QNX® Software Development Platform 6.6

Gestures Library Reference

©2011-2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road

Ottawa, Ontario

K2K OB3

Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qgnx.com
Web: http://www.qgnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Tuesday, October 7, 2014

Gestures Library Reference

Table of Contents

2 0T o T o] T 7
Typographical CONVENTIONSieiie et e e e e eees 8

=12 LT LT o] oo ¢ 10
Chapter 1: Gestures Library OVEIVIEWcciveiiieiiiiiiiiiiiiiris s srassas s ssnssnsssnsssnsssnassnnssenssenns 11
Chapter 2: Gesture ReCOZNItIONc.civeiiieiiiiiiiiriiri s s s s ra s ra s r s senns 17
Chapter 3: Custom GeSTUIEScoeiiieiiiiiiirr s e s s e s e s ra s e s eans 25
Chapter 4: Gesture TUtOHalScouiieiiieiiiir s s s s s ra e e 31
Tutorial: Create a gesture-handling applicationccoiiiiiiiiiii s 32
Example: Code snippets of a gesture-handling applicationcoocoviiiiiiiiiiininnn. 36

Tutorial: Create @ CUSTOM GESTUIE .ivniiiiii e e 39
Example: Code snippets of a defining a custom gestureccoevveiiiiiiieiiiiinee, 43

Chapter 6: Gestures Library Reference ... e e e 47
Gesture BUCKets (DUCKEL.N) oiiiiiii i e 48
Definitions i BUCKEL.N ..eeei e 48
gestures_DUCKET_add() ...oeiiiee i 48
EeStUrEeS_DBUCKET_CIEAI() .vuivieei i e 49
gestures_bUCKET_COUNT() ..uiiiiiiii e e eees 49
EeStUIES_DUCKET _ABI() wuirniii i e 50
gestures_DUCKET_GET() ovvreiiii i 51
eSTUIES_DUCKET INIT() ©nieniin i e 51

ESTUIES _DUCKET T i b2

Global Settings (defaults.h) .o b4
Definitions in defaults.h ... b4

Double Tap (double_tap.h) .. b5
double_tap_gesture_alloC() ... 55
double_tap_gesture_default_params()ocveuiiiiiiiiiiiie e 56

(o [oN] o] F=TN r= Y T o 1 - 1 . T S b6
AOUDIE _TaD _StatE 8 e 57
gesture_double_tap_t oo 58

Event Lists (BVENT ISt N) e 60
EVENT_LIST_add() vovveniieiei i 60
BVENT_LIST_AlI0C() irinieii i e 61
eVENT_liSt_allOC_COPY() wruneeeeieie ittt e et e e e e e e aeaes 62

BVENT_IST CIAI) tivinie i 62

Table of Contents

BVENT_IST_COPY() iiiieeiei i aaaa 63
EVENT_ ISt _frEe() i 64
eVENT ST BT TIrST() tovriiii e 64
LAV A) AL (=] 65
EVENT ST eIt oo e 65
LONE Press (I0Ng _preSS.N) e e et 67
Lo S A0 =T Fo T T = o] (=1 T 67
[0Ng_Press_gesture_alloC() .c..eeu i 68
long_press_gesture_default_params()oouiiiiiiiiiii 68
[ONE _PreSS_PaAramMS T et 69
Pinch Gestures (PINCH.N) oo e e e e e e e e anens 70
BeStUIE_PINCH b o 70
PINCH_ZESTUIE_allOC() ivveniii e 71
pinch_gesture_default_params()oooeiiiii e 72
X H L] N o =T =0 1 1 A 72
Press and Tap (press_and_tap.n) .o 74
S UNE DL oo 74
PE_BESTUIE_AllOC() eeeie e 75
pt_gesture_default_params()oooeuiiiii 75
(Y 0Tz =1 .4 1T S PP 76
Rotate Gesture (rotate.h) .oouuii o 78
BESTUNE _TOTat b e 78
rotate_gesture_alloC() ... 79
rotate_gesture_default_params()cooouiiiiiiii 80
01 2=) ST o Y- 1 -1 .4 1= PR 80
GESTUIE SetS (SBE.N) i e 82
(S U =Y Y=1 Ao o P 82
BESTUIES_SEE_AllOC() 1vnienii e 83
eSTUIES_SET_failf oo 83
BESTUIES_SEE_frEe() oeniie i 84
gestures_set_proCess_VENT() ... i 84
gestures_set_process_event_lISt() ... 85
gestures_set_register_fail_Ch()oiieiiiii i 86
SWIPE GESTUIE (SWIPE.N) et e et e e 88
S UIE SWIPE L ittt e 88
swipe_gesture_default_params() ..o 89
YT 0T oY= 1 114 1= 89
Tap GESTUIE (1aP.N) ettt 91
oS (0 =Y - | o A 91
taP_gESTUIE_alloC() oveiee i 92
tap_gesture_default_params()oieiriiiiiieii e 92
=] I o F= Tz | . 1S T A PP 93
Gesture TIMers (FIMELN) .uui i e e e e et e e e e ane s 94
gesture_timer_callback_t ... 94

BESTUIE_tIMEr_ClRAI() ..iiiiiiiii et e e aaas 95

Gestures Library Reference

EeSTUIE_timMer_Create() oo e 95
gesture_timer_deStrOY() ..o e 96
oS O I [g =T e TV =Y oL N 97
gesture_timer_set_event() ..o 98
EeSTUIE_timMer_SET_MS() touuiiiii it 99
gesture_timer_Set_NOW() ... 100
Triple Tap (riple_tap.n) oo e 101
gesture_triple_tap b .o 101
triple_tap_gesture_alloC() ..oueu e 102
triple_tap_gesture_default_params()cooeuiiiiiiii 103
LT o] T 2= o T o Y- =10 2 - S 104
L] o] [T =] o T 2= | £ = PP 104
Two Finger Pan (tWo_finger_pan.h)oooiiiiiiiiii e 106
BeStUNE T PaN b e 106
HPAN_gESTUrE_alloC() wuuiiie e 107
tfpan_gesture_default_params()ooouiiiiiiii 108
L oY= AT oY= 1 =10 1 1 S 108
Two Finger Tap (fwo_finger_tap.h) ..o 110
=SS 0= i 110
T GESTUIE_AllOC() e e 111
tft_gesture_default_params()coooiuiiiiiii 112
L o= =1 1S PP 112
Data Types and Helper Functions (types.hn) ..o.eoiieiiiiiii e 114
Definitions iN 1Y PES. N e 114
o T T T= T Y 114
gesture_add_mustfail() ... 115
BESTUNE DASE it 116
8eStUIE_DasSE_INTT() oeeiei i e 117
oY (BT ¢TI o 1YY P 118
gesture_Callback _f ... 118
oSSy U= o7 o) o T P 119
Lo AU PP PPPRR 120
ESTUIE _TUNCS T i e 121
BESTUIE STal 8 et e 123
MaAP_CONTACT_IA() 1oerieiiii e e 124
Max_displacement_abs() ...oeuiiniiiie e 125

Y 1Y/ <IN 010 Yo (¢ 1 () 126

Table of Contents

About Gestures

The Gestures library provides gesture recognizers to detect gestures through touch
events that occur when you place one or more fingers on a touch screen.

The Gestures Library Reference is intended for application developers. This table may
help you find what you need in this guide:

To find out about:

Gestures Overview Gestures Library Overview (p. 11)
Gesture Recognition Gesture Recognition (p. 17)
Creating custom gestures Custom Gestures (p. 25)

Tutorials Gesture Tutorials (p. 31)

Gestures API Gestures Library Reference (p. 47)

© 2014, QNX Software Systems Limited

About Gestures

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

Reference Example

Code examples
Command options
Commands

Constants

Data types
Environment variables
File and pathnames
Function names
Keyboard chords
Keyboard input
Keyboard keys
Program output
Variable names
Parameters
User-interface components

Window title

if(stream == NULL)
-IR

make

NULL

unsigned short
PATH

/dev/null

exit()
Ctrl-Alt-Delete
Username

Enter

login:

stdin

parm1

Navigator

Options

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

= useful.

= Cautions tell you about commands or procedures that may have unwanted

o or undesirable side effects.

© 2014, QNX Software Systems Limited

Typographical conventions

© 2014, QNX Software Systems Limited

Warnings tell you about commands or procedures that could be dangerous
/ to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,
including those pointing to Windows files. We also generally follow POSIX/UNIX
filesystem conventions.

About Gestures

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website
(www.gnx.com). You'll find a wide range of support options, including community
forums.

10 © 2014, QNX Software Systems Limited

http://www.qnx.com

Chapter 1
Gestures Library Overview

The Gestures library provides gesture recognizers to detect gestures through touch
events that occur when you place one or more fingers on a touch screen.

What are gestures?

A gesture is an interaction between users and your application through a touch screen.

Tap Double tap

One touch with one finger. Two touches in quick succession with one finger.

Triple tap Long press

Three touches in quick succession with one finger. One touch with a pause before releasing.

© 2014, QNX Software Systems Limited

11

Gestures Library Overview

iy oy

Press and tap Two-finger tap

One long press with one finger, followed by a touch with One touch with two fingers.
a second finger.

=

Swipe Pinch

One continuous horizontal or vertical motion consisting One continuous motion consisting of a two-finger tap, a
of a tap, a movement, and a release with one finger. movement inward or outward, and a release.

Rotate Two-finger pan

One long press with one finger, followed shortly by a swipe One continuous motion consisting of a long press, a

in an arc by your second finger movement, and a release with two fingers

12 © 2014, QNX Software Systems Limited

There are two classes of gestures:

Composite

Discrete

What are gesture recognizers?

A composite (also called transform or continuous) gesture is one that may

send multiple notifications to the application as you continue to touch or

move your fingers on the screen. The composite gestures are:

Swipe
Pinch
Rotate

Two-finger pan

Discrete gestures send only a single notification to the application. The
discrete gestures are:

Tap

Double tap
Triple tap
Long press
Press and tap

Two-finger tap

A gesture recognizer is a self-contained state machine. It progresses through its various

states in reaction to the touch events that it receives. Depending on the gesture, a

gesture recognizer may need to interpret single- or multiple-touch events in order to
detect a single gesture. That is, a gesture recognizer could transition through multiple
states before being able to determine the gesture that the user intended. Once the
gesture recognizer detects a gesture, its gesture callback is invoked. It is the
responsibility of your application to handle the detected gesture in your gesture callback
function. In the context of the Gestures library, you will see that the gesture recognizers
are simply referred to as gestures.

Gesture recognizers for some of the widely used gestures are already provided for you
by the Gestures library:

Gesture Gesture Uses
Recognizer class timer(s)
Tap Discrete

Double tap Discrete

© 2014, QNX Software Systems Limited

13

Gestures Library Overview

Gesture Uses
Recognizer timer(s)
Triple tap Discrete

Long press Discrete

Press and tap Discrete

Two-finger tap Discrete

Swipe Composite

Pinch Composite

Rotate Composite
Two-finger pan Composite

Some gesture recognizers use timers as part of their detection of gestures. If you need
to detect a gesture that isn't supported by the Gestures library, you can define your
own gesture recognizer.

What are touch events?

Touch events are events generated by the touch controller. In the Gestures library,
touch events are represented by the data structure mtouch_event_t.
mtouch_event_t contains various types of information about the touch event, such
as the type of touch event (touch, move, or release), the timestamp of the event, the
coordinates of the touch, and so on. Touch events that are represented by this data
structure are referred to as mtouch events. See the file input/event_types.h for more
information.

What are gesture sets?

A gesture set is a set of gesture recognizers; it can detect multiple types of gestures.
Your application defines a gesture set by allocating, to the set, the gesture recognizers
that detect the gestures that are of interest to you.

You can think of a gesture set as the interface between gesture recognizers and the
application. The application sends mtouch events to a gesture set, not to individual
gesture recognizers. Individual gesture recognizers must belong to a gesture set to be
able to receive mtouch events and invoke callback functions when the gesture
recognizer state transitions happen.

Inter-gesture recognizer relationships and dependencies are to be managed completely
by the gesture set. Therefore, individual gesture recognizers are simple to implement
and allow the application to customize the desired gesture-recognizer relationships
for its own needs. Also, applications that are interested only in a small subset of
gestures can choose its gesture recognizers of interest.

14 © 2014, QNX Software Systems Limited

© 2014, QNX Software Systems Limited

A gesture set handles all that is required of the state transition. Examples of what the

gesture set handles are:

invoking the gesture recognizer callback function when valid

resetting each gesture recognizer when all those in the gesture set have transitioned
to either GESTURE_STATE_COMPLETE or GESTURE_STATE_FAILED

managing failure dependencies between gesture recognizers

timer handling for gesture recognizers that need timer events (as opposed to mtouch
events)

failure notification when all gestures recognizers in a set have transitioned to
GESTURE_STATE_FAILED

For information about: See:

Recognizing gestures

Gesture recognition (p. 17)

Simultaneous recognition (p. 19)

State transitions of gesture recognizers | State transitions (p. 17)

The gesture callback Callback invocation (p. 19)

Timers

Timer support (p. 19)
Timer callback (p. 27)

Failures Failure dependencies (p. 21)
Failure notifications (p. 22)

Resets Reset (p. 22)

Defining your own gesture recognizer Custom gestures (p. 25)

Tutorials Gestures Tutorials (p. 31)

What's in the Gestures library? Gestures Library Reference (p. 47)

15

Chapter 2

Gesture Recognition

State transitions

© 2014, QNX Software Systems Limited

Gesture recognition is performed by gesture recognizers that detect gestures through
touch events.

Applications are responsible for selecting the gestures they're interested in and adding
the corresponding gesture recognizers to one or more gesture sets to achieve the
desired recognition behavior. When a gesture-recognizer state transition occurs, the
gesture set invokes the application callback function for that gesture. Applications
can also add their own gesture recognizers if they need specialized or custom gesture
recognition.

It's important to understand the states and valid state transitions of the gesture
recognizers. Understanding is especially important when you're defining your own
custom gesture recognizer because you need to provide the function to handle these
state transitions:

gesture_state_e (*process_event)(struct contact_id_map* map,
struct gesture_base* gesture,
mtouch_event_t* event,
int* consumed)

Note that composite gestures and discrete gestures go through different state
transitions.

gesture_base_init()

mtouch or
timer events

mtouch or
timer events

mtouch or

estures_set_add f
@JJ—O» Unrecognized NN o cognized Updating Dtlmer o
timer events timer events

mtouch or mtouch or

mtouch or

timer events mtouch or mtouch or

timer events timer events

reset()

Failed

Figure 1: Gesture-recognizer state transitions for composite gestures

17

Gesture Recognition

gesture_base_init()

mtouch or
timer events

@ gesturesfsetfadd(g Unrecognized

mtouch or

mtouch or timer events

timer events

Failed

Figure 2: Gesture-recognizer state transitions for discrete gestures

GESTURE_STATE_RECOGNIZED and GESTURE_STATE_UPDATING aren't
valid states for recognizers of discrete gestures; these gesture recognizers
transition directly from GESTURE_STATE_UNRECOGNIZED to either
GESTURE_STATE_FAILED or GESTURE_STATE_COMPLETE.

av

State transitions are specific to the gesture that the recognizer is detecting. Most state
transitions are a result of mtouch or timer events that are of interest to the gesture
recognizer.

None (GESTURE_STATE_NONE)

The initial state of a gesture recognizer; you can intialize the state to
GESTURE_STATE_NONE by calling gesture_base_init().

Unrecognized (GESTURE_STATE_UNRECOGNI ZED)

The state of a gesture recognizer after it has been added to a gesture set; it
is now ready to receive mtouch and timer events. The gesture recognizer
returns to this state after reset() is called by the gesture set.

Recognized (CESTURE_STATE_RECOGNI ZED)

The state of a gesture recognizer after it has received one mtouch or timer
event that moves the gesture recognizer to GESTURE_STATE_COMPLETE.

Updating (GESTURE_STATE_UPDATI NG)

The state of a gesture recognizer while it's receiving mtouch or timer events
that move the gesture recognizer to GESTURE_STATE_COMPLETE.

Complete (GESTURE_STATE_COVPLETE)

The state of a gesture recognizer when it has received all mtouch or timer
events that fulfill the requirements of detecting its gesture.

18 © 2014, QNX Software Systems Limited

Simultaneous recognition

Callback invocation

Timer support

© 2014, QNX Software Systems Limited

Failed (GESTURE_STATE_FAI LED)

The state of a gesture recognizer when requirements of detecting its gesture
aren't fulfilled.

Unless there is a failure dependency indicated, each gesture recognizer in a gesture
set receives all mtouch events sent to the gestures set; this means your application
can simultaneously recognize several gestures.

A single mtouch event can result in the invocation of multiple gesture-recognizer
callback functions because several gestures can be recognized simultaneously.

The gesture-recognizer callback function is provided by your application. It defines
what the application does when a gesture is recognized or updated:

void(*gesture_cal lback_f)(struct gesture_base* gesture,

mtouch_event_t* event,

void* param, int async);
The parameter gesture contains information about the gesture, event contains
information about the mtouch event that caused the gesture, and async identifies
whether this callback was invoked from an mtouch event (async = 0) or from a timer
event (async = 1).

This callback function is invoked as a result of either an mtouch or a timer event.
Although your gesture callback will be invoked on other state transitions, your
application is usually interested only when the gesture has been recognized or not.
That is, you would usually implement application behavior based on your gesture
recognizer in the GESTURE_STATE_COMPLETE or the GESTURE_STATE_FAILED
state.

The goal of this callback function is to identify the gesture that is recognized based
on mtouch events that are received and to define your application's actions based on
the gesture that is recognized. Typically, your application copies information from the
incoming mtouch event to a local structure and uses that information accordingly.

Events

A gesture recognizer can change states on timer events. Gesture callback functions
are invoked after the invocation of the timer callback from the context of the timer
thread. The timer thread doesn't detect mtouch events.

Gesture callbacks of gesture recognizers that have timers (e.g., double tap, triple tap,
or long press), can be invoked from both the application thread or the timer thread.

19

Gesture Recognition

The processing performed while in your gesture callback will block either mtouch or
timer events, depending on which thread invoked the callback.

The following diagrams show that the gesture set is shared between two separate
threads. Each of these threads (application and timer) can be blocked by the other
thread when accessing the shared data.

Application thread

mtouch event

—_—

While
screen_get_event()
==EOK

gesture_set_process_event()

async=0

A

Gesture set
(shared data)

gesture_callback_f()
Blocked

Timer thread

gesture_set_process_timer()

Timer event
[

While at
least one
timer is

running.

async=1

Figure 3: Example of mtouch event-invoked gesture_callback_f() blocking a timer event

Application thread

mtouch event

—_—

While
screen_get_event()
==EOK

gesture_set_process_event()

async=0

Gesture set
(shared data)

gesture_callback_f()

Blocked

Timer thread

gesture_set_process_timer()

Timer event
D

While at
least one
timer is

running.

async=1

Y

Figure 4: Example of timer event-invoked gesture_callback_f() blocking an mtouch event

The Gestures library is thread-safe and assures that any data shared between multiple

threads will not be accessed simultaneously. However, you need to consider the
possibility of threads blocking, or being blocked. For example, if your gesture callback
function performs rendering operations, you are likely blocking important mtouch or

20

© 2014, QNX Software Systems Limited

Failure dependencies

© 2014, QNX Software Systems Limited

timer events from being processed. As a result, the behavior of your application may
become unpredictable.

To help with the synchronization between mtouch-invoked and timer-invoked gesture
callback functions, gesture recognizers and gesture sets provide a parameter, async,
in the gesture_callback_f() and gestures_set_fail_f() functions. This async parameter
is set to 1 when the gesture callback is called from the timer thread.

Gesture recognizers that don't use timers aren't guaranteed to never have their gesture
callback function invoked asynchronously. Your callback functions are synchronous
to the thread where gestures_set_process_event() is called only when none of the
gestures in your gesture set use timers. If you are using gesture recognizers that are
provided by the Gestures Library, note that the double tap, triple tap and long press
gesture recognizers use timers.

Lists
Timers behave differently, depending on what the application passes:

e event list (e.g., gestures_set_process_event_list()) or,

e single event (e.g., gestures_set_process_event())

It doesn't make sense to use the wall clock for timer events when a gesture recognizer
set is passed a list of events that occurred in the past. Gesture recognizers will receive
events at a much higher rate than when the events come in at real time. For this
reason, when processing event lists, the gesture set will cause timers to expire and
invoke their callback functions using the event timestamps as the timebase.

If unexpired timers are left after the event-list processing finishes, they will be
converted to realtime timers based on the differences between the current wall clock
time and the timestamp of the last event in the list.

Timer handling for gestures recognizers with failure dependencies behave in the same
way.

You can define a gesture recognizer to have failure dependencies on other gestures.

A failure dependency is when the detection of one gesture recognizer is dependent
on the failure of another. That is, if one gesture recognizer moves to
GESTURE_STATE_FAILED and it has failure dependents, then the gesture recognizers
that are dependent on this failed gesture recognizer will be processed.

For example, you have an application that has one gesture set. This gesture set includes
both tap and double-tap gesture recognizers. Your application need only one of the
tap or double-tap gesture to be recognized at a time. Your application sets a failure
dependency to indicate that in this gesture set, the tap gesture recognition depends
on the failure of the double-tap gesture recognition. To set this failure dependency in

21

Gesture Recognition

your application, you must use the gesture_add_mustfail() function. In this particular
example, you include the following code in the initialization of your gesture recognizers:

éééture_tap_t* tap;
gesture_double_tap_t double_tap;

éééture_add_mustfaiI(&tap—>base, &double_tap->base);

The above code snippet indicates that when a double-tap gesture fails, the gesture
recognizer will try to recognize the mtouch event as a tap gesture.

Failure notification and event lists

Reset

22

Applications can register gesture sets for failure notifications. These notifications are
delivered by the gesture set by a failure callback function that is separate from the
gesture recognizer callback function:

void(*gestures_set_fail_f)(struct gestures_set* set, struct event_list* list, int async);

This failure callback function is invoked only if all gesture recognizers in the gesture
set have transitioned to GESTURE_STATE_FAILED. If at least one gesture recognizer
is in the GESTURE_STATE_COMPLETE state, the failure notification callback function
isn't invoked.

The event_list parameter contains the list of events that were delivered to the gesture
set that subsequently caused all gestures to fail. This list of events is passed to the
failure callback function of the gesture set. These events can either be processed
individually or delivered to another gesture set for further processing.

Event lists are used to keep copies of events should failure dependencies need to be
fulfilled or failure notifications need to be delivered. Event lists can contain up to
1024 events. If more events come in after the list is full, the oldest non-key (mtouch
or release) events are dropped from the list.

Once a gesture recognizer in a gesture set transitions its state to either
GESTURE_STATE_COMPLETE or GESTURE_STATE_FAILED, it will be reset only
when all other gesture recognizers in the same gesture set have also transitioned to
either of these states.

For example, if an application defines a gesture set with tap and double-tap gestures,
the application would receive two callbacks:

¢ single tap after first release
e double tap after second release

Assuming that no failure dependencies have been configured, the application would
not receive two callbacks for two single taps because the completed single tap will

© 2014, QNX Software Systems Limited

© 2014, QNX Software Systems Limited

already be in the state, GESTURE_STATE_COMPLETE, after the first tap. When the
double tap either completes or fails, the gesture set calls

void (*reset)(struct gesture_base* gesture);

on each of its gesture recognizers.

23

Chapter 3

Custom Gestures

You can define gesture recognizers to detect gestures that are not already supported
by the Gestures library (custom gestures). Gesture recognizers that are used to detect
custom gestures can be compiled with the application code and added to a gesture
set in the same way that system gesture recognizers are added to a gesture set.

Custom gesture recognizer data types and functions

© 2014, QNX Software Systems Limited

If you're defining your own custom gesture recognizers, you will need to provide the
following as part of the definition and implementation of your own gesture recognizer:

Definition of your custom gesture

typedef struct {
gesture_base_t base; /* The gesture base data structure. */
/* The information specific to your custom gesture */
int timer_id; /* The ID of the timer for this custom gesture (if needed) */
} gesture_custom_t;

This structure represents information for your custom gesture recognizer; this structure
must include gesture_base_t followed by additional members to capture your
specific information. For example, if your custom gesture recognizer uses a timer, you
need to include the ID of the timer as a specific parameter.

Definition and implementation of the alloc() function

gesture_custom_t* custom_gesture_alloc(gesture_custom_params_t* params,
gesture_callback_f callback,
struct gestures_set* set);

where types and parameters are as follows:
gesture_custom _t
The structure of your custom gesture recognizer.
custom_gesture_alloc
The name of your gesture's alloc() function.
gesture_custom_params_t
A structure that represents the parameters of your custom gesture recognizer.
callback
The application gesture callback.

set

25

Custom Gestures

A gesture set that your custom gesture recognizer is to be added to.

Your alloc() function must:

. Allocate the memory necessary for your custom gesture recognizer.

. Invoke gesture_base_init() to initialize the gesture base data structure.
. Invoke gesture_set_add() to add your custom gesture to the gesture set.
. Set the gesture recognizer type as GESTURE_USER.

. Set the process_event(), the reset(), and the free() functions.

. Set the gesture callback: callback.

. Perform any custom gesture-specific initialization that isn't part of the reset.

00 N O o b~ WDN =

. Store the custom gesture-specific parameters with the gesture recognizer, and set
default parameters. If your custom gesture recognizer uses a timer, use
gesture_timer_create() to obtain the ID for your timer.

Definition and implementation of the process_event() function

gesture_state_e (*process_event)(struct contact_id_map* map,
struct gesture_base* gesture,
mtouch_event_t* event, int* consumed)

Your process_event() function must handle state transitions and return the new, or
unchanged, gesture recognizer state. If your custom gesture is time-based, you will
need to adjust the timers accordingly. The Gestures library provides API functions for
you to set and reset your timers.

Definition and implementation of the free() function

void (*free)(struct gesture_base* gesture)

Your free() function must release all the memory that's associated with your gesture
recognizer that was allocated by your alloc() function.

Definition and implementation of the reset() function

void (*reset)(struct gesture_base* gesture);

Your reset() function must reset the gesture-specific data structures to their initial
states.

Definition of parameters specific to your custom gesture (optional)

This is a structure that represents the parameters specific to your custom gesture
recognizer.

Definition of states specific to your custom gesture (optional)

These are constants that represent the states specific to your custom gesture recognizer;
these states are in addition to the set of states defined in gesture_state_e.

26 © 2014, QNX Software Systems Limited

Definition and implementation of the gesture_timer_callback() function (optional)

gesture_state_e(*gesture_timer_callback_t)(struct gesture_base* gesture, void* param);

Gesture sets provide time-based notifications to gesture recognizers that use timers.
A notification is implemented as a callback function to the gesture recognizer. If your
custom gesture recognizer is timer-based, you need to implement this timer callback
function.

A gesture recognizer can transition states on timer events. Similar to the process_event()
function for mtouch events, the gesture recognizer's time-based state transitions are
accomplished by its timer callback function. This function returns the new, or
unchanged, state based on the timer event received.

Contact ID map

A contact ID is an identifier that is used to identify mtouch events. The mtouch event
data structure contains the contact_id element that is assigned a value from a
zero-based index and corresponds to the individual fingers that touch the screen. The
contact ID doesn't change until that finger is released.

User-defined gestures typically need to associate a specific mtouch event with a
contact ID for the purpose of associating the streams of events with the finger that
caused them. The contact ID from the mtouch event can't be used directly by the
custom gesture. Instead, user-defined gestures need to invoke map_contact_id() to
obtain a zero-based contact ID that is remapped from the gesture set's perspective.

The remapping is necessary because a contact ID of 1 for an mtouch event could
actually correspond to a gesture set's contact ID 0. This mapping could be the case
if there are multiple gesture sets in play, or if the user's finger is resting on the
touch-sensitive bevel.

Helper functions

Helper functions are available if you are defining your own gestures. These functions
are:

void save_coords(mtouch_event t *event,gesture_coords_t *coords)

This function saves the coordinates of a mtouch event in the specified
gesture_coords_t data structure. This is useful if your gesture is sensitive
to the placement of the touch event. For example, in a double-tap gesture,
the coordinates of the first tap are saved and compared to the coordinates
of the second tap. If these coordinates are within an acceptable range, the
gesture recognizer can consider the gesture to be a double tap.

int32_t diff_time_ms(gesture_coords_t *coords1, gesture_coords_t *coords2)

© 2014, QNX Software Systems Limited 27

Custom Gestures

28

This function returns the elapsed time between the two specified gesture
events. This is useful if your gesture is dependent on the receipt of multiple
mtouch events. For example, in a double-tap gesture, the time elapsed
between the first and second tap cannot exceed an acceptable time. If too
much time has elapsed between the two taps, the double-tap gesture is
considered to have failed.

uint32_t max_displacement_abs(gesture_coords_t *coords1, gesture_coords_t *coords2)

This function returns the maximum displacement, in pixels, between two
gesture events. For example, if the absolute value of the difference between
the x coordinates of the two gestures is greater than the absolute value of
the difference between the y coordinates, the former is returned by the
function. For example, in a double-tap gesture, this function can be used
to help determine whether or not the two taps received are close enough
together on the screen to be considered a double-tap gesture.

int map_contact_id(struct contact_id_map *map, unsigned contact _id)

This function remaps contact identifiers from mtouch events to contact
identifiers to be used by gestures. This function is typically one of the first
calls in your custom gesture recognizer's process_event() function. You need
to first map the contact_id from the mtouch event received to a contact_id
that can be used by your custom gesture recognizer.

int gesture_timer_create(struct gesture_base* gesture, gesture_timer_callback_t callback, void*

param)

This function creates a new timer that invokes your gesture recognizer's
timer callback function when expired. You need to use this function if your
gesture recognizer is time-based.

int gesture_timer_set_now(struct gesture_base* gesture, int timer_id, unsigned ms)

This function sets a timer using the current time as the reference time. You
can use this if your gesture recognizer is time-based.

int gesture_timer_set_ms(struct gesture_base* gesture, int timer_id, unsigned ms, _Uint64t

base_nsec)

This function sets a timer using a specified timestamp as the reference time.
You can use this if your gesture recognizer is time-based.

int gesture_timer_set_event(struct gesture_base* gesture, int timer_id, unsigned ms, struct

mtouch_event* base_event)

© 2014, QNX Software Systems Limited

© 2014, QNX Software Systems Limited

This function sets a timer using an mtouch event timestamp as the reference
time. You can use this if your gesture recognizer is time-based.

void gesture_timer_destroy(struct gesture_base* gesture, int timer_id)

This function resets the specified timer. You can use this if your gesture
recognizer is time-based.

int gesture_timer_query(struct gesture_base* gesture, int timer_id, int* pending, _Uint64t* expiry)

This function queries the information for the specified timer. You can use
this if your gesture recognizer is time-based.

29

Chapter 4
Gesture Tutorials

Gestures tutorials aim to help you understand how to use the Gestures library in your
own applications by providing step-by-step guides.

© 2014, QNX Software Systems Limited

31

Gesture Tutorials

32

Tutorial: Create a gesture-handling application

You will learn to:

This tutorial shows you the basics for creating a gesture application using
system-supported gesture recognizers.

create a gesture callback function

create a gesture set failure callback function
initialize gesture sets

detect gestures

clean up gestures

Create your gesture callback function

The gesture callback function defines what the application does when a gesture is
recognized or updated:

void(*gesture_callback_f)(struct gesture_base* gesture,

mtouch_event_t* event,
void* param, int async);

The argument gesture contains information about the gesture and the parameter event
contains information about the mtouch event that caused the gesture. The parameter
async identifies whether this callback was invoked from an event (async = 0) or from
a timer (async = 1).

If you have gestures that are transitioning based on timer events, this callback function
could be invoked as a result of either a timer event (from the context of the timer
thread) or an mtouch event. Your application code needs to implement the
synchronization mechanism between mtouch callback functions and timer-event
callback functions. Your application needs to check the async parameter and implement
synchronization accordingly.

This function's main component is a switch statement that defines the application's
actions based on the gesture received. Typically, your gesture application copies
information from the incoming gesture to a local structure and uses that information
accordingly. The type of local structure depends on the incoming gesture. Usually,
you're interested only if a certain gesture has been detected (i.e., the state of the
gesture recognizer is GESTURE_STATE_COMPLETE). However, your callback function
may look for other states and behave accordingly for your application. For an example
of such switch statement, see the following code:

switch (gesture->type)

{
case GESTURE_TWO_FINGER_PAN: {
gesture_tfpan_t* tfpan = (gesture_tfpan_t*)gesture;
if (tfpan->base.state == GESTURE_STATE_COMPLETE)

printf("'Two-finger pan gesture detected: %d, %d",
tfpan->centroid.x, tfpan->centroid.y);

© 2014, QNX Software Systems Limited

Tutorial: Create a gesture-handling application

© 2014, QNX Software Systems Limited

break;

}
case GESTURE_ROTATE: {
gesture_rotate_t* rotate = (gesture_rotate_t*)gesture;
ifT (rotate->base.state == GESTURE_STATE_COMPLETE) {
if (rotate->angle != rotate->last_angle) {
printf(""Rotate: %d degs', rotate->angle - rotate->last_angle);

break;

}
case GESTURE_SWIPE: {
gesture_swipe_t* swipe = (gesture_swipe_t*)gesture;
ifT (swipe->base.state == GESTURE_STATE_COMPLETE) {
it (swipe->direction & GESTURE_DIRECTION_UP) {
printf("'up %d", swipe->last_coords.y - swipe->coords.y);
} else if (swipe->direction & GESTURE_DIRECTION_DOWN) {
printf(*"down %d", swipe->coords.y - swipe->last_coords.y);
} else if (swipe->direction & GESTURE_DIRECTION_LEFT) {
printf("left %d", swipe->last_coords.x - swipe->coords.x);
} else if (swipe->direction & GESTURE_DIRECTION_RIGHT) {
printf('right %d"”, swipe->coords.x - swipe->last_coords.x);

break;

}
case GESTURE_PINCH: {
gesture_pinch_t* pinch = (gesture_pinch_t*)gesture;
if (pinch->base.state == GESTURE_STATE_COMPLETE) {
printf(""Pinch %d, %d", (pinch->last_distance.x - pinch->distance.x),
(pinch->last_distance.y - pinch->distance.y));

break;

}
case GESTURE_TAP: {
gesture_tap_t* tap = (gesture tap_t*)gesture;
ifT (tap->base.state == GESTURE_STATE_COMPLETE) {
printf("'Tap x:%d y:%d",tap->touch_coords.x, tap->touch_coords.y);

break;

}
case GESTURE_DOUBLE_TAP: {
gesture double tap t* d_tap = (gesture double tap t*)gesture;
if (d_tap->base.state == GESTURE_STATE COMPLETE) {
printf('Double tap first_touch x:%d y:%d", d_tap->First_touch.x,
d_tap->First_touch. y)
printf('Double tap first_release x:%d y:%d", d_tap->Ffirst_release.x,
d_tap->first_release. y)
printf('Double tap second touch x:%d y:%d", d_tap->second_touch.x,
d_tap->second_touch.y);
printf(*'Double tap second_release x:%d y:%d", d_tap->second_touch.x,
d_tap->second_release.y);

break;

}
case GESTURE_TRIPLE_TAP: {
gesture_triple_tap_t* t_tap = (gesture_triple_tap_t*)gesture;
if (t_tap->base.state == GESTURE_STATE_COMPLETE) {
printf("Triple tap first_touch x:%d y:%d", t_tap->first_touch.x,
t_tap->First_touch. y)
printf("Triple tap first_release x:%d y:%d", t_tap->first_release.x,
t_tap->first_release.y);
printf("Triple tap second_touch x:%d y:%d", t_tap->second_touch.x,
t_tap->second_touch.y);
printf("Triple tap second_release x:%d y:%d", t_tap->second_touch.x,
t_tap->second_release.y);
printf("Triple tap third_touch x:%d y:%d", t_tap->third_touch.x,
t_tap->second_touch. y)
printf('Triple tap third release x:%d y:%d", t_tap->third_touch.x,
t_tap- >second_release V)

break;

}
case GESTURE_PRESS_AND_TAP: {
gesture_pt_t* pt_t = (gesture_pt_t*)gesture;
if (pt_t->base.state == GESTURE_STATE_COMPLETE) {
printf("Initial press x:%d y:%d", pt_t->initial_coords[0].x
pt_t->initial_coords[0].y);
printf("Initial tap x:%d y:%d", pt_t->initial_coords[1].x
pt_t->initial_coords[1].y);
printf("'Press x:%d y:%d", pt_t->coords[0].x, pt_t->coords[0].y);
printf("Tap x:%d y:%d", pt_t->coords[1].x, pt_t->coords[1].y);

break;

}
case GESTURE_TWO_FINGER_TAP: {
gesture_tft_t* tft_t = (gesture_tft_t*)gesture;
if (tft_t->base.state == GESTURE_STATE_COMPLETE) {
printf(*'Coordinates of touch event (finger 1) x:%d y:%d",
tft_t->touch_coords[0] -x,
tft_t->touch_coords[0].y);

33

Gesture Tutorials

printf(*"'Coordinates of touch event (finger 2) x:%d y:%d",
tft_t->touch_coords[1] -x,
tft_t->touch_coords[1].y);

printf(“'Coordinates of release event (finger 1) x:%d y:%d",
tft_t->release_coords[0] -x,
tft_t->release_coords[0].y);

printf("Coordinates of release event (finger 2) x:%d y:%d",
tft_t->release_coords[1]-x,
tft_t->release_coords[1].y);

printf(""Midpoint between two touches x:%d y:%d", tft_t->centroid.Xx,

tft_t->centroid.y);

break;
}
case GESTURE_LONG_PRESS: {
gesture_long_press_t* Ip_t = (gesture_long_press_t*)gesture;
if (Ip_t->base.state == GESTURE_STATE_COMPLETE) {
printf(*'Long press x:%d y:%d",Ip_t->coords.x, Ip_t->coords.y);
printf("Timer ID:%d", Ip_t->success_timer);
break;
}
case GESTURE_USER: {
printf("'User-defined gesture detected.™);
break;
3
default:

printf("'Unknown™);
break;

Create your failure callback function (optional)

Sometimes, you may want your application to create a failure callback function to be
invoked when all gestures in a gesture set have transitioned to the
GESTURE_STATE_FAILED state:

void(*gestures_set_fail_f)(struct gestures_set* set, struct event_list* list, int async);

This sample failure callback function shows how to copy an event list that's received
as part of a gesture set failure callback.

void fail_callback(struct gestures_set* set, struct event_list* list, int async)

{
/* First_set should be defined in your application as
* struct gestures_set* first_set;
* and then be allocated and initialized in your application.
4
if (set == first_set) {
/* An example of list copy.
* This isn"t necessary if events don"t need to be kept following the
* call to gestures_set_process_event_list()
*
/
struct event_list* new_list = event_list_alloc(0, 0, 0, 1);
if (new_list) {
event_list_copy(list, new_list);
gestures_set_process_event_list(second_set, new_list, NULL);
event_list_free(new_list);
}
¥
}

Initialize your gesture sets

Your application needs to register the callback function with the Gestures library so
that it can be invoked when a gesture occurs.

34 © 2014, QNX Software Systems Limited

Tutorial: Create a gesture-handling application

Detect the gestures

© 2014, QNX Software Systems Limited

To register the gesture callback function, your application needs to first allocate the
gesture set. If you have defined a failure callback for your gesture set, then you must
call:

gestures_set_register_fail_cb(struct gestures_set* set, gestures_set_fail_f callback);

to register your failure callback function with your gesture set.

In this example, two gesture sets are initialized and a failure callback is registered
with the first gesture set:

struct gestures_set* first_set;
struct gestures_set* second_set;

static void init_gestures()

gesture_tap_t* tap;
gesture_double_tap_t* double_tap;
gesture_triple_tap_t* triple_tap;
gesture_tft_t* tft;

first_set = gestures_set_alloc();
long_press_gesture_alloc(NULL, gesture_callback, first_set);
tap = tap_gesture_alloc(NULL, gesture_callback, first_set);
double_tap = double_tap_gesture_alloc(NULL, gesture_callback,
triple_tap = triple_tap_gesture_alloc(NULL, gesture_callback,
tft = tft_gesture_alloc(NULL, gesture_callback, first_set);
gesture_add_mustfail (&tap->base, &double_tap->base);
gesture_add_mustfail (&double_tap->base, &triple_tap->base);
gestures_set_register_fail_cb(first_set, fail_callback);

first_set);
first_set);

second_set = gestures_set_alloc();
swipe_gesture_alloc(NULL, gesture_callback, second_set);
pinch_gesture_alloc(NULL, gesture_callback, second_set);
rotate_gesture_alloc(NULL, gesture_callback, second_set);
pt_gesture_alloc(NULL, gesture_callback, second_set);
tfpan_gesture_alloc(NULL, gesture_callback, second_set);
tft_gesture_alloc(NULL, gesture_callback, second_set);

If you're using custom gestures that you have defined yourself, then you need to
allocate your custom gesture recognizer and add it to the gesture set as part of the
gesture-set initialization using the alloc() function you've defined. For example, in the
code snippet shown, you can add your custom gesture recognizer to your second gesture
set by calling your custom_gesture_alloc() function in init_gestures():

static void init_gestures()

{
second_set = gestures_set_alloc();
gesture_custom_t* user_gesture = custom_gesture_alloc(custom_params,
gesture_callback,
set);
}

Now, your application needs a way of triggering the gesture callback function when a
touch event occurs. When such a touch event is detected, your application calls
gestures_set_process_event().

Touch events can be detected through Screen events in a main application loop. If
the incoming event is a touch, move, or release event, you need to populate an mtouch
event with data from the Screen event. The helper function, screen_get_mtouch_event()

35

Gesture Tutorials

can do this for you; it's part of the Input Events library. See file input/screen_helpers.h
for more information. Then, your application calls gestures_set_process_event().

while (1) {
while (screen_get_event(screen_ctx, screen_ev, ~0L) == EOK) {
rc = screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &screen_val);
if (rc || screen_val == SCREEN_EVENT_NONE) {
break;

switch (screen_val) {
case SCREEN_EVENT MTOUCH_TOUCH:
case SCREEN_EVENT_MTOUCH_MOVE:
case SCREEN_EVENT_MTOUCH_RELEASE:
rc = screen_get_mtouch_event(screen_ev, &ntouch_event, 0);
if (rc) {
fprintf(stderr, "Error: failed to get mtouch event\n');
continue;

gestures_set_process_event(first_set, &mtouch_event, NULL);
break;

Clean up gestures

Before exiting your application, you need to free the memory associated with your
gesture sets:

static void gestures_cleanup()

if (NULL '= first_set) {
gestures_set_free(first_set);
first_set = NULL;

}

if (NULL != second_set) {
gestures_set_free(second_set);
second_set = NULL;

Example: Code snippets of a gesture-handling application

This example contains most of the code snippets that illustrate how to create a gesture
application and cascade multiple gesture sets using failure callbacks.

#include <stdio.h>

#include <screen/screen.h>

#include "input/screen_helpers._h"
#include "gestures/types.h"

#include "gestures/set._h"

#include "gestures/event_list_h"
#include "gestures/swipe.h"

#include "gestures/pinch._h"

#include "gestures/press_and_tap.h"
#include "gestures/rotate.h"
#include "gestures/two_Tfinger_pan.h"
#include "gestures/tap.h"

#include "gestures/double_tap.h"
#include "gestures/triple_tap.h"
#include "gestures/long_press.h"
#include "gestures/two_Tfinger_tap.h"

/* The callback invoked when a gesture is recognized or updated. */
void gesture_callback(gesture_base_t* gesture, mtouch_event_t* event, void* param, int async)

if (async) {
printf(*'[async] ");

switch (gesture->type) {
case GESTURE_TWO_FINGER_PAN: {
gesture_tfpan_t* tfpan = (gesture_tfpan_t*)gesture;
printf("Two-finger pan: %d, %d", tfpan->centroid.x, tfpan->centroid.y);
break;

}
case GESTURE_ROTATE: {
gesture_rotate_t* rotate = (gesture_rotate_t*)gesture;

36 © 2014, QNX Software Systems Limited

Tutorial: Create a gesture-handling application

© 2014, QNX Software Systems Limited

if (rotate->angle != rotate->last_angle) {

printf("'Rotate: %d degs', rotate->angle - rotate->last_angle);
} else {

return;
break;

}
case GESTURE_SWIPE: {
gesture_swipe_t* swipe = (gesture_swipe_t*)gesture;
printf("Swipe ");
iT (swipe->direction & GESTURE_DIRECTION_UP) {
printf('up %d", swipe->last_coords.y - swipe->coords.y);
} else if (swipe->direction & GESTURE_DIRECTION_DOWN) {
printf(*'down %d", swipe->coords.y - swipe->last_coords.y);
} else if (swipe->direction & GESTURE_DIRECTION_LEFT) {
printf("left %d"”, swipe->last_coords.x - swipe->coords.x);
} else if (swipe->direction & GESTURE_DIRECTION_RIGHT) {
printf("right %d", swipe->coords.x - swipe->last_coords.x);

break;

}
case GESTURE_PINCH: {
gesture_pinch_t* pinch = (gesture_pinch_t*)gesture;
printf("Pinch %d, %d", (pinch->last_distance.x - pinch->distance.x),
(pinch->last_distance.y - pinch->distance.y));
break;

}

case GESTURE_TAP:
printf("Tap™);
break;

case GESTURE_DOUBLE_TAP:
printf(*"'Double tap™);
break;

case GESTURE_TRIPLE_TAP:
printf("Triple tap™);
break;

case GESTURE_PRESS_AND_TAP:
printf("'Press and tap');
break;

case GESTURE_TWO_FINGER_TAP:
printf("Two-finger tap'");
break;

case GESTURE_LONG_PRESS:
printf(“'Long press™);
break;

case GESTURE_USER:
printf(*"User™);
break;

default:
printf('Unknown™);
break;

}
printf("\n");

/**
* The set failure callback that"s invoked when all gestures in the first set have
* transitioned to the failed state.
*/

void fail_callback(struct gestures_set* set, struct event_list* list, int async)

if (set == first_set) {
/* Sample list copy - not necessary if events don"t need to be kept
following the call to gestures_set_process_event_list() */

struct event_list* new_list = event_list_alloc(0, 0, 0, 1);

if (new_list) {
event_list_copy(list, new_list);
gestures_set_process_event_list(second_set, new_list, NULL);
event_list_free(new_list);

}

/** Initialize the gesture sets */
static void init_gestures()

gesture_tap_t* tap;
gesture_double_tap_t* double_tap;
gesture_triple_tap_t* triple_tap;
gesture_tft_t* tft;

first_set = gestures_set_alloc();

if (NULL !'= first_set) {
long_press_gesture_alloc(NULL, gesture_callback, first_set);
tap = tap_gesture_alloc(NULL, gesture_callback, first_set);
double_tap = double_tap_gesture_alloc(NULL, gesture_callback, first_set);
triple_tap = triple_tap_gesture_alloc(NULL, gesture_callback, first_set);
tft = tft_gesture_alloc(NULL, gesture_callback, first_set);
gesture_add_mustfail (&tap->base, &double_tap->base);
gesture_add_mustfail (&double_tap->base, &triple_tap->base);

37

Gesture Tutorials

gestures_set_register_fail_cb(first_set, fail_callback);
second_set = gestures_set_alloc();

if (NULL != second_set) {
swipe_gesture_alloc(NULL, gesture_callback, second_set);
pinch_gesture_alloc(NULL, gesture_callback, second_set);
rotate_gesture_alloc(NULL, gesture_callback, second_set);
pt_gesture_alloc(NULL, gesture_callback, second_set);
tfpan_gesture_alloc(NULL, gesture_callback, second_set);
tft_gesture_alloc(NULL, gesture_callback, second_set);

} else {
gestures_set_free(first_set);
first_set = NULL;

}
} else {
fprintf(stderr, "Failed to allocate gesture sets\n");

}
static void gestures_cleanup(Q)

if (NULL '= first_set) {
gestures_set_free(first_set);
first_set = NULL;

}

iT (NULL !'= second_set) {
gestures_set_free(second_set);
second_set = NULL;

int main(int argc, const char* argv[])

int screen_val;
screen_event_t screen_ev;
int rc;

mtouch_event_t mtouch_event;
init_gestures();
while (1) {
while (screen_get_event(screen_ctx, screen_ev, ~0L) == EOK) {
rc = screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &screen_val);
if (rc || screen_val == SCREEN_EVENT_NONE) {
break;

switch (screen_val) {
case SCREEN_EVENT_MTOUCH_TOUCH:
case SCREEN_EVENT_MTOUCH_MOVE:
case SCREEN_EVENT_MTOUCH_RELEASE:
rc = screen_get_mtouch_event(screen_ev, &ntouch_event, 0);
if (rc) {
fprintf(stderr, "Error: failed to get mtouch event\n');
continue;

gestures_set_process_event(first_set, &mtouch_event, NULL);

break;
}
}
gestures_cleanup(Q);
return O;

38 © 2014, QNX Software Systems Limited

Tutorial: Create a custom gesture

Tutorial: Create a custom gesture

You will learn to:

This tutorial shows you the basics for defining a custom gesture recognizer.

e define a custom gesture recognizer
e create a timer callback function

e create an alloc() function

e create a process_event() function

e create a free() function

e create a reset() function

Define your custom gesture recognizer

© 2014, QNX Software Systems Limited

The definition of your custom gesture recognizer includes the following:

Custom gesture recognizer parameters (optional)

A structure that represents the parameters specific to your custom gesture
recognizer. This structure is optional. If your custom gesture recognizer has
no specific parameters, then you don't need to define this structure. Here's
an example of what parameters might be in this custom gesture-recognizer
structure:

typedef struct {
unsigned max_displacement; /** The maximum distance your finger can move before
this custom gesture fails. */

unsigned max_hold_ms; /** The maximum time your finger can remain touching
the screen before this custom gesture fails. */

unsigned max_delay_ms; /** The time between the Ffirst release and the second
touch. */

} custom_gesture_params_t;

Custom gesture-recognizer states (optional)

Constants that represent the states specific to your custom gesture recognizer;
these states are in addition to the set of states defined in
gesture_state_e. Additional states for your gesture recognizer are
optional. If your gesture recognizer doesn't need additional states, these
constants aren't necessary. Here's an example of what the definition of
additional states might look like:

typedef enum {
CUSTOM_STATE_INIT = O,
CUSTOM_STATE_FIRST_TOUCH,
CUSTOM_STATE_FIRST_RELEASE,
CUSTOM_STATE_SECOND_TOUCH,
CUSTOM_STATE_SECOND_RELEASE
} custom_gesture_state_e;

39

Gesture Tutorials

40

Custom gesture-recognizer information

A structure that contains information about your custom gesture recognizer.

This structure must list gesture_base_t as its first data member. Here's an

example of what information might be included in your gesture recognizer:

typedef struct {
gesture_base_t base;
custom_gesture_params_t params;
gesture_coords_t first_touch;
gesture_coords_t first_release;
gesture_coords_t second_touch;
gesture_coords_t second_release;
custom_gesture_state_e ct_state;
int timer;
} gesture_custom_t;

Create the timer callback function (optional)

Create the alloc() function

/* The gesture base data structure. */
Your custom gesture recognizer parameters. */

J**
J**
J**
/**
/**
/**
/x>

The
The
The
The
The
The

coordinates of the first touch. */
coordinates of the first release. */
coordinates of the second touch. */
coordinates of the second release. */
intermediate state of your recognizer. */
ID of the timer for this gesture. */

If your custom gesture recognizer is timer-based, you need to implement a callback

function that will be called upon receipt of a timer event. Your gesture_timer_callback_t

function returns the new, or unchanged, state based on the timer event received and

might look like this:

static gesture_state_e custom_gesture_timer_callback(gesture_base_t* base, void* param)

return GESTURE_STATE_FAILED;

Your alloc() function must:

. Set the gesture callback: callback.

00 N O o0 b WDN =

. Allocate the memory necessary for your custom gesture recognizer.

. Invoke gesture_base_init() to initialize the gesture base data structure.
. Invoke gesture_set_add() to add your custom gesture to the gesture set.
. Set the gesture recognizer type as GESTURE_USER.

. Set the process_event(), the reset(), and the free() functions.

. Perform any custom gesture-specific initialization that isn't part of the reset.

. Store the custom gesture-specific parameters with the gesture recognizer, and set

default parameters. If your custom gesture recognizer uses a timer, use

gesture_timer_create() to obtain the ID for your timer.

If your custom gesture recognizer uses timers, then use gesture_timer_create()

— tocreate the timer and register your timer callback with your gesture recognizer.

Here's an example of what your custom gesture recognizer alloc() might look like:

gesture_custom_t*

custom_gesture_alloc(custom_gesture_params_t* params,
gesture_callback_f callback,
struct gestures_set* set)

gesture_custom_t* user_gesture = calloc(l, sizeof(*user_gesture));

© 2014, QNX Software Systems Limited

Tutorial: Create a custom gesture

if (NULL == user_gesture) {
return NULL;

gesture_base_init(&user_gesture->base);

gestures_set_add(set, &user_gesture->base);

user_gesture->base.type = GESTURE_USER;

user_gesture->base.funcs.free = user_gesture_gesture_free;

user_gesture->base.funcs.process_event = user_gesture_gesture_process_event;

user_gesture->base.funcs.reset = user_gesture_gesture_reset;

user_gesture->base.callback = callback;

user_gesture->timer = gesture_timer_create(&user_gesture->base,
custom_gesture_timer_callback, NULL);

user_gesture_gesture_reset(&user_gesture->base);

if (NULL != params) {

user_gesture->params = *params;

} else {
user_gesture_gesture_default_params(&user_gesture->params);

¥

return user_gesture;

Create the process_event() function

You need to implement a process_event() function that's responsible for state-handling
and returning the new (or unchanged) gesture set:

gesture_state_e (*process_event)(struct contact_id_map* map,
struct gesture_base* gesture,
mtouch_event_t* event,
int* consumed);

Ensure that your state transitions are valid according to the Gestures library. Refer to
State transitions.

A process_event() function for a custom gesture may look like this:

gesture_state_e

custom_gesture_gesture_process_event(struct contact_id_map* map,
gesture_base_t* gesture,
mtouch_event_t* event,
int* consumed)

gesture_custom_t* custom_gesture = (gesture_custom_gesture_t*)gesture;
gesture_coords_t coords;

gesture_coords_t* compare_coords;

int set_id = map_contact_id(map, event->contact_id);

if (set_id < 0) {

error('process_event() called with event with invalid contact_id");
goto failed;

3

switch (user_gesture->base.state) {
case GESTURE_STATE_UNRECOGNIZED:
switch (event->event_type) {
case INPUT_EVENT_MTOUCH_TOUCH:
if (set_id > 0) {
goto failed;
} else if (user_gesture->ct_state > CUSTOM_STATE_FIRST_TOUCH) {
gesture_timer_clear(gesture, user_gesture->fail_timer);
save_coords(event, &user_gesture->second_touch);

if (1((max_displacement_abs(&user_gesture->first_release,
&user_gesture->second_touch)
<= user_gesture->params.max_displacement) &&
(diff_time_ms(&user_gesture->first_release,
&user_gesture->second_touch)
<= user_gesture->params.max_delay_ms))) {
goto failed;

}
user_gesture->ct_state = CUSTOM_STATE_SECOND_TOUCH;
} else {

save_coords(event, &user_gesture->first_touch);
user_gesture->ct_state = CUSTOM_STATE_FIRST_TOUCH;

goto nochange;
case INPUT_EVENT_MTOUCH_MOVE:

© 2014, QNX Software Systems Limited 41

Gesture Tutorials

42

save_coords(event, &coords);

it (user_gesture->ct_state >= CUSTOM_STATE_SECOND_TOUCH) {
compare_coords = &user_gesture->second_touch;

} else {

compare_coords = &user_gesture->first_touch;

if (1((max_displacement_abs(compare_coords,
&coords)
<= user_gesture->params.max_displacement) &&
(diff_time_ms(compare_coords,
&coords)
<= user_gesture->params.max_hold_ms)))

goto failed;

goto nochange;

case INPUT_EVENT_MTOUCH_RELEASE:

iT (user_gesture->ct_state >= CUSTOM_STATE_SECOND_TOUCH) {
save_coords(event, &user_gesture->second_release);

iT (1((max_displacement_abs(&user_gesture->second_touch,
&user_gesture->second_release)
<= user_gesture->params.max_displacement) &&
(diff_time_ms(&user_gesture->second_touch,
&user_gesture->second_release)
<= user_gesture->params.max_hold_ms)))

goto failed;

user_gesture->ct_state = CUSTOM_STATE_SECOND_RELEASE;
goto complete;

} else {

save_coords(event, &user_gesture->first_release);

it (1((max_displacement_abs(&user_gesture->first_touch,
&user_gesture->first_release)
<= user_gesture->params.max_displacement) &&
(diff_time_ms(&user_gesture->first_touch,
&user_gesture->first_release)
<= user_gesture->params.max_hold_ms)))

B {
goto failed;

}
user_gesture->ct_state = CUSTOM_STATE_FIRST_RELEASE;

/* Set a timer in case an event doesn"t come in */
gesture_timer_set_event(gesture, user_gesture->timer,

user_gesture->params.max_delay_ms, event);
h

goto nochange;

default:

warn(*'Unhandled switch/case: %d", event->event_type);
goto failed;

¥

case GESTURE_STATE_RECOGNIZED:

error (""GESTURE_STATE_RECOGNIZED is an invalid state for double tap™);
break;

case GESTURE_STATE_UPDATING:

error (""GESTURE_STATE_UPDATING is an invalid state for double tap');
break;

case GESTURE_STATE_COMPLETE:

error(*'process_event() called on complete gesture™);

break;

case GESTURE_STATE_FAILED:

error('process_event() called on failed gesture™);

break;

case GESTURE_STATE_NONE:

error(“process_event() called on uninitialized gesture™);

break;

nochange:
*consumed = 0;
return user_gesture->base.state;

failed:
*consumed = 0;
return GESTURE_STATE_FAILED;

complete:

*consumed = 1;
return GESTURE_STATE_COMPLETE;

© 2014, QNX Software Systems Limited

Tutorial: Create a custom gesture

Create the free() function

Create the reset() function

Release the memory that's associated with the custom gesture:

void custom_gesture_free(struct gesture_base* gesture);

A free() function for a custom gesture may simply look like this:

void custom_gesture_free(gesture_base_t* gesture)

free(gesture);

Reset any specific data structures that are associated with the custom gesture:

void custom_gesture_reset(struct gesture_base* gesture);

A reset() function for a custom gesture may be empty if there are no specific data
structures associated with your custom gesture.

void

custom_gesture_reset(gesture_base_t* gesture)

gesture_custom_t* user_gesture = (gesture_custom_t*)gesture;
user_gesture->ct_state = CUSTOM_STATE_INIT;

Example: Code snippets of a defining a custom gesture

© 2014, QNX Software Systems Limited

This example contains most of the code snippets that illustrate what you need in order
to define a custom gesture.

custom_gesture.h

#include "gestures/types.h"

/* The stucture custom_gesture_params_t represents the parameters for the custom gesture.

typedef struct {
unsigned max_displacement; /* The maximum distance the finger can move before
the custom gesture fails. */
unsigned max_hold_ms; /* The maximum time the finger can remain touching
the screen before the custom gesture fails. */

unsigned max_delay_ms; /* The time between the first release and the second touch.

} custom_gesture_params_t;

/* The enumeration custom_gesture_state_e defines additional states the custom
* gesture can transition between. */
typedef enum {
CT_STATE_INIT = 0,
CT_STATE_FIRST_TOUCH,
CT_STATE_FIRST_RELEASE,
CT_STATE_SECOND_TOUCH,
CT_STATE_SECOND_RELEASE
} custom_gesture_state_e;

/* The structure gesture_custom_gesture_t carries data about the custom gesture. */
typedef struct {

gesture_base_t base; /* The gesture base data structure. */
custom_gesture_params_t params; /* The custom gesture parameters. */
gesture_coords_t first_touch; /* The coordinates of the first touch. */
gesture_coords_t first_release; /* The coordinates of the first release. */
gesture_coords_t second_touch; /* The coordinates of the second touch. */

gesture_coords_t second_release; /* The coordinates of the second release. */
custom_gesture_state_e dt_state; /* The intermediate state of the custom gesture. */
int fail_timer; /* The 1D of the timer for this gesture. */

} gesture_custom_gesture_t;

/* Allocate and initialize the custom gesture structure */
gesture_custom_gesture_t* custom_gesture_gesture_alloc(custom_gesture_params_t* params,

*/

*/

43

Gesture Tutorials

44

gesture_callback_f callback,
struct gestures_set* set);

/* Initialize the custom parameters */
void custom_gesture_gesture_default_params(custom_gesture_params_t* params);

custom_gesture.c

/*The example below shows the implementation of a custom user-defined gesture. */

#include <sys/types.h>
#include <stdlib.h>

#include <malloc.h>

#include <string.h>

#include <stdio.h>

#include "gestures/set._h"
#include "gestures/timer._h"
#include *“custom_gesture.h"
#include "input/event_types.h"
#include "gestures/defaults.h"

/* Custom free() function */
void custom_gesture_gesture_free(gesture_base_t* gesture)

free(gesture);

/* Custom helper function */
static int _check_valid(gesture_coords_t* coordsl, gesture_coords_t* coords2,
unsigned max_displacement, unsigned max_ms)

return ((max_displacement_abs(coordsl, coords2) <= max_displacement) &&
(diff_time_ms(coordsl, coords2) <= max_ms));

}

/* Custom process_event() function */

gesture_state_e custom_gesture_gesture_process_event(struct contact_id_map* map,
gesture_base_t* gesture,
mtouch_event_t* event,
int* consumed)

gesture_custom_gesture_t* custom_gesture = (gesture_custom_gesture_t*)gesture;
gesture_coords_t coords;

gesture_coords_t* compare_coords;

int set_id = map_contact_id(map, event->contact_id);

if (set_id < 0) {
error(“'process_event() called with event with invalid contact_id");
goto failed;

3

switch (custom_gesture->base.state) {
case GESTURE_STATE_UNRECOGNIZED:
switch (event->event_type) {
case INPUT_EVENT_MTOUCH_TOUCH:

if (set_id > 0) {
goto failed;

} else if (custom_gesture->dt_state > CT_STATE_FIRST_TOUCH) {
gesture_timer_clear(gesture, custom_gesture->fail_timer);
save_coords(event, &custom_gesture->second_touch);
if (!_check_ valid(&custom_gesture->first_release,

&custom_gesture->second_touch,

custom_gesture->params.max_displacement,

custom_gesture->params.max_delay_ms)) {
goto failed;

}

custom_gesture->dt_state = CT_STATE_SECOND_TOUCH;
} else {

save_coords(event, &custom_gesture->first_touch);

custom_gesture->dt_state = CT_STATE_FIRST_TOUCH;

goto nochange;
case INPUT_EVENT_MTOUCH_MOVE:
save_coords(event, &coords);
iT (custom_gesture->dt_state >= CT_STATE_SECOND_TOUCH) {
compare_coords = &custom_gesture->second_touch;

} else {

compare_coords = &custom_gesture->first_touch;

if (!_check_valid(compare_coords, é&coords,
custom_gesture->params.max_displacement,
custom_gesture->params.max_hold_ms)) {
goto failed;
3

goto nochange;

© 2014, QNX Software Systems Limited

Tutorial: Create a custom gesture

© 2014, QNX Software Systems Limited

case INPUT_EVENT_MTOUCH_RELEASE:
if (custom_gesture->dt_state >= CT_STATE_SECOND_TOUCH) {

save_coords(event, &custom_gesture->second_release);

if (!_check valid(&custom_gesture->second_touch,
&custom_gesture->second_release,
custom_gesture->params.max_displacement,
custom_gesture->params.max_hold_ms)) {

goto failed;

¥

custom_gesture->dt_state = CT_STATE_SECOND_RELEASE;

goto complete;

} else {

save_coords(event, &custom_gesture->first_release);

ifT (!_check_valid(&custom_gesture->first_touch,
&custom_gesture->Ffirst_release,
custom_gesture->params.max_displacement,
custom_gesture->params.max_hold_ms)) {

goto failed;

}
custom_gesture->dt_state = CT_STATE_FIRST_RELEASE;

/* Set a timer in case an event doesn"t come in */
gesture_timer_set_event(gesture,
custom_gesture->fail_timer,
custom_gesture->params.max_delay_ms,
event);

}

goto nochange;

default:
warn('Unhandled switch/case: %d", event->event_type);
goto failed;

¥
case GESTURE_STATE_RECOGNIZED:
error(""GESTURE_STATE_RECOGNIZED is an invalid state for double tap');
break;
case GESTURE_STATE_UPDATING:
error (""GESTURE_STATE_UPDATING is an invalid state for double tap');
break;
case GESTURE_STATE_COMPLETE:
error(*'process_event() called on complete gesture™);
break;
case GESTURE_STATE_FAILED:
error(*'process_event() called on failed gesture™);
break;
case GESTURE_STATE_NONE:
error(*'process_event() called on uninitialized gesture™);
break;

}

nochange:
*consumed = 0O;
return custom_gesture->base.state;

failed:
*consumed = 0;
return GESTURE_STATE_FAILED;

complete:
*consumed = 1;
return GESTURE_STATE_COMPLETE;

/* Custom timer callback */
static gesture_state_e
timeout(gesture_base_t* base, void* param)

return GESTURE_STATE_FAILED;
¥

/* Custom reset() function */
void custom_gesture_gesture_reset(gesture_base_t* gesture)

gesture_custom_gesture_t* custom_gesture = (gesture_custom_gesture_t*)gesture;
custom_gesture->dt_state = CT_STATE_INIT;

/* Initialize custom gesture parameters with default values. */
void custom_gesture_gesture_default_params(custom_gesture_params_t* params)

params->max_displacement = GESTURE_MAX_MOVE_TOLERANCE_PIX;
params->max_hold_ms = GESTURE_MAX_TAP_DELAY_MS;
params->max_delay_ms = GESTURE_MIN_HOLD_DELAY_MS;

}

/* Custom alloc() function */

gesture_custom_gesture_t* custom_gesture_gesture_alloc(custom_gesture_params_t* params,
gesture_callback_f callback,

struct gestures_set* set)

gesture_custom_gesture_t* custom_gesture = calloc(l, sizeof(*custom _gesture));

45

Gesture Tutorials

if (NULL == custom_gesture) {
return NULL;

gesture_base_init(&custom_gesture->base);

gestures_set_add(set, &custom_gesture->base);

custom_gesture->base.type = GESTURE_USER;

custom_gesture->base.funcs.free = custom_gesture_gesture_free;
custom_gesture->base.funcs.process_event = custom_gesture_gesture_process_event;
custom_gesture->base.funcs.reset = custom_gesture_gesture_reset;
custom_gesture->base.callback = callback;

custom_gesture->fail_timer = gesture_timer_create(&custom_gesture->base, timeout, NULL);
custom_gesture_gesture_reset(&custom_gesture->base);

if (NULL !'= params) {
custom_gesture->params = *params;

} else {

custom_gesture_gesture_default_params(&custom_gesture->params);

return custom_gesture;

46 © 2014, QNX Software Systems Limited

Chapter 6

Gestures Library Reference

© 2014, QNX Software Systems Limited

The Gestures library primarily provides gesture recognizers to detect gestures through

mtouch events that occur when you place one or more fingers on a touch screen.

Here is a summary of what the Gestures library provides:
Gesture Recognizers

self-contained state machines that detect gestures through mtouch events

Gesture Sets

collections of gesture recognizers that interface between the gesture
recognizers and the application

Gesture buckets

lists of gesture recognizers that have not yet been processed

Gesture timers

data type definitions and functions for manipulating timers used for
determining the time elapsed between touches or the length of a touch

Event lists

data type definitions and functions for lists of mtouch events to be processed
by the gesture sets

Data types and Helper functions

data type definitions and helper functions for recognizing gestures from the
touch screen

47

Gestures Library Reference

48

bucket.h

Definitions in hbucket.h

Definitions:

Library:

gestures_bucket_add()

Synopsis:

Arguments:

Library:

Data types and functions for gesture buckets.

The bucket.h header file provides data type definitions and functions for the gesture
bucket, that is, the set of gestures that have not yet been processed.

Preprocessor macro definitions for the bucket.h header file in the library.

#def i ne GESTURES_BUCKET_GROW | NCREMENT 4

The number of gestures by which the gestures bucket grows each time it reaches its
size.

libgestures

Add a gesture to a gesture bucket.

#include <gestures/bucket.h>

int gestures_bucket_add(gestures_bucket_t *bucket,
struct gesture_base *gesture)

bucket

A pointer to the gesture bucket.

gesture

A pointer to the gesture to add.

libgestures

© 2014, QNX Software Systems Limited

bucket.h

Description:

Returns:

gestures_bucket _clear()

Synopsis:

Arguments:

Library:

Description:

Returns:

gestures_bucket_count()

Synopsis:

Arguments:

© 2014, QNX Software Systems Limited

This function adds a gesture to a gestures bucket.

0 on success, or -1 on failure.

Clear a gesture bucket.

#include <gestures/bucket.h>

void gestures _bucket clear(gestures_bucket t *bucket)

bucket

A pointer to the gesture bucket to clear.

libgestures

This function removes all entries from the gestures array and sets the gesture count
and bucket size to zero.

Nothing.

Return the number of gestures in a gesture bucket.

#include <gestures/bucket._h>

int gestures bucket count(gestures bucket t *bucket)

49

Gestures Library Reference

Library:

Description:

Returns:

gestures_bucket_del()

Synopsis:

Arguments:

Library:

Description:

Returns:

50

bucket

A pointer to the gesture bucket.

libgestures

This function returns the number of gestures in the specified gesture bucket.

The number of gestures in the bucket.

Remove a gesture from a gesture bucket.

#include <gestures/bucket._h>

int gestures_bucket _del (gestures bucket_t *bucket,
uint_t idx)

bucket

A pointer to the gesture bucket.

idx

The index of the gesture to delete.

libgestures

This function deletes the gesture at the specified index from the gesture bucket.

0 on success, or -1 on failure.

© 2014, QNX Software Systems Limited

bucket.h

gestures_bucket_get()

Synopsis:

Arguments:

Library:

Description:

Returns:

gestures_bucket_init()

Synopsis:

Arguments:

© 2014, QNX Software Systems Limited

Return the gesture at the specified index.

#include <gestures/bucket.h>

struct gesture_base* gestures bucket get(gestures bucket_ t

*pbucket,
uint_t idx)

bucket

A pointer to the gesture bucket.
idx

The index of the gesture to return.

libgestures

The function gestures_bucket_get() returns a pointer to the gesture at the specified

index of the gesture bucket.

A pointer to the gesture at the specified index.

Initialize a gesture bucket.

#include <gestures/bucket._h>

void gestures_bucket init(gestures_bucket t *bucket)

51

Gestures Library Reference

Library:

Description:

Returns:

gestures_bucket t

Synopsis:

Data:

Library:

52

bucket

A pointer to the gesture bucket structure to initialize.

libgestures

This function initializes the gesture bucket structure.

Nothing.

Structure representing the gesture bucket.

typedef struct {
struct gesture_base ** gestures ;
_Uint32t gestures_count ;
_Uint32t size ;
}gestures_bucket t;

struct gesture_base ** gestures

The array of gestures.

_Uint32t gestures_count

The number of gestures currently in the bucket.

_Uint32t size

The total allocated size of the bucket (measured in number of increments

of gesture_base_t size)

libgestures

© 2014, QNX Software Systems Limited

bucket.h

Description:

This structure represents the set of gestures awaiting processing. The gesture bucket
grows indefinitely by GESTURES BUCKET_GROW_INCREMENT every time it reaches
size.

© 2014, QNX Software Systems Limited 53

Gestures Library Reference

defaults.h

Global settings for gesture timings.

The defaults.h header file provides global settings for hold delay, move tolerance,
touch interval, and tap delay.

Definitions in defaults.h

Preprocessor macro definitions for the defaults.h header file in the library.

Definitions:
#define GESTURE_M N_HOLD_DELAY_MS 400
The amount of time the finger must remain touching the screen to qualify as a hold.
#defi ne GESTURE_MAX_MOVE_TOLERANCE_PI X 16
The maximum number of pixels in any direction a touch gesture can move before
failing.
#defi ne GESTURE_TWO FI NGER | NTERVAL_MS 100
The maximum time interval between two fingers touching the screen for the gesture
to be considered a two-finger touch, as opposed to two single-finger touches.
#defi ne GESTURE_MAX_TAP_DELAY_MS 300
The maximum delay between taps for a double-tap or triple-tap gesture.
A longer delay results in multiple single taps.
Library:

libgestures

54 © 2014, QNX Software Systems Limited

double_tap.h

double_tap.h

double_tap_gesture alloc()

Synopsis:

Arguments:

Library:

Description:

© 2014, QNX Software Systems Limited

Definition of the double tap gesture.

The double_tap.h header file provides data type definitions and functions for the
double tap gesture. Your application must provide the callback function to handle
changes in gesture state.

Allocate and initialize the double tap gesture structure.

#include "gestures/double_tap.h"

gesture_double_tap t*
double_tap gesture_alloc(double_tap params_t *params,

gesture_callback f callback,
struct

gestures_set *set)

params

The double tap gesture parameters.

callback

The function to invoke when the double tap gesture changes state.

set

The gesture set to add this double tap gesture to.

libgestures

This function allocates a new double tap gesture data structure, initializes it with the
specified parameters and callback function, and adds it to the specified gesture set.

55

Gestures Library Reference

Returns:

An initialized double tap gesture.

double_tap gesture default_params()

Initialize the double tap parameters.

Synopsis:

#include "gestures/double_tap.h"

void double_tap_gesture_default_params(double_tap_params_t

*params)
Arguments:

params

The double tap gesture parameter structure to initialize.

Library:

libgestures
Description:

This function initializes the double tap parameters to default values.
Returns:

Nothing.

double_tap_params_t

Double tap gesture parameters.

Synopsis:
typedef struct {
unsigned max_displacement ;
unsigned max_hold _ms ;
unsigned max_delay ms ;
}double_tap_params_t;
Data:

unsigned max_displacement

56 © 2014, QNX Software Systems Limited

double_tap.h

Library:

Description:

double_tap_state e

Synopsis:

Data:

© 2014, QNX Software Systems Limited

The maximum distance the finger can move before the double tap gesture

fails.

unsigned max_hold_ms

The maximum time the finger can remain touching the screen before the

double tap gesture fails.

unsigned max_delay_ms

The time between the first release and the second touch.

libgestures

This stucture represents the parameters for the double tap gesture.

States for the double tap gesture.

#include "gestures/double_tap.h"

typedef enum {
DT_STATE_INIT = O
DT_STATE_FIRST_TOUCH
DT_STATE_FIRST_RELEASE
DT_STATE_SECOND_TOUCH
DT_STATE_SECOND_RELEASE
} double_tap state e;

DT_STATE_INIT

The initial state of the double tap gesture.

DT_STATE_FIRST_TOUCH

The state of the double tap gesture after the first touch was detected.

DT_STATE_FIRST_RELEASE

The state of the double tap gesture after the first release was detected.

57

Gestures Library Reference

DT_STATE_SECOND_TOUCH

The state of the double tap gesture after the second touch was detected.
DT _STATE_SECOND_RELEASE
The state of the double tap gesture after the second release was detected.

Library:
libgestures

Description:

This enumeration defines additional states the double tap gesture can transition

between.

gesture_double_tap t
The double tap gesture data type.

Synopsis:
typedef struct {
gesture_base_t base ;
double_tap params_t params ;
gesture_coords_t first _touch ;
gesture_coords_t first release ;
gesture_coords_t second_touch ;
gesture_coords_t second_release ;
double_tap state e dt_state ;
int fail_timer ;
}gesture_double_tap_t;
Data:

gesture_base _t base

The gesture base data structure.

double_tap_params_t params

The double tap parameters.

gesture_coords _t first_touch

The coordinates of the first touch.

gesture_coords_t first_release

The coordinates of the first release.

58 © 2014, QNX Software Systems Limited

double_tap.h

Library:

Description:

© 2014, QNX Software Systems Limited

gesture_coords_t second_touch

The coordinates of the second touch.

gesture_coords_t second_release

The coordinates of the second release.

double_tap_state_e dt_state

The intermediate state of the double tap.

int fail_timer

The ID of the timer for this gesture.

libgestures

This structure carries data about the double tap gesture.

59

Gestures Library Reference

event _list.h

Data types and functions for event lists.

The event_list.h header file provides data type definitions and functions for lists
of touch events to be processed by the gesture sets.

This file makes use of list and queue macros defined in the header file sys/queue.h.
For more information about these macros, see the documentation in the sys/queue.h
file.

event_list_add()

Add an event to an event list.

Synopsis:
#include <gestures/event_list.h>
int event_list _add(struct event_list *list,
mtouch_event_t *event)
Arguments:
list
A pointer to the event list.
event
A pointer to the event to add.
Library:
libgestures
Description:
This function adds an event to an event list.
Returns:

0 on success, -1 on failure

60 © 2014, QNX Software Systems Limited

event_list.h

event list_alloc()

Synopsis:

Arguments:

Library:

Description:

Returns:

© 2014, QNX Software Systems Limited

Allocate and initialize an event list.

#include <gestures/event_list_h>

struct event_list* event_ list_alloc(unsigned init_size,
unsigned grow_size,
unsigned max_size,
int allow_compress)

init_size

The initial size of the list, in number of events.
grow_size

The size by which a list is to be grown when full, in number of events.
max_size

The maximum size a list will be allowed to grow to, in number of events.
allow_compress

Allow move events to be dropped to make room in the list.

libgestures

This function allocates and initializes a new event list. If init_size, grow_size
and max_size are all zero, the defaults values of 256, 128 and 1024, respectively,
are used. If the al low_compress parameter is non-zero, touch events of type IN
PUT_EVENT_MTOUCH_MOVE will be deleted from the list when it is full to make room

for more items.

The newly allocated event list on success, NULL on failure

61

Gestures Library Reference

62

event_list_alloc_copy()

Synopsis:

Arguments:

Library:

Description:

Returns:

event list clear()

Synopsis:

Arguments:

Allocate and initialize an event list from an existing list.

#include <gestures/event_list_h>

struct event_list* event list alloc_copy(struct event list
*list)

list

A pointer to the event list to copy

libgestures

This function allocates and initializes a new event list by copying the entries from an
existing event list.

The newly allocated event list on success, NULL on failure

Clear an event list.

#include <gestures/event_list_h>

void event _list clear(struct event _list *list)

list

A pointer to the even list to clear.

© 2014, QNX Software Systems Limited

event_list.h

Library:

Description:

Returns:

event_list_copy()

Synopsis:

Arguments:

Library:

Description:

Returns:

libgestures

This function returns an event list to the empty state. It does not free any of the

associated memory.

Nothing.

Copy an event list.

#include <gestures/event_list_h>

int event _list _copy(struct event_list *from _list,
struct event_list *to_list)

from_list

A pointer to the event list to copy from.

to_list

A pointer to the event list to copy to.

libgestures

This function copies the events from one event list to another.

0 on success, -1 if to_list is too small to hold all events.

© 2014, QNX Software Systems Limited

63

Gestures Library Reference

event list free()

Synopsis:

Arguments:

Library:

Description:

Returns:

event_list_get first()

Synopsis:

Arguments:

Library:

64

Free an event list.

#include <gestures/event_list_h>

void event list free(struct event list *list)

list

A pointer to the event list.

libgestures

This function resets the members of the specified list and frees the associated memory.

Nothing.

Return the first item in an event list.

#include <gestures/event_list_h>

event_list_item t* event list _get First(struct event_ list *list)

list

A pointer to an event list.

libgestures

© 2014, QNX Software Systems Limited

event_list.h

Description:
This function gets the first element in an event list. Use the macro
STAILQ_NEXT(element, field) to walk the list, where element is a pointer to
an event list item, and Field is the 1 ink member of the event list item.

Returns:

A pointer to the first item in the event list.

event _list_item
Event list item.
Synopsis:

typedef struct event_list_item {
mtouch_event_t event ;
Yevent list item t;

Data:
mtouch_event _t event

A touch event.

STAILQ_ENTRY(event _list_item) link

A macro that resolves to a an event_list_item pointer.

Use the event_list_*() functions and the STAILQ macros to manipulate
the event list, rather than manipulating it directly.

Library:
libgestures

Description:

This structure represents an item in the list of touch events that need to be handled.
Use the event_list_*() functions to manipulate the event list.

event list _item t

Event list item.

Synopsis:

#include <gestures/event_list._h>

© 2014, QNX Software Systems Limited 65

Gestures Library Reference

Library:

Description:

66

typedef struct event_list_item event list item t;

libgestures

This structure represents an item in the list of touch events that need to be handled.
Use the event_list_*() functions to manipulate the event list.

© 2014, QNX Software Systems Limited

long _press.h

long_press.h

gesture_long_press_t

Synopsis:

Data:

Library:

Description:

© 2014, QNX Software Systems Limited

Definition of the long press gesture.

The long_press.h header file provides data type definitions and functions for the

long press gesture.

The long press data structure.

typedef struct {
gesture_base_t base ;
long_press_params_t params ;
gesture_coords_t coords ;
int success_timer ;

}ogesture_long_press_t;

gesture_base_t base

The gesture base data structure.

long_press_params._t params

The long press parameters.

gesture_coords_t coords

The coordinates of the touch.

int success_timer

The ID of the timer for this gesture.

libgestures

This structure carries data about the long press gesture.

67

Gestures Library Reference

long _press_gesture_alloc()

Allocate a new long press gesture.

Synopsis:
gesture_long_press_t*
long_press_gesture_alloc(long_press _params_t *params,
gesture_callback f callback,
struct
gestures_set *set)
Arguments:
params
A pointer to the long press gesture parameters.
callback
The function to invoke when the long press gesture changes state.
set
A pointer to the gesture set to add this long press gesture to.
Library:
libgestures
Description:
This function allocates a new long press gesture data structure and initializes it with
the specified parameters and callback function, and adds it to the specified gesture
set.
Returns:

A pointer to an initialized pinch gesture.

long_press_gesture_default_params()

Initialize the long press parameters.
Synopsis:

void long press_gesture default params(long press params_t
*params)

68 © 2014, QNX Software Systems Limited

long _press.h

Arguments:

Library:

Description:

Returns:

long_press_params_t

Synopsis:

Data:

Library:

Description:

© 2014, QNX Software Systems Limited

params

The long press gesture parameters.

libgestures

This function initializes the gestures parameters to default values.

Nothing.

Parameters for the long press gesture.

typedef struct {
unsigned max_displacement ;
unsigned min_press_time_ms ;
}long_press _params_t;

unsigned max_displacement

The maximum number of pixels from the initial coordinates of the touch
before the press fails.

unsigned min_press_time_ms

The minumum time in millisecond for the gesture to be considered a long
press and not a tap.

libgestures

This structure represents the parameters for the long press gesture.

69

Gestures Library Reference

pinch.h

Definition of the pinch gesture.

The pinch.h header file provides data type definitions and functions for the pinch
gesture. Your application must provide the callback function to handle changes in
gesture state.

gesture_pinch_t
The pinch gesture data type.
Synopsis:

typedef struct {
gesture_base_t base ;
pinch_params_t params ;
gesture_coords_t coords [2];
gesture_coords_t centroid ;
gesture_coords_t last _centroid ;
gesture_coords_t distance ;
gesture_coords_t last _distance ;

}gesture _pinch_t;

Data:
gesture_base_t base

The gesture base data structure.

pinch_params_t params

The swipe parameters.

gesture_coords_t coords[2]

The coordinates of the touch events for the two fingers.

gesture_coords_t centroid

The coordintes of the midpoint between the two touches.

gesture_coords_t last_centroid

The coordintes of the midpoint between the previous two touches.

gesture_coords_t distance

The distance between the current touches.

70 © 2014, QNX Software Systems Limited

pinch.h

Library:

Description:

pinch_gesture_alloc()

Synopsis:

Arguments:

Library:

Description:

© 2014, QNX Software Systems Limited

gesture_coords_t last_distance

The distance between the previous touches.

libgestures

This structure carries data about the pinch gesture.

Allocate and initialize the pinch gesture structure.

#include "gestures/pinch.h"

gesture_pinch_t* pinch_gesture_alloc(pinch_params_t *params,
gesture_callback F

callback,
struct gestures_set *set)

params

A pointer to the pinch gesture parameters.

callback

The function to invoke when the pinch gesture changes state.

set

A pointer to the gesture set to add this pinch gesture to.

libgestures

This function allocates a new pinch gesture data structure, initializes it with the

specified parameters and callback function, and adds it to the specified gesture set.

71

Gestures Library Reference

Returns:

A pointer to an initialized pinch gesture.

pinch_gesture_default_params()

Initialize the pinch parameters.

Synopsis:

#include "gestures/pinch.h"

void pinch_gesture_default_params(pinch_params_t *params)
Arguments:

params

A pointer to the pinch gesture parameter structure to initialize.

Library:

libgestures
Description:

This function initializes the pinch parameters to default values.
Returns:

Nothing.

pinch_params_t

Pinch gesture parameters.

Synopsis:
struct {
int none ;
3
Data:
int none

Not used.

72 © 2014, QNX Software Systems Limited

pinch.h

Library:
libgestures

Description:

This structure is provided for consistency with other gesture implementations. Although
it carries no information, it cannot be empty because common functions rely on its

existence.

© 2014, QNX Software Systems Limited

73

Gestures Library Reference

74

press_and_tap.h

gesture_pt t

Synopsis:

Data:

Library:

Description:

Definition of the press and tap gesture.

The press_and_tap.h header file provides data type definitions and functions for
the press and tap gesture. Your application must provide the callback function to
handle changes in gesture state.

The press and tap gesture data type.

typedef struct {
gesture_base_t base ;
pt_params_t params ;
gesture_coords_t initial_coords [2];
gesture_coords_t coords [2];
}gesture pt t;

gesture_base_t base

The gesture base data structure.

pt_params_t params

The swipe parameters.

gesture_coords_t initial_coords[2]

Index of the two sets of coordinates; O = press; 1 = tap.

gesture_coords_t coords[2]

The coordinates of the press and the tap.

libgestures

This structure carries data about the press and tap gesture.

© 2014, QNX Software Systems Limited

press_and_tap.h

pt_gesture_alloc()

Allocate and initialize the press and tap gesture structure.

Synopsis:
gesture_pt_t* pt_gesture_alloc(pt_params_t *params,
gesture_callback f callback,
struct gestures_set *set)
Arguments:
params
The press and tap gesture parameters.
callback
The function to invoke when the press and gesture changes state.
set
The gesture set to add this press and tap gesture to.
Library:
libgestures
Description:
This function allocates a new press and tap gesture data structure, initializes it with
the specified parameters and callback function, and adds it to the specified gesture
set.
Returns:

An initialized press and tap gesture.

pt_gesture_default_params()

Initialize the press and tap parameters.

Synopsis:

void pt_gesture_default params(pt_params_t *params)

Arguments:

© 2014, QNX Software Systems Limited 75

Gestures Library Reference

Library:

Description:

Returns:

pt_params_t

Synopsis:

Data:

76

params

A pointer to the press and tap gesture parameter structure to initialize.

libgestures

This function initializes the press and tap parameters to default values.

Nothing.

Press and touch gesture parameters.

typedef struct {
unsigned max_tap_ time ;
unsigned min_press_tap_interval
unsigned max_press_tap_interval
unsigned max_displacement ;
}pt_params_t;

unsigned max_tap_time

The maximum time the second finger can be held down.

unsigned min_press_tap_interval

The minimum time between the pressing finger touching down and the
tapping finger touching down.

unsigned max_press_tap_interval

The maximum time between the pressing finger touching down and the
tapping finger touching down.

unsigned max_displacement

Maximum distance either finger can move before the gesture fails.

© 2014, QNX Software Systems Limited

press_and_tap.h

Library:
libgestures

Description:

This structure represents the parameters for the press and tap gesture.

© 2014, QNX Software Systems Limited 77

Gestures Library Reference

rotate.h

Definition of the rotate gesture.

The rotate.h header file provides data type definitions and functions for the rotate
gesture. Your application must provide the callback function to handle changes in
gesture state.

gesture_rotate_t
The rotate gesture data type.
Synopsis:

typedef struct {
gesture_base_t base ;
rotate_params_t params ;
gesture_coords_t coords [2];
gesture_coords_t centroid ;
gesture_coords_t last _centroid ;
int angle ;
int last_angle ;
}gesture_rotate_t;

Data:
gesture_base_t base

The gesture base data structure.

rotate_params_t params

The swipe parameters.

gesture_coords_t coords[2]

The coordinates of the touch events for the two fingers.

gesture_coords_t centroid

The coordintes of the midpoint between the two touches.

gesture_coords_t last_centroid

The coordintes of the midpoint between the previous two touches.

int angle

The angle of the current two touches relative to the x axis.

78 © 2014, QNX Software Systems Limited

rotate.h

Library:

Description:

rotate_gesture_alloc()

Synopsis:

Arguments:

Library:

Description:

© 2014, QNX Software Systems Limited

int last_angle

The previous angle.

libgestures

This structure carries data about the rotate gesture.

Allocate and initialize the rotate gesture structure.

#include "gestures/rotate._h"

gesture_rotate_t* rotate_gesture_alloc(rotate_params_t *params,

gesture_callback F

callback,
struct gestures_set

*set)

params

A pointer to the rotate gesture parameters.

callback

The function to invoke when the rotate gesture changes state.

set

A pointer to the gesture set to add this rotate gesture to.

libgestures

This function allocates a new rotate gesture data structure and initializes it with the

specified parameters and callback function, and adds it to the specified gesture set.

79

Gestures Library Reference

Returns:

A pointer to an initialized rotate gesture.

rotate_gesture_default_params()

Initialize the rotate parameters.

Synopsis:

#include "gestures/rotate.h"

void rotate_gesture_default_params(rotate params_t *params)
Arguments:

params

A pointer to the rotate gesture parameter structure to initialize.

Library:

libgestures
Description:

This function initializes the rotate parameters to default values.
Returns:

Nothing.

rotate_params_t

Rotate gesture parameters.

Synopsis:
struct {
int none ;
3
Data:
int none

Not used.

80 © 2014, QNX Software Systems Limited

rotate.h

Library:
libgestures

Description:

This structure is provided for consistency with other gesture implementations. Although
carries no information, it cannot be empty because common functions rely on its

existence.

© 2014, QNX Software Systems Limited 81

Gestures Library Reference

seth

Data types and functions for gesture sets.

The set.h header file provides data type definitions and functions for the gesture

set.

gestures_set_add()

Add a gesture to a gesture set.

Synopsis:
#include "gestures/set._h"
void gestures_set _add(struct gestures_set *set,
gesture_base_t *gesture)
Arguments:
set
A pointer to the gesture set.
gesture
A pointer to the gesture to add.
Library:
libgestures
Description:
This function adds the specified gesture to the specified gesture set.
Returns:

Nothing.

82 © 2014, QNX Software Systems Limited

set.h

gestures_set_alloc()

Synopsis:

Arguments:

Library:

Description:

Returns:

gestures_set _fail_f

Synopsis:

Library:

Description:

© 2014, QNX Software Systems Limited

Allocate and initialize a new gesture set.

#include ''‘gestures/set._h"

struct gestures_set* gestures_set _alloc(Q

libgestures

This function creates a new gesture set and initializes.

Nothing.

Callback function for gesture set failure.

#include "gestures/set.h"

typedef void(* gestures_set fail f)(struct gestures_set *set,
struct event_list *list,
int async);

libgestures

This callback function is invoked when the gesture set fails. The gesture set fails when
all gestures in the set transition to the FAILED state. The callback is passed the list
of events leading up to the failure, so that those events can be passed to another
gesture set, if necessary.

The async parameter indicates which thread invoked the callback:

e the thread that called gestures_set_process_event() (async == 0)

83

Gestures Library Reference

e the timer thread (async == 1)

Returns:

Nothing.

gestures_set_free()

Free a gesture set.

Synopsis:

#include "gestures/set_h"

void gestures_set_ free(struct gestures_set *set)
Arguments:

set

A pointer to the gesture set to free.

Library:

libgestures
Description:

This function frees the memory associated with a gesture set.
Returns:

Nothing.

gestures_set_process_event()

Process a touch event at the gesture set level.

Synopsis:
#include "gestures/set.h"
int gestures_set_process_event(struct gestures_set *set,
struct mtouch_event *event,
void *param)
Arguments:

set

84 © 2014, QNX Software Systems Limited

set.h

A pointer to the gesture set.

event

The touch event to process.

param

A pointer to the parameter list for the callback functions.

Library:
libgestures

Description:
This function processes incoming touch events by adding them to the event list and
passing them to the individual gestures so that their processing callback functions
can be invoked as appropriate.

Returns:

The number of callback functions invoked.

gestures_set_process_event _list()

Process the event list.

Synopsis:
#include "gestures/set.h"
int gestures_set_process_event list(struct gestures_set *set,
struct event_list *list,
void *param)
Arguments:
set
A pointer to the gesture set.
list

The event list to process.

© 2014, QNX Software Systems Limited 85

Gestures Library Reference

param

A pointer to the parameter list for the callback functions.

Library:
libgestures

Description:
This function processes the event list by adding the events to the gesture set, updating
various properties associated with the events, evaluating timers, and passing each
event to the individual gestures for processing.

Returns:

The number of callback functions invoked.

gestures_set_register_fail_ch()
Add a failure callback to a gesture set.

Synopsis:
#include "gestures/set._h"
void gestures_set register_fail _cb(struct gestures_set *set,
gestures_set_fail_f callback)
Arguments:
set
A pointer to the gesture set.
callback
The callback function to add.
Library:
libgestures
Description:

This function adds the specified callback function to the specified gesture set.

86 © 2014, QNX Software Systems Limited

set.h

Returns:

Nothing.

© 2014, QNX Software Systems Limited 87

Gestures Library Reference

88

swipe.h

gesture_swipe_t

Synopsis:

Data:

Definition of the swipe gesture.

The swipe.h header file provides data type definitions and functions for the swipe

gesture. Your application must provide the callback function to handle changes in

gesture state.

The swipe gesture data type.

typedef struct {
gesture_base_t base ;
swipe_params_t params ;
gesture_coords_t initial_coords ;
gesture_coords_t coords ;
gesture_coords_t last coords ;
int moving ;
int direction ;

}gesture_swipe_t;

gesture_base_t base

The gesture base data structure.

swipe_params_t params

The swipe parameters.

gesture_coords_t initial_coords

The coordinates of the first touch.

gesture_coords_t coords

The coordinates of an intermediate point in the swipe.

gesture_coords_t last_coords

The coordinates of the point where the finger was lifted from the screen.

int moving

Indicates whether the last event was a move.

© 2014, QNX Software Systems Limited

swipe.h

int direction

The direction of the swipe.

Library:
libgestures

Description:

This structure carries data about the swipe gesture.

swipe_gesture_default_params()

Initialize the swipe parameters.

Synopsis:

#include "gestures/swipe.h"

void swipe_gesture default _params(swipe_params_t *params)
Arguments:

params

The swipe gesture parameter structure to initialize.

Library:

libgestures
Description:

This function initializes the swipe parameters to default values.
Returns:

Nothing.

swipe_params_t

Swipe gesture parameters.

Synopsis:

typedef struct {
unsigned directions ;
unsigned off _axis_tolerance ;
unsigned min_distance ;

© 2014, QNX Software Systems Limited

89

Gestures Library Reference

unsigned min_velocity ;
}swipe_params_t;

Data:
unsigned directions

Bitmask of the directions in which the swipe can occur.

unsigned off_axis_tolerance

The number of touch units the swipe can occur off axis with the direction.

unsigned min_distance
The minimum distance traveled in the touch direction for the gesture to be
considered a swipe.

unsigned min_velocity

The minimum velocity between any two points in the swipe.

Library:
libgestures

Description:

This structure represents the parameters for the swipe gesture.

90 © 2014, QNX Software Systems Limited

tap.h

tap.h

gesture_tap_t

Synopsis:

Data:

Library:

Description:

© 2014, QNX Software Systems Limited

Definition of the tap gesture.

The tap.h header file provides data type definitions and functions for the tap gesture.
Your application must provide the callback function to handle changes in gesture

state.

The tap gesture data type.

typedef struct {
gesture_base_t base ;
tap_params_t params ;
gesture_coords_t touch_coords ;
}gesture_tap_t;

gesture_base _t base

The gesture base data structure.

tap_params_t params

The swipe parameters.

gesture_coords_t touch_coords

The coordinates of the touch event.

libgestures

This structure carries data about the tap gesture.

91

Gestures Library Reference

tap_gesture_alloc()

Allocate and initialize the tap gesture structure.

Synopsis:
#include ''‘gestures/tap.h"
gesture_tap_t* tap gesture_alloc(tap params_t *params,
gesture_callback f callback,
struct gestures_set *set)
Arguments:
params
The tap gesture parameters.
callback
The function to invoke when the tap gesture changes state.
set
The gesture set to add this tap gesture to.
Library:
libgestures
Description:
This function allocates a new tap gesture data structure and initializes it with the
specified parameters and callback function, and adds it to the specified gesture set.
Returns:

An initialized tap gesture.

tap_gesture _default_params()

Initialize the tap parameters.

Synopsis:

#include "gestures/tap.h"

92 © 2014, QNX Software Systems Limited

tap.h

Arguments:

Library:

Description:

Returns:

tap_params_t

Synopsis:

Data:

Library:

Description:

© 2014, QNX Software Systems Limited

void tap_gesture_default_params(tap_params_t *params)

params

The tap gesture parameter structure to initialize.

libgestures

This function initializes the tap parameters to default values.

Nothing.

Tap gesture parameters.

typedef struct {
unsigned max_displacement ;
unsigned max_hold _ms ;

}tap params_t;

unsigned max_displacement

Maximum distance the finger can move before the tap gesture fails.

unsigned max_hold_ms

Maximum time the finger can remain touching the screen before the tap

gesture fails.

libgestures

This structure represents the parameters for the tap gesture.

93

Gestures Library Reference

timer.h

Functions and datatypes for gestures timers.

The timer .h header file provides data type definitions and functions for manipulating
timers used for determining the time elapsed between touches or the length of a touch.

gesture_timer_callback _t

Gesture timer callback function type.

Synopsis:
#include "gestures/timer.h"
typedef gesture_state e(* gesture_timer_callback _t)(struct
gesture_base *gesture,
void *param);
Arguments:
gesture
A pointer to the gesture.
param
A pointer to the parameter list.
Library:
libgestures
Description:
This callback function is invoked when a timer expires.
Returns:

The current gesture state.

94 © 2014, QNX Software Systems Limited

timer.h

gesture_timer_clear()

Synopsis:

Arguments:

Library:

Description:

Returns:

gesture_timer_create()

Synopsis:

Arguments:

© 2014, QNX Software Systems Limited

Clear an armed timer.

#include "gestures/timer.h"
int gesture_timer_clear(struct gesture base *gesture,

int timer_id)

gesture

A pointer to the gesture.

timer_id

The timer to clear.

libgestures

This function clears an armed timer (a timer previously set by one of the ges
ture_timer_set_*() functions). If *the timer is unarmed, this function does nothing
and returns 0.

0 on success, or -1 on failure.

Create a gesture timer.

#include "gestures/timer.h"

int gesture_timer_create(struct gesture_base *gesture,
gesture_timer_callback_t callback,
void *param)

95

Gestures Library Reference

gesture

A pointer to the gesture.

callback

The gesture timer callback function.

param

A pointer to the parameter list.

Library:
libgestures

Description:
This function creates a new gesture timer that invokes the callback function when it
expires.

Returns:

The timer ID, or -1 on failure.

gesture_timer_destroy()

Destroy a timer.

Synopsis:
#include "gestures/timer.h"
void gesture_timer_destroy(struct gesture base *gesture,
int timer_id)
Arguments:
gesture
A pointer to the gesture.
timer_id

The timer to clear.

96 © 2014, QNX Software Systems Limited

timer.h

Library:

Description:

Returns:

gesture_timer_guery()

Synopsis:

Arguments:

Library:

© 2014, QNX Software Systems Limited

libgestures

This function destroys the specified timer by resetting the timer data structure. It does

not free any memory associated with the timer.

0 on success, or -1 on failure.

Query a timer.

#include "gestures/timer.h"

int gesture_timer_query(struct gesture base *gesture,
int timer_id,
int *pending,
_Uinté4t *expiry)
gesture
A pointer to the gesture.
timer_id
The id of the timer to query.
pending
Returns the current state of the timer.

expiry

Returns the expiry time of the timer.

libgestures

97

Gestures Library Reference

98

Description:

Returns:

gesture_timer_set_event()

Synopsis:

Arguments:

Library:

This function returns information about the timer. If the timer is valid, the return value
is set to O, the parameter pending is set to the timer's current pending state (destroyed
timer will result in a -1 return value), and expiry is set to the timer's expiry time.

O if the timer is valid, -1 otherwise.

Set a gesture timer from a touch event timestamp.

#include "gestures/timer.h"

int gesture_timer_set_event(struct gesture_base *gesture,
int timer_id,
unsigned ms,
struct mtouch_event *base_event)
gesture
A pointer to the gesture.
timer_id
The timer to set.
ms
The expiry time in milliseconds.

base_event

A pointer to the touch event whose timestamp is to be used as the base
time.

libgestures

© 2014, QNX Software Systems Limited

timer.h

Description:

Returns:

gesture_timer_set_ms()

Synopsis:

Arguments:

Library:

Description:

© 2014, QNX Software Systems Limited

This function sets a timer using a touch event timestamp as the reference time.

0 on success, or -1 on failure.

Set a gesture timer from a timestamp.

#include "gestures/timer.h"

int gesture_timer_set ms(struct gesture_base *gesture,
int timer_id,
unsigned ms,
_Uint64t base_nsec)
gesture
A pointer to the gesture.
timer_id
The timer to set. 8
ms
The expiry time in milliseconds.

base_nsec

The base time in nanoseconds. The ms parameter is compared to this time
to determine whether the timer has expired.

libgestures

This function sets a timer using a timestamp as the reference time.

99

Gestures Library Reference

Returns:

0 on success, or -1 on failure.

gesture_timer_set_now()

Set a gesture timer from now.

Synopsis:
#include "gestures/timer.h"
int gesture_timer_set_now(struct gesture_base *gesture,
int timer_id,
unsigned ms)
Arguments:
gesture
A pointer to the gesture.
timer_id
The timer to set.
ms
The expiry time in milliseconds (from now).
Library:
libgestures
Description:
This function sets a timer using the current time as the reference time.
Returns:

0 on success, or -1 on failure.

100 © 2014, QNX Software Systems Limited

triple_tap.h

triple_tap.h

Definition of the triple tap gesture.

The triple_tap.h header file provides data type definitions and functions for the
triple tap gesture. Your application must provide the callback function to handle
changes in gesture state.

gesture_triple_tap_t
The triple tap gesture data type.
Synopsis:

typedef struct {
gesture_base_t base ;
triple_tap params_t params ;
gesture_coords_t first_touch ;
gesture_coords_t Ffirst release ;
gesture_coords_t second_touch ;
gesture_coords_t second_release ;
gesture_coords_t third_touch ;
gesture_coords_t third_release ;
triple_tap_state e tt state ;
int fail_timer ;
}gesture_triple_tap_t;

Data:

gesture_base_t base

The gesture base data structure.

triple_tap_params_t params

The triple tap parameters.

gesture_coords _t first_touch

The coordinates of the first touch event.

gesture_coords_t first_release

The coordinates of the first release event.

gesture_coords_t second_touch

The coordinates of the second touch event.

gesture_coords_t second_release

© 2014, QNX Software Systems Limited 101

Gestures Library Reference

The coordinates of the second release event.

gesture_coords_t third_touch

The coordinates of the third touch event.

gesture_coords_t third_release

The coordinates of the third release event.

triple_tap_state e tt_state

The intermediate state of the triple tap.
int fail_timer

The ID of the timer for this gesture.

Library:
libgestures

Description:

This structure carries data about the triple tap gesture.

triple_tap_gesture_alloc()

Allocate and initialize the triple tap gesture structure.

Synopsis:

#include "gestures/triple_tap.h"

gesture_triple_tap t*
triple_tap_gesture_alloc(triple_tap_params_t *params,

gesture_callback T callback,
struct

gestures_set *set)

Arguments:

params

A ponter to the triple tap gesture parameters.

callback

102 © 2014, QNX Software Systems Limited

triple_tap.h

The function to invoke when the triple tap gesture changes state.

set

A pointer to the gesture set to add this tap gesture to.

Library:
libgestures
Description:
This function allocates a new triple tap gesture data structure, initializes it with the
specified parameters and callback function, and adds it to the specified gesture set.
Returns:

A pointer to an initialized triple tap gesture.

triple_tap_gesture_default_params()

Initialize the triple tap parameters.

Synopsis:
#include "gestures/triple_tap.h"
void triple_tap _gesture default params(triple_tap params_t
*params)
Arguments:
params
A pointer to the triple tap gesture parameter structure to initialize.
Library:
libgestures
Description:
This function initializes the triple tap parameters to default values.
Returns:

Nothing.

© 2014, QNX Software Systems Limited 103

Gestures Library Reference

triple_tap_params_t

Synopsis:

Data:

Library:

Description:

triple_tap_state e

Synopsis:

104

Triple tap gesture parameters.

typedef struct {
unsigned max_displacement ;
unsigned max_hold_ms ;
unsigned max_delay ms ;
}triple_tap params_t;

unsigned max_displacement

Maximum distance the finger can move before the triple tap gesture fails.

unsigned max_hold_ms

Maximum time the finger can remain touching the screen before the tap
gesture fails.

unsigned max_delay_ms

The maximum time between release and touch.

libgestures

This structure represents the parameters for the triple tap gesture.

States for the triple tap gesture.

#include "gestures/triple_tap.h"

typedef enum {
TT_STATE_INIT = O
TT_STATE_FIRST_TOUCH
TT_STATE_FIRST_RELEASE
TT_STATE_SECOND_TOUCH
TT_STATE_SECOND_RELEASE
TT_STATE_THIRD_TOUCH
TT_STATE_THIRD_RELEASE

} triple_tap _state e;

© 2014, QNX Software Systems Limited

triple_tap.h

Data:

TT_STATE_INIT

TT_STATE_FIRST_TOUCH

TT_STATE_FIRST_RELEASE

TT_STATE_SECOND_TOUCH

TT_STATE_SECOND_RELEASE

TT_STATE_THIRD_TOUCH

TT_STATE_THIRD_RELEASE

Library:
libgestures

Description:

This enumeration defines additional states the triple tap gesture can transition between.

© 2014, QNX Software Systems Limited 105

Gestures Library Reference

two_finger_pan.h

Definition of the two finger pan gesture.

The two_Finger_pan.h header file provides data type definitions and functions for
the two-finger pan gesture. Your application must provide the callback function to
handle changes in gesture state.

gesture_tfpan_t
The two-finger pan gesture data type.
Synopsis:

typedef struct {
gesture_base_t base ;
tfpan_params_t params ;
gesture_coords_t coords [2];
gesture_coords_t centroid ;
gesture_coords_t last _centroid ;
}gesture_tfpan_t;

Data:
gesture_base_t base

The gesture base data structure.

tfpan_params_t params

The two-finger pan parameters.

gesture_coords_t coords[2]

The coordinates of the touch events for the two fingers.

gesture_coords_t centroid

The coordinates of the midpoint between the two touches.

gesture_coords_t last_centroid

The coordintes of the midpoint between the previous two touches.

Library:
libgestures

106 © 2014, QNX Software Systems Limited

two_finger_pan.h

Description:

tfpan_gesture_alloc()

Synopsis:

Arguments:

Library:

Description:

Returns:

This structure carries data about the pinch gesture.

Allocate and initialize the two-finger pan gesture structure.

gesture_tfpan_t* tfpan_gesture_alloc(tfpan_params_t *params,
gesture_callback_ f

callback,
struct gestures_set *set)

params

A pointer to the two-finger pan gesture parameters.

callback

The function to invoke when the two-finger pan gesture changes state.

set

A pointer to the gesture set to add this two-finger pan gesture to.

libgestures

This function allocates a new two-finger pan gesture data structure, initializes it with
the specified parameters and callback function, and adds it to the specified gesture

set.

A pointer to an initialized two-finger pan gesture.

© 2014, QNX Software Systems Limited

107

Gestures Library Reference

tfpan_gesture_default_params()

Initialize the two-finger pan parameters.

Synopsis:

void tfpan_gesture_default_params(tfpan_params_t *params)
Arguments:

params

A pointer to the two-finger pan gesture parameter structure to initialize.

Library:

libgestures
Description:

This function initializes the two-finger pan parameters to default values.
Returns:

Nothing.

tfpan_params_t

Two-finger pan gesture parameters.

Synopsis:
struct {
int none ;
};
Data:
int none
Not used.
Library:

libgestures

108 © 2014, QNX Software Systems Limited

two_finger_pan.h

Description:

This structure is provided for consistency with other gesture implementations. Although
carries no information, it cannot be empty because common functions rely on its
existence.

© 2014, QNX Software Systems Limited 109

Gestures Library Reference

two_finger_tap.h

Definition of the two finger tap gesture.

The two_TFinger_tap.h header file provides data type definitions and functions for
the two finger tap gesture. Your application must provide the callback function to
handle changes in gesture state.

gesture _tft t
The two-finger tap gesture data type.
Synopsis:

typedef struct {
gesture_base_t base ;
tft_params_t params ;
gesture_coords_t touch_coords [2];
gesture_coords_t release _coords [2];
gesture_coords_t centroid ;
unsigned down_count ;
}gesture_tft_t;

Data:

gesture_base_t base

The gesture base data structure.

tft_params_t params

The two-finger tap parameters.

gesture_coords_t touch_coords[2]

The coordinates of the first touch event.

gesture_coords_t release_coords[2]

The coordinates of the second release event.

gesture_coords_t centroid

The midpoint between the two touches.

unsigned down_count

The time in milliseconds that the fingers remained touching.

110 © 2014, QNX Software Systems Limited

two_finger_tap.h

Library:

Description:

tft_gesture_alloc()

Synopsis:

Arguments:

Library:

Description:

Returns:

libgestures

This structure carries data about the two-finger tap gesture.

Allocate and initialize the two-finger tap gesture structure.

gesture_tft_t* tft gesture_alloc(tft_params_t *params,
gesture_callback_ T callback,

struct gestures_set *set)

params

The two-finger tap gesture parameters.

callback

The function to invoke when the two-finger tap gesture changes state.

set

The gesture set to add this two-finger tap gesture to.

libgestures

This function allocates a new two-finger tap gesture data structure, initializes it with
the specified parameters and callback function, and adds it to the specified gesture

set.

An initialized two-finger tap gesture.

© 2014, QNX Software Systems Limited

111

Gestures Library Reference

tft_gesture_default_params()

Initialize the two-finger tap parameters.

Synopsis:

void tft_gesture_default_params(tft_params_t *params)
Arguments:

params

The two-finger tap gesture parameter structure to initialize.

Library:

libgestures
Description:

This function initializes the two-finger tap parameters to default values.
Returns:

Nothing.

tft_params_t

Two-finger tap gesture parameters.

Synopsis:

typedef struct {
unsigned max_touch_interval ;
unsigned max_release_interval ;
unsigned max_tap_time ;
unsigned max_displacement ;
}tft_params_t;

Data:
unsigned max_touch_interval

The maximum time that can elapse between when the first and second
fingers touch the screen.

unsigned max_release_interval

The maximum time that can elapse between when the first and second
fingers are released.

112 © 2014, QNX Software Systems Limited

two_finger_tap.h

unsigned max_tap_time

The maximum time both fingers can stay down.

unsigned max_displacement

The maximum distance either finger can move before the two-finger tap

gesture fails.

Library:
libgestures

Description:

This structure represents the parameters for the two-finger tap gesture.

© 2014, QNX Software Systems Limited 113

Gestures Library Reference

types.h

Common data types and helper functions.

The types.h header file provides data type definitions and helper functions for
recognizing gestures from the touch screen.

Definitions in types.h

Preprocessor macro definitions for the types.h header file in the library.

Definitions:
#define GESTURE_DI RECTI ON_UP (1 << 0)
Detection of touch coordinates in the up direction.
#def i ne GESTURE_DI RECTI ON_DOMW (1 << 1)
Detection of touch coordinates in the down direction.

#def i ne GESTURE_DI RECTI ON_LEFT (1 << 2)

Detection of touch coordinates in the left direction.

#defi ne GESTURE_DI RECTI ON_RI GHT (1 << 3)

Detection of touch coordinates in the right direction.

Library:
libgestures

diff_time_ms()

Return the elapsed time between two events.

Synopsis:
#include <gestures/types.h>
int32_t diff_time_ms(gesture_coords_t *coordsl,
gesture_coords_t *coords2)
Arguments:

coords]

A pointer to the first gesture event.

coords2

114 © 2014, QNX Software Systems Limited

types.h

A pointer to the second gesture event.

Library:
libgestures

Description:
This function returns the elapsed time between the two specified gesture events. You
will likely need this function only if you are defining your own gestures.

Returns:

The elapsed time in milliseconds.

gesture_add_mustfail()
Add a gesture to the 'must fail' list.

Synopsis:
#include <gestures/types.h>
int gesture_add mustfail(gesture base t *target,
gesture_base_t *mustfail)
Arguments:
target
The gesture dependent on the failure of the second gesture.
mustfail
The gesture that must fail. This gesture is added to the 'must fail' list of the
target gesture.
Library:
libgestures
Description:

This function adds a gesture to the 'must fail' list of another gesture. That is, the
gesture added to the list must fail in order for the gesture that owns the list to complete.

© 2014, QNX Software Systems Limited 115

Gestures Library Reference

116

Returns:

gesture_base

Synopsis:

Data:

0 on sucess; -1 on error.

Common data structure for all gestures.

typedef struct gesture_base {
struct gestures_set * set ;
gesture_e type ;
gesture_state e state
gesture_funcs_t funcs ;
gesture_callback f callback ;
gestures_bucket_t mustallfail ;
gestures_bucket_t faildependents ;

}gesture_base t;

struct gestures_set * set

A pointer to the gesture set.

gesture_e type

The gesture type.

gesture_state_e state

The current state of the gesture.

gesture_funes_t funcs

The state and memory handling functions.

gesture_callback_f callback

The gesture handling function, triggered when a gesture changes state.

gestures_bucket_t mustallfail

List of gestures that must fail for this gesture to complete.

gestures_bucket t faildependents

List of gestures that can only complete after this gesture fails.

TAILQ_ENTRY(gesture_base) glink

© 2014, QNX Software Systems Limited

types.h

Library:

Description:

gesture_hase_init()

Synopsis:

Arguments:

Library:

Description:

Returns:

© 2014, QNX Software Systems Limited

A macro that resolves to pointers into the gestures bucket.

Use the gestures_bucket_*() functions to manipulate the gestures
bucket, rather than manipulating it directly.

libgestures

This structure represents information that is common to all gestures. Specific gestures
include the gesture base in their representation, and also include additional members
to capture gesture-specific information.

It is up to the application to define the failure dependencies between gestures and to
add gestures to a gesture set.

Initialize the gesture base data structure.

#include <gestures/types.h>

void gesture base_ init(gesture base t *gesture)

gesture

The gesture to initialize.

libgestures

This function initializes the gesture base data structure, gesture_base_t.

None.

117

Gestures Library Reference

gesture_base_t

Synopsis:

Library:

Description:

gesture_callback_f

Synopsis:

Arguments:

118

Common data structure for all gestures.

#include <gestures/types._h>

typedef struct gesture_base gesture base t;

libgestures

This structure represents information that is common to all gestures. Specific gestures
include the gesture base in their representation, and also include additional members
to capture gesture-specific information.

It is up to the application to define the failure dependencies between gestures and to
add gestures to a gesture set.

Gesture callback function prototype.

#include <gestures/types.h>

typedef void(* gesture_callback f)(struct gesture_base *gesture,

mtouch_event_t *event,
void *param,
int async);

gesture

A pointer to the gesture.

event

A pointer to the last touch event.

param

© 2014, QNX Software Systems Limited

types.h

A pointer to the parameter list.

async

Indicator which thread invoked the callback:

e 0O: the thread that called gestures_set_process_event()
e 1: the timer thread

Library:
libgestures

Description:

This callback function is invoked every time a gesture changes state, with the exception
of the transition from UNRECOGNIZED to FAILED.

Note that if the event passed to the callback is NULL, it means the callback was
invoked following a timer callback (as opposed to an event coming in).

gesture_coords_t
Gesture coordinates.
Synopsis:

typedef struct {
_Int32t x ;
_Int32t vy ;
_Uint64t timestamp ;
}gesture _coords_t;

Data:
_Int32t x

The x coordinate of the touch.

_Int32ty

The y coordinate of the touch.

_Uint64t timestamp

The time when the touch occurred.

Library:
libgestures

© 2014, QNX Software Systems Limited 119

Gestures Library Reference

Description:

gesture_e

120

Synopsis:

Data:

This structure carries the x and y coordinates of a touch gesture, as well as the time

that it occured.

Gesture type enumeration.

#include <gestures/types.h>

typedef enum {
GESTURE_NONE = O
GESTURE_TWO_FINGER_PAN
GESTURE_ROTATE
GESTURE_SWIPE
GESTURE_PINCH
GESTURE_TAP
GESTURE_DOUBLE_TAP
GESTURE_TRIPLE_TAP
GESTURE_PRESS_AND_TAP
GESTURE_TWO_FINGER_TAP
GESTURE_LONG_PRESS
GESTURE_USER

} gesture_e;

GESTURE_NONE

No gesture.

GESTURE_TWO_FINGER_PAN

The two finger pan gesture.

GESTURE_ROTATE

The rotate gesture.

GESTURE_SWIPE

The swipe gesture.

GESTURE_PINCH

The pinch gesture.

GESTURE_TAP

© 2014, QNX Software Systems Limited

types.h

The tap gesture.

GESTURE_DOUBLE_TAP

The double tap gesture.

GESTURE_TRIPLE_TAP

The triple tap gesture.

GESTURE_PRESS_AND_TAP

The press and tap gesture.

GESTURE_TWO_FINGER_TAP

The two finger gesture.

GESTURE_LONG_PRESS

The long press gesture.

GESTURE_USER

The custom gesture.

Library:
libgestures

Description:

This enumeration the set of possible gestures.

gesture_funes_t

Touch event handling functions.

Synopsis:
typedef struct {
void(* free)(struct gesture base *gesture);
gesture_state e(* process_event)(struct contact id _map
*map,
struct gesture_base *gesture,
mtouch_event_t *event,
int *consumed);
void(* reset)(struct gesture_base *gesture);
}gesture_funcs_t;
Data:

© 2014, QNX Software Systems Limited 121

Gestures Library Reference

void(* free)(struct gesture_base *gesture)

Free all the memory associated with the gesture that was allocated by the
gesture's alloc() function.

Arguments

e gesture The gesture whose memory is to be freed.

gesture_state_e(* process_event)(struct contact_id_map *map, struct gesture_base *gesture,

mtouch_event _t *event, int *consumed)

Manage the state transitions and return the new, or unchanged, gesture
state.

Arguments

map ldentifier used to identify the mtouch event.

e gesture Gesture recognizer whose state is being managed.

e event Mtouch event that has been received.

e consumed Indicator that gesture recognizer is finished recoginzing a
gesture based on mtouch events received.

Returns

e The new state of the gesture recognizer.

void(* reset)(struct gesture_base *gesture)

Reset the gesture-specific data structures to their initial state.

Arguments

e gesture Gesture recognizer whose specific data structures are to be
returned to initial state.

Library:
libgestures

Description:

This data type consists of pointers to functions that handle mtouch events by updating
the gesture state, resetting the gesture data structures, or freeing memory associated
with the gesture. The following functions must be defined for each of your custom

gesture recognizer:

122 © 2014, QNX Software Systems Limited

types.h

gesture_state e

Synopsis:

Data:

© 2014, QNX Software Systems Limited

e (*process_event)()

(*reset) O
free) O

Gesture state enumeration.

#include <gestures/types.h>

typedef enum {
GESTURE_STATE_NONE = O
GESTURE_STATE_UNRECOGNI1ZED
GESTURE_STATE_RECOGNIZED
GESTURE_STATE_UPDATING
GESTURE_STATE_COMPLETE
GESTURE_STATE_FAILED

} gesture_state e;

GESTURE_STATE_NONE

The initial state at which a gesture recognizer starts.

GESTURE_STATE_UNRECOGNIZED

The state of a gesture recognizer after it has been added to a gesture set; it
is now ready to receive mtouch and timer events.

GESTURE_STATE_RECOGNIZED

The state of a gesture recognizer after it has received one mtouch or timer
event.

This state is valid only for composite gestures.

GESTURE_STATE_UPDATING

The state of a gesture recognizer while it is receiving mtouch or timer events.

This state is valid only for composite gestures.

GESTURE_STATE_COMPLETE

123

Gestures Library Reference

Library:

Description:

map_contact_id()

Synopsis:

Arguments:

Library:

Description:

124

The state of a gesture recognizer when it has received all mtouch or timer
events that fulfill the requirements of detecting its gesture.

GESTURE_STATE_FAILED

The state of a gesture recognizer when requirements of detecting its gesture

is not fulfilled.

libgestures

This enumeration represents state of a gesture as it is being processed. The possible
next state depends on the type of gesture.

Remap the contact id from the touch evemt.

#include <gestures/types.h>

int map_contact_id(struct contact_id_map *map,
unsigned contact_id)

map
A pointer to the gesture map. The gesture passes the map to the
process_event() callback function.

contact_id

A touch event contact id.

libgestures

This function remaps contact identifiers from touch events to contact identifiers to
be used by gestures. The touch event data structure contains a contact_id element
that is assigned a value from a O-based index that corresponds to the individual fingers

© 2014, QNX Software Systems Limited

types.h

that touch the screen. The ID assigned to a finger will not change until that finger is
released. The contact ID from the touch event should not be used directly by the
gesture recognizer. Instead, user gestures should call map_contact_id() to get a
O-indexed contact ID remapped from the gesture set's perspective. This is necessary
because, for example, the event contact ID 1 could actually correspond to the gesture
set's contact ID O if there are multiple gesture sets in play, or if the user's finger is
resting on the touch-sensitive bezel. You will likely need this function only if you are
defining your own gestures.

Returns:

The remapped contact ID.

max_displacement_abs()

Calculate the maximum displacement between two gesture events.

Synopsis:
#include <gestures/types.h>
uint32_t max_displacement_abs(gesture_coords_t *coordsl,
gesture_coords_t *coords2)
Arguments:
coords1
A pointer to the first gesture event.
coords2
A pointer to the second gesture event.
Library:
libgestures
Description:

This function returns the the maximum displacement, in pixels, between two gesture
events. For example, if the absolute value of the difference between the x coordinates
of the two gestures is greater than the absolute value of the difference between the y
coordinates, the former is returned by the function. You will likely need this function
only if you are defining your own gestures.

© 2014, QNX Software Systems Limited 125

Gestures Library Reference

Returns:

The maximum displacement, in pixels.

save_coords()

Save the touch event coordinates.

Synopsis:
#include <gestures/types.h>
void save_coords(mtouch_event_t *event,
gesture_coords_t *coords)
Arguments:
event
A pointer to the event for which to save the coordinates.
coords
A pointer to the gesture coordinates structure to use for saving.
Library:
libgestures
Description:
This function saves the coordinates of a touch event in the specified gesture_coords_t
data structure. You will likely need this function only if you are defining your own
gestures.
Returns:
Nothing.

126 © 2014, QNX Software Systems Limited

	Table of Contents
	About Gestures
	Typographical conventions
	Technical support

	Gestures Library Overview
	Gesture Recognition
	Custom Gestures
	Gesture Tutorials
	Tutorial: Create a gesture-handling application
	Example: Code snippets of a gesture-handling application

	Tutorial: Create a custom gesture
	Example: Code snippets of a defining a custom gesture

	Gestures Library Reference
	Gesture Buckets (bucket.h)
	Definitions in bucket.h
	gestures_bucket_add()
	gestures_bucket_clear()
	gestures_bucket_count()
	gestures_bucket_del()
	gestures_bucket_get()
	gestures_bucket_init()
	gestures_bucket_t

	Global Settings (defaults.h)
	Definitions in defaults.h

	Double Tap (double_tap.h)
	double_tap_gesture_alloc()
	double_tap_gesture_default_params()
	double_tap_params_t
	double_tap_state_e
	gesture_double_tap_t

	Event Lists (event_list.h)
	event_list_add()
	event_list_alloc()
	event_list_alloc_copy()
	event_list_clear()
	event_list_copy()
	event_list_free()
	event_list_get_first()
	event_list_item
	event_list_item_t

	Long Press (long_press.h)
	gesture_long_press_t
	long_press_gesture_alloc()
	long_press_gesture_default_params()
	long_press_params_t

	Pinch Gestures (pinch.h)
	gesture_pinch_t
	pinch_gesture_alloc()
	pinch_gesture_default_params()
	pinch_params_t

	Press and Tap (press_and_tap.h)
	gesture_pt_t
	pt_gesture_alloc()
	pt_gesture_default_params()
	pt_params_t

	Rotate Gesture (rotate.h)
	gesture_rotate_t
	rotate_gesture_alloc()
	rotate_gesture_default_params()
	rotate_params_t

	Gesture Sets (set.h)
	gestures_set_add()
	gestures_set_alloc()
	gestures_set_fail_f
	gestures_set_free()
	gestures_set_process_event()
	gestures_set_process_event_list()
	gestures_set_register_fail_cb()

	Swipe Gesture (swipe.h)
	gesture_swipe_t
	swipe_gesture_default_params()
	swipe_params_t

	Tap Gesture (tap.h)
	gesture_tap_t
	tap_gesture_alloc()
	tap_gesture_default_params()
	tap_params_t

	Gesture Timers (timer.h)
	gesture_timer_callback_t
	gesture_timer_clear()
	gesture_timer_create()
	gesture_timer_destroy()
	gesture_timer_query()
	gesture_timer_set_event()
	gesture_timer_set_ms()
	gesture_timer_set_now()

	Triple Tap (triple_tap.h)
	gesture_triple_tap_t
	triple_tap_gesture_alloc()
	triple_tap_gesture_default_params()
	triple_tap_params_t
	triple_tap_state_e

	Two Finger Pan (two_finger_pan.h)
	gesture_tfpan_t
	tfpan_gesture_alloc()
	tfpan_gesture_default_params()
	tfpan_params_t

	Two Finger Tap (two_finger_tap.h)
	gesture_tft_t
	tft_gesture_alloc()
	tft_gesture_default_params()
	tft_params_t

	Data Types and Helper Functions (types.h)
	Definitions in types.h
	diff_time_ms()
	gesture_add_mustfail()
	gesture_base
	gesture_base_init()
	gesture_base_t
	gesture_callback_f
	gesture_coords_t
	gesture_e
	gesture_funcs_t
	gesture_state_e
	map_contact_id()
	max_displacement_abs()
	save_coords()

