
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

Input Events Library Reference

©2011–2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Wednesday, October 8, 2014

Table of Contents

Touch Events ...5
Typographical conventions ...6

Technical support ...8

Chapter 2: Writing a Touch Driver ..11

Provide the callback functions ...12

Connect to the Input Events library ...14

Provide initialization and cleanup callback functions ..15

Communicate with the hardware ..17

Disconnect from the Input Events library ...18

Chapter 3: Input Events Library Overview ...19

Event types (event_types.h) ...20

Data types in event_types.h ..20

Driver (mtouch_driver.h) ..25

Constants in mtouch_driver.h ...25

Data types in mtouch_driver.h ..26

Functions in mtouch_driver.h ...35

Log (mtouch_log.h) ...42

Constants in mtouch_log.h ...42

Functions in mtouch_log.h ...45

Parameters (mtouch_params.h) ..47

Constants in mtouch_params.h ...47

Data types in mtouch_param.h ...47

Parse options (parseopts.h) ..52

Functions in parseopts.h ..52

Screen helpers (screen_helpers.h) ..57

Functions in screen_helpers.h ..57

Input Events Library Reference

Table of Contents

Touch Events

The Input Events library provides the framework necessary for Screen Graphics

Subsystem to communicate with your touch driver.

What are touch events?

Touch events are events generated by the touch controller. Screen processes the events

from the touch controller through callback functions provided by the touch driver.

Applications obtain access to information on the touch events with the use of the

helper function screen_get_mtouch_event().

These touch events are represented in the Input Events library by the data structure

mtouch_event_t.

Information associated with a touch event that is included in mtouch _event_t

are:

• Type of touch event (e.g., touch, release, move)

• Timestamp of touch event

• Sequence ID of touch event

• x and y coordinates of the touch event

• width and height of area of the touch event

• Orientation of the touch event

• Pressure of the touch event

• Contact type of the touch event

The Input Events Library Reference is intended for application developers. This table

may help you find what you need in this reference:

See:For information about:

Writing a touch driver (p. 11)Writing your own touch driver

Provide the callback functions (p. 12)Writing callback functions

Connect to the Input Events library (p. 14)Connecting to the Input Events Library

Communicate with the hardware (p. 17)Communicating with the touch-controller

hardware

Disconnect from the Input Events library

(p. 18)

Disconnecting from the Input Events

Library

Input Events Library OverviewInput Events API

© 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

6 © 2014, QNX Software Systems Limited

Touch Events

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

© 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 © 2014, QNX Software Systems Limited

Touch Events

http://www.qnx.com

Chapter 1
Touch Events

The Input Events library provides the framework necessary for Screen Graphics

Subsystem to communicate with your touch driver.

What are touch events?

Touch events are events generated by the touch controller. Screen processes the events

from the touch controller through callback functions provided by the touch driver.

Applications obtain access to information on the touch events with the use of the

helper function screen_get_mtouch_event().

These touch events are represented in the Input Events library by the data structure

mtouch_event_t.

Information associated with a touch event that is included in mtouch _event_t

are:

• Type of touch event (e.g., touch, release, move)

• Timestamp of touch event

• Sequence ID of touch event

• x and y coordinates of the touch event

• width and height of area of the touch event

• Orientation of the touch event

• Pressure of the touch event

• Contact type of the touch event

The Input Events Library Reference is intended for application developers. This table

may help you find what you need in this reference:

See:For information about:

Writing a touch driver (p. 11)Writing your own touch driver

Provide the callback functions (p. 12)Writing callback functions

Connect to the Input Events library (p. 14)Connecting to the Input Events Library

Communicate with the hardware (p. 17)Communicating with the touch-controller

hardware

Disconnect from the Input Events library

(p. 18)

Disconnecting from the Input Events

Library

Input Events Library OverviewInput Events API

© 2014, QNX Software Systems Limited 9

Chapter 2
Writing a Touch Driver

In order for Screen to be able to detect events from your touch controller, you need

to provide a driver for your touch controller.

Your driver is required to provide the following:

Provide the required callback functions

Your driver must provide implementation for the callback functions:

get_coords(), get_contact_id(), and is_contact_down(). Other callback

functions that need to be implemented depend on the capabilities that you

have specfied being supported by your driver.

Connect to the Input Events library

You need to specify the appropriate callback functions and the mtouch

driver parameters for your touch controller. Once the callback functions and

parameters have been set, you can connect to the Input Events library by

calling the function mtouch_driver_attach().

Communicate with the hardware

You need to communicate directly with the hardware via the hardware

interface (e.g., I2C, SPI, USB, etc.).

Implement initialization and cleanup callback functions

Your driver must provide implementation for the callback functions:

mtouch_driver_init() and mtouch_driver_fini(). These functions are your

driver's insertion and exit points, respectively, for Screen.

Disconnect from the Input Events library

You need to perform the appropriate cleanup of resources and disconnect

from the Input Events library by calling the functionmtouch_driver_detach().

© 2014, QNX Software Systems Limited 11

Provide the callback functions

A set of functions need to be implemented by your touch driver. These callback

functions are called into by the Input Events library to fetch the data required to

transform the device (touch controller) data into mtouch events.

The driver will not be able to connect to the Input Events library unless the following

functions are implemented:

get_contact_id()

Retrieves the contact ID for the specified digit of a touch-related event.

get_coords()

Retrieves the coordinates for the specified digit of a touch-related event.

is_contact_down()

Retrieves the touch status for the specified digit of a touch-related event.

You will also need to provide implementation for the callback functions that are related

to the capabilities that are supported by your driver.

get_down_count()

Retrieves the number of touchpoints currently in contact with the screen.

If you specify that your driver can track the number of touchpoints in contact

with the screen (MTOUCH_CAPABILITIES_CONTACT_COUNT), then you

need to implement this callback function in your touch driver.

get_touch_width()

Retrieves the width information of the touch area for the specified digit of

a touch-related event. If you specify that your driver can provide the width

of the touch area (MTOUCH_CAPABILITIES_WIDTH), then you need to

implement this callback function in your touch driver.

get_touch_height()

Retrieves the height information of the touch area for the specified digit of

a touch-related event. If you specify that your driver can provide the height

of the touch area (MTOUCH_CAPABILITIES_HEIGHT), then you need to

implement this callback function in your touch driver.

get_touch_pressure()

12 © 2014, QNX Software Systems Limited

Writing a Touch Driver

Retrieves the touch pressure information for the specified digit of a

touch-related event. If you specify that your driver can provide the touch

pressure (MTOUCH_CAPABILITIES_PRESSURE), then you need to

implement this callback function in your touch driver.

get_seq_id()

Retrieves the unique sequence ID for the specified digit of a touch-related

event. If you specify that your driver can provide sequence IDs

(MTOUCH_CAPABILITIES_SEQ_ID) associated with a touch-related event,

then you need to implement this callback function in your touch driver.

get_event_rate()

Retrieves the sampling period for the specified digit of a touch-related event.

If you specify that your driver supports the capability of setting the event

rate (MTOUCH_CAPABILITIES_RATE_SET), then you need to implement

this callback function in your touch driver.

get_contact_type()

Retrieves the contact type of a touch-related event. If you specify that your

driver can provide the type of contact

(MTOUCH_CAPABILITIES_CONTACT_TYPE), then you need to implement

this callback function in your touch driver.

© 2014, QNX Software Systems Limited 13

Provide the callback functions

Connect to the Input Events library

Callback functions and capabilities of your touch controller need to be configured and

specified, respectively, before connecting to the Input Events library.

Configure callback functions

Assign your driver's callback functions appropriately by using the structure

mtouch_driver_funcs_t.

For example:

mtouch_driver_funcs_t funcs = {
 .get_contact_id = get_contact_id,
 .is_contact_down = is_contact_down,
 .get_coords = get_coords,
 .get_down_count = get_down_count,
 .get_touch_width = NULL,
 .get_touch_height = NULL,
 .get_touch_orientation = NULL,
 .get_touch_pressure = NULL,
 .get_seq_id = NULL,
 .set_event_rate = NULL,
 .get_contact_type = NULL,
 .get_select = NULL
};

Specify driver parameters

Specify the capabilities that are supported by your driver. Use the structure

mtouch_driver_params_t.

For example:

mtouch_driver_params_t params = {
 .capabilities = MTOUCH_CAPABILITIES_CONTACT_ID |
 MTOUCH_CAPABILITIES_COORDS |
 MTOUCH_CAPABILITIES_CONTACT_COUNT,
 .flags = 0,
 .max_touchpoints = 2,
 .width = 1312,
 .height = 800
};

Connect to the Input Events library

After having assigned your callback functions and having specified your driver

parameters, you use the function mtouch_driver_attach() to connect to the Input

Events library.

For example:

struct mtouch_device* inputevents_hdl;
inputevents_hdl = mtouch_driver_attach(¶ms, &funcs);

14 © 2014, QNX Software Systems Limited

Writing a Touch Driver

Provide initialization and cleanup callback functions

Screen makes two function calls in the driver: one for initialization and one for cleanup.

Screen parses the configuration file, graphics.conf, to determine the driver

specified in the mtouch section of this configuration file.

Screen calls dlopen() on this specified driver. Upon a successful dlopen(), Screen will

use dlsym() to look for two entries: mtouch_driver_init() and mtouch_driver_fini().

Implement initialization callback function

mtouch_driver_init() performs the following:

1. Sets the default values of the driver.

2. Parses any options specified in graphics.conf using input_parseopts(). See

Configure mtouch.

3. Performs any necessary hardware initialization.

4. Configure callback functions using mtouch_driver_funcs_t as described in

Connect to the Input Events library (p. 14).

5. Specify driver parameters using mtouch_driver_params_t as described in

Connect to the Input Events library (p. 14).

6. Connect to Input Events library as described in Connect to the Input Events library

(p. 14).

7. Create a separate thread to communicate directly with the hardware via the hardware

interface (e.g., I2C, SPI, USB, etc.) and trigger the Input Events library API function

mtouch_driver_process_packet() to start processing the touch-related event data.

The driver insertion point for Screen is mtouch_driver_init(). This callback function

has the following signature:

void* (*init)(const char* options);

An example implementation of mtouch_driver_init():

void * mtouch_driver_init(const char* options)
{
 pthread_attr_t pattr;
 sched_param_t param;

 /* touch_dev_t is the structure which contains information specific to
 * your touch device along with other NTO and thread information.
 */
 touch_dev_t *td = (touch_dev_t *)calloc(1,sizeof(touch_dev_t));
 memset(td,0,sizeof(touch_dev_t));
 if(td==NULL){
 mtouch_error("touch_device", "Failed to allocate memory for device structure");
 return NULL;
 }

 /* Initialize any defaults for your touch device here */
 td->thread_priority = 21; /* Thread priority for communicating directly with the hardware */

 /* Parse the mtouch options from graphics.conf */
 input_parseopts(options, set_options, td);

 /* Connect to device */
 td->chid = ChannelCreate(0);

© 2014, QNX Software Systems Limited 15

Provide initialization and cleanup callback functions

 if(td->chid == -1) {
 mtouch_error("touch_device","%s: ChannelCreate: %s",__FUNCTION__,strerror(errno));
 goto failChannelCreate;
 }

 td->coid = ConnectAttach(0,0,td->chid,_NTO_SIDE_CHANNEL,0);
 if(td->coid==-1) {
 mtouch_error("touch_device","%s: ConnectAttach: %s",__FUNCTION__,strerror(errno));
 goto failConnectAttach;
 }

 /* Utility function attach_drier() to configure your callback function and
 * connect to the Input Events library
 */
 if(attach_driver(td)!=EOK) {
 goto failAttachLibInputEvents;
 }

 pthread_attr_init(&pattr);
 param.sched_priority = td->thread_priority;
 pthread_attr_setschedparam(&pattr, ¶m);
 pthread_attr_setinheritsched(&pattr, PTHREAD_EXPLICIT_SCHED);

 /* Create a thread for communicating directly with the hardware and to
 * trigger mtouch_driver_process_packet() */
 int ret = pthread_create(&td->recv_thread, &pattr, tp_recv_thread, td);
 if (EOK != ret) {
 mtouch_error("touch_device", "Failed to create the intr thread (%s - %i)",strerror(errno),ret);
 goto failCreateThread;
 }
 pthread_setname_np(td->recv_thread, "touch_device");

 return td;

failCreateThread:
 InterruptDetach(td->tp_iid);
 td->tp_iid = -1;

failAttachLibInputEvents:
 mtouch_driver_detach(td->inputevents_hdl);
 td->inputevents_hdl = NULL;

failInitialize:
 ChannelDestroy(td->chid);
 td->chid = -1;

failConnectAttach:
 ConnectDetach(td->chid);
 td->chid = -1;

failChannelCreate:
 free(td);
 return NULL;
}

Implement cleanup callback function

mtouch_driver_fini() performs any necessary device cleanup and disconnects from the

Input Events library.

The driver exit point for Screen is mtouch_driver_fini(). This callback function has the

following signature:

void (*fini)(void* dev);

An example implementation of mtouch_driver_fini():

void mtouch_driver_fini(void* dev)
{
 touch_dev_t *td = dev;

 pthread_cancel(td->tp_recv_thread);
 pthread_join(td->tp_recv_thread, NULL);

 if (td->inputevents_hdl) {
 mtouch_driver_detach(td->inputevents_hdl);
 td->inputevents_hdl = NULL;
 }

 free(td);
}

16 © 2014, QNX Software Systems Limited

Writing a Touch Driver

Communicate with the hardware

A separate thread is used to communicate directly with the hardware via the hardware

interface (e.g., I2C, SPI, USB, etc.).

You need to create a separate thread as part of your implementation of the

mtouch_driver_init() callback function. Refer to pthread_create() in the QNX Neutrino

C Library Reference for more details.

The routine you provide as the argument to pthread_create() needs to retrieve coordinate

information from the hardware and then callmtouch_driver_process_packet() to trigger

the start or processing the data for the touch-related event.

© 2014, QNX Software Systems Limited 17

Communicate with the hardware

Disconnect from the Input Events library

In addition to any device cleanup, you need to disconnect from the Input Events library

so that any resources allocated by the framework to support your driver are released.

At any exit point of your driver, you need to call mtouch_driver_detach() to release

resources.

For example, you will need to call mtouch_driver_detach() from your implmentation

of mtouch_driver_fini().

void mtouch_driver_fini(void* dev)
{
 touch_dev_t *td = dev;

 pthread_cancel(td->tp_recv_thread);
 pthread_join(td->tp_recv_thread, NULL);

 if (td->inputevents_hdl) {
 mtouch_driver_detach(td->inputevents_hdl);
 td->inputevents_hdl = NULL;
 }

 free(td);
}

18 © 2014, QNX Software Systems Limited

Writing a Touch Driver

Chapter 3
Input Events Library Overview

The Input Events library allows applications to receive and process events from input

devices. The classes of events that are recognized by the Input Events library are:

• TOUCH (INPUT_CLASS_MTOUCH)

• KEYBOARD (INPUT_CLASS_KEYBOARD)

• MOUSE (INPUT_CLASS_MOUSE)

© 2014, QNX Software Systems Limited 19

event_types.h

Enumerations and structures for input events.

The event_types.h header file provides type definitions for classifying input event

types. These type definitions can be used to determine the kind of input event that

has occurred and the properties of the event.

Data types in event_types.h

Data structures, typedefs, and enumerations that are available for input events.

contact_type_e

Types of contact for an INPUT_CLASS_MTOUCH event.

Synopsis:

#include <input/event_types.h>

typedef enum {
 CONTACT_TYPE_FINGER = 0
 CONTACT_TYPE_STYLUS = 1
} contact_type_e;

Data:

CONTACT_TYPE_FINGER

Finger touch (default).

CONTACT_TYPE_STYLUS

Stylus touch.

Library:

libinputevents

Description:

input_class_e

Classes of input events.

Synopsis:

#include <input/event_types.h>

typedef enum {
 INPUT_CLASS_MTOUCH = 1

20 © 2014, QNX Software Systems Limited

Input Events Library Overview

 INPUT_CLASS_KEYBOARD
 INPUT_CLASS_MOUSE
} input_class_e;

Data:

INPUT_CLASS_MTOUCH

A touch-related event on the screen.

INPUT_CLASS_KEYBOARD

A key event on the virtual keyboard.

INPUT_CLASS_MOUSE

A mouse event using a connected mouse.

Library:

libinputevents

Description:

input_event_e

Types of INPUT_CLASS_MTOUCH events.

Synopsis:

#include <input/event_types.h>

typedef enum {
 INPUT_EVENT_UNKNOWN = 0
 INPUT_EVENT_MTOUCH_TOUCH = 100
 INPUT_EVENT_MTOUCH_MOVE
 INPUT_EVENT_MTOUCH_RELEASE
 INPUT_EVENT_MTOUCH_CANCEL
} input_event_e;

Data:

INPUT_EVENT_UNKNOWN

Unknown event type (default).

INPUT_EVENT_MTOUCH_TOUCH

Event type for when there is new contact with the screen detected.

INPUT_EVENT_MTOUCH_MOVE

Event type for when contact with the screen is already detected, but the

contact is changing position.

© 2014, QNX Software Systems Limited 21

event_types.h

INPUT_EVENT_MTOUCH_RELEASE

Event type for when contact with the screen is removed.

INPUT_EVENT_MTOUCH_CANCEL

Event type for when a gesture is cancelled; a touch controller that is powered

off could cause a cancel event.

Library:

libinputevents

Description:

One event type is received per touchpoint. For example, if you have two fingers in

contact with the screen, you will receive two INPUT_EVENT_MTOUCH_TOUCH events.

Similarly, if you remove two fingers from contact with the screen, you will receive two

INPUT_EVENT_MTOUCH_RELEASE events, one for each finger. The touch-related

events are identified individually through a contact ID.

mtouch_event

Structure that contains details common to INPUT_CLASS_MTOUCH input events.

Synopsis:

typedef struct mtouch_event {
 input_event_e event_type ;
 _Uint64t timestamp ;
 _Uint32t seq_id ;
 _Uint32t contact_id ;
 _Int32t x ;
 _Int32t y ;
 _Uint32t width ;
 _Uint32t height ;
 _Uint32t orientation ;
 _Uint32t pressure ;
 _Uint32t contact_type ;
 _Uint32t select ;
}mtouch_event_t;

Data:

input_event_e event_type

The event type of the INPUT_CLASS_MTOUCH event.

_Uint64t timestamp

Timestamp, based on realtime clock, when the INPUT_CLASS_MTOUCH

event occurred.

_Uint32t seq_id

22 © 2014, QNX Software Systems Limited

Input Events Library Overview

The sequence number for the event; seq_id is incremented each time a new

touch-related event occurs.

_Uint32t contact_id

The order of occurrence for multiple touch contacts.

_Int32t x

The x screen position, in pixels, for the event.

_Int32t y

The y screen position, in pixels, for the event.

_Uint32t width

The width, in pixels, of the touch area.

_Uint32t height

The height, in pixels, of the touch area.

_Uint32t orientation

The orientation of the contact.

_Uint32t pressure

The pressure of the touch contact, ranging from 0 to 2^32 - 1.

_Uint32t contact_type

The contact type.

Valid contact types are of type contact_type_e (p. 20).

_Uint32t select

The selected buttons.

Library:

libinputevents

© 2014, QNX Software Systems Limited 23

event_types.h

Description:

Themtouch_event (p. 22) structure represents information that is common to all input

events of class INPUT_CLASS_MTOUCH. This information is provided by the input

device driver whenever an INPUT_CLASS_MTOUCH event occurs.

mtouch_event_t

Touch event information.

Synopsis:

#include <input/event_types.h>

typedef struct mtouch_client_params mtouch_client_params_t;

Library:

libinputevents

Description:

This type is an alias for an mtouch event, mtouch_event. Use this typedef when

working with an mtouch event and its associated information.

24 © 2014, QNX Software Systems Limited

Input Events Library Overview

mtouch_driver.h

Functions that are to be implemented by the mtouch driver and are called by

libinputevents to fetch the data required to transform the device data into mtouch

events.

Constants in mtouch_driver.h

Constants that are available for input events.

Definitions in mtouch_driver.h

Preprocessor macro definitions for the mtouch_driver.h header file in the libinputevents

library.

Definitions:

#define MTOUCH_CAPABILITIES_CONTACT_ID (1 << 0)

The multitouch device capability to support contact IDs.

#define MTOUCH_CAPABILITIES_COORDS (1 << 1)

The multitouch device capability to support coordinates.

#define MTOUCH_CAPABILITIES_CONTACT_COUNT (1 << 2)

The multitouch device capability to support contact counts.

#define MTOUCH_CAPABILITIES_WIDTH (1 << 3)

The multitouch device capability to support touch widths.

#define MTOUCH_CAPABILITIES_HEIGHT (1 << 4)

The multitouch device capability to support touch heights.

#define MTOUCH_CAPABILITIES_ORIENTATION (1 << 5)

The multitouch device capability to support touch orientations.

#define MTOUCH_CAPABILITIES_PRESSURE (1 << 6)

The multitouch device capability to support touch pressures (or signal strength for

capacitive touchscreens).

#define MTOUCH_CAPABILITIES_RATE_SET (1 << 7)

The multitouch device capability to support setting of an event rate.

#define MTOUCH_CAPABILITIES_SEQ_ID (1 << 8)

The multitouch device capability to support sequence IDs.

#define MTOUCH_CAPABILITIES_CONTACT_TYPE (1 << 9)

The multitouch device capability to support contact type.

© 2014, QNX Software Systems Limited 25

mtouch_driver.h

#define MTOUCH_DEFAULT_WIDTH 1

The width when MTOUCH_CAPABILITIES_WIDTH isn't set or if this capability isn't

available.

#define MTOUCH_DEFAULT_HEIGHT 1

The height when MTOUCH_CAPABILITIES_HEIGHT isn't set or if this capability isn't

available.

#define MTOUCH_DEFAULT_PRESSURE 1

The pressure when MTOUCH_CAPABILITIES_PRESSURE isn't set or if this this

capability isn't available.

#define MTOUCH_FLAGS_INCONSISTENT_DIGIT_ORDER (1 << 0)

A multi-touch device flag.

Devices that report touch data for individual fingers in an inconsistent order should

set this flag. Use this flag, along with the MTOUCH_FLAGS_INCONSISTENT_CON

TACT_IDS flag, to describe the relationship between the digit index and the contact

ID.

#define MTOUCH_FLAGS_INCONSISTENT_CONTACT_IDS (1 << 1)

A multitouch device flag.

Devices that don't have contact IDs assigned as a zero-based index should set this

flag. Use this flag along with the MTOUCH_FLAGS_INCONSISTENT_DIGIT_ORDER

flag to describe the relationship between the digit index and the contact ID.

Library:

libinputevents

Data types in mtouch_driver.h

Data structures, typedefs, and enumerations that are available for input events.

mtouch_driver_funcs_t

Functions to be implemented by the mtouch driver.

Synopsis:

typedef struct {
 int(* get_contact_id)(void *packet, _Uint8t digit_idx, _Uint32t
*contact_id, void *arg);
 int(* is_contact_down)(void *packet, _Uint8t digit_idx, int *valid, void
 *arg);
 int(* get_coords)(void *packet, _Uint8t digit_idx, _Int32t *x, _Int32t
*y, void *arg);
 int(* get_down_count)(void *packet, _Uint32t *down_count, void *arg);
 int(* get_touch_width)(void *packet, _Uint8t digit_idx, _Uint32t
*touch_width, void *arg);
 int(* get_touch_height)(void *packet, _Uint8t digit_idx, _Uint32t
*touch_height, void *arg);
 int(* get_touch_orientation)(void *packet, _Uint8t digit_idx, _Uint32t
*touch_orientation, void *arg);
 int(* get_touch_pressure)(void *packet, _Uint8t digit_idx, _Uint32t

26 © 2014, QNX Software Systems Limited

Input Events Library Overview

*touch_pressure, void *arg);
 void(* get_seq_id)(void *packet, _Uint32t *seq_id, void *arg);
 int(* get_contact_type)(void *packet, _Uint8t digit_idx, _Uint32t
*contact_type, void *arg);
 int(* get_select)(void *packet, _Uint8t digit_idx, _Uint32t *select, void
 *arg);
 int(* set_event_rate)(void *dev, _Uint32t min_event_interval);
}mtouch_driver_funcs_t;

Data:

int(* get_contact_id)(void *packet, _Uint8t digit_idx, _Uint32t *contact_id, void *arg)

Retrieve the contact ID for the specified digit from packet.

This callback function is called for each of the touchpoints. The maximum

number of touchpoints is max_touchpoints, as specified in

mtouch_driver_params_t (mtouch_params.h).

Arguments

• packet Data packet that contains information on the touch-related

event. This data packet is the same packet that was passed into

mtouch_driver_process_packet() (p. 36). This data can be used to retrieve

information about all digits, regardless of whether or not they are touching.

• digit_idx Digit (finger) index that the Input Events library is requesting.

It is a zero based index whose maximum is (max_touchpoints - 1).

There is no requirement for any correlation between digit_idx and

contact_id.

• contact_id Pointer to contact ID of the touch-related event for the

specified digit_idx. This function updates contact_id upon its

successful execution.

• arg User information.

Returns

• 0 if successful; otherwise non-zero if an error occurred.

int(* is_contact_down)(void *packet, _Uint8t digit_idx, int *valid, void *arg)

Retrieve the touch status for the specified digit from packet.

This callback function is called for each of the touchpoints. The maximum

number of touchpoints is max_touchpoints, as specified in

mtouch_driver_params_t (mtouch_params.h).

Arguments

• packet Data packet that contains information on the touch-related

event. This data packet is the same packet that was passed into

© 2014, QNX Software Systems Limited 27

mtouch_driver.h

mtouch_driver_process_packet() (p. 36). This data can be used to retrieve

information about all digits, regardless of whether or not they are touching.

• digit_idx Digit (finger) index that the Input Events library is requesting.

It is a zero based index whose maximum is (max_touchpoints - 1).

There is no requirement for any correlation between digit_idx and

contact_id.

• valid Pointer to touch status (e.g., 1 = Down and 0 = Up) of the

touch-related event for the specified digit_idx. This function updates

valid upon its successful execution.

• arg User information.

Returns

• 0 if successful; otherwise non-zero if an error occurred.

int(* get_coords)(void *packet, _Uint8t digit_idx, _Int32t *x, _Int32t *y, void *arg)

Retrieve the coordinates for the specified digit from packet.

This callback function is called for each of the touchpoints. The maximum

number of touchpoints is max_touchpoints, as specified in

mtouch_driver_params_t (mtouch_params.h).

Arguments

• packet Data packet that contains information on the touch-related

event. This data packet is the same packet that was passed into

mtouch_driver_process_packet() (p. 36). This data can be used to retrieve

information about all digits, regardless of whether or not they are touching.

• digit_idx Digit (finger) index that the Input Events library is requesting.

It is a zero based index whose maximum is (max_touchpoints - 1).

There is no requirement for any correlation between digit_idx and

contact_id.

• x Pointer to the x coordinate of the touch-related event for the specified

digit_idx. This function updates x upon its successful execution.

• y Pointer to the y coordinate of the touch-related event for the specified

digit_idx. This function updates y upon its successful execution.

• arg User information.

Returns

• 0 if successful; otherwise non-zero if an error occurred.

int(* get_down_count)(void *packet, _Uint32t *down_count, void *arg)

28 © 2014, QNX Software Systems Limited

Input Events Library Overview

Retrieve the number of touchpoints currently in contact with the screen.

This callback function is called for each of the touchpoints. The maximum

number of touchpoints is max_touchpoints, as specified in

mtouch_driver_params_t (mtouch_params.h).

Arguments

• packet Data packet that contains information on the touch-related

event. This data packet is the same packet that was passed into

mtouch_driver_process_packet() (p. 36). This data can be used to retrieve

information about all digits, regardless of whether or not they are touching.

• down_count Pointer to the number of rouchpoints currently in contact

with the screen. This function updates down_count upon its successful

execution.

• arg User information.

Returns

• 0 if successful; otherwise non-zero if an error occurred.

int(* get_touch_width)(void *packet, _Uint8t digit_idx, _Uint32t *touch_width, void *arg)

Retrieve the width information for the specified digit from packet.

This callback function is called for each of the touchpoints. The maximum

number of touchpoints is max_touchpoints, as specified in

mtouch_driver_params_t (mtouch_params.h).

Arguments

• packet Data packet that contains information on the touch-related

event. This data packet is the same packet that was passed into

mtouch_driver_process_packet() (p. 36). This data can be used to retrieve

information about all digits, regardless of whether or not they are touching.

• digit_idx Digit (finger) index that the Input Events library is requesting.

It is a zero based index whose maximum is (max_touchpoints - 1).

There is no requirement for any correlation between digit_idx and

contact_id.

• touch_width Pointer to the width of the touch-related event for the

specified digit_idx. This function updates touch_width upon its

successful execution.

• arg User information.

Returns

© 2014, QNX Software Systems Limited 29

mtouch_driver.h

• 0 if successful; otherwise non-zero if an error occurred.

int(* get_touch_height)(void *packet, _Uint8t digit_idx, _Uint32t *touch_height, void *arg)

Retrieve the height information for the specified digit from packet.

This callback function is called for each of the touchpoints. The maximum

number of touchpoints is max_touchpoints, as specified in

mtouch_driver_params_t (mtouch_params.h).

Arguments

• packet Data packet that contains information on the touch-related

event. This data packet is the same packet that was passed into

mtouch_driver_process_packet() (p. 36). This data can be used to retrieve

information about all digits, regardless of whether or not they are touching.

• digit_idx Digit (finger) index that the Input Events library is requesting.

It is a zero based index whose maximum is (max_touchpoints - 1).

There is no requirement for any correlation between digit_idx and

contact_id.

• touch_height Pointer to the height of the touch-related event for the

specified digit_idx. This function updates touch_height upon its

successful execution.

• arg User information.

Returns

• 0 if successful; otherwise non-zero if an error occurred.

int(* get_touch_orientation)(void *packet, _Uint8t digit_idx, _Uint32t *touch_orientation, void *arg)

Retrieve the orientation information for the specified digit from packet.

This callback function is not yet implemented by the Input Events library.

For the time being, simply set this callback function to NULL in your

mtouch_driver_funcs_t (p. 26) assignment before you call

mtouch_driver_attach() (p. 35).

Arguments

• packet

• digit_idx

• touch_orientation

• arg

Returns

30 © 2014, QNX Software Systems Limited

Input Events Library Overview

• 0 if successful; otherwise non-zero if an error occurred.

int(* get_touch_pressure)(void *packet, _Uint8t digit_idx, _Uint32t *touch_pressure, void *arg)

Retrieve the touch pressure information for the specified digit from packet.

For capacitive touchscreens, this callback function retrieves the signal

strength, not the pressure. The signal strength information is directly

proportional to the width and height retrieved from the (*get_touch_width)()

and (*get_touch_height)() callback functions.

Arguments

• packet Data packet that contains information on the touch-related

event. This data packet is the same packet that was passed into

mtouch_driver_process_packet() (p. 36). This data can be used to retrieve

information about all digits, regardless of whether or not they are touching.

• digit_idx Digit (finger) index that the Input Events library is requesting.

It is a zero based index whose maximum is (max_touchpoints - 1).

There is no requirement for any correlation between digit_idx and

contact_id.

• touch_pressure Pointer to the pressure, or signal strength for

capacitive touchscreens, of the touch-related event for the specified

digit_idx. This function updates is touch_pressure upon its

successful execution.

• arg User information.

Returns

• 0 if successful; otherwise non-zero if an error occurred.

void(* get_seq_id)(void *packet, _Uint32t *seq_id, void *arg)

Retrieve the unique sequence ID of a touch-related event from packet.

This callback function is called for each of the touchpoints. The maximum

number of touchpoints is max_touchpoints, as specified in

mtouch_driver_params_t (mtouch_params.h). The sequence ID is

used to track the touch-related event in the Input Events library. The

sequence ID is commonly a value that is incremented continuously.

Arguments

• packet Data packet that contains information on the touch-related

event. This data packet is the same packet that was passed into

© 2014, QNX Software Systems Limited 31

mtouch_driver.h

mtouch_driver_process_packet() (p. 36). This data can be used to retrieve

information about all digits, regardless of whether or not they are touching.

• seq_id Pointer to the unique sequence ID that Input Events library is

requesting. This function updates seq_id upon its successful execution.

• arg User information.

Returns

• 0 if successful; otherwise non-zero if an error occurred.

int(* get_contact_type)(void *packet, _Uint8t digit_idx, _Uint32t *contact_type, void *arg)

Retrieve the contact type of a touch-related event from packet.

This callback function is called for each of the touchpoints. The maximum

number of touchpoints is max_touchpoints, as specified in

mtouch_driver_params_t (mtouch_params.h).

Arguments

• packet Data packet that contains information on the touch-related

event. This data packet is the same packet that was passed into

mtouch_driver_process_packet() (p. 36). This data can be used to retrieve

information about all digits, regardless of whether or not they are touching.

• digit_idx Digit (finger) index that is related to the contact type that

is being retrived. It is a zero based index whose maximum

is(max_touchpoints - 1).

• contact_type Pointer to the contact type that Input Events library is

requesting. Valid contact types are of type contact_type_e (p. 20). This

function updates contact_type upon its successful execution.

• arg User information.

Returns

• 0 if successful; otherwise non-zero if an error occurred.

int(* get_select)(void *packet, _Uint8t digit_idx, _Uint32t *select, void *arg)

Retrieve the select buttons of a touch-related event from packet.

This callback function is not yet implemented by the Input Events library.

For the time being, simply set this callback function to NULL in your

mtouch_driver_funcs_t (p. 26) assignment when attaching your driver.

Arguments

• packet

32 © 2014, QNX Software Systems Limited

Input Events Library Overview

• digit_idx

• select

• arg

Returns

• 0 if successful; otherwise non-zero if an error occurred.

int(* set_event_rate)(void *dev, _Uint32t min_event_interval)

Retrieve the sampling period of a touch-related event from packet.

This callback function is called for each of the touchpoints. The maximum

number of touchpoints is max_touchpoints, as specified in

mtouch_driver_params_t (mtouch_params.h). This function is called

with the device mutex held.

Arguments

• dev Handle to the device driver.

• min_event_interval Minimum sampling period, in microseconds,

of the touch controller. Two touch-related events will not be received in

a time less than this interval.

Returns

• 0 if successful; otherwise non-zero if an error occurred.

Library:

libinputevents

Description:

These callback functions are called into by libinputevents to fetch the data

required to transform the device (touch controller) data into mtouch events.

These functions must be implemented. Otherwise, the driver will not be able to connect

to the Input Events framework.

Driver test result types

The types of test results.

Synopsis:

#include <input/mtouch_driver.h>

 enum {
 MTOUCH_TEST_RESULT_COMPLETED

© 2014, QNX Software Systems Limited 33

mtouch_driver.h

 MTOUCH_TEST_RESULT_NOT_SUPPORTED
 MTOUCH_TEST_RESULT_NOT_NOW
 MTOUCH_TEST_RESULT_I2C_FAILURE
 MTOUCH_TEST_RESULT_TIMEOUT
};

Data:

MTOUCH_TEST_RESULT_COMPLETED

Test has completed.

MTOUCH_TEST_RESULT_NOT_SUPPORTED

Test is not supported.

MTOUCH_TEST_RESULT_NOT_NOW

Test cannot be run at this time.

Possible reasons include:

• firmware is being updated

• single scan

• BIST is occurring

MTOUCH_TEST_RESULT_I2C_FAILURE

I2C communication with controller failed.

MTOUCH_TEST_RESULT_TIMEOUT

The controller did not respond in time.

Library:

libinputevents

Description:

This enumeration lists possible test results from using the test interface for an mtouch

driver.

34 © 2014, QNX Software Systems Limited

Input Events Library Overview

Functions in mtouch_driver.h

Functions that are available for input events.

mtouch_driver_attach()

Attach driver to the Input Events framework.

Synopsis:

#include <input/mtouch_driver.h>

struct mtouch_device* mtouch_driver_attach(mtouch_driver_params_t *params,
mtouch_driver_funcs_t *funcs)

Arguments:

params

Configured parameters for your driver.

funcs

Callback functions that are implemented by the mtouch driver. The Input

Events framework will use these callback functions to retrieve required

information from the driver.

Library:

libinputevents

Description:

This function connects the driver with the specified parameters and callback functions

to the Input Events frameowrk. You need to configure params and funcs before

passing them as arguments to this function. This function must be called when you

initialize your driver.

Returns:

A handle to the opaque data type that represents the touch device.

mtouch_driver_detach()

Detach driver from the Input Events framework.

Synopsis:

#include <input/mtouch_driver.h>

© 2014, QNX Software Systems Limited 35

mtouch_driver.h

void mtouch_driver_detach(struct mtouch_device *device)

Arguments:

device

Handle to the touch device.

Library:

libinputevents

Description:

This function disconnects the specified driver from the Input Events framework. Any

memory allocated by the framework to support this driver will be freed. This function

must be called in addition to any device cleanup.

Returns:

Nothing.

mtouch_driver_process_packet()

Process the data packet from the specified driver.

Synopsis:

#include <input/mtouch_driver.h>

void mtouch_driver_process_packet(struct mtouch_device *device, void *packet,
 void *arg, unsigned int flags)

Arguments:

device

Handle to the touch device.

packet

Data packet that contains information on the touch-related event.

arg

User information that resulted from initializing your driver.

flags

36 © 2014, QNX Software Systems Limited

Input Events Library Overview

Internal use only.

Library:

libinputevents

Description:

This function takes the data packet from the specfied driver and extracts information

from it. The relevant information from the driver's data packet will be used to create

an mtouch_event_t so that the Input Events framework can continue to process it

and pass it to Screen. Drivers must call this function with a packet from which data

for all digits currently in contact with the touchscreen can be retrieved. For example,

if there are two digits in contact with the touchscreen, then information for the contact

of both digits must be included in the single data packet. Drivers must not call this

function multiple times when multiple digits are simultaneously touching. This situation

would result in multiple touch and release events instead of an intended single move

event.

Returns:

Nothing.

mtouch_test_bist()

Test the built-in-self-test (BIST)

Synopsis:

#include <input/mtouch_driver.h>

int mtouch_test_bist(void *dev, uint8_t *passfail, uint16_t *max, uint16_t
*min)

Arguments:

Library:

libinputevents

Description:

This function runs the BIST of the driver.

Returns:

A test result type. The test result will be one of type Driver test result types (p. 33).

© 2014, QNX Software Systems Limited 37

mtouch_driver.h

mtouch_test_fini()

Clean up test driver interface.

Synopsis:

#include <input/mtouch_driver.h>

void mtouch_test_fini(void *dev)

Arguments:

dev

Handle to the device driver.

Library:

libinputevents

Description:

This function frees any memory allocated by the test driver interface used in running

test functions.

Returns:

Nothing.

mtouch_test_init()

Initialize test driver interface.

Synopsis:

#include <input/mtouch_driver.h>

void* mtouch_test_init(void)

Arguments:

Library:

libinputevents

Description:

This function initializes the test driver with defaults and prepares the test driver

interface for running individual test functions.

38 © 2014, QNX Software Systems Limited

Input Events Library Overview

Returns:

A handle to the device driver. This handle is passed as an argument into each of the

other test functions.

mtouch_test_read_firmware_version()

Test the ability to read the firmware version of the driver.

Synopsis:

#include <input/mtouch_driver.h>

int mtouch_test_read_firmware_version(void *dev, uint8_t **fwv)

Arguments:

dev

Handle to the device driver.

fwv

Firmware version read from the driver and is valid until the next call of any

one of the test functions.

Library:

libinputevents

Description:

This function reads the firmware version from the driver. The first byte in fwv

represents the number of additional bytes in the buffer.

Returns:

A test result type. The test result will be one of type Driver test result types (p. 33).

mtouch_test_read_product_id()

Test the ability to read the product ID of the driver.

Synopsis:

#include <input/mtouch_driver.h>

int mtouch_test_read_product_id(void *dev, uint8_t **product)

Arguments:

© 2014, QNX Software Systems Limited 39

mtouch_driver.h

dev

Handle to the device driver.

product

product ID read from the driver. The product ID is updated by this function

and is valid until the next call of any one of the test functions.

Library:

libinputevents

Description:

This function reads the product ID from the driver. The first byte in product represents

the number of additional bytes in the buffer.

Returns:

A test result type. The test result will be one of type Driver test result types (p. 33).

mtouch_test_read_serial_id()

Test the ability to read the serial ID of the driver.

Synopsis:

#include <input/mtouch_driver.h>

int mtouch_test_read_serial_id(void *dev, uint8_t **serial)

Arguments:

dev

Handle to the device driver.

serial

Serial ID read from the driver. The serial ID is updated by this function and

is valid until the next call of any one of the test functions.

Library:

libinputevents

40 © 2014, QNX Software Systems Limited

Input Events Library Overview

Description:

This function reads the serial ID from the driver. The first byte in serial represents

the number of additional bytes in the buffer.

Returns:

A test result type. The test result will be one of type Driver test result types (p. 33).

mtouch_test_read_supplier_id()

Test the ability to read the supplier ID.

Synopsis:

#include <input/mtouch_driver.h>

int mtouch_test_read_supplier_id(void *dev, uint8_t **supplier)

Arguments:

dev

Handle to the device driver.

supplier

Supplier ID read from the driver. The supplier ID is updated by this function

and is valid until the next call of any one of the test functions.

Library:

libinputevents

Description:

This function reads the supplier ID from the driver. The first byte in supplier

represents the number of additional bytes in the buffer.

Returns:

A test result type. The test result will be one of type Driver test result types (p. 33).

© 2014, QNX Software Systems Limited 41

mtouch_driver.h

mtouch_log.h

Function and Macros that print mtouch log information.

Constants in mtouch_log.h

Constants that are available for logging input events.

Definitions in mtouch_log.h

Preprocessor macro definitions for the mtouch_log.h header file in the libinputevents

library.

Definitions:

#define mtouch_debug mtouch_log(_SLOG_DEBUG1, devname, format, ##args)

Print mtouch log information as SLOG_DEBUG1 severity.

This macro implements an mtouch_log() function with severity of SLOG_DEBUG. If

NDEBUG is defined, the information is sent as a message to the system logger (slog

ger). Otherwise, the log is simply directed to stderr. Themtouch_log() output format

is: devname[DEBUG]: formatted argument list.

devname

Name of device driver.

format

String that specifies the format of the log. The formatting string determines

what additional arguments you need to provide.

args

Variable-length argument list that correponds to that which is specified in

format.

Nothing.

#define mtouch_info mtouch_log(_SLOG_INFO, devname, format, ##args)

Print mtouch log information as SLOG_INFO severity.

This macro implements an mtouch_log() function with severity of SLOG_INFO. If

NDEBUG is defined, the information is sent as a message to the system logger (slog

ger). Otherwise, the log is simply directed to stderr. Themtouch_log() output format

is: devname[INFO]: formatted argument list.

42 © 2014, QNX Software Systems Limited

Input Events Library Overview

devname

Name of device driver.

format

String that specifies the format of the log. The formatting string determines

what additional arguments you need to provide.

args

Variable-length argument list that correponds to that which is specified in

format.

Nothing.

#define mtouch_warn mtouch_log(_SLOG_WARNING, devname, format, ##args)

Print mtouch log information as SLOG_WARNING severity.

This macro implements an mtouch_log() function with severity of SLOG_WARNING. If

NDEBUG is defined, the information is sent as a message to the system logger (slog

ger). Otherwise, the log is simply directed to stderr. Themtouch_log() output format

is: devname[WARNING]: formatted argument list.

devname

Name of device driver.

format

String that specifies the format of the log. The formatting string determines

what additional arguments you need to provide.

args

Variable-length argument list that correponds to that which is specified in

format.

Nothing.

#define mtouch_error mtouch_log(_SLOG_ERROR, devname, format, ##args)

Print mtouch log information as SLOG_ERROR severity.

This macro implements an mtouch_log() function with severity of SLOG_ERROR. If

NDEBUG is defined, the information is sent as a message to the system logger (slog

© 2014, QNX Software Systems Limited 43

mtouch_log.h

ger). Otherwise, the log is simply directed to stderr. Themtouch_log() output format

is: devname[ERROR]: formatted argument list.

devname

Name of device driver.

format

String that specifies the format of the log. The formatting string determines

what additional arguments you need to provide.

args

Variable-length argument list that correponds to that which is specified in

format.

Nothing.

#define mtouch_critical mtouch_log(_SLOG_CRITICAL, devname, format, ##args)

Print mtouch log information as SLOG_CRITICAL severity.

This macro implements an mtouch_log() function with severity of SLOG_ERROR. If

NDEBUG is defined, the information is sent as a message to the system logger (slog

ger). Otherwise, the log is simply directed to stderr. Themtouch_log() output format

is: devname[CRITICAL]: formatted argument list.

devname

Name of device driver.

format

String that specifies the format of the log. The formatting string determines

what additional arguments you need to provide.

args

Variable-length argument list that correponds to that which is specified in

format.

Nothing.

Library:

libinputevents

44 © 2014, QNX Software Systems Limited

Input Events Library Overview

Functions in mtouch_log.h

Constants and macros that are available for logging input events.

mtouch_log()

Print mtouch log information.

Synopsis:

#include <input/mtouch_log.h>

void mtouch_log(int severity, const char *devname, const char *format,...)

Arguments:

severity

Severity of the condition that triggered the log. For more information on

severity levels, see slogf() in the QNX C Library Reference. All log severities

are defined in <sys/slog.h>

devname

Name of device driver.

format

String that specifies the format of the log. The formatting string determines

what additional arguments you need to provide.

...

Variable-length argument list that correponds to that which is specified in

format.

Library:

libinputevents

Description:

This is a variadic function. If NDEBUG is defined, the information is sent as a message

to the system logger (slogger). Otherwise, the log is simply directed to stderr.

Themtouch_log() output format is: devname[severity]: formatted argument

list.

© 2014, QNX Software Systems Limited 45

mtouch_log.h

Returns:

Nothing.

46 © 2014, QNX Software Systems Limited

Input Events Library Overview

mtouch_params.h

Enumerations and Structures for mtouch parameters.

The mtouch_params.h header file provides type definitions related to mtouch

parameters.

Constants in mtouch_params.h

Constants that are used to represent parmeters of a touch driver.

Definitions in mtouch_params.h

Preprocessor macro definitions for the mtouch_params.h header file in the

libinputevents library.

Definitions:

#define MTOUCH_MAX_FILTERS 8

Maximum number of filters used by Screen.

This is somewhat arbitrary and is defined only so Screen knows how big to make its

filters parameter array. There is no libinputevents limit to how many filters can be

chained.

Library:

libinputevents

Data types in mtouch_param.h

Data structures, typedefs, and enumerations that are used to represent touch driver

parameters.

mtouch_driver_params

Touch driver parameters.

Synopsis:

typedef struct mtouch_driver_params {
 _Uint32t capabilities ;
 _Uint32t flags ;
 _Uint8t max_touchpoints ;
 _Uint32t width ;
 _Uint32t height ;
 char vendor [MTOUCH_PARAMS_VENDOR_SZ];
 char product_id [MTOUCH_PARAMS_PRODUCT_ID_SZ];
 char sensor_id [MTOUCH_PARAMS_SENSOR_ID_SZ];
 _Uint32t sensor_sz_x ;
 _Uint32t sensor_sz_y ;
 _Uint32t max_refresh ;
}mtouch_driver_params_t;

© 2014, QNX Software Systems Limited 47

mtouch_params.h

Data:

_Uint32t capabilities

The capabilities supported by the driver.

Valid capabilities are:

• MTOUCH_CAPABILITIES_CONTACT_ID

• MTOUCH_CAPABILITIES_COORDS

• MTOUCH_CAPABILITIES_CONTACT_COUNT

• MTOUCH_CAPABILITIES_WIDTH

• MTOUCH_CAPABILITIES_HEIGHT

• MTOUCH_CAPABILITIES_ORIENTATION

• MTOUCH_CAPABILITIES_PRESSURE

• MTOUCH_CAPABILITIES_RATE_SET

• MTOUCH_CAPABILITIES_SEQ_ID

• MTOUCH_CAPABILITIES_CONTACT_TYPE

• MTOUCH_CAPABILITIES_SELECT

_Uint32t flags

Device flags.

Valid flags are:

• MTOUCH_FLAGS_INCONSISTENT_DIGIT_ORDER

• MTOUCH_FLAGS_INCONSISTENT_CONTACT_IDS

_Uint8t max_touchpoints

The maximum number of touchpoints supported by the driver.

_Uint32t width

The width, in touch units, of the touch area.

_Uint32t height

The height, in touch units, of the touch area.

char vendor[MTOUCH_PARAMS_VENDOR_SZ]

Internal use only.

48 © 2014, QNX Software Systems Limited

Input Events Library Overview

char product_id[MTOUCH_PARAMS_PRODUCT_ID_SZ]

Internal use only.

char sensor_id[MTOUCH_PARAMS_SENSOR_ID_SZ]

Internal use only.

_Uint32t sensor_sz_x

Internal use only.

_Uint32t sensor_sz_y

Internal use only.

_Uint32t max_refresh

Internal use only.

Library:

libinputevents

Description:

mtouch_driver_params_t

Touch driver parameters.

Synopsis:

#include <input/mtouch_params.h>

typedef struct mtouch_driver_params mtouch_driver_params_t;

Library:

libinputevents

Description:

This type is an alias for the touch driver parameters, mtouch_driver_params. Use this

typedef when assigning parameters associated with your touch driver.

© 2014, QNX Software Systems Limited 49

mtouch_params.h

mtouch_filter_config

Touch filter configuration.

Synopsis:

typedef struct mtouch_filter_config {
 mtouch_filter_e type ;
 char * options ;
}mtouch_filter_config_t;

Data:

mtouch_filter_e type

Filter type.

char * options

Filter specific options.

The available filter options depend on the filter type.

Library:

libinputevents

Description:

mtouch_filter_config_t

Touch filter configuration.

Synopsis:

#include <input/mtouch_params.h>

typedef struct mtouch_filter_config mtouch_filter_config_t;

Library:

libinputevents

Description:

This type is an alias for the filter configuration, mtouch_filter_config. Use this typedef

when assigning the filter configuration associated with your driver.

50 © 2014, QNX Software Systems Limited

Input Events Library Overview

mtouch_client_params

Touch client parameters.

Synopsis:

typedef struct mtouch_client_params {
 _Uint32t min_event_interval ;
 mtouch_scaling_params_t scaling ;
}mtouch_client_params_t;

Data:

_Uint32t min_event_interval

The sampling period (in microseconds) of the touch driver.

You will not get two touch samples within a time less than that configured

here. The effectiveness of this configuration is driver-dependent.

mtouch_scaling_params_t scaling

The parameters for scaling touch coordinates.

Library:

libinputevents

Description:

mtouch_client_params_t

Touch client parameters.

Synopsis:

#include <input/mtouch_params.h>

typedef struct mtouch_client_params mtouch_client_params_t;

Library:

libinputevents

Description:

This type is an alias for the client parameters, mtouch_client_params. Use this

typedef when assigning client parameters.

© 2014, QNX Software Systems Limited 51

mtouch_params.h

parseopts.h

Helper functions to parse the options from the mtouch section of graphics.conf.

The parseopts.h header file defines the helper functions that are used to parse the

options from the mtouch section of the configuration file, graphics.conf.

Functions in parseopts.h

Helper functions to parse the options from the mtouch section of graphics.conf.

The parseopts.h header file defines the helper functions that are used to parse the

options from the mtouch section of the configuration file, graphics.conf.

input_parseopts()

Parse the argument options.

Synopsis:

#include <input/parseopts.h>

void input_parseopts(const char *options, set_option_t set_option, void *arg)

Arguments:

options

Option passed from mtouch section of graphics.conf.

set_option

Callback function that is called on each option in options to parse the

information and set the user information.

arg

User information.

Library:

libinputevents

Description:

This function calls the set_option callback function on the device for each option

in options. The format of options is: option=value1,option2=value2

52 © 2014, QNX Software Systems Limited

Input Events Library Overview

Returns:

Nothing.

input_parse_bool()

Parse an option of the type boolean.

Synopsis:

#include <input/parseopts.h>

int input_parse_bool(const char *option, const char *value, unsigned *out)

Arguments:

option

Option of type boolean to be parsed.

value

Value of the option.

out

The boolean value of option.

Library:

libinputevents

Description:

Returns:

0 if successful, otherwise non-zero if an error occurred.

input_parse_double()

Parse an option of the type double.

Synopsis:

#include <input/parseopts.h>

int input_parse_double(const char *option, const char *value, double *out)

Arguments:

© 2014, QNX Software Systems Limited 53

parseopts.h

option

Option of type string to be parsed.

value

Value of the option.

out

The double value of option.

Library:

libinputevents

Description:

Returns:

0 if successful, otherwise non-zero if an error occurred.

input_parse_signed()

Parse an option of the type integer.

Synopsis:

#include <input/parseopts.h>

int input_parse_signed(const char *option, const char *value, int *out)

Arguments:

option

Option of type integer to be parsed.

value

Value of the option.

out

The integer value of option.

54 © 2014, QNX Software Systems Limited

Input Events Library Overview

Library:

libinputevents

Description:

Returns:

0 if successful, otherwise non-zero if an error occurred.

input_parse_string()

Parse an option of the type string.

Synopsis:

#include <input/parseopts.h>

int input_parse_string(const char *option, const char *value, char **out)

Arguments:

option

Option of type string to be parsed.

value

Value of the option.

out

The string value of option.

Library:

libinputevents

Description:

Returns:

0 if successful, otherwise non-zero if an error occurred.

© 2014, QNX Software Systems Limited 55

parseopts.h

input_parse_unsigned()

Parse an option of the type unsigned integer.

Synopsis:

#include <input/parseopts.h>

int input_parse_unsigned(const char *option, const char *value, unsigned *out)

Arguments:

option

Option of type unsgined integer to be parsed.

value

Value of the option.

out

The unsigned integer value of option.

Library:

libinputevents

Description:

Returns:

0 if successful, otherwise non-zero if an error occurred.

56 © 2014, QNX Software Systems Limited

Input Events Library Overview

screen_helpers.h

Helper functions for Screen input events.

The screen_helpers.h header file provides functions for processing Screen Input

events.

Functions in screen_helpers.h

Functions for working with screen input events.

screen_get_mtouch_event()

Retrieve mtouch event data from a screen event.

Synopsis:

#include <input/screen_helpers.h>

static int screen_get_mtouch_event(screen_event_t screen_event, mtouch_event_t
 *mtouch_event, int screen_abs)

Arguments:

screen_event

The Screen event to retrieve data from.

mtouch_event

The mtouch_event to populate.

screen_abs

The indicator to specify which coordinates to use; 1 indicates to use Screen

coordinates. Otherwise, use source viewport.

Library:

libinputevents

Description:

The function screen_get_mtouch_event() populates the mtouch_event with data

fetched from the Screen event.

© 2014, QNX Software Systems Limited 57

screen_helpers.h

Returns:

0 on success, -1 on failure.

58 © 2014, QNX Software Systems Limited

Input Events Library Overview

	Table of Contents
	Touch Events
	Typographical conventions
	Technical support

	Writing a Touch Driver
	Provide the callback functions
	Connect to the Input Events library
	Provide initialization and cleanup callback functions
	Communicate with the hardware
	Disconnect from the Input Events library

	Input Events Library Overview
	Event types (event_types.h)
	Data types in event_types.h
	contact_type_e
	input_class_e
	input_event_e
	mtouch_event
	mtouch_event_t

	Driver (mtouch_driver.h)
	Constants in mtouch_driver.h
	Definitions in mtouch_driver.h

	Data types in mtouch_driver.h
	mtouch_driver_funcs_t
	Driver test result types

	Functions in mtouch_driver.h
	mtouch_driver_attach()
	mtouch_driver_detach()
	mtouch_driver_process_packet()
	mtouch_test_bist()
	mtouch_test_fini()
	mtouch_test_init()
	mtouch_test_read_firmware_version()
	mtouch_test_read_product_id()
	mtouch_test_read_serial_id()
	mtouch_test_read_supplier_id()

	Log (mtouch_log.h)
	Constants in mtouch_log.h
	Definitions in mtouch_log.h

	Functions in mtouch_log.h
	mtouch_log()

	Parameters (mtouch_params.h)
	Constants in mtouch_params.h
	Definitions in mtouch_params.h

	Data types in mtouch_param.h
	mtouch_driver_params
	mtouch_driver_params_t
	mtouch_filter_config
	mtouch_filter_config_t
	mtouch_client_params
	mtouch_client_params_t

	Parse options (parseopts.h)
	Functions in parseopts.h
	input_parseopts()
	input_parse_bool()
	input_parse_double()
	input_parse_signed()
	input_parse_string()
	input_parse_unsigned()

	Screen helpers (screen_helpers.h)
	Functions in screen_helpers.h
	screen_get_mtouch_event()

