
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

Instant Device Activation User's Guide

©2006–2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Monday, July 14, 2014

Table of Contents

About This Guide ...5
Typographical conventions ...6

Technical support ...8

Chapter 1: Using Minidrivers for Instant Device Activation ...9

The minidriver basics ..10

The minidriver architecture ..11

How does the minidriver work? ...12

Seamless transition ...12

Running multiple handler functions ..12

Chapter 2: Writing a Minidriver ..13

Timing requirements ...14

Data storage ...15

Handler function ..16

Hardware access ...17

Debugging from within the minidriver ..18

Customizing the startup program to include your minidriver ..19

Making the transition to a full driver ...20

Making a boot image that includes your minidriver ...21

Chapter 3: Sample Minidriver ..23

The minidriver handler function ...24

Adding your minidriver to the system ..26

Test application: mini-peeker.c ...27

Transition from minidriver to full driver ...29

Chapter 4: APIs and Datatypes ..31

mdriver_add() ...32

mdriver_entry ...34

mdriver_max ..36

Appendix A: Hardware Interaction Within the Minidriver ..37

Instant Device Activation User's Guide

Table of Contents

About This Guide

The Instant Device Activation User's Guide will help you set up a “minidriver” to start

devices quickly when the system boots. The following table may help you find

information quickly in this guide:

Go to:For information on:

Using Minidrivers for Instant Device

Activation (p. 9)

An overview of Instant Device Activation

Writing a Minidriver (p. 13)How to write instant device activation

code

Sample Minidriver (p. 23)An example of the code for a minidriver

API and Datatypes (p. 31)API and datatypes

Hardware Interaction Within the Minidriver

(p. 37)

An example of interacting with hardware

© 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

6 © 2014, QNX Software Systems Limited

About This Guide

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

© 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Using Minidrivers for Instant Device Activation

Advanced CPUs are providing higher levels of hardware integration than ever before,

directly controlling such interfaces as CAN, J1850, and MOST. This approach saves

on hardware costs by reducing the need for extra chips and circuitry, but it also raises

concerns for the software developer.

For instance, a telematics control unit must be able to receive CAN messages within

30 to 100 milliseconds from the time that it's powered on. The problem is that the

complex software running on such a telematics device can easily take hundreds of

milliseconds—or more—to boot up.

As another example, consider the critical milestones during the boot process for an

in-car telematics or infotainment unit that typically boots from a cold condition

(completely powered off) or from CPU reboot condition (returning from a state where

SDRAM has been turned off). The unit must be able to:

• receive CAN messages within 30 to 100 milliseconds after power is turned on

• respond to these messages within 100 milliseconds of receiving them

• read Class 2 messages from a vehicle bus and respond to wake events

• initialize a MOST transceiver and respond to MOST requests

• animate a splash screen (graphical display) before the operating system has loaded

In order to address such timing requirements, many embedded system designs rely

on a simple but expensive solution that uses an auxiliary communications processor

or external power module. This auxiliary hardware can be reduced in scope and

sometimes even eliminated by using Instant Device Activation. Also called minidriver

technology, the approach consists of small, highly efficient device drivers that start

executing before the OS kernel is initialized.

© 2014, QNX Software Systems Limited 9

The minidriver basics

During the normal QNX Neutrino boot process, a driver process can't run until the OS

image has been loaded into the RAM, and the kernel has been initialized. Depending

on the particular hardware (processor, flash, architecture) and the OS image size, this

time can be in the order of hundreds of milliseconds or even seconds. To reduce this

time, a minidriver runs much earlier in the boot process to take care of the timing

requirements for some bus protocols such as MOST or CAN.

Defined in the system's startup code, a minidriver runs user code before the operating

system has been booted. This code could include responding to hardware power-up

messages in a quick, timely fashion and ensuring that no message is lost when the

OS boots up. Once the OS has booted, the minidriver may continue running, or it may

pass control to a full-featured driver that can access any data the minidriver has

buffered.

Power
on

Boot loader
initialized

Boot loader
running

Kernel
initialized

Minidriver

I/O requests

Data
area

Initial power-on code Copy OS image, boot OS,
handle I/O requests

OS running

0 < 50 ms 200-500 ms

Full
driver

I/O requests

Vehicle bus

Figure 1: Booting process using instant device activation.

10 © 2014, QNX Software Systems Limited

Using Minidrivers for Instant Device Activation

The minidriver architecture

A minidriver consists of these fundamental components:

• a handler function

• an optional data area

• startup code to create the data area and register the handler

Once a minidriver is created, its handler function is called throughout the booting

process. The handler function is initially triggered from a timer (polling). Once CPU

interrupts are enabled, the handler function is triggered by the real hardware interrupt.

Note that the timers can also generate interrupts, allowing for a polled approach to

be used for hardware that doesn't generate interrupts.

You can use the data area to store any information that the handler function needs to

keep and potentially share with the full driver.

© 2014, QNX Software Systems Limited 11

The minidriver architecture

How does the minidriver work?

A minidriver is a function that you link to the QNX Neutrino startup program, so that

it runs before the system becomes operational and the kernel is initialized. A minidriver

can access hardware and store data in a RAM buffer area where a full (process-time)

driver can then read this buffered information.

During system startup, a minidriver handler function is periodically called (or polled).

You can adapt this periodic/polled interval to suit your device's timing requirements

with minor changes to the startup program. At some point in the system startup,

interrupts become available, and this handler function becomes interrupt driven. The

handler is called with a state variable, so the handler knows why it was called.

Seamless transition

As soon as a full driver process is running in a fully operational system, transition

takes place from the minidriver to a full driver. This transition is seamless and causes

no blackout times. The full driver merely attaches to the device interrupt, which causes

the minidriver to be notified that another process is attaching to its interrupt. The

minidriver can then gracefully exit, and the full driver continues to run. The full driver

has access to any buffered data that the minidriver chooses to store.

Running multiple handler functions

The minidriver can run multiple handler functions. For devices that must do something

every n milliseconds, you could attach two handler functions:

• a minidriver for the actual device interrupt

• a minidriver for the system timer tick

Since the timer minidriver is intermittently polled (i.e., not invoked at a constant

interval) during startup, the driver needs to use something to measure the time between

the calls to get the proper interval.

This architecture allows device drivers to start very early in the system startup and

allows the device to continue to function during all boot phases. If a full driver doesn't

choose to take over device control, the minidriver continues to run when the system

is fully operational.

12 © 2014, QNX Software Systems Limited

Using Minidrivers for Instant Device Activation

Chapter 2
Writing a Minidriver

In order to write a minidriver, you must first decide on the following:

• the hardware platform you'll work with

• the timing requirements of your driver

• how much data storage (if any) the minidriver needs

• whether or not your minidriver needs to initialize the hardware

• whether or not your minidriver requires hardware access

• how the transition to the full driver is to be accomplished

The BSP associated with your hardware platform includes the source code to the

board's startup program. You must link your minidriver to this program. For more

information, see the BSP documentation, as well as Building Embedded Systems.

You'll need to modify these files:

• mdriver_max.c — defines the amount of data copied from flash to RAM between

calls to your minidriver

• main.c — where you'll set up the minidriver's data area and register your handler

• my_mdriver.c — contains your handler function; choose an appropriate name for

this file. You can have multiple C and header files as part of your minidriver.

Don't modify the following files unless you're directed to do so by QNX Software

Systems, but make sure they're included in your startup code directory:

• cpu_mdriver.c

• mdriver.c

© 2014, QNX Software Systems Limited 13

Timing requirements

Since the minidriver code is polled during the startup and kernel-initialization phases

of the boot process, you need to know the timing of your device in order to verify if

the poll rate is fast enough. Most of the time in startup is spent copying the boot image

from flash to RAM, and the minidriver is polled during this time period. The sequence

might look like this:

• Call the minidriver.

• Copy the next 16 KB.

• Call the minidriver.

• Copy the next 16 KB.

• ...

The startup library contains a global variable mdriver_max (p. 36), which is the amount

of data (in bytes) that's copied from flash to RAM between calls to your minidriver.

This variable is defined in mdriver_max.c, and its default value is 16 KB.

You might have to experiment to determine the best value, based on the timing

requirements of your device, processor speed, and the flash.

In order to change this value, you can:

• Copy mdriver_max.c to your specific board directory and then set the value. Be

sure to recompile the libstartup.a library and relink your startup code with

this new library.

or:

• Set the value in your startup's main() before you register the minidriver handler.

14 © 2014, QNX Software Systems Limited

Writing a Minidriver

Data storage

The minidriver program usually requires a space to store the received hardware data

and any other information that the full driver will later need at process time. You need

to determine the amount of data you require and allocate the memory.

As we'll see, you allocate the data area in the startup's main() function and provide

the area's physical address when you register the handler function. When the handler

is invoked, it's passed the area's virtual address.

This area of memory isn't internally managed by the system; it's your driver's

responsibility to avoid overwriting system memory. If your handler function

writes outside of its data area, a system failure could occur, and the operating

system might not boot.

© 2014, QNX Software Systems Limited 15

Data storage

Handler function

The prototype of the minidriver handler function is:

int my_handler (int state, void *data);

The arguments are:

state

Indicates when the handler is being called. It can have one of the following

values, defined in <sys/syspage.h>, and presented here in chronological

order:

• MDRIVER_INIT: The driver is being initialized. The handler is called

with this state only once, when you register the handler by calling

mdriver_add() (p. 32).

• MDRIVER_STARTUP: The driver is being called from somewhere in

startup.

• MDRIVER_STARTUP_PREPARE: Preparations must take place for

minidriver operation outside the startup environment.

• MDRIVER_STARTUP_FINI: The last call to the driver from within the

startup.

• MDRIVER_KERNEL: The driver is being called during kernel initialization.

• MDRIVER_PROCESS: The driver is being called during process

manager/system initialization.

• MDRIVER_INTR_ATTACH: A process is calling InterruptAttach() or

InterruptAttachEvent() with the same interrupt number as the minidriver

is attached to. If you want the full driver to take over processing the

interrupt, the minidriver handler should return 1 to indicate that it wants

to exit.

data

The virtual address of the data area, converted from the physical address

that you provided as the data_paddr parameter to mdriver_add().

If you're working with an ARM platform, your minidriver handler function must

be written as Position Independent Code (PIC). This means that when your

handler is in the MDRIVER_KERNEL, MDRIVER_PROCESS, or

MDRIVER_INTR_ATTACH state, you must not use global or static variables.

The handler function should return:

16 © 2014, QNX Software Systems Limited

Writing a Minidriver

• 0 if the handler function is still needed

• 1 to request that the kernel remove the minidriver

Don't assume that just because the handler has been called that the device actually

needs servicing.

Hardware access

The minidriver program most likely requires hardware access, meaning it needs to

read and write hardware registers. In order to help you access hardware registers, the

startup library provides function calls to map and unmap physical memory. At

different times in the boot process, some calls may or may not be available:

• When the minidriver handler is called with MDRIVER_INIT, these functions are

available:

• startup_io_map()

• startup_io_unmap()

• startup_memory_map()

• startup_memory_unmap()

• After the minidriver handler is called with MDRIVER_STARTUP_PREPARE, the

above functions are no longer available, and your driver must use these instead:

• callout_io_map()

• callout_memory_map()

For more information, see the Customizing Image Startup Programs chapter of Building

Embedded Systems.

Here's a summary of what you need to do at each state if your minidriver needs to

access hardware:

MDRIVER_INIT

• Initialize the hardware, if necessary.

• Call startup_io_map() or startup_memory_map() to gain hardware access.

• Store this pointer (which we'll call ptr1) in the minidriver data area and

use it to access hardware.

MDRIVER_STARTUP

Use ptr1 to do all hardware access. No memory map calls are needed.

MDRIVER_STARTUP_PREPARE

At this point, The minidriver should call callout_io_map() or

callout_memory_map(), Store the returned pointer (which we'll call ptr2) in

© 2014, QNX Software Systems Limited 17

Handler function

the minidriver data area or in a static variable, separate from the previously

stored value. Don't use ptr2 yet; continue to use ptr1 to do all hardware

access.

MDRIVER_STARTUP_FINI

This is the last call to your handler from within startup, so it's the last state

in which you'll use ptr1 to do all hardware access. After this state, you'll use

ptr2 instead.

MDRIVER_KERNEL, MDRIVER_PROCESS, MDRIVER_INTR_ATTACH

In these states, use ptr2 to do all hardware access.

For an example, see the Hardware Interaction Within the Minidriver (p. 37) appendix.

Debugging from within the minidriver

Use the following techniques to debug your minidriver:

• If your startup code is able to print data to a serial port or other debug device, then

you can use kprintf() to print any variable you wish to see. For example, in your

minidriver code:

kprintf("I am the minidriver!\n");
kprintf("Global variable mcounts=%d\n", mcounts);

For more information, see the Customizing Image Startup Programs chapter of

Building Embedded Systems.

• Include any information that you wish to collect in the data area you allocated for

your minidriver. After the kernel has booted, you can examine the data inside this

area. See the mini-peeker.c (p. 27) program for an example of doing this.

• Depending on your hardware, you could use JTAG. If LEDs or other diagnostics are

available, your minidriver could output values to hardware registers or ports to

indicate certain conditions.

18 © 2014, QNX Software Systems Limited

Writing a Minidriver

Customizing the startup program to include your minidriver

You need to modify the startup code in the BSP's main.c file in order to set up the

minidriver's data area, register the handler function, and so on. Depending on what

your minidriver needs to do, you might have to do the following:

• Declare the prototype for your minidriver's handler function. For example:

extern int mini_data(int state, void *data);

• Call init_raminfo(), to determine the location and size of available system RAM.

• Allocate the required system RAM for your data area by calling alloc_ram(). For

example:

/* Global variable: */
paddr_t mdriver_addr;

/* Allocate 64 KB of memory for use by the minidriver */

mdriver_addr = alloc_ram(~0L, 65536, 1);

• Call init_intrinfo() to add the interrupt information to the system page.

• Call mdriver_add() (p. 32) to register your minidriver handler. For example:

/* Add a minidriver function called "mini-data" for IRQ 81. */

mdriver_add("mini-data", 81, mini_data, mdrvr_addr, 65536);

For more information about the startup library functions, see the Customizing Image

Startup Programs chapter of Building Embedded Systems.

© 2014, QNX Software Systems Limited 19

Customizing the startup program to include your minidriver

Making the transition to a full driver

Once the kernel is running and interrupts are enabled, the minidriver continues to be

called when the interrupt that it's attached to is triggered. This action can continue

for the lifetime of the system; in other words, the minidriver can behave like a tiny

interrupt handler that's always active.

Usually the hardware needs more attention than the minidriver is set up to give it, so

you'll want the minidriver to hand off to a full driver.

Here's the sequence of events for doing this:

• The full driver locates the minidriver's entry in the system page by using the

SYSPAGE_ENTRY() macro. For an example, see the entry for mdriver_entry

(p. 34) in this guide.

• The full driver maps the minidriver's data area into its memory space. For example:

dptr = mmap_device_memory(0, 65536,
 PROT_READ | PROT_WRITE | PROT_NOCACHE,
 0, SYSPAGE_ENTRY(mdriver)->data_paddr);

• The full driver can do post-processing of existing data.

Since the minidriver is still running at this point, it continues to run whenever the

interrupt is triggered. Depending on the design, it may be necessary to do some

processing of the existing data that has been stored by the minidriver before the

full driver takes control.

• The full driver attaches to the interrupt by calling InterruptAttach() or

InterruptAttachEvent().

For safety, the full driver should always disable the device interrupt before calling

InterruptAttach() or InterruptAttachEvent(), and then enable the interrupt upon

success.

• When the full driver attaches to the interrupt, the kernel calls the minidriver with

a state of MDRIVER_INTR_ATTACH. The minidriver should do any cleanup

necessary, disable the device interrupt, and then return a value of 1 to request

that the kernel remove it.

After this, the minidriver is no longer called, and only the full driver receives the

interrupt.

• The full driver begins to handle the device and process any device data that was

stored in the minidriver data area.

20 © 2014, QNX Software Systems Limited

Writing a Minidriver

Making a boot image that includes your minidriver

At this point, you have a startup program (including your minidriver code) that's

been compiled. Now include this startup program in the QNX Neutrino boot image

and try out the minidriver.

There are some basic rules to follow when building a boot image that includes a

minidriver:

• The boot image shouldn't be compressed. Decompression of the boot image affects

the timings defined by the mdriver_max copy size. Your boot image should have

an image type like the following:

[virtual=armle-v7,binary] .bootstrap = {

Note that the keyword +compress isn't included in this line. You should change

the armle-v7 or binary entry to reflect your hardware and image format.

• After you compile your startup program that includes the minidriver, make sure to

specify this startup program in your buildfile.

For example, if you compile your startup program as startup-my_board, you

should copy it to the appropriate directory (e.g., ${QNX_TARGET}/armle-

v7/boot/sys/startup-my_board-mdriver), and then change your buildfile

to include startup-my_board-mdriver.

© 2014, QNX Software Systems Limited 21

Making a boot image that includes your minidriver

Chapter 3
Sample Minidriver

The minidriver program in this example is a simple implementation that you can use

for debugging purposes. It counts the number of times it's called for each phase of

the boot process and stores that information in its data area. Once the system is

booted, a program can read the data area and retrieve this information. No hardware

access is required for this minidriver.

In this example, the size of the data area is 64 KB. If you decrease the value of

mdriver_max (the amount of data that's copied from flash to RAM between calls of

your minidriver) from its default 16 KB, then you may need to increase the size of the

data area because the handler function will be called more times.

© 2014, QNX Software Systems Limited 23

The minidriver handler function

For this sample driver, the source code for the handler function looks like this:

struct mini_data
{
 uint16_t nstartup;
 uint16_t nstartupp;
 uint16_t nstartupf;
 uint16_t nkernel;
 uint16_t nprocess;
 uint16_t data_len;
};

/*
 * Sample minidriver handler function for debug purposes
 *
 * Counts the number of calls for each state and
 * fills the data area with the current handler state
 */
int
mini_data(int state, void *data)
{
 uint8_t *dptr;
 struct mini_data *mdata;

 mdata = (struct mini_data *) data;
 dptr = (uint8_t *) (mdata + 1);

 /* on MDRIVER_INIT, set up the data area */
 if (state == MDRIVER_INIT)
 {
 mdata->nstartup = 0;
 mdata->nstartupf = 0;
 mdata->nstartupp = 0;
 mdata->nkernel = 0;
 mdata->nprocess = 0;
 mdata->data_len = 0;
 }

 /* count the number of calls we get for each type */
 if (state == MDRIVER_STARTUP)
 mdata->nstartup = mdata->nstartup + 1;
 else if (state == MDRIVER_STARTUP_PREPARE)
 mdata->nstartupp = mdata->nstartupp + 1;
 else if (state == MDRIVER_STARTUP_FINI)
 mdata->nstartupf = mdata->nstartupf + 1;
 else if (state == MDRIVER_KERNEL)
 mdata->nkernel = mdata->nkernel + 1;
 else if (state == MDRIVER_PROCESS)
 mdata->nprocess = mdata->nprocess + 1;
 else if (state == MDRIVER_INTR_ATTACH)
 {
 /* normally disable my interrupt */
 return (1);
 }

 /* put the state information in the data area
 after the structure if we have room */

 if (mdata->data_len < 60000) {
 dptr[mdata->data_len] = (uint8_t) state;
 mdata->data_len = mdata->data_len + 1;
 }

24 © 2014, QNX Software Systems Limited

Sample Minidriver

 return (0);
}

A few things to note:

• The handler function stores call information, so a structure has been created to

allow easier access to the data area.

• When the state is MDRIVER_INIT, the handler initializes the data area. The handler

is called only once with this state.

• Before we store the state information, we make sure that we're not about to write

outside the data area, lest we crash the startup.

• If the handler is called with MDRIVER_INTR_ATTACH, it returns a value of 1,

requesting that the kernel remove the minidriver. However, due to the asynchronous

nature of the system, there might be several more invocations of the handler after

it has indicated that it wants to stop.

© 2014, QNX Software Systems Limited 25

The minidriver handler function

Adding your minidriver to the system

The main() function of startup main.c looks like this:

...
paddr_t mdrvr_addr;
...

/*
* Collect information on all free RAM in the system.
*/
init_raminfo();

/* In a virtual system we need to initialize the page tables */

if(shdr->flags1 & STARTUP_HDR_FLAGS1_VIRTUAL)
{
 init_mmu();
}

/* The following routines have hardware or system dependencies that
 may need to be changed. */
init_intrinfo();

/* Allocate a 64 KB data area. */
mdrvr_addr = alloc_ram(~0L, 65535, 1);

/* Register the minidriver and its handler function. */
mdriver_add("mini-data", 0, mini_data, mdrvr_addr, 65535);
...

The name stored in the system page for our minidriver is mini-data.

26 © 2014, QNX Software Systems Limited

Sample Minidriver

Test application: mini-peeker.c

Here's the source code for a test application called mini-peeker.c that maps in

the minidriver data area and prints the contents:

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <stdint.h>
#include <sys/mman.h>
#include <sys/neutrino.h>
#include <sys/syspage.h>
#include <hw/inout.h>
#include <inttypes.h>

struct mini_data
{
 uint16_t nstartup;
 uint16_t nstartupp;
 uint16_t nstartupf;
 uint16_t nkernel;
 uint16_t nprocess;
 uint16_t data_len;
};

int main(int argc, char *argv[])
{
 int i, count;
 int dump_data = 0;
 uint8_t *dptr;
 struct mini_data *mdata;

 if (argv[1])
 dump_data = 1;

 ThreadCtl(_NTO_TCTL_IO, 0);

 /* map in minidriver data area */
 if ((dptr = mmap_device_memory(0, 65535, PROT_READ |
 PROT_WRITE | PROT_NOCACHE, 0,
 SYSPAGE_ENTRY(mdriver)->data_paddr)) == NULL)
 {
 fprintf(stderr, "Unable to get data pointer\n");
 return (-1);
 }

 mdata = (struct mini_data *) dptr;
 dptr = dptr + sizeof(struct mini_data);

 /* dump mini-driver data */
 printf("---------------- MDRIVER DATA -------------------\n");
 printf("\tMDRIVER_STARTUP calls = %d\n", mdata->nstartup);
 printf("\tMDRIVER_STARTUP_PREPARE calls = %d\n", mdata->nstartupp);
 printf("\tMDRIVER_STARTUP_FINI calls = %d\n", mdata->nstartupf);
 printf("\tMDRIVER_KERNEL calls = %d\n", mdata->nkernel);
 printf("\tMDRIVER_PROCESS calls = %d\n", mdata->nprocess);
 printf("\tData Length calls = %d\n", mdata->data_len);
 count = mdata->data_len;

 if (dump_data)
 {
 printf("State information:\n");

© 2014, QNX Software Systems Limited 27

Test application: mini-peeker.c

 for (i = 0; i < count; i++)
 printf("%d\n", dptr[i]);
 }
 printf("\n---------------------------------\n");

 return EXIT_SUCCESS;
}

28 © 2014, QNX Software Systems Limited

Sample Minidriver

Transition from minidriver to full driver

Here's an example of the code in the full driver that arranges the transition from the

minidriver:

if ((id == InterruptAttachEvent(intr, event,
 _NTO_INTR_FLAGS_TRK_MSK)) == -1)
{
 perror("InterruptAttachEvent\n");
 return (-1);
}

if ((dptr = mmap_device_memory(0, data_size,
 PROT_READ | PROT_WRITE | PROT_NOCACHE,
 0, SYSPAGE_ENTRY(mdriver)->data_paddr)) == NULL)
{
 fprintf(stderr, "Unable to get data pointer\n");
 return (-1);
}

/* Your minidriver should now be stopped and you should
 have access to the interrupt and the data area */

/* Enable device interrupt (intr) */

Once the full driver is attached to the interrupt, it can process any buffered data and

continue to provide hardware access.

© 2014, QNX Software Systems Limited 29

Transition from minidriver to full driver

Chapter 4
APIs and Datatypes

This chapter describes the APIs and datatypes for Instant Device Activation.

© 2014, QNX Software Systems Limited 31

mdriver_add()

Register the minidriver with the system

Synopsis:

int mdriver_add(char *name,
 int interrupt,
 int (*handler)(int state,
 void *data),
 paddr32_t data_paddr,
 unsigned data_size);

Arguments:

name

An arbitrary character string used for identification purposes.

interrupt

The interrupt that you want to attach the handler to.

handler

A pointer to the handler function for the minidriver. For more information,

see “Handler function (p. 16)” in the Writing a Minidriver chapter.

data_paddr

The physical address of a block of memory that the minidriver can use to

store any data. It can be:

• a predetermined location (e.g., one that you reserved beforehand by

passing the -r addr,size[,flag] option to startup)

• a block that you allocated by calling the alloc_ram() startup function

The virtual address of this block is passed to the handler function as its data

argument.

data_size

The size of the block of memory denoted by data_paddr.

Library:

libc

32 © 2014, QNX Software Systems Limited

APIs and Datatypes

Description:

This function registers the minidriver with the system, as follows:

• It checks the interrupt number to make sure it's valid, so you must call init_intrinfo()

to add the interrupt information to the system page before you can register a

minidriver. For more information, see the Customizing Image Startup Programs

chapter of Building Embedded Systems.

If the interrupt number isn't valid, mdriver_add() crashes the

system.

• It calls the handler with a state of MDRIVER_INIT and the virtual address that

corresponds to the physical address given by data_paddr.

• It adds an entry of type mdriver_entry (p. 34) to the mdriver section of the

system page.

You call mdriver_add() from main() in your board's startup code.

Returns:

The index into the mdriver section of the system page for the newly added minidriver,

or -1 if the minidriver wasn't added.

Classification:

QNX Neutrino

© 2014, QNX Software Systems Limited 33

mdriver_add()

mdriver_entry

Minidriver system page entry

Synopsis:

struct mdriver_entry
{
 uint32_t intr;
 int (*handler)(int state, void *data);
 void *data;
 paddr32_t data_paddr;
 uint32_t data_size;
 uint32_t name;
 uint32_t internal;
 uint32_t spare[1];
};

Description:

When you call mdriver_add() (p. 32), it adds an entry for your minidriver to the system

page. The members of the mdriver_entry structure include:

intr

The interrupt that the minidriver is attached to.

handler

A pointer to the minidriver handler function.

data, data_paddr

The virtual and physical addresses of the minidriver's data area, respectively.

data_size

The size of the minidriver's data area, in bytes.

name

The offset into the system page's strings section where the minidriver's name

is stored.

In order for a full (process-time) driver to find a minidriver and gain access to its data

area, it must access the entry in the system page by using the SYSPAGE_ENTRY()

macro:

SYSPAGE_ENTRY(mdriver)[i].data_paddr

34 © 2014, QNX Software Systems Limited

APIs and Datatypes

where i is the index into the minidriver section. You can use the name field to locate

a specific minidriver if there are multiple ones running in the system, possibly attached

to the same interrupt. Here's some sample code that accesses this information:

int i, num_drivers = 0;
struct mdriver_entry *mdriver;

mdriver = (struct mdriver_entry *) SYSPAGE_ENTRY(mdriver);
num_drivers = _syspage_ptr->mdriver.entry_size/sizeof(*mdriver);
printf("Number of Installed minidrivers = %d\n\n", num_drivers);

for (i = 0; i < num_drivers; i++)
{
 printf("Minidriver entry .. %d\n", i);
 printf("Name %s\n",
 SYSPAGE_ENTRY(strings)->data + mdriver[i].name);
 printf("Interrupt 0x%X\n", mdriver[i].intr);
 printf("Data size %d\n", mdriver[i].data_size);
 printf("\n");
}

Classification:

QNX Neutrino

© 2014, QNX Software Systems Limited 35

mdriver_entry

mdriver_max

Amount of data copied from flash to RAM between calls to the minidriver

Synopsis:

unsigned mdriver_max = KILO(16);

Description:

The mdriver_max is a global variable defined in the file mdriver_max.c in the startup

code. It defines the amount of data (in bytes) that's copied from flash to RAM between

calls to your minidriver. The default value is 16 KB, but you might have to change it,

depending on the timing requirements of your device, the processor speed, and the

flash; see “Timing requirements (p. 14)” in the Writing a Minidriver chapter.

The KILO() macro, along with MEG() and GIG(), is defined in <startup.h>.

Classification:

QNX Neutrino

36 © 2014, QNX Software Systems Limited

APIs and Datatypes

Appendix A
Hardware Interaction Within the Minidriver

The following example shows how to interact with hardware from within a minidriver.

It's for a fictional hardware device called “MYBUS” with the following characteristics:

• There's a series of 8-bit registers (status and data) at address 0xFF000000

(MBAR_BASE).

• Interrupt 56 is generated when a character arrives at the MYBUS port.

• There are registers at this address which will be read from and written to.

Remember that the mapping of hardware registers depends on where in the

boot process that the minidriver is called. This transition is handled in the

MDRIVER_STARTUP_PREPARE and MDRIVER_STARTUP_FINI stages.

#include "startup.h" /* This is included with the BSP for your board */

 typedef unsigned char U8;
 typedef unsigned short U16;
 typedef unsigned int U32;

/************** MYBUS Registers ********************/

typedef struct MYBUS_register_set {
 volatile U8 interrupt_status;
 volatile U8 data_register;
 volatile U8 control_register;
 volatile U8 extra1;
 volatile U8 extra2;
 volatile U8 extra3;
 volatile U8 extra4;
 volatile U8 extra5;
} MYBUS_regs_t;

/************** GPIO Registers ********************/

typedef struct GPIO_register_set {
 volatile U32 gpio0;
 volatile U32 gpio1;
} GPIO_regs_t;

/************** Minidriver data area ************/

typedef struct
{
 MYBUS_regs *MYBUS_REGS; /* This is the same as either
 PREKERNEL or POSTKERNEL. */
 MYBUS_regs *MYBUS_REGS_PREKERNEL_START; /* Register mappings to
 use before the kernel starts. */
 MYBUS_regs *MYBUS_REGS_POSTKERNEL_START; /* Register mappings to use
 after the kernel starts. */
 U16 total_message_counter; /* Total times the minihandler
 is called. */
 U16 process_counter; /* Times called after the kernel
 is running. */
 U16 kernel_counter; /* Times called while the
 kernel is booting. */
 U16 data_len; /* Length of data portion
 stored in the data area. */
}MYBUS_data_t;

/* Physical memory locations and offsets */

© 2014, QNX Software Systems Limited 37

#define MBAR_BASE 0xff000000
#define GPIO_OFFSET 0x0C00
#define MYBUS_OFFSET 0x2400

/* Control_register settings */
#define CTRL_INTERRUPT_ON 0x01
#define CTRL_INTERRUPT_OFF 0x00

/***
void MYBUS_Init(void)

Hardware initialization function for MYBUS.
This routine is called only once, when the minidriver is started.

INPUTS None

OUTPUTS None

 ***/

static MYBUS_regs_t * MYBUS_Init(void)
{
 GPIO_regs_t *GPIO_REGS_P;
 MYBUS_regs_t *MYBUS_REGS_P;
 U32 data_byte;

 if((GPIO_REGS_P =
 (GPIO_regs_t *) startup_memory_map(0x40, MBAR_BASE + GPIO_OFFSET),
 PROT_READ|PROT_WRITE|PROT_NOCACHE)) == 0)
 {
 startup_memory_unmap((unsigned)GPIO_REGS_P);
 return (0);
 }

 /* Change GPIO as needed */
 Data = GPIO_REGS_P->gpio0;
 Data = Data & 0xFFF0FFFF;
 GPIO_REGS_P->gpio0 = Data;

 /* We are done with GPIO */
 startup_memory_unmap((void *)PORT_REGS_P);

 if((MYBUS_REGS_P
 = (MYBUS_regs_t *)startup_memory_map(0x10,
 (MBAR_BASE + MYBUS_OFFSET),
 PROT_READ|PROT_WRITE|PROT_NOCACHE)) == 0
 {
 startup_memory_unmap((unsigned)MYBUS_REGS_P);
 return (0);
 }

 /* Initialize MYBUS and turn on the interrupt. */

 /* Write any values to the MYBUS_REGS_P as needed, and
 then turn on the interrupt source. */

 MYBUS_REGS_P->control_register = CTRL_INTERRUPT_ON;

 kprintf("MYBUS is initialized\n");
 return (MYBUS_REGS_P);

}

/***
 int mini_mybus_handler(void)
 ***/

int mini_mybus_handler(int state, void *data)
{
 U8 *dptr;
 U8 StatusReg;
 U8 notValid;
 MYBUS_data_t *mdata;
 int val;

 mdata = (MYBUS_data_t *) data;
 dptr = data + sizeof(MYBUS_data_t);

 if (state == MDRIVER_INTR_ATTACH)
 {

38 © 2014, QNX Software Systems Limited

Hardware Interaction Within the Minidriver

 kprintf("Real driver is attaching .. minidriver was called %d times\n",
 mdata->total_message_counter);

 /* Disable MYBUS interrupt */
 mdata->MYBUS_REGS_POSTKERNEL->control_register = CTRL_INTERRUPT_OFF;
 return (1);
 }
 else if (state == MDRIVER_INIT)
 {
 /* The first time called, initialize the hardware and do data setup */
 mdata->MYBUS_REGS_PREKERNEL = MYBUS_Init();
 if (mdata->MYBUS_REGS_PREKERNEL == 0)
 {
 return (1);
 }

 /* Make our default register location reflect the fact that we are
 in PREKERNEL */
 mdata->MYBUS_REGS = mdata->MYBUS_REGS_PREKERNEL;

 /* Initialize the counters of messages received. */
 mdata->total_message_counter = 0;
 mdata->process_counter = 0;
 mdata->kernel_counter = 0;
 }
 else if (state == MDRIVER_PROCESS)
 {
 mdata->process_counter++;
 }
 else if (state == MDRIVER_KERNEL)
 {
 mdata->kernel_counter++;
 }
 else if (state == MDRIVER_STARTUP_PREPARE)
 {
 /* Once we are out of startup, use callout_io_map or callout_memory_map */

 kprintf("I am in STARTUP PREPARE %x\n", mdata->total_message_counter);
 if ((mdata->MYBUS_REGS_POSTKERNEL = (MYBUS_regs_t *)(callout_memory_map(0x10,
 (MBAR_BASE + MYBUS_OFFSET),
 PROT_READ|PROT_WRITE|PROT_NOCACHE))))
 {
 /* Something bad happened. Disable the interrupt and turn off
 the minidriver */
 mdata->MYBUS_REGS_PREKERNEL->control_register = CTRL_INTERRUPT_OFF;
 return (1);
 }

 }

 /* At this point, we use MYBUS_REGS. We could either be in startup, in
 kernel loading or at process time. */

 /* Read the interrupt status register immediately upon entry to the handler. */
 StatusReg = mdata->MYBUS_REGS->interrupt_status;

 /* Increase the message counter. */
 mdata->total_message_counter++;

 switch(StatusReg)
 {
 /* Read my data and add to my data area (after data_len in MYBUS_data_t) *.

 /* Make sure that you clear the source of interrupt before you return *.

 /* ... */
 }

 if (state == MDRIVER_STARTUP_FINI)
 {
 val = mdata->total_message_counter;
 kprintf("I am in state STARTUP FINI. Total messages processed=%x \n", val);

 /* Startup has finished.. now I switch over to use the POSTKERNEL mapping */
 mdata->MYBUS_REGS = mdata->MYBUS_REGS_POSTKERNEL;
 }
 return (0);
}

© 2014, QNX Software Systems Limited 39

Index

A

alloc_ram() 19
ARM, use Position Independent Code (PIC) for 16

B

boot failures 15
boot image, creating 21
boot process 10

C

callout_io_map() 17, 18
callout_memory_map() 17, 18
compression, don't use for boot images 21

D

data area 15, 18, 19, 20, 23, 34
allocating 19
avoid writing beyond bounds 15

debugging 18

E

examples 23, 27, 37
mini-peeker 27

F

flash, transferring data to RAM 14, 36
full driver, transition to 12, 20

G

GIG() 36
global variables, avoiding 16

H

handler function 12, 16, 19, 24, 25, 32
adding 19
examples 24
exiting 25
multiple 12
registering 32

hardware, access 17, 37

I

init_intrinfo() 19
init_raminfo() 19
InterruptAttach(), InterruptAttachEvent() 16, 20

interrupts, disabling and enabling 20

K

KILO() 36
kprintf() 18

M

mdriver_add() 16, 19, 32
mdriver_entry 34
MDRIVER_INIT 16, 17, 25
MDRIVER_INTR_ATTACH 16, 18, 20, 25
MDRIVER_KERNEL 16, 18
mdriver_max 14, 23, 36
MDRIVER_PROCESS 16, 18
MDRIVER_STARTUP 16, 17
MDRIVER_STARTUP_FINI 16, 18, 37
MDRIVER_STARTUP_PREPARE 16, 17, 18, 37
MEG() 36
mini-peeker test application 27
minidriver 9, 11, 12, 13, 15, 16, 17, 18, 20, 23, 34

architecture 11
considerations 13
data storage 15
debugging 18
defined 9
entries for in system page 34
examples 23
handler function 16
requesting removal of 17
states 16
transition to full driver 12, 20

mmap_device_memory() 20

P

polling 14
Position Independent Code (PIC), required for ARM 16

R

RAM, transferring data from flash 14, 36

S

startup_io_map() 17
startup_io_unmap() 17
startup_memory_map() 17
startup_memory_unmap() 17
states 16
static variables, avoiding 16
SYSPAGE_ENTRY() 20, 34
system failures 15
system page, entries for minidrivers 34

© 2014, QNX Software Systems Limited 41

Instant Device Activation User's Guide

T

Technical support 8

transition to full driver 12, 20
Typographical conventions 6

42 © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Using Minidrivers for Instant Device Activation
	The minidriver basics
	The minidriver architecture
	How does the minidriver work?
	Seamless transition
	Running multiple handler functions

	Writing a Minidriver
	Timing requirements
	Data storage
	Handler function
	Hardware access
	Debugging from within the minidriver

	Customizing the startup program to include your minidriver
	Making the transition to a full driver
	Making a boot image that includes your minidriver

	Sample Minidriver
	The minidriver handler function
	Adding your minidriver to the system
	Test application: mini-peeker.c
	Transition from minidriver to full driver

	APIs and Datatypes
	mdriver_add()
	mdriver_entry
	mdriver_max

	Hardware Interaction Within the Minidriver
	Index

