
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

Multicore Processing User's Guide

©2006–2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, Foundry27 are trademarks of
BlackBerry Limited that are registered and/or used in certain jurisdictions, and
used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Friday, March 28, 2014

Table of Contents

About This Guide ..5
Typographical conventions ...6

Technical support ...8

Chapter 1: What is Multicore Processing? ...9

Chapter 2: A Quick Introduction to Multicore Processing ..11

Setting up the OS image ...12

Trying symmetric multiprocessing ...14

Trying bound multiprocessing ...15

Chapter 3: Developing Multicore Systems ...17

Building a multicore image ..18

The impact of multicore ..19

To multicore or not to multicore ..19

Thread affinity ..19

Multicore and synchronization primitives ...22

Multicore and FIFO scheduling ...22

Multicore and interrupts ...22

Multicore and atomic operations ...23

Adaptive partitioning ...24

Designing with multiprocessing in mind ..25

Use the multicore primitives ...25

Assume that threads really do run concurrently ..25

Break the problem down ..25

Glossary ..29

Multicore Processing User's Guide

Table of Contents

About This Guide

The Multicore Processing User's Guide describes how you can use symmetric

multiprocessing to get the most performance possible out of a multiprocessor system.

It also describes how to use bound multiprocessing to restrict which processors a

thread can run on.

The following table may help you find information quickly in this guide:

Go to:For information on:

What is Multicore Processing? (p. 9)Multicore processing in general

A Quick Introduction to Multicore

Processing (p. 11)

Getting started with multicore processing

Developing Multicore Systems (p. 17)Programming with multicore processing

in mind

GlossaryTerminology used in this guide

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
What is Multicore Processing?

Multiprocessing systems, whether discrete or multicore, can greatly improve your

applications' performance. As described in the Multicore Processing chapter of the

System Architecture guide, there's a multiprocessor version of the QNX Neutrino RTOS

that runs on:

• Pentium-based multiprocessor systems that conform to the Intel MultiProcessor

Specification (MP Spec)

• ARM-v7-based systems

If you have one of these systems, then you're probably itching to try it out, but are

wondering what you have to do to get QNX Neutrino running on it. Well, the answer

is not much. The only part of QNX Neutrino that's different for a multiprocessor system

is the microkernel — another example of the advantages of a microkernel architecture!

To determine how many processors there are on your system, look at the

num_cpu entry of the system page. For more information, see “Structure of

the system page” in the Customizing Image Startup Programs chapter of

Building Embedded Systems.

QNX Neutrino supports these operating modes for multiprocessing:

Asymmetric multiprocessing (AMP)

A separate OS, or a separate instantiation of the same OS, runs on each

CPU.

Symmetric multiprocessing (SMP)

A single instantiation of an OS manages all CPUs simultaneously, and

applications can float to any of them.

Bound multiprocessing (BMP)

A single instantiation of an OS manages all CPUs simultaneously, but you

can lock individual applications or threads to a specific CPU.

SMP lets you get the most performance out of your system, but you might need to use

BMP for the few applications that may not work under SMP, or if you want to explicitly

control the process-level distribution of CPU usage.

Copyright © 2014, QNX Software Systems Limited 9

Chapter 2
A Quick Introduction to Multicore Processing

This chapter gives you a quick hands-on introduction to multicore processing.

• Setting up the OS image (p. 12)

• Trying symmetric multiprocessing (p. 14)

• Trying bound multiprocessing (p. 15)

Copyright © 2014, QNX Software Systems Limited 11

Setting up the OS image

1. Log in as root.

2. Go to the directory that holds the buildfile for your system's boot image (e.g.

/boot/build).

3. Create a copy of the buildfile. In this example, we'll call the copy

my_multicore.build.

4. Edit the copy (e.g. my_multicore.build).

5. Search for procnto. The line might look like this:

PATH=/proc/boot:/bin:/usr/bin:/opt/bin \
 LD_LIBRARY_PATH=/proc/boot:/lib:/usr/lib:/lib/dll:/opt/lib \
 procnto-instr

In a real buildfile, you can't use a backslash (\) to break a long line into

shorter pieces, but we've done that here, just to make the command easier

to read.

6. Change procnto to the appropriate multicore version; see /proc/boot to see

which uniprocessor version you're using, and then add -smp to it. For more

information, see procnto in the Utilities Reference. For example:

PATH=/proc/boot:/bin:/usr/bin:/opt/bin \
 LD_LIBRARY_PATH=/proc/boot:/lib:/usr/lib:/lib/dll:/opt/lib \
 procnto-smp-instr

Although the multiprocessing version of procnto has “SMP” in its name,

it also supports BMP. You can even use bound and symmetric

multiprocessing simultaneously on the same system.

7. Save your changes to the buildfile.

8. Generate a new boot image:

mkifs my_multicore.build my_multicore.ifs

9. Put the new image in place. In order to ensure you can still boot your system if an

error occurs, we recommend the following:

• If you're using the Power-Safe filesystem (fs-qnx6.so), add your image to

the ones in /.boot/ instead of overwriting an existing image.

• If you're using the QNX 4 filesystem (fs-qnx4.so), copy your current boot

image to /.altboot by doing the following:

cp /.altboot /.old_altboot
cp /.boot /.altboot

12 Copyright © 2014, QNX Software Systems Limited

A Quick Introduction to Multicore Processing

cp apsdma.ifs /.boot

10. Reboot your system.

Copyright © 2014, QNX Software Systems Limited 13

Setting up the OS image

Trying symmetric multiprocessing

1. Log in as a normal user.

2. Start some processes that run indefinitely. For example, use the hogs utility to

display which processes are using the most CPU:

hogs -n -%10

3. Use pidin sched to see which processor your processes are running on.

If you're using the IDE, you can use the System Information perspective to watch

the threads migrate.

4. Create a program called greedy.c that simply loops forever:

#include <stdlib.h>

int main(void)
{
 while (1) {
 }

 return EXIT_SUCCESS;
}

5. Compile it, and then run it:

qcc -o greedy greedy.c
./greedy &

On a uniprocessor system, this would consume all the processing time (unless

you're using adaptive partitioning). On a multicore system, it consumes all the time

on one processor.

6. Use pidin sched to see which processor your other processes are running on.

They're likely running on different processors from greedy.

14 Copyright © 2014, QNX Software Systems Limited

A Quick Introduction to Multicore Processing

Trying bound multiprocessing

1. Use the -C or -R option (or both) to the on utility to start a shell on a specific set

of processors:

 on -C 0 ksh

2. Start some new processes from this shell. Note that they run only on the first

processor.

3. Use the -C or -R option (or both) to slay to change the runmask for one of these

processes. Note that the process runs only on the processors that you just specified,

while any children run on the processors you specified for the shell.

4. Use the -C or -R option (or both) and the -i option to slay to change the runmask

and inherit mask for one of these processes. Note that the process and its children

run only on the newly specified processors.

Copyright © 2014, QNX Software Systems Limited 15

Trying bound multiprocessing

Chapter 3
Developing Multicore Systems

Let's consider some of the things you should keep in mind when you're programming

for a multicore system.

Copyright © 2014, QNX Software Systems Limited 17

Building a multicore image

Assuming you're already familiar with building a bootable image for a single-processor

system (as described in the Making an OS Image chapter in Building Embedded

Systems), let's look at what you have to change in the buildfile for a multicore system.

As we mentioned earlier, basically all you need to use is the multicore kernel

(procnto-smp) when building the image.

Here's an example of a buildfile:

A simple multicore buildfile

[virtual=x86,bios] .bootstrap = {
 startup-bios
 PATH=/proc/boot procnto-smp
}
[+script] .script = {
 devc-con -e &
 reopen /dev/con1
 [+session] PATH=/proc/boot esh &
}

libc.so
[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so

[data=copy]
devc-con
esh
ls

After building the image, you proceed in the same way as you would with a

single-processor system.

18 Copyright © 2014, QNX Software Systems Limited

Developing Multicore Systems

The impact of multicore

Although the actual changes to the way you set up the processor to run SMP are fairly

minor, the fact that you're running on a multicore system can have a major impact on

your software!

The main thing to keep in mind is this: in a single processor environment, it may be

a nice “design abstraction” to pretend that threads execute in parallel; under a

multicore system, they really do execute in parallel! (With BMP, you can make your

threads run on a specific CPU.)

In this section, we'll examine the impact of multicore on your system design.

To multicore or not to multicore

It's possible to use the non-multicore kernel on a multicore box. In this case, only

processor 0 will be used; the other processors won't run your code. This is a waste of

additional processors, of course, but it does mean that you can run images from

single-processor boxes on an multicore box. (You can also run SMP-ready images on

single-processor boxes.)

It's also possible to run the multicore kernel on a uniprocessor system, but it requires

a 486 or higher on x86 architectures.

Thread affinity

One issue that often arises in a multicore environment can be put like this: “Can I

make it so that one processor handles the GUI, another handles the database, and

the other two handle the realtime functions?”

The answer is: “Yes, absolutely.”

This is done through the magic of thread affinity, the ability to associate certain

programs (or even threads within programs) with a particular processor or processors.

Thread affinity works like this. When a thread starts up, its affinity mask (or runmask)

is set to allow it to run on all processors. This implies that there's no inheritance of

the thread affinity mask, so it's up to the thread to use ThreadCtl() with the

_NTO_TCTL_RUNMASK control flag to set its runmask:

if (ThreadCtl(_NTO_TCTL_RUNMASK, (void *)my_runmask) == -1) {
 /* An error occurred. */
}

The runmask is simply a bitmap; each bit position indicates a particular processor.

For example, the runmask 0x05 (binary 00000101) allows the thread to run on

processors 0 (the 0x01 bit) and 2 (the 0x04 bit).

Copyright © 2014, QNX Software Systems Limited 19

The impact of multicore

If you use _NTO_TCTL_RUNMASK, the runmask is limited to the size of an

int (currently 32 bits). Threads created by the calling thread don't inherit the

specified runmask.

If you want to support more processors than will fit in an int, or you want to

set the inherit mask, you'll need to use the

_NTO_TCTL_RUNMASK_GET_AND_SET_INHERIT command described below.

The <sys/neutrino.h> file defines some macros that you can use to work with a

runmask:

RMSK_SET(cpu, p)

Set the bit for cpu in the mask pointed to by p.

RMSK_CLR(cpu, p)

Clear the bit for cpu in the mask pointed to by p.

RMSK_ISSET(cpu, p)

Determine if the bit for cpu is set in the mask pointed to by p.

The CPUs are numbered from 0. These macros work with runmasks of any length.

Bound multiprocessing (BMP) is a variation on SMP that lets you specify which

processors a process or thread and its children can run on. To specify this, you use

an inherit mask.

To set a thread's inherit mask, you use ThreadCtl() with the

_NTO_TCTL_RUNMASK_GET_AND_SET_INHERIT control flag. Conceptually, the

structure that you pass with this command is as follows:

struct _thread_runmask {
 int size;
 unsigned runmask[size];
 unsigned inherit_mask[size];
};

If you set the runmask member to a nonzero value, ThreadCtl() sets the runmask of

the calling thread to the specified value. If you set the runmask member to zero, the

runmask of the calling thread isn't altered.

If you set the inherit_mask member to a nonzero value, ThreadCtl() sets the calling

thread's inheritance mask to the specified value(s); if the calling thread creates any

children by calling pthread_create(), fork(), spawn(), vfork(), and exec(), the children

inherit this mask. If you set the inherit_mask member to zero, the calling thread's

inheritance mask isn't changed.

20 Copyright © 2014, QNX Software Systems Limited

Developing Multicore Systems

If you look at the definition of _thread_runmask in <sys/neutrino.h>, you'll

see that it's actually declared like this:

struct _thread_runmask {
 int size;
/* unsigned runmask[size]; */
/* unsigned inherit_mask[size]; */
};

This is because the number of elements in the runmask and inherit_mask arrays

depends on the number of processors in your multicore system. You can use the

RMSK_SIZE() macro to determine how many unsigned integers you need for the masks;

pass the number of CPUs (found in the system page) to this macro.

Here's a code snippet that shows how to set up the runmask and inherit mask:

unsigned num_elements = 0;
int *rsizep, masksize_bytes, size;
unsigned *rmaskp, *imaskp;
void *my_data;

/* Determine the number of array elements required to hold
 * the runmasks, based on the number of CPUs in the system. */
num_elements = RMSK_SIZE(_syspage_ptr->num_cpu);

/* Determine the size of the runmask, in bytes. */
masksize_bytes = num_elements * sizeof(unsigned);

/* Allocate memory for the data structure that we'll pass
 * to ThreadCtl(). We need space for an integer (the number
 * of elements in each mask array) and the two masks
 * (runmask and inherit mask). */

size = sizeof(int) + 2 * masksize_bytes;
if ((my_data = malloc(size)) == NULL) {
 /* Not enough memory. */
 …
} else {
 memset(my_data, 0x00, size);

 /* Set up pointers to the "members" of the structure. */
 rsizep = (int *)my_data;
 rmaskp = rsizep + 1;
 imaskp = rmaskp + num_elements;

 /* Set the size. */
 *rsizep = num_elements;

 /* Set the runmask. Call this macro once for each processor
 the thread can run on. */
 RMSK_SET(cpu1, rmaskp);

 /* Set the inherit mask. Call this macro once for each
 processor the thread's children can run on. */
 RMSK_SET(cpu1, imaskp);

 if (ThreadCtl(_NTO_TCTL_RUNMASK_GET_AND_SET_INHERIT,
 my_data) == -1) {
 /* Something went wrong. */
 …
 }
}

You can also use the -C and -R options to the on command to launch processes with

a runmask (assuming they don't set their runmasks programmatically); for example,

use on -C 1 io-pkt-v4 to start io-pkt-v4 and lock all threads to CPU 1. This

command sets both the runmask and the inherit mask.

Copyright © 2014, QNX Software Systems Limited 21

The impact of multicore

You can also use the same options to the slay command to modify the runmask of

a running process or thread. For example, slay -C 0 io-pkt-v4 moves all of

io-pkt-v4's threads to run on CPU 0. If you use the -C and -R options, slay sets

the runmask; if you also use the -i option, slay also sets the process's or thread's

inherit mask to be the same as the runmask.

Multicore and synchronization primitives

Standard synchronization primitives (barriers, mutexes, condvars, semaphores, and

all of their derivatives, e.g. sleepon locks) are safe to use on a multicore box. You don't

have to do anything special here.

Multicore and FIFO scheduling

A common single-processor “trick” for coordinated access to a shared memory region

is to use FIFO scheduling between two threads running at the same priority. The idea

is that one thread will access the region and then call SchedYield() to give up its use

of the processor. Then, the second thread would run and access the region. When it

was done, the second thread too would call SchedYield(), and the first thread would

run again. Since there's only one processor, both threads would cooperatively share

that processor.

This FIFO trick won't work on an SMP system, because both threads may run

simultaneously on different processors. You'll have to use the more “proper” thread

synchronization primitives (e.g. a mutex), or use BMP to tie the threads to specific

CPUs.

Multicore and interrupts

The following method is closely related to the FIFO scheduling trick. On a

single-processor system, a thread and an interrupt service routine are mutually

exclusive, because the ISR runs at a higher priority than any thread. Therefore, the

ISR can preempt the thread, but the thread can never preempt the ISR. So the only

“protection” required is for the thread to indicate that during a particular section of

code (the critical section) interrupts should be disabled.

Obviously, this scheme breaks down in a multicore system, because again the thread

and the ISR could be running on different processors.

The solution in this case is to use the InterruptLock() and InterruptUnlock() calls to

ensure that the ISR won't preempt the thread at an unexpected point. But what if the

thread preempts the ISR? The solution is the same: use InterruptLock() and

InterruptUnlock() in the ISR as well.

22 Copyright © 2014, QNX Software Systems Limited

Developing Multicore Systems

We recommend that you always use InterruptLock() and InterruptUnlock(),

both in the thread and in the ISR. The small amount of extra overhead on a

single-processor box is negligible.

Multicore and atomic operations

Note that if you wish to perform simple atomic operations, such as adding a value to

a memory location, it isn't necessary to turn off interrupts to ensure that the operation

won't be preempted. Instead, use the functions provided in the C include file

<atomic.h>, which let you perform the following operations with memory locations

in an atomic manner:

OperationFunction

Add a numberatomic_add()

Add a number and return the original

value of *loc

atomic_add_value()

Clear bitsatomic_clr()

Clear bits and return the original value of

*loc

atomic_clr_value()

Set bitsatomic_set()

Set bits and return the original value of

*loc

atomic_set_value()

Subtract a numberatomic_sub()

Subtract a number and return the original

value of *loc

atomic_sub_value()

Toggle (complement) bitsatomic_toggle()

Toggle (complement) bits and return the

original value of *loc

atomic_toggle_value()

The *_value() functions may be slower on some systems, so don't use them

unless you really want the return value.

Copyright © 2014, QNX Software Systems Limited 23

The impact of multicore

Adaptive partitioning

You can use adaptive partitioning on a multicore system, but there are some interactions

to watch out for.

For more information, see “Using adaptive partitioning and multicore together” in the

Adaptive Partitioning Scheduling Details chapter of the Adaptive Partitioning User's

Guide.

24 Copyright © 2014, QNX Software Systems Limited

Developing Multicore Systems

Designing with multiprocessing in mind

You may not have a multicore system today, but wouldn't it be great if your software

just ran faster on one when you or your customer upgrade the hardware?

While the general topic of how to design programs so that they can scale to N processors

is still the topic of research, this section contains some general tips.

Use the multicore primitives

Don't assume that your program will run only on one processor. This means staying

away from the FIFO synchronization trick mentioned above. Also, you should use the

multicore-aware InterruptLock() and InterruptUnlock() functions.

By doing this, you'll be “multicore-ready” with little negative impact on a

single-processor system.

Assume that threads really do run concurrently

As mentioned above, it isn't merely a useful “programming abstraction” to pretend

that threads run simultaneously; you should design as if they really do. That way, when

you move to a multicore system, you won't have any nasty surprises (but you can use

BMP if you have problems and don't want to modify the code).

Break the problem down

Most problems can be broken down into independent, parallel tasks. Some are easy

to break down, some are hard, and some are impossible. Generally, you want to look

at the data flow going through a particular problem. If the data flows are independent

(i.e. one flow doesn't rely on the results of another), this can be a good candidate for

parallelization within the process by starting multiple threads. Consider the following

graphics program snippet:

do_graphics ()
{
 int x;

 for (x = 0; x < XRESOLUTION; x++) {
 do_one_line (x);
 }
}

In the above example, we're doing ray-tracing. We've looked at the problem and decided

that the function do_one_line() only generates output to the screen — it doesn't rely

on the results from any other invocation of do_one_line().

To make optimal use of a multicore system, you would start multiple threads, each

running on one processor.

Copyright © 2014, QNX Software Systems Limited 25

Designing with multiprocessing in mind

The question then becomes how many threads to start. Obviously, starting

XRESOLUTION threads (where XRESOLUTION is far greater than the number of

processors, perhaps 1024 to 4) isn't a particularly good idea — you're creating a lot

of threads, all of which will consume stack resources and kernel resources as they

compete for the limited pool of CPUs.

A simple solution would be to find out the number of CPUs that you have available to

you (via the system page pointer) and divide the work up that way:

#include <sys/syspage.h>

int num_x_per_cpu;

do_graphics ()
{
 int num_cpus;
 int i;
 pthread_t *tids;

 // figure out how many CPUs there are...
 num_cpus = _syspage_ptr -> num_cpu;

 // allocate storage for the thread IDs
 tids = malloc (num_cpus * sizeof (pthread_t));

 // figure out how many X lines each CPU can do
 num_x_per_cpu = XRESOLUTION / num_cpus;

 // start up one thread per CPU, passing it the ID
 for (i = 0; i < num_cpus; i++) {
 pthread_create (&tids[i], NULL, do_lines, (void *) i);
 }

 // now all the "do_lines" are off running on the processors

 // we need to wait for their termination
 for (i = 0; i < num_cpus; i++) {
 pthread_join (tids[i], NULL);
 }

 // now they are all done
}

void *
do_lines (void *arg)
{
 int cpunum = (int) arg; // convert void * to an integer
 int x;

 for (x = cpunum * num_x_per_cpu; x < (cpunum + 1) *
 num_x_per_cpu; x++) { do_line (x);
 }
}

The above approach lets the maximum number of threads run simultaneously on the

multicore system. There's no point creating more threads than there are CPUs, because

they'll simply compete with each other for CPU time.

Note that in this example, we didn't specify which processor to run each thread on.

We don't need to in this case, because the READY thread with the highest priority

always runs on the next available processor. The threads will tend to run on different

processors (depending on what else is running in the system). You typically use the

same priority for all the worker threads if they're doing similar work.

An alternative approach is to use a semaphore. You could preload the semaphore with

the count of available CPUs. Then, you create threads whenever the semaphore

26 Copyright © 2014, QNX Software Systems Limited

Developing Multicore Systems

indicates that a CPU is available. This is conceptually simpler, but involves the overhead

of creating and destroying threads for each iteration.

Copyright © 2014, QNX Software Systems Limited 27

Designing with multiprocessing in mind

Glossary

asymmetric multiprocessing (AMP)

A separate OS, or a separate instantiation of the same OS, runs on each

CPU.

bound multiprocessing (BMP)

A single instantiation of an OS manages all CPUs simultaneously, but you

can lock individual applications or threads to a specific CPU.

discrete (or traditional) multiprocessor system

A system that has separate physical processors hooked up in multiprocessing

mode over a board-level bus.

hard thread affinity

A user-specified binding of a thread to a set of processors, done by means

of a runmask. Contrast soft thread affinity.

inherit mask

A bitmask that specifies which processors a thread's children can run on.

Contrast runmask.

multicore system

A chip that has one physical processor with multiple CPUs interconnected

over a chip-level bus.

runmask

A bitmask that indicates which processors a thread can run on. Contrast

inherit mask.

soft thread affinity

The scheme whereby the microkernel tries to dispatch a thread to the

processor where it last ran, in an attempt to reduce thread migration from

one processor to another, which can affect cache performance. Contrast

hard thread affinity.

symmetric multiprocessing (SMP)

A single instantiation of an OS manages all CPUs simultaneously, and

applications can float to any of them.

Copyright © 2014, QNX Software Systems Limited 29

Index

_NTO_TCTL_RUNMASK 19
_NTO_TCTL_RUNMASK_GET_AND_SET_INHERIT 20
_thread_runmask 21

A

affinity, thread 19
AMP (Asymmetric Multiprocessing) 9
atomic operations 23

B

BMP (Bound Multiprocessing) 9, 15, 20
trying it 15

buildfiles 12, 18
modifying for multicore processing 12
sample 18

C

CPUs, number of 26

F

FIFO scheduling, using with multicore 22

I

images, building for multicore 18
inherit mask 20
InterruptLock() 22, 25
interrupts, handling 22
InterruptUnlock() 22, 25
ISR, preemption considerations 22

M

multicore processing 9, 18, 22, 25
building an image for 18
designing for 25
interrupts and 22
sample buildfile for 18

mutexes 22

O

on utility 15, 21
operations, atomic 23
OS images, building for multicore 12, 18

P

pidin 14
processes, processor running on 14, 15

displaying 14
specifying 15

processors, determining number of 9
procnto*-smp 12, 18

R

RMSK_CLR() 20
RMSK_ISSET() 20
RMSK_SET() 20
RMSK_SIZE() 21
runmask 19

S

scheduling policies, using FIFO with multicore 22
SchedYield(), using with multicore 22
slay 15, 22
SMP (Symmetric Multiprocessing) 9, 14

trying it 14
synchronization primitives and multicore 22
system page, number of CPUs 26

T

tasks, parallel 25
Technical support 8
thread affinity 19
ThreadCtl() 19, 20
threads, running concurrently 19, 25
Typographical conventions 6

Copyright © 2014, QNX Software Systems Limited 31

Multicore Processing User's Guide

32 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	What is Multicore Processing?
	A Quick Introduction to Multicore Processing
	Setting up the OS image
	Trying symmetric multiprocessing
	Trying bound multiprocessing

	Developing Multicore Systems
	Building a multicore image
	The impact of multicore
	To multicore or not to multicore
	Thread affinity
	Multicore and synchronization primitives
	Multicore and FIFO scheduling
	Multicore and interrupts
	Multicore and atomic operations
	Adaptive partitioning

	Designing with multiprocessing in mind
	Use the multicore primitives
	Assume that threads really do run concurrently
	Break the problem down

	Glossary
	Index

