configuration files

entries with the associated indexes in the strings table. Most likely, you'll want to

define strings for these previous three fields along with values for these other fields:

• bDeviceClass

• bDeviceSubClass

• idVendor

• idProduct

The USB Descriptors page explains the meaning of all device descriptor fields.

You must assign the filled-in Device{} template to the device entry in the table

that you created:

usbser.device = Device{
 bDeviceClass = USB_CLASS_COMMS,
 bDeviceSubClass = USB_COMMS_SUBCLASS_MODEM,
 bDeviceProtocol = 0x0,
 bMaxPacketSize = 64,
 idVendor = 0x1234,
 idProduct = 0x4,
 bcdDevice = 0x0100,
 manufacturer = 'Acme Corporation',
 product = 'CDC Serial Peripheral',
 serial = 'xxxx-xxxx-xxxx',
 bNumConfigurations = 1,
}

This release supports only one configuration per device, so

bNumConfigurations must be set to 1. You must define separate

configuration descriptors for Full Speed and for High Speed connections, but

each USB device will use only one configuration in an active link.

Next, specify the remaining descriptor types as part of one configuration, using the

Config{} construct. Fields like bmAttributes and bMaxPower take values

described in the configuration descriptor fields section of the USB Descriptors page.

You can define a string for the iDescription field, in which case usblauncher

stores a double-byte version of this string in the strings table and writes the appropriate

table index in place of the string bytes when sending data over the wire. The

wTotalLength and bNumInterfaces fields are also filled in by usblauncher.

To specify the full-speed configuration, you must assign the filled-in Config{}

template to the fs_config entry in the main table:

usbser.fs_config = Config{ -- full speed
 bConfigurationValue = 1,
 bmAttributes = USB_CONFIG_SELFPOWERED,
 bMaxPower = USB_MAX_CURRENT,
 description = 'Default Configuration',
 interfaces = {
 Association{

46 © 2014, QNX Software Systems Limited

The usblauncher Service

http://www.beyondlogic.org/usbnutshell/usb5.shtml#DeviceDescriptors
http://www.beyondlogic.org/usbnutshell/usb5.shtml#ConfigurationDescriptors

The high-speed configuration is specified in a similar manner; you must complete a

Config{} template but assign it to the hs_config entry:

usbser.hs_config = Config{ -- high speed
 bConfigurationValue = 1,
 bmAttributes = USB_CONFIG_SELFPOWERED,
 bMaxPower = USB_MAX_CURRENT,
 description = 'Default Configuration',
 interfaces = {
 Association{

Next, define a nested table in the interfaces entry, in each of the full-speed and

high-speed configurations. You can group multiple interfaces together by defining an

Interface Association Descriptor (IAD), using the Association{} construct. An IAD

has a class, subclass, protocol, and optionally a string to describe it, followed by a list

of interfaces, each of which is defined by a separate Iface{} template:

 Association{
 bInterfaceClass = USB_CLASS_COMMS,
 bInterfaceSubClass = USB_COMMS_SUBCLASS_MODEM,
 bInterfaceProtocol = 0x0,
 description = 'Serial Port Interface',
 interfaces = {
 Iface{

When you assign a string to the IAD description entry, usblauncher writes the

table index for this string into the iInterface descriptor field for each interface

defined within the IAD.

An Iface{} defines an interface's USB class, subclass, and protocol as well as a

bAlternateSetting entry, which determines the autogenerated value written into

the bInterfaceNumber descriptor field. The interface number increases by 1 for

each new interface whose bAlternateSetting value is 0. When this value is 1,

the interface is an alternate interface and therefore has the same interface number

as the previous interface.

In both the full-speed and high-speed configurations, you must define a Communication

Class interface to handle device management and possibly call management. You can

define any number of Data Class interfaces to support the transfer of data with a

certain structure and usage. Each such interface is specified in its own Iface{} tag.

For the Communication Class interfaces, we assign class-specific descriptors (p. 44)

by setting the class_specific entry to the array of bytes containing those descriptors

(which we defined earlier):

 Iface{
 bInterfaceClass = USB_CLASS_COMMS,
 bInterfaceSubClass = USB_COMMS_SUBCLASS_MODEM,
 bInterfaceProtocol = 0x0,
 bAlternateSetting = 0,
 description =
 'Serial Port Communication Class Interface',
 class_specific = comm_descriptors,
 endpoints = {

© 2014, QNX Software Systems Limited 47

Configuration files

In our example, the Data Class interfaces don't use class-specific descriptors,

so the class_specific entry isn't set for those interfaces.

Finally, you must provide a list of endpoints in each interface. For the Communication

Class interfaces, you can use the InterruptIn{} construct to set the

wMaxPacketSize and bInterval endpoint descriptor fields (as defined in the USB

specification):

 endpoints = {
 InterruptIn{wMaxPacketSize = 8,
 bInterval = 8}
 }

In this case, usblauncher fills in the bEndpointAddress and bmAttributes

fields, which are sent along with the other endpoint information to the USB host.

For the Data Class interfaces, you can use the BulkIn{} and BulkOut{} constructs

to set limits on the packet sizes for outgoing and incoming bulk data. Each construct

takes only the wMaxPacketSize field:

 endpoints = {
 BulkOut{wMaxPacketSize = 64},
 BulkIn{wMaxPacketSize = 64},
 }

When you define maximum packet sizes for bulk data transfer on an endpoint,

usblauncher sets the bInterval descriptor field to 0 and calculates the

bEndpointAddress and bmAttributes fields.

For all other endpoint properties, you can use either the EndpointIn{} or the

EndpointOut{} construct and then set the bmAttributes, wMaxPacketSize,

and bInterval fields according to the USB specification. In this case, usblauncher

calculates the bEndpointAddress field.

If any expected field is left undefined, usblauncher logs a warning message

and assigns 0 in place of the missing field.

Bypassing helper templates to fully define USB descriptors

The helper templates don't cover every USB device scenario because usblauncher

fills in many descriptor fields for you, at all hierarchy levels in the USB descriptors.

For full control over what's stored in the descriptors, you can define their raw bytes,

as demonstrated in the included raw_desc_usbser.lua file. If you want to fully

define USB descriptors byte by byte, you must set certain keys in the descriptor table:

• .device

• .fs_config

• .hs_config

48 © 2014, QNX Software Systems Limited

The usblauncher Service

• .strings

Any descriptor table that you create must be referenced in the list of descriptor

overrides (i.e., the Device_Stack.descriptors list in the main configuration

file). For example, to use the serial_raw_desc{} table defined in

raw_desc_usbser.lua, you need to put an entry for that table in the descriptors

list:

descriptors = { iap2, iap2ncm, serial_raw_desc };

For two-byte fields such as wMaxPacketSize and wTotalLength, you can access

their least-significant and most-significant bytes by using the lsb() and msb()

functions, which is necessary when defining these fields byte by byte.

The .device, .fs_config, and .hs_config keys must be Lua strings (which

aren't null-terminated, as are C strings). You can use Lua's string.char() function

to convert an array of bytes into a string, the expected type for these keys. However,

the .strings key must be a table of strings. We provide the double_byte() helper

function so you don't have to hand-code the double-byte representations of these

strings when expressing them as raw bytes.

Supported third-party applications and protocols

The usblauncher service supports several third-party applications and protocols for

accessing content on attached devices. To work with these applications and protocols,

you can define configuration rules that swap the role of the USB stack, probe a device

for its iAP2 protocol support, or request a device to switch to another mode.

Enabling Apple CarPlay

To support Apple CarPlay, you must define both the Host_Stack and Device_Stack

rules. Also, your system must be running the USB stack when the Apple device (e.g.,

an iPhone 5) is first connected, so usblauncher can learn of the connected device.

If you're running the stack in host mode, you must restart it in device mode. To enable

this role swapping, add the RoleSwap_DigitaliPodOut flag to the matching rule

for Apple devices (which have a vendor ID of 0x05AC):

product(0x05AC, 0x1200, 0x12FF) {

 RoleSwap_DigitaliPodOut;

 -- drivers below are matched when the role swap request fails
 class(USB_CLASS_AUDIO, USB_AUDIO_SUBCLASS_CONTROL) {
 driver"io-audio -dipod busno=$(busno),devno=$(devno),\z
 cap_name=ipod-$(busno)-$(devno)";
 };
 class(USB_CLASS_HID) {
 driver"io-fs-media -dipod,$(IPOD_OPTS)";
 };
};

© 2014, QNX Software Systems Limited 49

Configuration files

To obtain the drivers needed to support iOS in automotive systems, contact

your Project Manager or QNX customer support.

In the failure-handling section of this rule, the HID class must specify a driver or script

so that usblauncher can execute the role-swap request specified above. If you don't

want your system to support Apple devices when continuing to run as the USB host

after a failed role-swap request, insert a “stub” command such as “echo HID for

iPod” within the HID class rule.

If you provide descriptor overrides by defining the Device_Stack.descriptors

list, usblauncher will use the descriptors from the second item in this list to override

the device stack's internal settings when restarting the USB stack in device mode after

successfully processing the RoleSwap_DigitialiPodOut flag.

Enabling iAP2 in client mode

To support iPod Accessory Protocol 2 (iAP2) in client mode, you must define the

Host_Stack and Device_Stack rules and launch the USB stack before connecting

any devices that support iAP2 for playback control. To verify that a device supports

iAP2 and request the necessary role-swapping of the USB stack, add the

RoleSwap_AppleDevice flag to the matching rule for Apple devices:

product(0x05AC, 0x1200, 0x12FF) {

 RoleSwap_AppleDevice;

 -- drivers below are matched when the role swap request fails
 class(USB_CLASS_AUDIO, USB_AUDIO_SUBCLASS_CONTROL) {
 driver"io-audio -dipod busno=$(busno),devno=$(devno),\z
 cap_name=ipod-$(busno)-$(devno)";
 };
 class(USB_CLASS_HID) {
 driver"io-fs-media -dipod,$(IPOD_OPTS)";
 };
};

In the failure-handling section of this rule, the HID class must specify a driver or script

so that usblauncher can execute the iAP2 probe and role-swap request specified

above. If you don't want your system to support Apple devices when continuing to run

as the USB host after a failed verification of iAP2 support or a failed role-swap request,

insert a “stub” command such as “echo HID for iPod” within the HID class rule.

If you define the Device_Stack.descriptors list, usblauncher will use the

descriptors from the first item in this list to override the device stack's internal settings

when restarting the USB stack after successfully processing the

RoleSwap_AppleDevice flag.

50 © 2014, QNX Software Systems Limited

The usblauncher Service

Probing for iAP2 support

The Probe_iAP2 flag doesn't trigger a role-swap request but allows you to probe a

device for its iAP2 support. For example, you may want to start a different driver

depending on the iAP version supported:

product(0x05AC, 0x1200, 0x12FF) {

 Probe_iAP2;

 -- drivers below are matched when iAP2 isn't supported
 -- in client mode on the target
 class(USB_CLASS_AUDIO, USB_AUDIO_SUBCLASS_CONTROL) {
 driver"io-audio -dipod busno=$(busno),devno=$(devno),\z
 cap_name=ipod-$(busno)-$(devno)";
 };
};

Using multiple flags

You can use combinations of these role-swapping and device-probing flags. Their order

has no significance, because usblauncher always processes the flags in this

sequence:

1. RoleSwap_DigitaliPodOut

2. Probe_iAP2

3. RoleSwap_AppleDevice

The RoleSwap_AppleDevice flag triggers a probe for iAP2 support on the

connected device, before the actual role-swapping is attempted, so the

Probe_iAP2 is ignored if it's specified when this role-swapping flag is also

specified.

If an iAP2 probe is attempted but no role swap happens, either because it wasn't

requested or because the device doesn't support iAP2, the device object (p. 22) will

contain the iap attribute. This attribute will be set to 2 if iAP2 support was confirmed

or -1 if iAP2 isn't supported or the probe failed.

Launching a driver in host mode for Apple devices

You can define a custom function to choose between launching iAP1 or iAP2 drivers

in host mode, based on the result of an iAP2 probe. This function can read the device

object's iap attribute (which is set when the device is probed) and then generate a

driver command based on that attribute's value:

product(0x05AC, 0x1200,0x12FF)
{
 Probe_iAP2;

 class(USB_CLASS_AUDIO, USB_AUDIO_SUBCLASS_CONTROL)
 {
 driver"io-audio <full options>"

© 2014, QNX Software Systems Limited 51

Configuration files

 };
 class(USB_CLASS_HID) {
 custom = function(obj)
 if obj.EXTRA and obj.EXTRA:find('iap::2') then
 return "mm-ipod <put the full options here>";
 else -- for iAP1
 return "io-fs-media <put the full options here>";
 end
 end;
 driver"$(custom)";
 };
}

The Lua interpreter evaluates the function when expanding the driver"$(custom)"

string, and then passes the resulting string to usblauncher, which executes it to

launch the driver.

Enabling MirrorLink

The MirrorLink solution lets you access applications on devices such as smartphones

through a car infotainment system. To enable MirrorLink on an attached USB device,

usblauncher can send that device a request to switch to a Network Configuration

Management (NCM) personality. To support this MirrorLink command, you must define

a table in the configuration file as follows:

MirrorLink = {
 version = 0x0101,
 vendor_id = 0xABAB,
 blacklist = {
 { vid = 0x0781; did = 0x74e0 }; -- SanDisk Sansa Fuze+
 { vid = 0x0951; did = 0x1624 }; -- Kingston DataTraveler G2
 { vid = 0x05ac; }; -- any Apple device
 };
 timeout = 2000,
 ignore = false,
 stall_reset = false
}

This table provides the field values for the MirrorLink command to enable the NCM

personality. The version and vendor_id fields are two-byte integers. Each item

in the blacklist list can be simply a vendor ID (vid) or both the vid and device

ID (did). You should add blacklist items for all devices not suitable for MirrorLink;

these devices won't receive requests to switch to an NCM personality.

The timeout field specifies how long to wait, in milliseconds, for a response to the

MirrorLink command to enable NCM on a device. It also specifies how long to wait for

a device that accepts the MirrorLink command to leave the bus.

Normally, a device leaves the bus and comes back with an NCM personality; however,

some noncompliant USB devices may respond successfully to the MirrorLink command

to enable NCM but they may never leave the bus. In this latter case, the timeout

determines how long usblauncher waits before continuing to match and launch any

drivers for devices that haven't left the bus.

52 © 2014, QNX Software Systems Limited

The usblauncher Service

You can set the ignore field to true to prevent usblauncher from matching the

NCM interface to a driver rule, which would select a configuration and launch a driver

for that interface. The ignore setting is useful if you're running a resident driver

outside of usblauncher that manages the NCM interface.

If you do use usblauncher to start a driver for the NCM interface, you don't

need to restart the USB stack in device mode (unlike when supporting CarPlay).

For MirrorLink, the car infotainment system remains the USB host.

Setting stall_reset to true enables resetting the device if it responded with the

USB STALL packet. Some devices don't behave correctly unless they're reset in this

case.

© 2014, QNX Software Systems Limited 53

Configuration files

Chapter 3
The mmcsdpub Publisher

The mmcsdpub device publisher retrieves and publishes information about cards

inserted into SD readers.

This publisher depends on the following services:

Drivers for SD card readers

Depending on your system, you might use either a devb-sdmmc or a

devb-mmcsd driver. Regardless of its exact type or your hardware, the SD

driver runs continuously and manages the SD device paths and

communication with cards.

mcd

The mcd utility mounts the filesystems of inserted SD (and MMC) cards by

making requests to the SD driver. The mountpoints chosen by mcd depend

on the rules in its mountpoint file.

Architecture

/pps/qnx/mount/sda0.0
/pps/qnx/driver/12345
/pps/qnx/device/sda0

@sda0.0
mount::/fs/sda0
type::qnx6

MMC/SD
Publisher

(devb-mmcsd)

mcd
auto-

(mmcsdpub)

SD driver

(devb-sdmmc)

MMC or
SD card

mounter

PPS
Subscribers

(Applications)

Figure 2: MMC/SD publisher architecture

© 2014, QNX Software Systems Limited 55

The arrows between components in Figure 2: MMC/SD publisher architecture (p. 55)

show information flow. For example, when SD cards are inserted into or removed from

card reader slots, the SD driver updates the states of the SD device entries (e.g.,

/dev/sda0 or /dev/sdb0). The mcd service monitors the states of the devices

represented by those entries and when it notices that a card has been inserted, mcd

sends mount requests to the SD driver process, which manages the device paths.

Meanwhile, mmcsdpub also monitors those same /dev entries and when it notices a

state change, mmcsdpub communicates with the driver to retrieve the device and

mount information, which it then writes to the appropriate PPS objects. Subscribed

applications receive PPS updates when the content of those objects change, which

occurs whenever SD or MMC cards are inserted or removed.

The mmcsdpub publisher works with setups where the device entries exist as long as

the driver is running (even when the slots are empty) and also with setups where the

device entries get created and deleted when cards are inserted and removed.

56 © 2014, QNX Software Systems Limited

The mmcsdpub Publisher

Device object

Each device object that mmcsdpub writes to PPS contains the following fields:

ExampleTypeDescriptionName

SDStringBus typebus

SDString with one of the

following values: SD, MMC,

or unknown

Card typecard_type

24IntegerOEM device IDdevice_id

1IntegerNumber of times the driver has reported

Error Correction Code (ECC) errors. This

ecc_count

field is present only when its value is

nonzero.

0 (not locked)Boolean: 0 if not locked or

1 if locked

Whether the card is lockedlocked

0 (not present)Boolean: 0 if not present or

1 if present

Whether the card was present at startup

(and not inserted by the user)

present_at_startup

SD8GBStringOEM product nameproduct_name

1526735628IntegerProduct serial numberserial_number

slot_1StringSlot name passed to driverslot_name

48000000IntegerDriver clock rate (in Hertz)speed

device not

recognized

StringError string. For “bad devices” (i.e.,

devices that mmcsdpub couldn't read),

only this field is present.

status

65IntegerManufacturer IDvendor_id

0 (disabled)Boolean: 0 if disabled or 1

if enabled

Status of write-protect switchwrite_protection

© 2014, QNX Software Systems Limited 57

Device object

Driver object

Each driver object that mmcsdpub writes to PPS contains the following fields:

ExampleTypeDescriptionName

/pps/qnx/device/sda0StringDevice object

path

PPS_DEVICE_ID

58 © 2014, QNX Software Systems Limited

The mmcsdpub Publisher

Mount object

Each mount object that mmcsdpub writes to PPS contains the following fields:

ExampleTypeDescriptionName

512IntegerSize of each block (in bytes)blocks_size

3805121IntegerTotal number of blocksblocks_total

dos (fat32)String with one of the following

values: dos (fat32), qnx4,

qnx6, nt, or unknown

Filesystem type. This field is

present only if the filesystem

is mounted.

fs_type

Cottage Weekend 1StringFilesystem label. This field is

present only if the filesystem

is mounted.

label

/fs/sdb0StringMountpointmount

/dev/sdb0t12StringPartition name. This field is

present only if the mount

object represents a partition.

partition

1IntegerTotal number of partitions.

This field is present only if the

partition_count

mount object represents an

entire device and not a

partition.

0IntegerPartition index. This field is

present only if the mount

object represents a partition.

partition_order

plugin_name::generic

name::UNTITLED 1

String in the following format:

generic

[<attr_name>::<value>]*

The generic plugin is the

only plugin supported for

mmcsdpub.

Name of plugin supplying extra

mount information, followed by

mount fields returned by

plugin

plugin_name

id::72a354f7-906e-424f

-985e-ab7a71b7971a

/pps/qnx/driver/74550StringDriver object pathPPS_DRIVER_ID

/pps/qnx/mount/sdb0StringMount object pathPPS_RAWMOUNT_ID

/dev/sdb0StringName of raw deviceraw

© 2014, QNX Software Systems Limited 59

Mount object

ExampleTypeDescriptionName

1 (read-only)Boolean: 0 if writable or 1 if

read-only

Read-only status of device.

This field is present only if the

filesystem is mounted.

read_only

302 (Corrupted file

system detected)

Integer followed by string, in

the format: errno

(str_error(errno))

Error string. This field is

present only if an error

occurred when accessing the

card's mounted filesystem.

status

60 © 2014, QNX Software Systems Limited

The mmcsdpub Publisher

Command line for mmcsdpub

Start mmcsdpub device publisher

Synopsis:

 mmcsdpub [-b] [-D] [-d] [-e]
-f device_path [-f device_path]* [-l] [-m pps_path]

 [-p insertion:removal] [-s dll_path] [-v]

Options:

-b

Run mmcsdpub in the foreground (not background). This option is handy

for debugging because you can press Ctrl–C to terminate the publisher.

By default, mmcsdpub runs in the background.

-D

Inform mmcsdpub of one or more devices managed by a devb-sdmmc driver.

This option applies to the devices named in -f options that appear later in

the command line.

-d

Inform mmcsdpub of one or more devices managed by a devb-mmcsd driver.

This option applies to the devices named in -f options that appear later in

the command line. A devb-mmcsd driver is used by default, so you need

this option only if you used -D earlier to specify the alternative devb-sdmmc

driver type for other devices.

-e

Enable auto-enumeration and unmounting of device partitions, based on

the state of inserted media (i.e., cards in SD slots). When this option is used,

mmcsdpub enumerates partitions on SD cards when they're ready and then

unmounts the partitions when the cards are removed. This activity applies

to device paths named in subsequent -f options. For example, consider the

command line:

mmcsdpub -f /dev/sda0 -e -f /dev/sdb0

This command forces mmcsdpub to enumerate any partitions on the device

represented by /dev/sdb0 (much like running mount -e /dev/sdb0)

© 2014, QNX Software Systems Limited 61

Command line for mmcsdpub

and to unmount these partitions when appropriate but not to enumerate or

unmount the partitions represented by /dev/sda0.

Typically, -e is used when the mmcsd normv option is used for

devb-mmcsd. This driver option keeps the /dev entry whether or not a card

is inserted in the slot.

By default, auto-enumeration and unmounting of SD and MMC device

partitions is disabled. Also, the -e option is ignored for a device path if -D

is also used in front of it. For instance, the auto-enumeration wouldn't apply

to the device path named in this command line:

mmcsdpub -D -e -f /dev/sda0

-f device_path

Monitor the specified device path (i.e., /dev entry) for state changes to a

card reader. You can name multiple devices in separate -f options to make

mmcsdpub monitor and communicate with a select group of devices to

obtain information on inserted SD or MMC cards.

This flag and a device entry must be specified at least once on the command

line.

-l

Log messages to sloginfo instead of standard out.

By default, mmcsdpub logs messages to standard out.

-m pps_path

The PPS directory path. The subdirectories for storing the device, driver,

and mount objects are located in this directory. The default is /pps/qnx/.

-p insertion:removal

The insertion and removal polling intervals (in milliseconds), which are how

often mmcsdpub checks for SD card insertions and removals. Often, you'll

want the insertion interval to be shorter than the removal interval because

detecting new SD cards and publishing their information through PPS has

higher priority than cleaning up PPS objects for cards that have been

removed.

The default insertion interval is 1000 ms; the default removal interval is

2000 ms.

-s dll_path

62 © 2014, QNX Software Systems Limited

The mmcsdpub Publisher

The plugin path. At startup, mmcsdpub looks in this path for plugins it can

load and then use to provide more detailed device information (see Plugins

(p. 14)).

If this option isn't specified, no plugins are loaded.

-v

Increase output verbosity. The -v option is cumulative, so you can use

several v's to increase verbosity. Setting one v logs SD and MMC card

insertions and removals. Setting two v's adds the logging of PPS object

creation and deletion. Setting three v's logs more detailed events as well as

errors that are less severe.

Output verbosity is handy when you're trying to understand the operation of

mmcsdpub. However, when many v's are used, the logging becomes quite

significant. The verbosity setting is good for systems under development but

probably shouldn't be used in production systems or during performance

testing.

Description:

You should start mmcsdpub with an explicit command only if the process

terminates unexpectedly. Before trying to start mmcsdpub manually, always

confirm that the process isn't already running by checking the list of active

processes with pidin or ps.

The mmcsdpub command starts the SD device publisher, which monitors SD entries

in /dev and publishes up-to-date information on SD (or MMC) cards through PPS.

You must provide one or more device paths (through -f options) to tell mmcsdpub

which device entries to monitor for detecting state changes to card readers. You can

put -D or -d options in front of device paths named with -f, to indicate which driver

manages certain device paths. Through other command options, you can set how often

mmcsdpub checks for SD card insertions and removals and also adjust how mmcsdpub

logs error and event information.

The mmcsdpub service runs as a self-contained process that doesn't require any user

input or accept any commands. It has no client utility for performing device-publishing

tasks on request or for adjusting any of its settings. To reconfigure mmcsdpub, you

must change the options in its command line and restart the service. We recommend

putting the mmcsdpub command line in a startup script (e.g., startup.sh) to launch

the publisher automatically during bootup.

© 2014, QNX Software Systems Limited 63

Command line for mmcsdpub

Chapter 4
The cdpub Publisher

The cdpub device publisher retrieves and publishes information about CDs.

This publisher depends on the following services:

devb-eide

The CD driver. You may use a different driver on your system (e.g.,

devb-eide-mmx), but regardless of the hardware, the CD driver process

runs continuously and manages the CD device path and communication with

all CD device types (e.g., DVDs, audio CDs, CD-ROMs).

mcd

The mcd utility mounts the filesystems of inserted CDs by making requests

to the CD driver. The mountpoints chosen by mcd depend on the rules in

its mountpoint file.

Architecture

/pps/qnx/mount/cd0
/pps/qnx/driver/12345
/pps/qnx/device/cd0

@cd0
mount::/fs/cd0
fs_type::cd (audio)

CD Publisher

(devb-eide)

mcd
auto-

(cdpub)
CD driver

CDs

mounter

PPS
Subscribers

(Applications)

Figure 3: CD publisher architecture

© 2014, QNX Software Systems Limited 65

The arrows between components in Figure 3: CD publisher architecture (p. 65) show

information flow. For example, when discs are inserted into or removed from the CD

drive, the driver updates the state of the CD device object (i.e., /dev/cd0). That

filesystem entry exists as long as the driver is running, even when the CD drive is

empty. Meanwhile, mcd monitors the device object for state changes and when it

notices that a new CD has been inserted, mcd consults its mount rules (based on the

device's type) and if warranted, sends a mount request to the devb-eide driver

process, which manages the device path.

The cdpub publisher also monitors the /dev entry (i.e., device object) and when it

notices a state change, cdpub communicates with the devb-eide process to obtain

the latest device and mount information, which it then writes to the appropriate PPS

objects. Subscribed applications receive PPS updates when CDs are inserted or

removed.

66 © 2014, QNX Software Systems Limited

The cdpub Publisher

Device object

The device object that cdpub writes to PPS contains the following fields:

ExampleTypeDescriptionName

CDStringBus typebus

cdromString with one of the following values:

unknown, cdrom, or changer.

Device typedevice_type

Presently, support for changer is

experimental.

audiocdString with one of the following values:

unknown, blank, audiocd, dvd, or cd

Media typemedia_type

0Boolean: 0 means the media wasn't

present when the driver started; 1 means

it was present

Indicates if media was

present before driver handler

started

present_at_startup

0Boolean: 0 means media can be

removed; 1 means it can't be removed

Indicates if media can be

removed

prevent_media_removal

FUJITSU

TEN

String whose format is device-specificDevice serial number

reported by CD drive

serial

DVD-ROM

DV-05FT2

readyString with one of the following values:

unknown, empty, loading, ready,

ejecting, or ejected

Active slot mechanical stateslot_state

0/0/0String in the form: key/asc/ascq.

These device-specific values are reported

Slot status based on sense

code received from drive

slot_status

by the CD drive and collectively convey

the slot status.

1Integer set to 1 when temperature is

simulated. Otherwise, this field isn't

present.

Indicates temperature value

and state are simulated.

temperature_simulation

normalString with one of the following values:

unknown, normal, overtemp,

Temperature state provided

by CD drive.

temperature_state

undertemp, or unsupported. Which

of these values can be reported depends

on the device.

© 2014, QNX Software Systems Limited 67

Device object

ExampleTypeDescriptionName

24Integer whose range is device-specificTemperature provided by CD

drive. Present only if drive

temperature_value

can report temperature. The

units depend on the driver's

firmware.

68 © 2014, QNX Software Systems Limited

The cdpub Publisher

Device control object

Applications can perform actions on a CD by writing commands to the cdpub device

control object. The cdpub process creates this PPS server object. By default, the

object's path is /pps/qnx/device/cd0_ctrl but you can change this path through

cdpub command options. When cdpub receives updates (i.e., data from the object),

it executes the specified commands.

Commands must be written in the following format:

<name>::<parameter>

For details on publishing data to PPS objects, refer to the Persistent Publish/Subscribe

Developer's Guide. Applications can publish the following commands:

Parameter type and purposeDescriptionCommand

Integer indicating the slot number (see Footnote.)Eject the deviceeject

Integer set to one of the following values: 0 (to

stop the disc), 1 (to start the disc and read the

Request that the drive enable or

disable media access operations

enable

TOC), 2 (to stop the disc and eject it if possible),

or 3 (to load the disc)

Integer indicating the slot number (see Footnote.)Load the deviceload

Integer between the values of 0 and 5. The power

states supported are vendor-specific.

Request that the drive be put into

a specific power state

power_condition

Integer set to one of the following values: 0 to

allow disc removal or 1 to prevent it

Adjust setting for preventing disc

from being ejected

prevent_media_removal

Integer indicating the slot number (see Footnote.)Reload the devicereload

Integer set to one of the following values: 0 to

enable simulation or 1 to disable it

Enable or disable simulation of

temperature value and state

temperature_simulation

Integer set to one of the following values: 0 for

unknown, 1 for normal, 2 for overtemp, 3 for

unsupported, or 4 for undertemp

Set temperature state (in

simulation)

temperature_state

Integer whose range is device-specificSet temperature value (in

simulation)

temperature_value

Integer indicating the slot number (see Footnote.)Unload the deviceunload

1 For single-slot devices, this parameter isn't required but you must put the token seperator (::) after the
command name for the command to be properly parsed.

© 2014, QNX Software Systems Limited 69

Device control object

Driver object

The driver object that cdpub writes to PPS contains the following fields:

ExampleTypeDescriptionName

/pps/qnx/device/cd0_ctrlStringDevice control object

path

PPS_DEVICE_CTRL_ID

/pps/qnx/device/cd0StringDevice object pathPPS_DEVICE_ID

70 © 2014, QNX Software Systems Limited

The cdpub Publisher

Mount object

The mount object that cdpub writes to PPS contains the following fields:

ExampleTypeDescriptionName

audiocdString with one of the following

values: data, vcd, svcd,

Type of content on the disc.content_type

audiocd, dvdaudio, or

dvdvideo

cd (audio)String in the following format: cd

(<type>), where <type> could

Filesystem type. This field is

present only if the filesystem is

mounted.

fs_type

be audio, joliet, iso9660,

or other values.

The Doors Greatest

Hits

StringLabel of the partition. This field

is present only if a label is

found.

label

/fs/cd0StringMountpoint. This field is present

only if the filesystem is

mounted.

mount

plugin_name::audiocd

album::Innervisions

String in the following format:

<pname>

[<attr_name>::<value>]*

Name of plugin supplying extra

mount information, followed by

mount fields returned by plugin

plugin_name

artist::Stevie Wonder

dts::0 Here, <pname> is one of the
id::f510df13 following plugin names:

audiocd, or generic.

The set of attributes written into

this field depends on the plugin.

toc::150 15001 27891

45959 61580 80504

97768 114709 134020

151840 170834 189820

210820 232075 244826

263058 286468 297515

310984 324080

/pps/qnx/driver/64315StringDriver object pathPPS_DRIVER_ID

/dev/cd0StringName of raw deviceraw

302 (Corrupted file

system detected)

Integer followed by string, in the

format: errno

(str_error(errno))

Error string. This field is present

only if an error occurred when

accessing the CD's mounted

filesystem.

status

© 2014, QNX Software Systems Limited 71

Mount object

Command line for cdpub

Start cdpub device publisher

Synopsis:

 cdpub [-b] -f raw_device[:cam] [-l] [-m pps_path]
 [-n iterations] [-p insertion:removal] [-r scope:init]
 [-s dll_path] [-v]

Options:

-b

Run cdpub in the foreground (not background). This option is handy for

debugging because you can press Ctrl–C to terminate the publisher.

By default, cdpub runs in the background.

-f raw_device[:cam]

Device path of the CD drive to monitor for state changes. You can name only

one device, with or without its device name and unit number: /dev/cd0

or /dev/cd0:/dev/cam0/000.

The CD driver creates the /dev/cam0/000 entry, which gives cdpub another

device path for issuing commands (e.g., eject, load) when the path of the

/dev/cd0 path is busy (perhaps due to a filesystem operation).

This flag and one of the two listed device paths must be specified once on

the command line; cdpub ignores extra -f options.

-l

Log messages to sloginfo instead of standard out.

By default, cdpub logs messages to standard out.

-m pps_path

The PPS directory path. The subdirectories for storing the device, device

control, driver, and mount objects are located in this directory. The default

is /pps/qnx/.

-n iterations

Number of polling intervals (i.e., CD drive state readings) to skip before

checking the device temperature. The time between successive polling

72 © 2014, QNX Software Systems Limited

The cdpub Publisher

intervals can be one of two values: either the insertion polling interval or the

removal polling interval, depending on the CD drive state. After querying the

device for its temperature, cdpub updates the temperature_state and

temperature_value attributes in the device object.

By default, cdpub skips 5 polling intervals between temperatures checks.

-p insertion:removal

The insertion and removal polling intervals (in milliseconds), which are how

often cdpub checks for CD insertions and removals. Often, you'll want the

insertion interval to be shorter than the removal interval because detecting

new CDs and publishing their information through PPS has higher priority

than cleaning up PPS objects for CDs that have been removed.

The default insertion interval is 1000 ms; the default removal interval is

2000 ms.

-r scope:init

Removal-prevention settings for CD devices. Both settings are Boolean, so

they must be either 0 or 1.

For scope, a value of 0 specifies a local scope for the removal-prevention

setting, which means cdpub (and not the actual device) enforces the

removal-prevention policy. A value of 1 makes cdpub query the device for

its own removal-prevention setting before it attempts to update or report the

setting when requested by an application.

For init, a value of 0 makes cdpub allow device removals when it starts,

while a value of 1 makes it prevent device removals. Applications can change

the removal-prevention setting by writing a command to the device control

object (see Device control object (p. 69) for more information).

The default cdpub behavior is to use a local scope and to allow device

removal.

-s dll_path

The plugin path. At startup, cdpub looks in this path for plugins it can load

and then use to provide more detailed device information (see Plugins (p.

14)).

If this option isn't specified, no plugins are loaded.

-v

© 2014, QNX Software Systems Limited 73

Command line for cdpub

Increase output verbosity. The -v option is cumulative, so you can use

several v's to increase verbosity. Setting one v logs CD insertions and

removals. Setting two v's adds the logging of PPS object creation and

deletion. Setting three or four v's logs more detailed events as well as errors

that are less severe.

Output verbosity is handy when you're trying to understand the operation of

cdpub. However, when many v's are used, the logging becomes quite

significant. The verbosity setting is good for systems under development but

probably shouldn't be used in production systems or during performance

testing.

Description:

You should start cdpub with an explicit command only if the process terminates

unexpectedly. Before trying to start cdpub manually, always confirm that the

process isn't already running by checking the list of active processes with pidin

or ps.

The cdpub command starts the CD device publisher, which monitors the CD drive

and publishes up-to-date information on CD devices through PPS.

You must name the raw device (i.e., /dev/cd0) to tell cdpub which device path to

use for monitoring the CD drive state. Through other command options, you can set

how often cdpub checks for CD insertions and removals and specify the default

removal-prevention policy. You can also adjust how cdpub logs error and event

information.

The cdpub service runs as a self-contained process that doesn't require any user input

or accept any commands. It has no client utility for performing device-publishing tasks

on request or for adjusting any of its settings. To reconfigure cdpub, you must change

the options in its command line and restart the service. We recommend putting the

cdpub command line in a startup script (e.g., startup.sh) to launch the publisher

automatically during bootup.

74 © 2014, QNX Software Systems Limited

The cdpub Publisher

Index

A

Apple CarPlay 49
enabling 49

C

cdpub 65, 67, 69, 70, 71, 72
command line 72
device control object 69
device object 67
driver object 70
mount object 71
overview 65

D

device drivers 11
device publishers 9, 10, 11, 13, 14

device object management 11
mountpoint management 11
overview 9
plugins, See plugins
PPS objects 13
prerequisite services 10

Disabling MOUNT_FSYS rule in mcd configuration file 35
Disabling usblauncher mounting of filesystems 35

I

iAP2 50, 51
enabling in client mode 50
launching a driver in host mode 51
probing a device for its support 51

io-usb 17
io-usb-dcd 17

L

Lua 36
language 36

M

mcd 11
MirrorLink 52
mmcsdpub 55, 57, 58, 59, 61

command line 61
device object 57
driver object 58
mount object 59
overview 55

Mounting USB device filesystems 34

O

OTG support 21

P

plugins 14, 15
manager 14
ratings 15
selection 15
support for device publishers 15

R

running a device publisher 10

S

sending commands to a CD 69
sending commands to a USB port 26
starting a version of the USB stack 26
starting cdpub 72
starting mmcsdpub 61
starting usblauncher 31
system services required for cdpub 65
system services required for mmcsdpub 55
system services required for usblauncher 17

T

Technical support 8
Typographical conventions 6

U

USB descriptors 43, 44, 45, 48
class-specific descriptors 44
defining raw bytes 48
descriptor templates 45
levels 43
variables 44

USB device mode 17
drivers 17
stack service, See io-usb-dcd

USB host mode 17, 32
command-line option for disabling 32
drivers 17
stack service, See io-usb

USB matching rules 38, 39, 40, 42
arguments 39
driver and start functions 42
flags 40
foreach rule 42
levels 38
multiple interface classes 42

© 2014, QNX Software Systems Limited 75

Device Publishers Developer's Guide

USB matching rules (continued)
variables 40

usblauncher 17, 21, 22, 26, 28, 29, 31, 34, 36
command line 31
device control object 26
device object 22
driver object 28
mount object 29

usblauncher (continued)
on-the-go (OTG) support 21
overview 17
stack modes, See USB device mode
using with mcd 34

usblauncher configuration files 36, 43
specifying device functions, See USB descriptors

76 © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Device Publishers
	Running a device publisher
	Role of device drivers and mcd
	PPS object types
	Plugins
	Plugin ratings

	The usblauncher Service
	Support for USB On-The-Go (OTG)
	Device object
	Device control object
	Driver object
	Mount object
	Command line for usblauncher
	Using usblauncher to mount filesystems

	Configuration files
	Starting USB stack in host and device modes
	USB matching rules
	USB descriptors
	Supported third-party applications and protocols

	The mmcsdpub Publisher
	Device object
	Driver object
	Mount object
	Command line for mmcsdpub

	The cdpub Publisher
	Device object
	Device control object
	Driver object
	Mount object
	Command line for cdpub

	Index

