
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

Image Library Reference

©2005–2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Wednesday, October 8, 2014

Table of Contents

About This Guide ..5
Typographical conventions ...6

Technical support ...8

Chapter 2: Working with Images ..11

Attaching to the image library ..14

Load an image ..15

Chapter 3: Image API ...17

img_cfg_read() ...18

img_codec_get_criteria() ...20

img_codec_list() ...22

img_codec_list_byext() ..24

img_codec_list_bymime() ..26

img_convert_data() ...28

img_convert_getfunc() ...30

img_crop() ...32

img_decode_begin() ..34

img_decode_callouts_t ..36

img_decode_finish() ..45

img_decode_frame() ...47

img_decode_frame_resize() ..50

img_decode_get_frame_count() ..53

img_decode_set_frame_index() ..55

img_decode_validate() ...57

img_dtransform() ..59

img_dtransform_apply() ...61

img_dtransform_create() ..63

img_dtransform_free() ...65

img_encode_begin() ..66

img_encode_callouts_t ..68

img_encode_finish() ..74

img_encode_frame() ...76

img_expand_getfunc() ...78

IMG_FMT_BPL() ...80

IMG_FMT_BPP() ...81

img_format_t ..82

img_lib_attach() ...84

img_lib_detach() ...86

img_load() ...87

Image Library Reference

img_load_file() ...89

img_load_resize() ..92

img_load_resize_file() ...95

img_resize_fs() ...98

img_rotate_ortho() ..100

img_write() ...102

img_write_file() ..104

img_t ...106

io_close() ...110

io_open() ...111

Table of Contents

About This Guide

The Image Library Reference is intended for developers who want to write applications

that render images using the libimg library.

This table may help you find what you need in this guide:

Go to:To find out about:

Working with Images (p. 11)Using the library

Image API (p. 17)The functions for rendering images

© 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

6 © 2014, QNX Software Systems Limited

About This Guide

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

© 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
About This Guide

The Image Library Reference is intended for developers who want to write applications

that render images using the libimg library.

This table may help you find what you need in this guide:

Go to:To find out about:

Working with Images (p. 11)Using the library

Image API (p. 17)The functions for rendering images

© 2014, QNX Software Systems Limited 9

Chapter 2
Working with Images

This chapter shows you how to load and render images using the image library, libimg.

The image library is a static library that provides a common interface for image codecs.

This means that while the library is linked into your executable, you need to put any

required image codecs, plus the image configuration file, onto targets running your

application. You'll need to include (at least):

• the configuration file at /etc/system/config/img.conf (see its description

in the documentation for img_lib_attach() (p. 84))

• the image codecs (img_codec_*.so) in $PROCESSOR/lib/dll

The codecs used by the image library are:

img_codec_bmp.so

Windows Bitmap format codec. Provides full Microsoft BMP support for all

known variants (except Header Version 5.x) as well as the older OS/2 variant.

Does not support v1.x DDB format.

img_codec_gif.so

Graphics Interchange Format codec. This codec supports GIF 87a and GIF

89a variants and the graphics control extension which provides most of the

significant features for this format (transparency, interlacing, multiframe

etc). It ignores other extensions which allow embedded text, comments,

application data etc.

img_codec_jpg.so

Joint Photographic Experts Group file format codec. Supports 24-bit RGB,

YUV, and grayscale.

img_codec_pcx.so

Personal Computer Exchange Format decoder.

img_codec_png.so

Portable Networks Graphics codec. Provides full PNG support with alpha,

transparency, and interlacing support. This codec ignores the following

chunks:

• background color

• chromaticity

© 2014, QNX Software Systems Limited 11

• gamma

• histogram

• physical pixel dimension

• significant bits

• text data

• image last-modified time

img_codec_sgi.so

SGI format codec. It supports black-and-white, grayscale, and color images

(*sgi, *.rgb, *.rgba, *.bw).

This codec supports only

decoding.

img_codec_tga.so

Truevision Graphics Adapter format codec. For decoding, this codec handles

run length encoding (RLE) compression and supports these formats:

• true color 16-, 24-, and 32-bit

• cmap 15-, 16-, 24-, and 32-bit

• black and white 8-bit

For encoding, this codec supports true color (8888) 32-bit RLE.

img_codec_tiff.so

Tagged Image File Format codec. Supports full Baseline TIFF decoding from

the Adobe TIFF Revision 6.0 specification (for example, bilevel, grayscale,

RGB, multiple subfiles, PackBits and Huffman compression). Some TIFF

extensions are supported, such as CCITT bilevel encodings (enables fax

image decoding), LZW compression, and associated alpha.

The TIFF encoder is limited to encoding grayscale and RGB images only.

As TIFF images are not sequential streams of data, the TIFF decoder

must be able to seek in the image stream to find image data. As a

result, it may not be compatible with certain unidirectional or

unbuffered IO streams. For the best results, decode a TIFF image

from a file or a full memory buffer.

img_codec_wbmp.so

Wireless Application Protocol Bitmap file format codec. Supports decoding

and encoding of monochrome images.

12 © 2014, QNX Software Systems Limited

Working with Images

To display an image, your application needs to:

• attach to the image library

• load the image file

• clean up allocated resources and detach from the image library

Let's look at each of these steps in a little more detail.

© 2014, QNX Software Systems Limited 13

Attaching to the image library

When you call img_lib_attach() (p. 84), the image library initializes and loads the

codecs it finds listed in the img.conf configuration file. You can customize this file

to load just the codecs your application requires, and change the location where the

image library looks for it by setting the LIBIMG_CFGFILE environment variable. If

this environment variable isn't set, the library checks the default location

/etc/system/config/img.conf. See the documentation for img_lib_attach() for

more information about the format of this file.

To use img_lib_attach():

img_lib_t ilib = NULL;
int rc;
...
if ((rc = img_lib_attach(&ilib)) != IMG_ERR_OK) {
 fprintf(stderr, "img_lib_attach() failed: %d\n", rc);
 return -1;
 }

14 © 2014, QNX Software Systems Limited

Working with Images

Load an image

To load an image, follow these steps:

1. Enumeration of codecs

First, you need a list of codecs that are installed, which you can retrieve by calling

img_codec_list() (p. 22).

If you have additional information about the data (for example, a mime-type

or extension), you could use a variant such as img_codec_list_byext() (p.

24) or img_codec_list_bymime() (p. 26). This will give you a list of codecs

including only those that match the specified criteria. Keep in mind though,

that extensions or mime types do not necessarily guarantee the data is of

a specific format (that is, they can lie). So it's always good to be prepared

to try all the codecs if one that handles the format that data claims to be

in fails.

2. Establishing the underlying input source

The image data has to come from a source, such as a file, TCP/IP socket, or memory

buffer. This step involves establishing the origin of the data. This step may involve

no work at all (that is, if it's a file already stored in memory), or it may involve

opening a file or performing some other task.

3. Associating the image library conventional IO interface with the input source

The image library decoders need a conventional way to access the data, which is

where the IO streams come in. Use io_open() (p. 111) to associate an io_stream_t

with the data source from the previous step.

4. Data recognition

This step involves allowing the codecs you've enumerated to peek at the data to

determine which one is capable of handling the data. You can do this with

img_decode_validate() (p. 57), which runs through the list of codecs and indicates

which (if any) approved of the data. You can then use that codec to decode the

data.

5. Initializing the decoder

This step notifies the decoder of an imminent decode operation, and allows it to

set up any resources it may require. Use img_decode_begin() (p. 34) to perform

this step.

6. Decoding frames

Decode frames using img_decode_frame() (p. 47) until you're finished or there are

no more (when img_decode_frame() returns IMG_ERR_NODATA).

© 2014, QNX Software Systems Limited 15

Load an image

7. Finalizing the decoding

Call img_decode_finish() (p. 45) to allow the decoder to clean up after itself.

Although this process may seem complicated, there are two higher-level API calls that

simplify the process:

img_load_file() (p. 89)

This function takes care of all of the steps outlined above. However, this

function loads only the first frame, and works only with a file source.

img_load() (p. 87)

This function takes care of all the steps, except for establishing the input

source and associating it with an io_stream_t. This provides the

convenience of img_load_file() (p. 89) but lifts the file only restriction. Like

img_load_file(), it's limited to loading only the first frame.

Here's an example of using img_load_file():

int rc;
img_t img;

...

/* initialize an img_t by setting its flags to 0 */
img.flags = 0;

/* if we want, we can preselect a format (ie force the image to be
 loaded in the format we specify) by enabling the following two
 lines */

img.format = IMG_FMT_PKLE_ARGB1555;
img.flags |= IMG_FORMAT;

/* likewise, we can 'clip' the loaded image by enabling the following */

img.w = 100;
img.flags |= IMG_W;

img.h = 100;
img.flags |= IMG_H;

if ((rc = img_load_file(ilib, argv[optind], NULL, &img)) != IMG_ERR_OK) {
 fprintf(stderr, "img_load_file(%s) failed: %d\n", argv[optind], rc);
 return -1;
}

fprintf(stdout, "img is %dx%dx%d\n", img.w, img.h, IMG_FMT_BPP(img.format));

/* for our purposes we're done with the img lib */
img_lib_detach(ilib);

16 © 2014, QNX Software Systems Limited

Working with Images

Chapter 3
Image API

The image API includes the functions and data types described here.

To use the functionalities that this image API offers, along with the data types and

functions in here, you need to open an I/O stream, which is managed by the io_open()

(p. 111) and io_close() (p. 110) functions. The io_open() (p. 111) is used to associate an

io_stream_t value with image data (a file, TCIP/IP socket, or memory buffer). The

io_close() (p. 110) function releases the input stream and frees resources. Since the

io_open() (p. 111) and io_close() (p. 110) are not part of the <img.h> header, you need

to include the <io/io.h> header file, which includes the <img.h> header file within

it. Therefore, to work with the image API, you can simply include the <io/io.h>

header file.

© 2014, QNX Software Systems Limited 17

img_cfg_read()

Read a configuration file and load codecs

Synopsis:

#include <img/img.h>

int img_cfg_read (img_lib_t ilib,
 const char *path)

Arguments:

ilib

The library handle filled in by img_lib_attach().

path

The path to a configuration file to read.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function reads the configuration file specified by path, and loads the codecs

listed in it.

See img_lib_attach() (p. 84) for a description of the configuration file format.

Returns:

IMG_ERR_OK

Success

IMG_ERR_MEM

Memory-allocation failure.

IMG_ERR_CFG

Couldn't open the specified file, or the file has an incorrect format.

18 © 2014, QNX Software Systems Limited

Image API

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 19

img_cfg_read()

img_codec_get_criteria()

Get the extension and mime information for a given codec

Synopsis:

#include <img/img.h>

void img_codec_get_criteria(img_codec_t codec,
 const char **ext,
 const char **mime);

Arguments:

codec

The codec for which to return the criteria.

ext

A pointer to the codec's extension type.

mime

A pointer to the codec's mime type.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function gets the extension type and mime type for a given codec.

Examples:

#include <stdio.h>
#include <stdlib.h>
#include <img/img.h>

int main (int argc, char *argv[])
{
 img_lib_t ilib = NULL;

 if(img_lib_attach(&ilib) == IMG_ERR_OK)
 {
 int count = img_codec_list(ilib, NULL, NULL, NULL, 0);
 if(count > 0)
 {
 img_codec_t *codecs;
 if((codecs = (img_codec_t *)calloc(count, sizeof(img_codec_t))) != NULL)

20 © 2014, QNX Software Systems Limited

Image API

 {
 if((count = img_codec_list(ilib, codecs, count, NULL, 0)) > 0)
 {
 int i;

 for(i = 0; i < count; i++)
 {
 char const * mime;
 char const * ext;

 img_codec_get_criteria(codecs[i], &ext, &mime);
 printf("codecs[%d]: ext = %s: mime = %s\n", i, ext, mime);
 }
 }
 free(codecs);
 }
 }
 }

 return (0);
}

Running this example produces the following output:

codecs[0]: ext = pcx: mime = application/pcx
codecs[1]: ext = tga: mime = application/tga
codecs[2]: ext = sgi: mime = image/sgi
codecs[3]: ext = png: mime = image/png
codecs[4]: ext = jpg: mime = image/jpeg
codecs[5]: ext = gif: mime = image/gif
codecs[6]: ext = bmp: mime = image/bmp

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 21

img_codec_get_criteria()

img_codec_list()

Enumerate codecs

Synopsis:

#include <img/img.h>

size_t img_codec_list(img_lib_t ilib,
 img_codec_t* buf,
 size_t nbuf,
 img_codec_t* exclude,
 size_t nexclude);

Arguments:

ilib

The handle for the image library, returned by img_lib_attach() (p. 84).

buf

The address of an array that the function populates with handles for available

codecs.

nbuf

The number of items in the buf array.

exclude

The address of an array of codec handles that you'd like the function to

exclude from the list.

nexclude

The number of items in the exclude array.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function lists all codecs installed, except for those specified by exclude.

The function copies up to nbuf handles into the array specified by buf. No copying is

done if nbuf is 0. This function returns the total number of matching codecs, which

22 © 2014, QNX Software Systems Limited

Image API

may be larger than nbuf if your buffer was not big enough to store all the matched

codecs.

Returns:

The the total number of matching codecs.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 23

img_codec_list()

img_codec_list_byext()

Enumerate codecs by file extension

Synopsis:

#include <img/img.h>

size_t img_codec_list_byext(img_lib_t ilib,
 const char* string,
 img_codec_t* buf,
 size_t nbuf);

Arguments:

ilib

The handle for the image library, returned by img_lib_attach() (p. 84).

string

A string containing the file extension to identify. For example, .jpg or

my_file.jpg for codecs that handle JPEGs.

The extension must start with a

period.

buf

The address of an array that the function populates with handles for the

available codecs.

nbuf

The number of items in the buf array.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function enumerates codecs that handle files with the specified extension.

24 © 2014, QNX Software Systems Limited

Image API

While there are no standards defining what extensions are and how they should be

named, there seems to be a de facto standard governing their use. The term “extension”

originates as an intrinsic filename property although most contemporary

implementations no longer treat them as separate components of the filename. Thus

the term has evolved to loosely describe the portion of characters in a filename that

follow the last occurrence of the . character. This principle can be seen in use

throughout the world wide web, and through many OSs that use extensions as a

content-recognition mechanism. Although extensions do not in themselves impose

any guarantee on the nature of data a file contains, they are generally appropriately

assigned from a well-known set, and as such, they represent reasonable criteria in

deciding which codec should handle the data, at least in an initial pass.

The function copies up to nbuf handles into the array specified by buf. No copying is

done if nbuf is 0. This function returns the total number of matching codecs, which

may be larger than nbuf if your buffer was not big enough to store all the matched

codecs.

Returns:

The total number of matching codecs.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 25

img_codec_list_byext()

img_codec_list_bymime()

Enumerate codecs by MIME type

Synopsis:

#include <img/img.h>

size_t img_codec_list_bymime(img_lib_t ilib,
 const char* mime,
 img_codec_t* buf,
 size_t nbuf);

Arguments:

ilib

The handle for the image library, returned by img_lib_attach() (p. 84).

mime

A string describing the desired MIME type (in accordance with RFC 2046).

buf

The address of an array that the function populates with handles for available

codecs.

nbuf

Number of items in the buf array.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function enumerate codecs that handle a specified MIME type.

The function copies up to nbuf handles into the array specified by buf. No copying is

done if nbuf is 0. This function returns the total number of matching codecs, which

may be larger than nbuf if your buffer was not big enough to store all the matched

codecs.

26 © 2014, QNX Software Systems Limited

Image API

Returns:

The the total number of matching codecs.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 27

img_codec_list_bymime()

img_convert_data()

Convert data from one image format to another

Synopsis:

#include <img/img.h>

int img_convert_data(img_format_t sformat,
 const uint8_t* src,
 img_format_t dformat,
 uint8_t* dst,
 size_t n);

Arguments:

sformat

The format of the data you are converting from; see img_format_t (p.

82).

src

A pointer to a buffer containing the source data.

dformat

The format you would like to convert the data to.

dst

A pointer to a buffer to store the converted data. This may point to a different

buffer, or it can point to the same buffer as src, as long as you've ensured

that the source buffer is large enough to store the converted data (the

IMG_FMT_BPL() (p. 80) macro can help you with this).

n

The number of samples to convert.

Library:

libimg

Use the -l img option to qcc to link against this library.

28 © 2014, QNX Software Systems Limited

Image API

Description:

This function converts data from one image format to another. The conversion may be

done from one buffer to another, or in place.

The neither the destination nor the source formats can be a palette-based

format (for example IMG_FMT_PAL8 or IMG_FMT_PAL4). Both must be

“direct” formats. See img_expand_getfunc() (p. 78) to convert a palette-based

image to a direct format.

If you're repeatedly converting data, it's better to call img_convert_getfunc() (p. 30)

to get the conversion function, and then call the conversion function as required.

Returns:

IMG_ERR_OK

Success.

IMG_ERR_NOSUPPORT

One of the formats specified is invalid.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 29

img_convert_data()

img_convert_getfunc()

Get a function to convert one image format to another

Synopsis:

#include <img/img.h>

img_convert_f *img_convert_getfunc(img_format_t src,
 img_format_t dst)

Arguments:

src

The img_format_t (p. 82) image format to convert from

dst

The img_format_t image format to convert to.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function returns a pointer to a data conversion function (or NULL if the requested

conversion is not supported) which you can call to convert a run of pixels from format

src to format dst. The source and destination formats must be “direct” — palette-based

formats are not supported. A conversion function takes the form:

void convert_f(const uint8_t *src,
 uint8_t *dst,
 unsigned n)

A conversion function is called to convert n pixels from the src buffer, writing the

results in the dst buffer. The conversions can be done in place (that is, src can be the

same as dst).

Use this function instead of img_convert_data() (p. 28) if you need to repeatedly

convert data from one format to another. Calling img_convert_data() each time will

add overhead because it has to get the conversion function each time its called. Using

this function, you can just call the correct conversion function yourself directly.

Returns:

30 © 2014, QNX Software Systems Limited

Image API

IMG_ERR_OK

Success.

IMG_ERR_NOSUPPORT

One of the formats specified is invalid.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 31

img_convert_getfunc()

img_crop()

Crop an image

Synopsis:

#include <img/img.h>

int img_crop(const img_t *src,
 img_t *dst,
 const unsigned x,
 const unsigned y);

Arguments:

src

The address of the source img_t structure to crop.

dst

The address of the destination img_t structure, which requires the width

(IMG_W) and height (IMG_H) to be specified at a minimum.

x

The horizontal coordinate in the source image to begin the crop operation.

y

The vertical coordinate in the source image to begin the crop operation.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function will crop a source image at a given set of source coordinates x, y to the

dimensions specified by the destination image.

Returns:

IMG_ERR_OK

32 © 2014, QNX Software Systems Limited

Image API

Success

IMG_ERR_PARM

• source image width, height, and/or format not set.

• destination image width, and/or height not set.

• destination image larger than source image.

• crop co-ordinates plus size of destination image exceed source image

bounds.

IMG_ERR_NOSUPPORT

Destination image format not supported

IMG_ERR_MEM

Memory allocation failure

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 33

img_crop()

img_decode_begin()

Prepare to decode one or more frames from a stream

Synopsis:

#include <img/img.h>

int img_decode_begin(img_codec_t codec,
 io_stream_t *input,
 uintptr_t *decode_data);

Arguments:

codec

The codec to use. To figure out a codec to use, see img_codec_list, list_byext,

list_bymime, and img_decode_validate.

input

The input source.

decode_data

An address of a uintptr_t which the decoder uses to store data it needs

across the decode process. You should not pass NULL, but instead pass a

valid address of a uintptr_t initialized to 0.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function prepares to decode a frame (or series of frames) from a stream.

Returns:

IMG_ERR_OK

Success.

IMG_ERR_NOTIMPL

The codec doesn't provide an implementation for this function.

34 © 2014, QNX Software Systems Limited

Image API

Other

Any other code that a decoder's begin() function may pass back to flag an

error (see img_errno.h for a list of defined errors).

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 35

img_decode_begin()

img_decode_callouts_t

Decoder callout table

Synopsis:

#include <img/img.h>

typedef struct {
 img_decode_choose_format_f *choose_format_f;
 img_decode_setup_f *setup_f;
 img_decode_abort_f *abort_f;
 img_decode_scanline_f *scanline_f;
 img_decode_set_palette_f *set_palette_f;
 img_decode_set_transparency_f *set_transparency_f;
 img_decode_frame_f *frame_f;
 img_decode_set_value_f *set_value_f;
 uintptr_t data;
} img_decode_callouts_t;

Description:

The img_decode_callouts_t structure defines a decoder callout table. It provides

the decoder with a list of callouts for it to invoke at various stages of the decoding:

• img_decode_choose_format_f *choose_format_f (p. 36)

• img_decode_setup_f *setup_f (p. 37)

• img_decode_abort_f *abort_f (p. 38)

• img_decode_scanline_f* scanline_f (p. 39)

• img_decode_set_palette_f *set_palette_f (p. 41)

• img_decode_set_transparency_f *set_transparency_f (p. 40)

• img_decode_frame_f *frame_f (p. 42)

• img_decode_set_value_f *set_value_f (p. 42)

• uintptr_t data (p. 43)

img_decode_choose_format_f *choose_format_f

A pointer to a function that chooses a format for the image from the list provided by

the decoder. You will get this callout first (unless the format was preselected, in which

case it will not be called at all).

The function takes this form:

typdef unsigned (img_decode_choose_format_f) (
 uintptr_t data,
 img_t *img,
 const img_format_t *formats,
 unsigned nformats);

The arguments for this function are:

36 © 2014, QNX Software Systems Limited

Image API

data

Application data — the value of the data member of the

img_decode_callouts_t.

img

A pointer to a partially filled img_t structure providing vital information

about the frame.

formats

An array of possible img_format_t (p. 82) formats to choose from.

nformats

The number of elements in the formats array.

If you do not supply a choose_format() callout, the library will supply a default that

chooses the first format in the list.

The function should return an index within the formats array, or an out-of-bounds

value (for example, nformats) to indicate that no format was desired; the decoder will

error out with IMG_ERR_NOSUPPORT.

Alternatively, it can return an out-of-bounds value (for example, nformats) to indicate

that none of the formats were acceptable. In this case it can pick a different format

by setting img->format and asserting the IMG_FORMAT bit of img->flags. In this case,

the end result will be the same as if this format was initially selected before load time.

img_decode_setup_f* setup_f

A pointer to a function that does any setup required to begin frame decoding.

The function takes this form:

typedef int (img_decode_setup_f) (uintptr_t data,
 img_t *img,
 unsigned flags);

The arguments for this function are:

data

Application data — the value of the data member of the

img_decode_callouts_t.

img

A pointer to a partially filled img_t structure providing vital information

about the frame being decoded.

flags

© 2014, QNX Software Systems Limited 37

img_decode_callouts_t

Flags to provide hints about the data and how it will arrive, which may

influence assumptions and actions your function takes. Flags can have the

following values:

• IMG_SETUP_PAL_SHARED — the palette (if any) can be shared between

this and other frames in the decoding. This is meaningful for multiple

frame formats, but can otherwise be ignored.

• IMG_SETUP_TOP_DOWN — scanlines are completed in order, moving

from the top down

• IMG_SETUP_BOTTOM_UP — scanlines are completed in order, moving

from the bottom up

• IMG_SETUP_MULTIPASS — scanline processing is fragmented across

multiple passes (for example, planar and some interlacing schemes).

Your setup function can, but does not have to, set up the access field for the img_t.

This field tells the decoder how to record the image data being decoded. You set this

up by setting up either img->access.direct or img->access.indirect and asserting the

appropriate flags, IMG_DIRECT or IMG_INDIRECT.

Alternatively, the code that called img_decode_frame() (or img_load_file() etc) could

set this up before calling img_deocode_frame(), img_load_file(), and so on, or you can

rely on the library's default behavior, which is to allocate memory from system RAM

for the image and/or palette (the library will do this only if the IMG_DIRECT,

IMG_INDIRECT and IMG_PALETTE flags aren't already set).

If you rely on this default behavior, you can later free the memory by simply freeing

img_t::access.direct.data or img_t::palette (but not both). You only need to do this

if the image decode succeeds, and only once you are done with the image. You do not

need to worry about freeing if the decoding fails, as it's taken care of automatically.

It should return IMG_ERR_OK if everything is ok, otherwise return some other error

code. Anything other than IMG_ERR_OK causes the decoding to stop and the error

code is propagated back to the application.

img_decode_abort_f* abort_f

A pointer to a function that called if the decoding fails (after setup_f has been called).

The library will automatically release any memory it allocated as part of the setup (if

you have relied on the default behavior described above in img_decode_setup_f

(p. 37)).

The function takes this form:

typedef void (img_decode_abort_f) (
 uintptr_t data,
 img_t *img);

The arguments for this function are:

38 © 2014, QNX Software Systems Limited

Image API

data

Application data — the value of the data member of the

img_decode_callouts_t.

info

A pointer to an img_t structure that needs to be released.

img_decode_scanline_f* scanline_f

A pointer to a function that's invoked to notify the application when a scanline has

been decoded.

The function takes this form:

typedef int (img_decode_scanline_f) (
 uintptr_t data,
 img_t *img,
 unsigned row,
 unsigned npass_line,
 unsigned npass_total);

The arguments for this function are:

data

Application data — the value of the data member of the

img_decode_callouts_t.

img

A pointer to an img_t describing the frame.

row

The index of the scanline that has been decoded. Scanlines are numbered

starting at 0 (topmost scanline) to (h - 1), where h represents the height of

the image.

npass_line

The number of additional passes required (after this pass) to complete the

scanline. Planar formats and some interlaced formats partition scanlines

across multiple passes, delivering only portions of the data at a time (this

is the case when the IMG_SETUP_MULTIPASS flag bit is set in the setup_f()

callout). You know the scanline is complete when this value is 0.

npass_total

© 2014, QNX Software Systems Limited 39

img_decode_callouts_t

The number of additional scanline passes remaining (after this pass) to

complete the entire frame. You will know the frame is complete when this

value is passed in as 0.

This total includes partial passes, where the IMG_SETUP_MULTIPASS flag

was set in the setup_f() callout. If this flag was not set, then a “scanline

pass” is equivalent to “scanline completion”, that is, npass_total reflects

the number of lines left to be decoded. In either case, this value gives you

a gauge of the total work left versus what has already been completed.

This function should return IMG_ERR_OK to continue decoding or some other value

to abort the decoding. The code you return is propagated back to the application.

Normally IMG_ERR_INTR is a good value to use in this case, unless there's another

value you wish to use.

img_decode_set_transparency_f* set_transparency_f

A pointer to a function that notifies the application that the image has a transparency

color, which means that the designer of the image intented for a particular color in

the image to be treated as though it were transparent. Pixels of that color in the source

image should not be rendered to the destination.

This function is called only for image formats that support transparency in the

form of a color mask (as opposed to transparency achieved through alpha

blending), which currently only applies to the GIF format.

The function takes this form:

typedef void (img_decode_set_transparency_f) (
 uintptr_t data,
 img_t *img,
 img_color_t color);

The arguments for this function are:

data

Application data — the value of the data member of the

img_decode_callouts_t.

img

A pointer to an img_t describing the frame.

color

The color to treat as transparent. The value will be:

• an index number (0-255) for palette-based or IMG_FMT_G8

40 © 2014, QNX Software Systems Limited

Image API

• a 16-bit value for 16bpp formats (encoding is the same as the image

format)

• a 32-bit value for 24 or 32 bpp formats (encoding is

IMG_FMT_PKHE_ARGB8888)

The transparency field of the img_t will have already been set up by the time

you receive this callout. The only reason for this callout is to do additional

processing as a result of the presence of the transparency.

img_decode_set_palette_f* set_palette_f

A pointer to a function that notifies the application of an image's palette. This function

is called after setup before any decoding of the body is done.

If you do not supply a callout, or the supplied callout returns nonzero, the library

copies the palette data into the buffer pointed to by img->palette (if the IMG_PALETTE

flag bit is set), converting the data to IMG_FMT_PKHE_ARGB8888 as necessary (the

proper representation of an img_color_t). If you supply a callout that returns 0, no

copying takes place.

The function takes this form:

typedef int (img_decode_set_palette_f) (
 uintptr_t data,
 img_t *img,
 const uint8_t *palette,
 img_format_t format);

The arguments for this function are:

data

Application data — the value of the data member of the

img_decode_callouts_t.

img

A pointer to an img_t describing the frame.

palette

A pointer to a palette that is set for the image. The format of the palette

data is described by format.

format

The format of the palette. Return 0 if you want the palette data copied to

img->palette, or nonzero to indicate that you don't want this copy/conversion

to take place.

© 2014, QNX Software Systems Limited 41

img_decode_callouts_t

It should return IMG_ERR_OK if everything is ok, otherwise return some other error

code. Anything other than IMG_ERR_OK causes the decoding to stop and the error

code is propagated back to the application.

img_decode_frame_f* frame_f

A pointer to a function that is called once a frame is successfully decoded.

The function takes this form:

typedef void (img_decode_frame_f) (
 uintptr_t data,
 img_t *img);

img_decode_set_value_f* set_value_f

A pointer to a function that is called to tell the application about additional properties

encountered in the file.

The function takes this form:

typedef int (img_decode_set_value_f) (
 uintptr_t data,
 img_t *img,
 unsigned type,
 uintptr_t value);

Some image file formats specify additional information that is not represented in an

img_t (p. 106), for example DPI, x/y position, comments, and so on. The purpose of

this callout is to provide a way for the application to receive this information.

Currently, this callout is called only when processing progressive images (such as

progressive JPEG image files).

The arguments for this function are:

data

Application data — the value of the data member of the

img_decode_callouts_t.

img

A pointer to an img_t describing the frame.

type

One of the types from the img_value_type enum.

value

42 © 2014, QNX Software Systems Limited

Image API

See the img_value_type enum.

The img_value_type enumeration provides value types that are used by the library

and takes the following form:
#include <img/img.h>
enum img_value_type {
 IMG_VALUE_TYPE_INVALID = 0,
 IMG_VALUE_TYPE_PROGRESSIVE,
 IMG_VALUE_TYPE_ANIM_PLAY_COUNT,
 IMG_VALUE_TYPE_ANIM_FRAME_DELAY,
 IMG_VALUE_TYPE_FRAME_COUNT
};

The enumeration has these possible types of values:

IMG_VALUE_TYPE_INVALID

Not a valid type.

IMG_VALUE_TYPE_PROGRESSIVE

Indicates whether the image is progressive or non-progressive. A value of 0

indicates a non-progressive image while a value of 1 indicates a progressive

one.

IMG_VALUE_TYPE_ANIM_PLAY_COUNT

The number of times an animation should be played. A value of 0 means

playing forever.

IMG_VALUE_TYPE_ANIM_FRAME_DELAY

The minimum time for which the current frame must be displayed, in

milliseconds.

IMG_VALUE_TYPE_FRAME_COUNT

The number of frames in the image. This value is never 0.

Codecs are not required to implement the set_value_f() (p. 42) callout.

Either the information is unavailable, or reasonable defaults should be assumed

(see img_value_type (p. 43)).

It should return IMG_ERR_OK if everything is OK, otherwise it should return some

other error code. Anything other than IMG_ERR_OK causes the decoding to stop and

the error code to be propagated back to the application.

uintptr_t data

User-defined data passed as an additional argument to callouts.

© 2014, QNX Software Systems Limited 43

img_decode_callouts_t

Classification:

Image library

44 © 2014, QNX Software Systems Limited

Image API

img_decode_finish()

Release decode resources

Synopsis:

#include <img/img.h>

int img_decode_finish(img_codec_t codec,
 io_stream_t *input,
 uintptr_t *decode_data);

Arguments:

codec

The handle of the codec that was used to decode.

input

A pointer to an input stream for the image data.

decode_data

The address of the uintptr_t that was used for img_decode_begin() (p.

34) and img_decode_frame() (p. 47).

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function finalizes the decode process and releases resources allocated during a

decoding session. You should call this function after you have finished decoding a

series of frames, to release any resources that the decoder may have allocated in

association with those frames.

You do not need to decode all the frames in a stream, but you should always

follow up with img_decode_finish() (p. 45) when you have decoded the frames

you are interested in to avoid potential memory leaks.

Returns:

IMG_ERR_OK

© 2014, QNX Software Systems Limited 45

img_decode_finish()

Success.

IMG_ERR_NOTIMPL

The codec doesn't provide an implementation for this function.

Other

Any other code that a decoder's begin() function may pass back to flag an

error (see img_errno.h for a list of defined errors).

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

46 © 2014, QNX Software Systems Limited

Image API

img_decode_frame()

Decode a frame

Synopsis:

#include <img/img.h>

int img_decode_frame(img_codec_t codec,
 io_stream_t *input,
 const img_decode_callouts_t *callouts,
 img_t *img,
 uintptr_t *decode_data
);

Arguments:

codec

The handle of the codec to use to decode the frame.

input

The input source.

callouts

A pointer to an img_decode_callouts_t (p. 36) structure that provides

system callouts for the decoder. If you pass NULL for this value, a set of

default callouts is used. See the description of img_decode_callouts_t

(p. 36) for more details.

img

The address of an img_t (p. 106) structure to fill with information regarding

the decoded frame.

decode_data

The address of the uintptr_t that was used for img_decode_begin() (p.

34).

Library:

libimg

Use the -l img option to qcc to link against this library.

© 2014, QNX Software Systems Limited 47

img_decode_frame()

Description:

This function decodes a frame. You need to call img_decode_begin() (p. 34) first to

prepare for the decode, and img_decode_finish() (p. 45) to release any resources

allocated for the decode.

Returns:

IMG_ERR_OK

Success. The complete frame was decoded.

IMG_ERR_MEM

Memory-allocation failure.

IMG_ERR_NOSUPPORT

Output data format not supported; the codec and application could not agree

on an output format.

IMG_ERR_NODATA

No frame data was present. This return code indicates the end of a

multi-frame data source.

IMG_ERR_CORRUPT

Invalid data was encountered in the stream, preventing the decode from

proceeding. Some of the frame may be intact.

IMG_ERR_TRUNC

Premature end of data encountered. Some of the frame may be intact.

IMG_ERR_INTR

Decoding was interrupted by the application.

IMG_ERR_DLL

Error accessing the codec DLL; check errno and/or try running your

application with DL_DEBUG=1.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

48 © 2014, QNX Software Systems Limited

Image API

Safety:

NoThread

© 2014, QNX Software Systems Limited 49

img_decode_frame()

img_decode_frame_resize()

Decode and resize a frame from a stream

Synopsis:

#include <img/img.h>

int img_decode_frame_resize(img_codec_t codec,

 io_stream_t *input,

 const img_decode_callouts_t
*callouts,
 img_t *img,
 uintptr_t
*decode_data);

Arguments:

codec

The handle of the codec to use to decode the frame.

input

The input source.

callouts

A pointer to an img_decode_callouts_t (p. 36) structure that provides

system callouts for the decoder. If you pass NULL for this value, a set of

default callouts is used. See the description of img_decode_callouts_t

(p. 36) for more details.

img

The address of an img_t (p. 106) structure to fill with information regarding

the decoded frame.

If you set the image width and height (img.w and img.h) before calling

this function, then the image is sized to fit the specified dimensions rather

than clipped, as it is with img_load_file(). The resizing is performed

on-the-fly during the decoding, without incurring the memory penalty of

loading the entire original image and then subsequently resizing it.

If you specify only one of the dimensions, then the other dimension is

calculated based on the aspect ratio of the original image.

50 © 2014, QNX Software Systems Limited

Image API

You also set the corresponding dimension flag in the img structure. For

example, if you specify the width, then you set the IMG_W bit in flags.

decode_data

The address of the uintptr_t that was used for img_decode_begin() (p.

34).

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function decodes a frame and optionally resizes it if the image width and height

are specified. You need to call img_decode_begin() (p. 34) first to prepare for the

decode, and img_decode_finish() (p. 45) to release any resources allocated for the

decode.

Returns:

IMG_ERR_OK

Success. The complete frame was decoded.

IMG_ERR_MEM

Memory-allocation failure.

IMG_ERR_NOSUPPORT

Output data format not supported; the codec and application could not agree

on an output format.

IMG_ERR_NODATA

No frame data was present. This return code indicates the end of a

multi-frame data source.

IMG_ERR_CORRUPT

Invalid data was encountered in the stream, preventing the decode from

proceeding. Some of the frame may be intact.

IMG_ERR_TRUNC

Premature end of data encountered. Some of the frame may be intact.

IMG_ERR_INTR

© 2014, QNX Software Systems Limited 51

img_decode_frame_resize()

Decoding was interrupted by the application.

IMG_ERR_DLL

Error accessing the codec DLL; check errno and/or try running your

application with DL_DEBUG=1.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

52 © 2014, QNX Software Systems Limited

Image API

img_decode_get_frame_count()

Get the total number of frames in the image stream

Synopsis:

#include <img/img.h>

int img_decode_get_frame_count(img_codec_t codec,
 io_stream_t *input,
 uintptr_t *decode_data,
 unsigned *count);

Arguments:

codec

The handle of the codec to use to decode the frame.

input

The input source.

decode_data

The address of the uintptr_t that was used for img_decode_begin() (p.

34).

count

A pointer to an unsigned integer where the number of frames can be stored.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

Gets the total number of image frames in the image stream.

This function may only be called after calling img_decode_begin() (p. 34), and before

calling img_decode_finish() (p. 45). If the function is successful, the count parameter

will contain a valid number of frames.

Calling this function may require reading the entire image stream to determine

the correct count of frames that can be decoded. For example, some image

file formats do not store the total number of frames in the header (for example,

© 2014, QNX Software Systems Limited 53

img_decode_get_frame_count()

GIF), thus the whole stream must be read to determine EOF and get an exact

count. If you do not want this behavior, provide a set_value_f callout

instead, and wait for the IMG_VALUE_TYPE_FRAME_COUNT value to be

returned once it is known.

Returns:

IMG_ERR_OK

Success. The complete frame was decoded.

IMG_ERR_PARM

One of the parameters supplied was invalid.

IMG_ERR_NOTIMPL

The codec does not provide an implementation for this function.

IMG_ERR_NODATA

No frame data was present. This return code indicates the end of a

multi-frame data source.

IMG_ERR_CORRUPT

Invalid data was encountered in the stream, preventing the decode from

proceeding. Some of the frame may be intact.

IMG_ERR_TRUNC

Premature end of data encountered. Some of the frame may be intact.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

54 © 2014, QNX Software Systems Limited

Image API

img_decode_set_frame_index()

Set the current frame index in the image decoder

Synopsis:

#include <img/img.h>

int img_decode_set_frame_index(img_codec_t codec,
 io_stream_t *input,
 uintptr_t *decode_data,
 unsigned index);

Arguments:

codec

The handle of the codec to use to decode the frame.

input

The input source.

decode_data

The address of the uintptr_t that was used for img_decode_begin() (p.

34).

index

The frame index that should be set. The first frame has index 0, and the

last frame has index img_decode_get_frame_count() - 1.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

Sets the current frame index for the current decode. Use this function to perform

non-sequential decoding of frames from an image stream.

This function may only be called after calling img_decode_begin() (p. 34), and before

calling img_decode_finish() (p. 45). If the function is successful, the frame index will

be updated and will be used on the next call to img_decode_frame() (p. 47) or

img_decode_frame_resize() (p. 50).

© 2014, QNX Software Systems Limited 55

img_decode_set_frame_index()

Returns:

IMG_ERR_OK

Success. The complete frame was decoded.

IMG_ERR_PARM

One of the parameters supplied was invalid.

IMG_ERR_NOTIMPL

The codec does not provide an implementation for this function.

IMG_ERR_NODATA

No frame data was present. This return code indicates the end of a

multi-frame data source.

IMG_ERR_CORRUPT

Invalid data was encountered in the stream, preventing the decode from

proceeding. Some of the frame may be intact.

IMG_ERR_TRUNC

Premature end of data encountered. Some of the frame may be intact.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

56 © 2014, QNX Software Systems Limited

Image API

img_decode_validate()

Find a codec for decoding

Synopsis:

#include <img/img.h>

int img_decode_validate(const img_codec_t *codecs,
 size_t ncodecs,
 io_stream_t *input,
 unsigned *codec);

Arguments:

codecs

A pointer to an array of img_codec_t handles providing a list of codecs to

try. The function will try each codec in order until it finds one that validates

the data in the stream.

ncodecs

The number of items in the codecs array.

input

The input source.

codec

The address of an unsigned value where the function stores the index of the

codec that validated the datastream. This memory is left untouched if no

such codec is found.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function finds a suitable codec for decoding.

Returns:

Status of the operation:

© 2014, QNX Software Systems Limited 57

img_decode_validate()

IMG_ERR_OK

Success; an appropriate codec was found. Check codec for the index of the

codec in the codecs array which validated the datastream.

IMG_ERR_DLL

An error occurred processing the DLL that handles the file type. Check to

make sure that the DLL is not missing or corrupt.

IMG_ERR_FORMAT

No installed codec recognized the input data as a format it supports. This

could mean the data is of a format that's not supported, or the datastream

is corrupt.

IMG_ERR_NOTIMPL

The codec doesn't provide an implementation for this function.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

58 © 2014, QNX Software Systems Limited

Image API

img_dtransform()

Convert an image from one format to another

Synopsis:

#include <img/img.h>

int img_dtransform(const img_t *src,
 img_t *dst);

Arguments:

src

The image you want to convert from.

dst

The image you want to convert to.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function converts an img_t from one format to another. Best to use this when

you only need to do the transform once on a single img_t. Returns IMG_ERR_OK if

the transform succeeed, otherwise returns one of the documented error codes of

img_dtransform_create() (p. 63).

This function cannot convert from a direct format source to a palette-based

format destination.

Returns:

IMG_ERR_OK

Success.

IMG_ERR_NOSUPPORT

One of the formats specified is invalid.

© 2014, QNX Software Systems Limited 59

img_dtransform()

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

60 © 2014, QNX Software Systems Limited

Image API

img_dtransform_apply()

Apply a data transform

Synopsis:

#include <img/img.h>

void img_dtransform_apply(img_dtransform_t xform,
 const uint8_t *src,
 uint8_t *dst,
 unsigned n);

Arguments:

xform

An opaque img_dtransform_t filled in by img_dtransform_create() (p.

63).

src

The source pixel data buffer.

dst

The destination pixel data buffer.

n

The number of pixels to transform.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function applies a previously created transform xform to transform n pixels of

pixel data contained in src and store the results in dst. The transform can be done in

place (that is, src can be the same as dst).

Classification:

Image library

© 2014, QNX Software Systems Limited 61

img_dtransform_apply()

Safety:

NoInterrupt handler

NoSignal handler

NoThread

62 © 2014, QNX Software Systems Limited

Image API

img_dtransform_create()

Prepare to transform an image

Synopsis:

#include <img/img.h>

int img_dtransform_create(const img_t *src,
 const img_t *dst,
 img_dtransform_t *xform);

Arguments:

src

The image you want to convert from

dst

The image you want to convert to

xform

The address to an opaque img_dtransform_t where the function stores

the transform it creates.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function pepares a data transformation from one format to another, from the

format in the src image to the format in the dst image. Once this function is called,

you call img_dtransform_apply() (p. 61) to apply the transformation, then

img_dtransform_free() (p. 65) to free the xform opaque structure.

• Data transforms are capable of handling palette-based formats, abstracting

the details of conversions and/or expansion. It's generally easiest to use

this construct when converting data from one arbitrary format to another.

• Conversion to a palette-based format is not supported.

© 2014, QNX Software Systems Limited 63

img_dtransform_create()

Returns:

IMG_ERR_OK

Success. The xform is valid and must be freed when the transform is finished.

For any other return code (error), the xform isn't valid, and it must not be

freed.

IMG_ERR_PARM

Required bits in the flags member of src aren't set (at a minimum IMG_H

and IMG_W need to be set).

IMG_ERR_MEM

Insufficient memory for transform

IMG_ERR_NOSUPPORT

No support for the requested transform.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

64 © 2014, QNX Software Systems Limited

Image API

img_dtransform_free()

Free a transform structure

Synopsis:

#include <img/img.h>

void img_dtransform_free (img_dtransform_t xform);

Arguments:

xform

The transform structure created by img_dtransform_create() (p. 63).

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function releases a transform previously created by img_dtransform_create() (p.

63) and thereby render it invalid.

Returns:

IMG_ERR_OK

Success.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 65

img_dtransform_free()

img_encode_begin()

Prepare to encode one or more frames to a stream

Synopsis:

#include <img/img.h>

int img_encode_begin(img_codec_t codec,
 io_stream_t *output,
 uintptr_t *encode_data);

Arguments:

codec

The codec to use. To figure out a codec to use, see img_codec_list(),

img_codec_list_byext(), and img_codec_list_bymime().

output

The output destination.

encode_data

An address of a uintptr_t which the encoder uses to store data it needs

across the encode process. Pass a valid address of a uintptr_t initialized

to 0, not NULL.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function prepares to encode a frame (or series of frames) to a stream.

Returns:

IMG_ERR_OK

Success.

IMG_ERR_NOTIMPL

The codec doesn't provide an implementation for this function.

66 © 2014, QNX Software Systems Limited

Image API

Other

Any other code that a encoder's encode_begin() function may pass back to

flag an error (see img_errno.h for a list of defined errors).

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 67

img_encode_begin()

img_encode_callouts_t

Encoder callout table

Synopsis:

#include <img/img.h>

typedef struct {
 img_encode_choose_format_f *choose_format_f;
 img_encode_setup_f *setup_f;
 img_encode_abort_f *abort_f;
 img_encode_scanline_f *scanline_f;
 img_encode_set_palette_f *get_palette_f;
 img_encode_set_transparency_f *get_transparency_f;
 img_encode_frame_f *frame_f;
 uintptrt_t data;

} img_encode_callouts_t;

Description:

The img_encode_callouts_t (p. 68) structure defines an encoder callout table.

It provides the encoder with a list of callouts for it to invoke at various stages of the

encoding:

• img_encode_choose_format_f *choose_format_f (p. 68)

• img_encode_setup_f* setup_f (p. 69)

• img_encode_abort_f* abort_f (p. 70)

• img_encode_scanline_f* scanline_f (p. 70)

• img_encode_get_transparency_f* get_transparency_f (p. 71)

• img_encode_get_palette_f* get_palette_f (p. 72)

• img_encode_frame_f* frame_f (p. 73)

• uintptrt_t data (p. 73)

img_encode_choose_format_f *choose_format_f

A pointer to a function that chooses an alternate format for the image from the list

provided by the decoder. This is the first callout called during an encode, but it will

only be called if the format of the supplied image cannot be represented by the encoder.

In this case, the application may prepare to provide the data in one of the formats

requested, or it may abort the encode altogether.

The function takes this form:

typdef unsigned (img_encode_choose_format_f) (
 uintptrt_t data,
 const img_t *img,

68 © 2014, QNX Software Systems Limited

Image API

 const img_format_t *formats,
 unsigned nformats);

The arguments for this function are:

data

Application data -- the value of the data member of the

img_encode_callouts_t.

img

A pointer to the img_t structure describing the frame being encoded.

formats

An array of possible img_format_t formats to choose from.

nformats

The number of elements in the formats array.

If you do not supply a choose_format() callout, the library will choose the format that

best matches the provided image, and it will automatically convert the data to that

format as needed.

The function should return an index within the formats array, or an out-of-bounds

value (for example, nformats) to indicate that no format was desired; the encoder will

error out with IMG_ERR_NOSUPPORT.

img_encode_setup_f* setup_f

A pointer to a function that does any setup required to begin frame encoding.

The function takes this form:

typedef int (img_encode_setup_f) (
 uintptrt_t data,
 img_t *img,
 unsigned flags);

The arguments for this function are:

data

Application data — the value of the data member of the

img_encode_callouts_t.

img

A pointer to the img_t structure describing the frame being encoded.

flags

© 2014, QNX Software Systems Limited 69

img_encode_callouts_t

Flags to provide hints about how the data will be encoded, which may

influence assumptions and actions your function takes. It can have the

following values:

• IMG_SETUP_TOP_DOWN — scanlines are encoded in order, moving from

the top down

• IMG_SETUP_BOTTOM_UP — scanlines are encoded in order, moving

from the bottom up

• IMG_SETUP_MULTIPASS — scanline are fragmented across multiple

passes (for example, planar and some interlacing schemes).

This function should return IMG_ERR_OK if everything is ok, otherwise return some

other error code. Anything other than IMG_ERR_OK causes the encode to stop and

the error code is propagated back to the application.

img_encode_abort_f* abort_f

A pointer to a function that called if the encode fails (after setup_f() has been called).

The function takes this form:

typedef void (img_encode_abort_f) (
 uintptrt_t data,
 img_t *img);

The arguments for this function are:

data

Application data — the value of the data member of the

img_encode_callouts_t.

img

A pointer to the img_t structure describing the frame being encoded.

img_encode_scanline_f* scanline_f

A pointer to a function that's invoked to notify the application when a scanline has

been encoded.

The function takes this form:

typedef int (img_encode_scanline_f) (
 uintptrt_t data,
 img_t *img,
 unsigned row,
 unsigned npass_line,
 unsigned npass_total);

The arguments for this function are:

70 © 2014, QNX Software Systems Limited

Image API

data

Application data — the value of the data member of the

img_encode_callouts_t.

img

A pointer to an img_t describing the frame being encoded.

row

The index of the scanline that has been encoded. Scanlines are numbered

starting at 0 (the topmost scanline) to image height - 1.

npass_line

The number of additional passes required (after this pass) to complete the

scanline. Planar formats and some interlaced formats partition scanlines

across multiple passes, encoding only portions of the data at a time (this is

the case when the IMG_SETUP_MULTIPASS flag bit is set in the setup_f()

callout). You know the scanline is complete when this value is 0.

npass_total

The number of additional scanline passes remaining (after this pass) to

complete the entire frame. You will know the frame is complete when this

value is passed in as 0.

This total includes partial passes, where the IMG_SETUP_MULTIPASS flag

was set in the setup_f() callout. If this flag was not set, then a “scanline

pass” is equivalent to “scanline completion”, that is, npass_total reflects

the number of lines left to be encoded. In either case, this value gives you

a gauge of the total work left versus what has already been completed.

This function should return IMG_ERR_OK to continue encoding or some other value

to abort the encode. The code you return is propagated back to the application.

Normally IMG_ERR_INTR is a good value to use in this case, unless there's another

value you wish to use.

img_encode_get_transparency_f* get_transparency_f

A pointer to a function that satisfies the request of the image transparency color. You

only need to provide this function if, for some reason, the transparency color is not

accurately represented in the transparency field of the img_t.

The function takes this form:

typedef int (img_encode_get_transparency_f) (
 uintptrt_t data,
 img_t *img,
 img_color_t *color);

© 2014, QNX Software Systems Limited 71

img_encode_callouts_t

The arguments for this function are:

data

Application data — the value of the data member of the

img_encode_callouts_t.

img

A pointer to an img_t describing the frame.

color

A pointer to an img_color_t to fill with the transparent color. The format

of this data should match the format of the frame data itself.

If you do not provide this callout, the library will automatically use and convert

the image transparency field as needed.

This function should return IMG_ERR_OK to signify the validity of the requested field.

If some other value is returned, the encoder will ignore the transparency and it will

not be represented in the resulting encoded data. The encode will proceed regardless.

img_encode_get_palette_f* get_palette_f

A pointer to a function that satisfies the request of an image's palette. You only need

to provide this function if, for some reason, the palette is not accurately represented

in the img_t.

The function takes this form:

typedef int (img_encode_get_palette_f) (
 uintptrt_t data,
 img_t *img,
 uint8_t *palette,
 img_format_t format);

The arguments for this function are:

data

Application data — the value of the data member of the

img_encode_callouts_t.

img

A pointer to an img_t describing the frame being encoded.

palette

A pointer to a buffer to fill with palette data.

72 © 2014, QNX Software Systems Limited

Image API

format

The format that the encoder is expecting the palette data to be in.

This function should return IMG_ERR_OK if everything is ok, otherwise return some

other error code. Anything other than IMG_ERR_OK causes the encode to stop and

the error code is propagated back to the application.

img_encode_frame_f* frame_f

A pointer to a function that is called once a frame is successfully encoded.

The function takes this form:

typedef void (img_encode_frame_f) (
 uintptrt_t data,
 img_t *img);

The arguments for this function are:

data

Application data — the value of the data member of the

img_encode_callouts_t.

img

A pointer to an img_t describing the frame being encoded.

uintptrt_t data

User-defined data passed as an additional argument to callouts.

Classification:

Image library

© 2014, QNX Software Systems Limited 73

img_encode_callouts_t

img_encode_finish()

Release encode resources

Synopsis:

#include <img/img.h>

int img_encode_finish(img_codec_t codec,
 io_stream_t *output,
 uintptr_t *encode_data);

Arguments:

codec

The handle of the codec that was used to encode.

output

A pointer to an output stream for the image data.

encode_data

The address of the uintptr_t that was used for img_encode_begin() (p.

66) and img_encode_frame() (p. 76).

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function finalizes the encode process and releases resources allocated during an

encoding session. You should call this function after you've finished encoding a series

of frames, to release any resources that the encoder may have allocated in association

with those frames.

Returns:

IMG_ERR_OK

Success.

IMG_ERR_NOTIMPL

74 © 2014, QNX Software Systems Limited

Image API

The codec doesn't provide an implementation for this function.

Other

Any other code that a decoder's encode_finish() function may pass back to

flag an error (see img_errno.h for a list of defined errors).

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 75

img_encode_finish()

img_encode_frame()

Encode a frame

Synopsis:

#include <img/img.h>

int img_encode_frame(img_codec_t codec,
 io_stream_t *output,
 const img_encode_callouts_t *callouts,
 img_t *img,
 uintptr_t *encode_data
);

Arguments:

codec

The handle of the codec to use to encode the frame.

output

The output destination.

callouts

A pointer to an img_encode_callouts_t structure that provides system

callouts for the encoder. If you pass NULL for this value, the library uses a

set of default callouts. See the description of img_encode_callouts_t

(p. 68) for more details.

img

The address of an img_t structure describing the frame to be encoded.

encode_data

The address of the uintptr_t that was used for img_encode_begin() (p.

66).

Library:

libimg

Use the -l img option to qcc to link against this library.

76 © 2014, QNX Software Systems Limited

Image API

Description:

This function encodes a frame. You need to call img_encode_begin() (p. 66) first to

prepare for the encode, and img_encode_finish() (p. 74) to release any resources

allocated for the encode.

Returns:

IMG_ERR_OK

Success. The complete frame was encoded.

IMG_ERR_MEM

Memory-allocation failure.

IMG_ERR_NOSUPPORT

Input data format not supported; the codec and application could not agree

on an output format.

IMG_ERR_TRUNC

Error writing data; file was truncated.

IMG_ERR_INTR

Encoding was interrupted by the application.

IMG_ERR_DLL

Error accessing the codec DLL; check errno and/or try running your

application with DL_DEBUG=1.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 77

img_encode_frame()

img_expand_getfunc()

Get a function to convert a palette format to a direct format

Synopsis:

#include <img/img.h>

img_expand_f *img_expand_getfunc(img_format_t src,
 img_format_t lut)

Arguments:

src

The palette-based img_format_t (p. 82) image format to convert from

lut

The img_format_t (p. 82) direct image format to convert to

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function returns a pointer to a data conversion function (or NULL if the requested

conversion is not supported) which you can call to “expand” (that is, convert) a run

of pixels from a palette-based format src to a “direct” format in a lookup table lut. A

conversion function takes the form:

void img_expand_f(const uint8 *src,
 uint8 *dst,
 unsigned n,
 const uint8 *lut);

Here's a sample procedure for converting from PAL8 to ARGB1555:

1. Convert your lookup table to the destination format:

img_convert_data(IMG_FMT_PKHE_ARGB8888, palette, IMG_FMT_PKLE_ARGB1555, palette, npalette);

2. Get the handle to the expand function that will expand the data:

img_expand_getfunc(IMG_FMT_PAL8, IMG_FMT_PKLE_ARGB1555);

3. Call the expand function for each run of indexed data you want to expand:

expand_f(sptr, dptr, npixels, palette);

78 © 2014, QNX Software Systems Limited

Image API

You can use img_dtransform_create() (p. 63) instead to abstract the details of

expansion and conversion.

Returns:

IMG_ERR_OK

Success.

IMG_ERR_NOSUPPORT

One of the formats specified is invalid.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 79

img_expand_getfunc()

IMG_FMT_BPL()

Calculate the minimum number of bytes required to represent a pixel run

Synopsis:

#include <img/img.h>

#define IMG_FMT_BPL(_fmt, _w) ...

Arguments:

_fmt

An img_format_t (p. 82) specifying the data format of the frame.

_w

The width of the frame, in pixels.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This macro calculates the minimum number of bytes required to represent a run of

pixels.

Returns:

The minimum number of bytes required per scanline of the frame.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

80 © 2014, QNX Software Systems Limited

Image API

IMG_FMT_BPP()

Determine the number of bits per pixel for the specified format

Synopsis:

#include <img/img.h>

#define IMG_FMT_BPP(_fmt) ...

Arguments:

_fmt

An img_format_t (p. 82) specifying the data format of the frame.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This macro determines the number of bits per pixel for the specified data format.

Returns:

The number of bits required to represent a single pixel.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 81

IMG_FMT_BPP()

img_format_t

Image formats

Synopsis:

#include <img/img.h>

typedef enum {
 ...
} img_format_t;

Description:

The img_format_t is an enumeration of these possible image formats:

IMG_FMT_INVALID

Invalid image format

IMG_FMT_MONO

Monochromatic bitmap with 1 bit/pixel, packing 8 pixels per byte.

IMG_FMT_G8

8-bits/pixel graymap.

IMG_FMT_PAL1

1-bit/pixel index into a palette of 2 entries, packing 8 pixels per byte.

IMG_FMT_PAL4

4-bits/pixel index into a palette of up to 16 entries, packing 2 pixels per

byte.

IMG_FMT_PAL8

8-bits/pixel index into a palette of up to 256 entries.

IMG_FMT_PKLE_RGB565

16-bits/pixel RGB packed into 16-bit little-endian integer type with bits 0-4

for B, 5-10 for G, and 11-15 for R.

IMG_FMT_PKBE_RGB565

A big-endian version of IMG_FMT_PKLE_RGB565

IMG_FMT_PKLE_ARGB1555

82 © 2014, QNX Software Systems Limited

Image API

16-bits/pixel ARGB packed into 16-bit little-endian integer type with bits

0-4 for B, 5-9 for G, 10-14 for R and most significant bit for A.

IMG_FMT_PKBE_ARGB1555

A big-endian version of IMG_FMT_PKLE_ARGB1555

IMG_FMT_BGR888

24-bits/pixel BGR with 8 bits per channel as an ordered byte sequence.

IMG_FMT_RGB888

24-bits/pixel RGB with 8 bits per channel as an ordered byte sequence.

IMG_FMT_RGBA8888

32-bits/pixel RGBA with 8 bits per channel as an ordered byte sequence.

IMG_FMT_PKLE_ARGB8888

32-bits/pixel ARGB packed into 32-bit little-endian integer type with byte

0 (least-significant byte) for B, byte 1 for G, byte 2 for R and byte 3 for A.

IMG_FMT_PKBE_ARGB8888

A big endian version of IMG_FMT_PKLE_ARGB8888

IMG_FMT_PKLE_XRGB8888

24-bits/pixel BGR with 8 bits per channel as an ordered byte sequence,

followed by a single byte of padding.

IMG_FMT_PKBE_XRGB8888

A big endian version of IMG_FMT_PKLE_XRGB8888

In addition to PKLE and PKBE variants listed above, there are PKHE and PKOE variants

that make it easier to identify host-endian (HE) formats and other-endian (OE). So for

example, if your code is executing on an x86 platform, IMG_FMT_PKHE_ARGB1555

equals IMG_FMT_PKLE_ARGB1555.

Classification:

Image library

© 2014, QNX Software Systems Limited 83

img_format_t

img_lib_attach()

Initialize the image library

Synopsis:

#include <img/img.h>

int img_lib_attach(img_lib_t* ilib);

Arguments:

ilib

The address where the function stores a handle to the library.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function initializes the image library, looks for a configuration file, and loads the

codecs listed in that file.

If the function can't find a configuration file, it still fills in a valid library handle, but

no codecs are loaded, and images can't be decoded. In this situation, the function

returns IMG_ERR_CFG. You can load codecs after library initialization by calling

img_cfg_read() (p. 18).

The img.conf Configuration File

The image library uses a configuration file to determine which codecs to load, This

function first checks the environment variable LIBIMG_CFGFILE, which is the full

path for the configuration file. If it isn't set, then checks the default location

/etc/system/config/img.conf.

Codecs in the configuration file are specified as sections. Each section of the

configuration file is demarcated by the codec name in square brackets, followed by

an unordered list of properties specifying additional information about that codec.

There should be at least a mimetype line and list of extensions to associate with the

codec. For example:

[img_codec_jpg.so]
mime=image/jpeg:image/jpg
ext=jpg:jpeg

84 © 2014, QNX Software Systems Limited

Image API

This example illustrates how to specify multiple entries in the same line, but

has been simplified from the original. The default configuration file contains

more mimetype entries.

Returns:

IMG_ERR_OK

Success.

IMG_ERR_MEM

Memory-allocation failure.

IMG_ERR_CFG

Bad or missing configuration file. The handle returned is still valid, however

no codecs have been preloaded.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 85

img_lib_attach()

img_lib_detach()

Detach from the library

Synopsis:

#include <img/img.h>

void img_lib_detach(img_lib_t ilib);

Arguments:

ilib

The library handle filled in by img_lib_attach(). The handle will no longer

be valid.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function detaches from the image library and frees all associated resources.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

86 © 2014, QNX Software Systems Limited

Image API

img_load()

Decode a frame from a stream

Synopsis:

#include <img/img.h>

int img_load(img_lib_t ilib,
 io_stream_t *input,
 const img_decode_callouts_t *callouts,
 img_t *img);

Arguments:

ilib

A handle for the image library, returned by img_lib_attach() (p. 84).

input

The input stream.

callouts

A pointer to an img_decode_callouts_t (p. 36) structure that provides

system callouts for the decoder. If you specify NULL for this value, a set of

default callouts is supplied.

img

The address of an img_t (p. 106) structure the function fills in with

information about the decoded frame.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function decodes a frame from a streaming source. This function decodes only

the first frame encountered.

Returns:

IMG_ERR_OK

© 2014, QNX Software Systems Limited 87

img_load()

Success

IMG_ERR_MEM

Memory-allocation failure.

IMG_ERR_FORMAT

No appopriate codec could be found. The codec you require could be missing

or corrupt, or the file could be corrupt.

IMG_ERR_NOSUPPORT

Output data not supported; the codec and application could not agree on

an output format.

IMG_ERR_NODATA

No frame data was present.

IMG_ERR_CORRUPT

Invalid data encountered in the file, preventing the decode from proceeding.

Some of the frame may be intact.

IMG_ERR_TRUNC

Premature end of file encountered. Some of the frame may be intact.

IMG_ERR_INTR

Decode was interrupted by application.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

88 © 2014, QNX Software Systems Limited

Image API

img_load_file()

Decode a frame from a file on the filesystem

Synopsis:

#include <img/img.h>

int img_load_file(img_lib_t ilib,
 const char* path,
 const img_decode_callouts_t* callouts,
 img_t* img);

Arguments:

ilib

A handle for the image library, returned by img_lib_attach() (p. 84).

path

The full path to the file from which the data can be read.

callouts

A pointer to an img_decode_callouts_t (p. 36) structure that provides

system callouts for the decoder. If you specify NULL for this value, a set of

default callouts is supplied.

img

The address of an img_t (p. 106) structure the function fills in with

information about the decoded frame.

You can override elements, such as the format, before the call to

img_load_file():

img.format = IMG_FMT_G8;
img.flags |= IMG_FORMAT;

img_load_file(...);

In the above example, because the format is set before the load occurs, the

libimg will force the loaded image into IMG_FMT_G8 format, regardless

of the actual source image format.

Library:

libimg

© 2014, QNX Software Systems Limited 89

img_load_file()

Use the -l img option to qcc to link against this library.

Description:

This function decodes a frame from a file on the filesystem. This function decodes

only the first frame encountered.

If you want to resize a file when it's loaded, use img_load_resize_file() (p. 95).

Returns:

IMG_ERR_OK

Success

IMG_ERR_CORRUPT

Invalid data encountered in the file, preventing the decode from proceeding.

Some of the frame may be intact.

IMG_ERR_DLL

An error occurred processing the DLL that handles the file type. Check to

make sure that the DLL is not missing or corrupt.

IMG_ERR_FILE

Error accessing path (errno is set).

IMG_ERR_FORMAT

No appopriate codec could be found. The codec you require could be missing

or corrupt, or the file could be corrupt.

IMG_ERR_INTR

Decode was interrupted by application.

IMG_ERR_MEM

Memory-allocation failure.

IMG_ERR_NODATA

No frame data was present. This error is highly unlikely, as files generally

contain at least one frame.

IMG_ERR_NOSUPPORT

Output data not supported; the codec and application could not agree on

an output format.

IMG_ERR_TRUNC

90 © 2014, QNX Software Systems Limited

Image API

Premature end of file encountered. Some of the frame may be intact.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 91

img_load_file()

img_load_resize()

Decode and resize a frame from a stream

Synopsis:

#include <img/img.h>

int img_load_resize(img_lib_t ilib,
 io_stream_t *input,
 const img_decode_callouts_t *callouts,
 img_t *img);

Arguments:

ilib

A handle for the image library, returned by img_lib_attach() (p. 84).

input

The input stream.

callouts

A pointer to an img_decode_callouts_t (p. 36) structure that provides

system callouts for the decoder. If you specify NULL for this value, a set of

default callouts is supplied.

img

The address of an img_t (p. 106) structure the function fills in with

information about the decoded frame.

If you set the image width and height (img.w and img.h) before calling this

function, then the image is sized to fit the specified dimensions rather than

clipped, as it is with img_load_file() (p. 89). The resizing is performed

on-the-fly during the decoding, without incurring the memory penalty of

loading the entire original image and then subsequently resizing it.

If you specify only one of the dimensions, then the other is calculated based

on the aspect ratio of the original image.

You need to also set the corresponding dimension flag in the img

structure. For example, if you specify the width, you need to set the

IMG_W bit in flags.

92 © 2014, QNX Software Systems Limited

Image API

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function decodes a frame from a stream, and optionally resizes it if the image

width and height are specified. This function decodes only the first frame encountered.

At least these callouts are supported:

• set_value_f

• choose_format_f

Returns:

IMG_ERR_OK

Success

IMG_ERR_CORRUPT

Invalid data encountered in the file, preventing the decoding from proceeding.

Some of the frame may be intact.

IMG_ERR_DLL

An error occurred processing the DLL that handles the file type. Check to

make sure that the DLL is not missing or corrupt.

IMG_ERR_FILE

Error accessing path (errno is set).

IMG_ERR_FORMAT

No appropriate codec could be found. The codec you require could be missing

or corrupt, or the file could be corrupt.

IMG_ERR_INTR

Decoding was interrupted by application.

IMG_ERR_MEM

Memory-allocation failure.

IMG_ERR_NODATA

No frame data was present. This error is highly unlikely, as files generally

contain at least one frame.

IMG_ERR_NOSUPPORT

© 2014, QNX Software Systems Limited 93

img_load_resize()

Output data not supported; the codec and application could not agree on

an output format.

IMG_ERR_TRUNC

Premature end of file encountered. Some of the frame may be intact.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

94 © 2014, QNX Software Systems Limited

Image API

img_load_resize_file()

Decode and resize a frame from a file on the filesystem

Synopsis:

#include <img/img.h>

int img_load_resize_file(img_lib_t ilib,
 const char *path,
 const img_decode_callouts_t *callouts,

 img_t *img);

Arguments:

ilib

A handle for the image library, returned by img_lib_attach() (p. 84).

path

The full path to the file from which the data can be read.

callouts

A pointer to an img_decode_callouts_t (p. 36) structure that provides

system callouts for the decoder. If you specify NULL for this value, a set of

default callouts is supplied.

img

The address of an img_t (p. 106) structure the function fills in with

information about the decoded frame.

If you set the image width and height (img.w and img.h) before calling this

function, then the image is sized to fit the specified dimensions rather than

clipped, as it is with img_load_file() (p. 89). The resizing is performed

on-the-fly during the decoding, without incurring the memory penalty of

loading the entire original image and then subsequently resizing it.

If you specify only one of the dimensions, then the other is calculated based

on the aspect ratio of the original image.

You need to also set the corresponding dimension flag in the img

structure. For example, if you specify the width, you need to set the

IMG_W bit in flags.

© 2014, QNX Software Systems Limited 95

img_load_resize_file()

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function decodes a frame from a file on the filesystem, and optionally resizes it

if the image width and height are specified. This function decodes only the first frame

encountered.

If you don't specify the height and width of your image before calling this function,

the Image library sets the height and width to the original size of the image. An

application can choose to resize the image when its callout, choose_format_f callback,

is called.

At least these callouts are supported:

• set_value_f

• choose_format_f

Returns:

IMG_ERR_OK

Success

IMG_ERR_CORRUPT

Invalid data encountered in the file, preventing the decoding from proceeding.

Some of the frame may be intact.

IMG_ERR_DLL

An error occurred processing the DLL that handles the file type. Check to

make sure that the DLL is not missing or corrupt.

IMG_ERR_FILE

Error accessing path (errno is set).

IMG_ERR_FORMAT

No appropriate codec could be found. The codec you require could be missing

or corrupt, or the file could be corrupt.

IMG_ERR_INTR

Decoding was interrupted by application.

IMG_ERR_MEM

Memory-allocation failure.

96 © 2014, QNX Software Systems Limited

Image API

IMG_ERR_NODATA

No frame data was present. This error is highly unlikely, as files generally

contain at least one frame.

IMG_ERR_NOSUPPORT

Output data not supported; the codec and application could not agree on

an output format.

IMG_ERR_TRUNC

Premature end of file encountered. Some of the frame may be intact.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 97

img_load_resize_file()

img_resize_fs()

Resize an image

Synopsis:

#include <img/img.h>

int img_resize_fs(const img_t *src,
 img_t *dst);

Arguments:

src

The image to resize.

dst

The address of an img_t describing the destination. If you do not specify

one of width or height in the dst (that is, the field isn't marked as valid in

flags) then this function will calculate the missing dimension based on the

aspect ratio of the src image.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function resizes the image src to fit into the image described by dst. The algorithm

is a simple “fast smooth” algorithm (that is, the algorithm yields results much more

visually pleasing and smooth than simple pixel replication, but is faster than applying

a filter function).

The formats of src and dst do not have to be the same; if they are different the data

will be converted. However, a palette-based dst format is not supported.

Resize can be done in place, but the src and dst data pointers must be the same. You

will get unpredictable results by partially overlapping src and dst data buffers.

Returns:

IMG_ERR_OK

Success

98 © 2014, QNX Software Systems Limited

Image API

IMG_ERR_PARM

Some fields of src are missing (that is, not marked as valid in flags)

IMG_ERR_NOSUPPORT

Unsupported format/conversion

IMG_ERR_MEM

Insufficient memory (the function requires a small amount of working

memory)

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 99

img_resize_fs()

img_rotate_ortho()

Rotate an image by 90-degree increments

Synopsis:

#include <img/img.h>

int img_rotate_ortho(const img_t *src,
 img_t *dst,
 img_fixed_t angle);

Arguments:

src

The image to rotate.

dst

The address of an img_t describing the destination. If you don't specify

width or height (or both) in the dst then this function will calculate the

missing dimension(s) based on the src image, taking into account the

rotation. If you do specify either width or height (or both), the image is

clipped as necessary; unused data remains untouched.

angle

A 16.16 fixed point representation of the angle (in radians). The following

constants are provided for convenience:

• IMG_ANGLE_90CW — 90 degrees clockwise (to the right)

• IMG_ANGLE_180 — 180 degrees

• IMG_ANGLE_90CCW — 90 degrees counter-clockwise (to the left)

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function rotates the src image by 90-degree increments. The rotation is not a

true “rotation” in that the image is not rotated about a fixed point. Rather, the image

itself is rotated and the new origin of the image becomes the upper-left corner of the

rotated image.

100 © 2014, QNX Software Systems Limited

Image API

The formats of src and dst don't have to be the same; if they are different, the data

is converted. A palette-based dst format is only supported if the src data also is

palette-based.

Rotation cannot be done in

place.

Returns:

IMG_ERR_OK

Success.

IMG_ERR_PARM

Some fields of src are missing (that is, not marked as valid in flags).

IMG_ERR_NOSUPPORT

Unsupported format conversion or angle.

IMG_ERR_MEM

Insufficient memory (the function requires a small amount of working

memory).

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 101

img_rotate_ortho()

img_write()

Encode a frame to an output stream on the filesystem

Synopsis:

#include <img/img.h>

int img_write(img_lib_t ilib,
 io_stream_t* output,
 const img_encode_callouts_t* callouts,
 img_t* img
 img_codec_t* codec);

Arguments:

ilib

A handle for the image library, returned by img_lib_attach().

output

An io_stream_t to use for the output.

callouts

A pointer to an img_encode_callouts_t (p. 68) structure that provides

system callouts for the encoder. If you specify NULL for this value, the library

supplies a set of default callouts.

img

The address of an img_t structure describing the frame to be encoded.

codec

The codec to use for the encoding. You must use one of

img_codec_list_byext() or img_codec_list_bymime() to get the codec.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function encodes a frame to an io_stream_t output stream on the filesystem.

102 © 2014, QNX Software Systems Limited

Image API

Returns:

IMG_ERR_OK

Success

IMG_ERR_FILE

Error accessing path (errno is set).

IMG_ERR_MEM

Memory-allocation failure.

IMG_ERR_FORMAT

No appropriate codec could be found that handles the extension included

in the provided filename. The codec you require could be missing or corrupt.

IMG_ERR_NOSUPPORT

Input data format not supported; the codec and application could not agree

on an output format.

IMG_ERR_TRUNC

Error writing data; file was truncated.

IMG_ERR_INTR

Encode was interrupted by application.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 103

img_write()

img_write_file()

Encode a frame to a file on the filesystem

Synopsis:

#include <img/img.h>

int img_write_file(img_lib_t ilib,
 const char* path,
 const img_encode_callouts_t* callouts,
 img_t* img);

Arguments:

ilib

A handle for the image library, returned by img_lib_attach().

path

The full path to the file to create.

callouts

A pointer to an img_encode_callouts_t (p. 68) structure that provides

system callouts for the encoder. If you specify NULL for this value, the library

supplies a set of default callouts.

img

The address of an img_t structure describing the frame to be encoded.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function encodes a frame to a file on the filesystem. This function is only capable

of encoding a single frame. A codec is chosen based on the extension included in the

provided filename.

The file will be automatically unlinked if the encode fails for any reason.

Returns:

104 © 2014, QNX Software Systems Limited

Image API

IMG_ERR_OK

Success

IMG_ERR_FILE

Error accessing path (errno is set).

IMG_ERR_MEM

Memory-allocation failure.

IMG_ERR_FORMAT

No appropriate codec could be found that handles the extension included

in the provided filename. The codec you require could be missing or corrupt.

IMG_ERR_NOSUPPORT

Input data format not supported; the codec and application could not agree

on an output format.

IMG_ERR_TRUNC

Error writing data; file was truncated.

IMG_ERR_INTR

Encode was interrupted by application.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

© 2014, QNX Software Systems Limited 105

img_write_file()

img_t

Information describing an image

Synopsis:

#include <img/img.h>

typedef struct {
 union {
 struct {
 uint8 *data;
 unsigned stride;
 } direct;

 struct {
 img_access_f *access_f;
 Uintptrt data;
 } indirect;
 } access;
 unsigned w, h;
 img_format_t format;
 unsigned npalette;
 img_color_t *palette;
 unsigned flags;
 union {
 uint8 index;
 uint16 rgb16;
 img_color_t rgb32;
 } transparency;
 unsigned quality;
} img_t;

Description:

The img_t structure describes a decoded frame. The members include:

access

A union of two structures, direct and indirect, depending on whether you

want the image data to be accessed directly or indirectly. The IMG_DIRECT

or IMG_INDIRECT flag should be set to indicate which mode of access is

in place.

Using the direct access model, anyone operating on the image data can

access it directly via a pointer. The beginning of the image data is pointed

to by direct.data, and it is assumed that the data pointed to is a contiguous

buffer of h scanlines of direct.stride bytes each.

The stride can be much larger (if needed) than the actual number

of bytes required to represent a single scanline in the specified

106 © 2014, QNX Software Systems Limited

Image API

format; anyone operating on the image should never overwrite or

otherwise give any regard to the “in between” padding bytes.

Using the indirect access model, anyone operating on the image data does

it through a function; the function pointer is given by indirect.access_f, and

indirect.data provides a facility to give your access function some context.

An access function is a function you provide to read or write a run of pixels

to or from your image. An access function must be coded either as a reader

or writer, there is no way to tell from the parameters the direction of data

flow.

 void access_f(uintptr_t data, unsigned x,
 unsigned y, unsigned n, uint8_t *pixels)

• data — the data field (from img_t::access.indirect.data)

• x, y — the x and y position within the image of the pixel run being

accessed

• n — the number of pixels in the run

• pixels — pointer to pixel data. If your function is a reader, it should copy

the prescribed run of image data to this buffer; if it's a write it should

copy the pixels in this buffer to your image

The format of the data in pixels will be the same as the format of

the image; that is, no data transformation is required at this level.

The x, y, and n arguments are guaranteed not to exceed the boundary

of your image so you don't have to check for that.

w, h

The width and height of the image frame, in pixels. These members are only

valid if the IMG_W and IMG_H flag bits are set.

format

The img_format_t (p. 82) format of the image's pixel data. This field is

valid if the IMG_FORMAT flag bit is set

npalette

The number of colors in the image palette color table. This field should be

used only if the format is palette-based (that is, the IMG_FMT_PALETTE

bit is set in format).

palette

© 2014, QNX Software Systems Limited 107

img_t

The palette color table. This field is valid if the IMG_PALETTE flag bit is

set.

flags

Flags indicating which of the fields in the structure are valid. Can be one or

more of:

IMG_TRANSPARENCY

The transparency field is valid and the specified color within the

image should be treated as transparent.

IMG_FORMAT

The format field is valid.

IMG_W

The w field is valid.

IMG_H

The h field is valid.

IMG_DIRECT

The direct field is valid.

IMG_INDIRECT

The indirect field is valid.

IMG_PALETTE

The palette field is valid.

IMG_QUALITY

The quality field is valid.

IMG_PAL8_ALPHA

The PAL8 image palette contains alpha data. Therefore, color

values can be treated as 8888 instead of 888.

IMG_TRANSPARENCY_TO_ALPHA

Convert transparency into alpha values if supported by destination

format. This capability allows transparency to be utilized even if

chroma is not supported.

IMG_SRC_FMT_TRANSPARENCY

108 © 2014, QNX Software Systems Limited

Image API

Indicates whether or not the source image contains any type of

transparency. This flag is set by the Image library only. Applications

can't set this flag, but they can use it to determine the existence

of transparency for optimizations.

transparency

The transparency color. This is valid only if the IMG_TRANSPARENCY flag

bit is set. The union field that should be used depends on the format of the

image:

• index — for palette-based or grayscale images (the IMG_FMT_PALETTE

bit is set in format or the format is IMG_FMT_G8)

• rgb16 — for 16bpp images. Encoded the same as the image data.

• rgb32 — for 24 or 32 bpp RGB images. Encoding is always

IMG_FMT_PKHE_ARGB8888.

quality

If the IMG_QUALITY flag is set, the codecs may process the new img_t

member unsigned quality. For example, the img_codec_jpg.so will use

this value to determine the output quality for encoding. For example, when

img_write() is invoked.

Classification:

Image library

© 2014, QNX Software Systems Limited 109

img_t

io_close()

Release an input stream

Synopsis:

#include <img/img.h>

void io_close(io_stream_t *stream);

Arguments:

stream

A pointer to the stream object returned by io_open() (p. 111).

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function releases the resources associated with an input stream.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

110 © 2014, QNX Software Systems Limited

Image API

io_open()

Initialize an IO stream

Synopsis:

#include <img/img.h>

io_stream_t *io_open(io_open_f *open_f,
 io_mode_t mode, ...)

Arguments:

open_f

A pointer to a function to establish a stream. There are two functions supplied

by the library: IO_FD() (for fd-based reading/writing) and IO_MEM() (for

memory buffer based reading/writing). See below.

mode

The open mode, either IO_READ or IO_WRITE.

...

Additional parameters depending on the open_f specified, described below.

Library:

libimg

Use the -l img option to qcc to link against this library.

Description:

This function initializes a stream. The stream can be a fd-based, or a memory buffer,

depending on the open_f specified:

IO_FD()

Buffered streaming for unix-type fd's. An additional parmameter is required:

an int specifying the (previously opened) fd that is ready for reading or

writing.

IO_MEM()

Streaming support for a memory buffer. Additional parameters are required

(in order):

© 2014, QNX Software Systems Limited 111

io_open()

1. an unsigned to specify size of the memory buffer. This must be

non-zero.

2. a void pointer to specify the address of the buffer.

When your application is finished with a stream, it should call io_close() (p. 110) to

release it.

Returns:

A pointer to the stream object, or NULL if an error occurred (errno is set).

Errors:

ENOMEM

Insufficient memory to allocate structures.

EINVAL

Invalid open_f or mode.

ENOTSUP

Mode not supported for stream.

Classification:

Image library

Safety:

NoInterrupt handler

NoSignal handler

NoThread

112 © 2014, QNX Software Systems Limited

Image API

Index

C

codecs 22, 24, 26
listing 22, 24
listing by MIME 26

configuration 84
img.conf 84

F

frames 34, 45, 48, 51, 53, 55, 57
decoding 34, 45, 48, 51, 53, 55, 57

I

images 29, 80, 81, 87, 90, 93, 96
bits per pixel 81
converting 29
loading 87, 90, 93, 96
scanline 80

img_cfg_read() 18
img_codec_get_criteria() 20
img_codec_list_bymime() 26
img_codec_list() 22, 24
img_convert_data() 29
img_decode_begin() 34
img_decode_callouts_t 36
img_decode_finish() 45
img_decode_frame_resize() 51
img_decode_frame() 48
img_decode_get_frame_count() 53
img_decode_set_frame_index() 55
img_decode_validate() 57
IMG_FMT_BGR888 83
IMG_FMT_BPL() 80
IMG_FMT_BPP() 81
IMG_FMT_G8 82
IMG_FMT_INVALID 82
IMG_FMT_MONO 82
IMG_FMT_PAL1 82

IMG_FMT_PAL8 82
IMG_FMT_PKBE_ARGB1555 83
IMG_FMT_PKBE_ARGB8888 83
IMG_FMT_PKBE_RGB565 82
IMG_FMT_PKBE_XRGB8888 83
IMG_FMT_PKLE_ARGB1555 83
IMG_FMT_PKLE_ARGB8888 83
IMG_FMT_PKLE_RGB565 82
IMG_FMT_PKLE_XRGB8888 83
IMG_FMT_RGB888 83
IMG_FMT_RGBA8888 83
img_lib_attach() 84
img_lib_detach() 86
img_load_file() 90
img_load_resize_file() 96
img_load_resize() 93
img_load() 87
img.conf 84
input stream 110

closing 110
io_close() 110
io_open() 111

L

library 18, 84, 86
detaching 86
initializing 84
loading codecs 18

S

stream 111
initializing 111

T

Technical support 8
Typographical conventions 6

© 2014, QNX Software Systems Limited 113

Image Library Reference

114 © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Working with Images
	Attaching to the image library
	Load an image

	Image API
	img_cfg_read()
	img_codec_get_criteria()
	img_codec_list()
	img_codec_list_byext()
	img_codec_list_bymime()
	img_convert_data()
	img_convert_getfunc()
	img_crop()
	img_decode_begin()
	img_decode_callouts_t
	img_decode_finish()
	img_decode_frame()
	img_decode_frame_resize()
	img_decode_get_frame_count()
	img_decode_set_frame_index()
	img_decode_validate()
	img_dtransform()
	img_dtransform_apply()
	img_dtransform_create()
	img_dtransform_free()
	img_encode_begin()
	img_encode_callouts_t
	img_encode_finish()
	img_encode_frame()
	img_expand_getfunc()
	IMG_FMT_BPL()
	IMG_FMT_BPP()
	img_format_t
	img_lib_attach()
	img_lib_detach()
	img_load()
	img_load_file()
	img_load_resize()
	img_load_resize_file()
	img_resize_fs()
	img_rotate_ortho()
	img_write()
	img_write_file()
	img_t
	io_close()
	io_open()

	Index

