
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

OpenWF Display Configuration
Developer's Guide:
Modifying the Wfdcfg library

©2010–2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Wednesday, October 8, 2014

Table of Contents

About OpenWF Display Configuration ..5
Typographical conventions ...6

Technical support ...8

Chapter 2: Before you begin ..11

Chapter 3: Introduction to the Wfdcfg library ..13

Chapter 4: Getting the source code ..15

Chapter 5: Setting timing parameters ...19

Chapter 6: Updating Wfdcfg source (adding extensions) ...23

Chapter 7: Building the Wfdcfg library ...27

Chapter 8: Updating your target ..29

Chapter 9: Configuring Screen for your display ..31

Chapter 10: OpenWF Display Configuration Library Reference ..33

Definitions in wfdcfg.h ..34

WFDCFG_FNPTR(FN, TYP) ..35

wfdcfg_device ..36

wfdcfg_device_create() ..37

wfdcfg_device_destroy() ..38

wfdcfg_device_get_extension() ...39

wfdcfg_ext_fn_set_power_mode_t ...40

wfdcfg_flags ...41

wfdcfg_keyval ...43

wfdcfg_mode_get_extension() ..44

wfdcfg_mode_list ..45

wfdcfg_mode_list_create() ...46

wfdcfg_mode_list_destroy() ..47

wfdcfg_mode_list_get_next() ..48

wfdcfg_port ..49

wfdcfg_port_create() ...50

wfdcfg_port_destroy() ..52

OpenWF Display Configuration Developer's Guide:

wfdcfg_port_get_extension() ...53

wfdcfg_power_mode ..54

wfdcfg_timing ..55

Table of Contents

About OpenWF Display Configuration

If you are integrating a new display, you must configure and provide the parameters

of your display based on its specifications via the OpenWF Display Configuration API

(Wfdcfg Library).

This table may help you find what you need in this guide:

Go to:To find out about:

Before you begin (p. 11)What you need

Getting the source code (p. 15)How to get the source code

Setting timing parameters (p. 19)How to set timing parameters

Updating Wfdcfg source (adding

extensions) (p. 23)

How to add extensions to the Wfdcfg

library

Building the Wfdcfg library (p. 27)How to build the Wfdcfg library

Updating your target (p. 23)How to update your target

Configuring Screen for your display (p.

27)

How to configure your display

Wfdcfg Library ReferenceWfdcfg API

© 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

6 © 2014, QNX Software Systems Limited

About OpenWF Display Configuration

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

© 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 © 2014, QNX Software Systems Limited

About OpenWF Display Configuration

http://www.qnx.com

Chapter 1
About OpenWF Display Configuration

If you are integrating a new display, you must configure and provide the parameters

of your display based on its specifications via the OpenWF Display Configuration API

(Wfdcfg Library).

This table may help you find what you need in this guide:

Go to:To find out about:

Before you begin (p. 11)What you need

Getting the source code (p. 15)How to get the source code

Setting timing parameters (p. 19)How to set timing parameters

Updating Wfdcfg source (adding

extensions) (p. 23)

How to add extensions to the Wfdcfg

library

Building the Wfdcfg library (p. 27)How to build the Wfdcfg library

Updating your target (p. 23)How to update your target

Configuring Screen for your display (p.

27)

How to configure your display

Wfdcfg Library ReferenceWfdcfg API

© 2014, QNX Software Systems Limited 9

Chapter 2
Before you begin

This guide is intended to describe how to integrate a new display by setting the

appropripate parameters based on your display specifications.

You must have the following:

• Either one of:

• QNX Software Development Platform 6.6.0 with QNX Software Development

Platform 6.6.0 Graphics patch 3875 (available from our website,

http://www.qnx.com/)

or

• QNX Software Development Platform 6.5.0 with Service Pack 1 and a recent,

compatible Screen package

installed on your development host

• A target that's compatible with QNX Neutrino 6.6.0 or QNX Neutrino6.5.0 SP1

• a processor-specific BSP archive that's available from our website,

http://www.qnx.com/ and is compatible with your target.

• a directory structure with a bsp_working_dir that's a result from unzipping the

processor-specific BSP archive. For more information on BSPs, refer to Building

Embedded Systems, or to the BSP User Guide. The BSP User Guide that is specific

to your target is available from from our website, www.qnx.com.

• Supported display hardware

• Specifications for your display hardware

• the most recent Wfdcfg archive (e.g., src-lib-wfdcfg-2014-07-31-Moonrak

er-B556.tgz); archives that are specific for your target may be available

© 2014, QNX Software Systems Limited 11

http://www.qnx.com/
http://www.qnx.com/
http://www.qnx.com/account/login.html

Chapter 3
Introduction to the Wfdcfg library

The Wfdcfg library provides the modes and attributes of your display hardware to your

display driver and Screen.

Wfdcfg Library

Your display driver (WFD driver) is the primary user of the Wfdcfg library, but the

composition manager component in Screen also uses the modes and attributes from

the Wfdcfg library.

The composition manager accesses the OpenWFD modes and attributes from the

Wfdcfg library through the WFD driver. Based on this information, the composition

manager tells the WFD driver which OpenWFD mode to use.

For the most part, it'll be your WFD driver that interfaces with the Wfdcfg library.

Examples of what your driver can do through the Wfdcfg library are:

• Apply timing parameters

• Control pixel clock frequency

• Provide output formats

• Control backlighting in Wfdcfg library through callbacks

What your WFD driver can control or provide through the Wfdcfg library is dependent

on your specific display hardware.

Display
hardware

Composition Manager

Display driver
(OpenWF)

Wfdcfg

Screen

OpenWFD modes?

Extended Display Identification Data (EDID)

modes
(e.g., timing)

Figure 1: How Wfdcfg interacts with Screen

Some WFD drivers also probe the display hardware for extended display identification

data (EDID). This information is consolidated and provided to the composition manager.

© 2014, QNX Software Systems Limited 13

Chapter 4
Getting the source code

The files from the compressed Wfdcfg archive are extracted onto your host.

Compressed Wfdcfg archive (.tgz) file

The source code for the Wfdcfg library is provided as a compressed archive (.tgz file

format). This compressed archive usually contains a single .tar archive.

The Wfdcfg archive is named according to the following convention:

src-lib-wfdcfg-platform-build_date-branch-build_number.file_format

where the variables in the filename are as follows:

DescriptionFile element

This variable is optional. If your archive is specific to your platform,

you may see the platform identified in the filename.

platform

Date and time stamp in the format of yyyy-mm-ddbuild_date

The repository branchbranch

The identification number of the particular buildbuild_number

The identification number of the particular buildbuild_number

file_format
• tgz for the compressed archive

• tar archive

For example, a Wfdcfg archive can be named: src-lib-wfdcfg-2014-07-31-

Moonraker-B556.tgz or src-lib-wfdcfg-imx6x-evk-wfdcfg-2014-07-

31-Moonraker-B556.tgz

Extracting files

You can extract the files from the Wfdcfg archive to a directory of your choice. The

archive is self-contained and can be installed anywhere. The directory where you

extract the Wfdcfg archive will be referred to as wfdcfg_working_dir.

From the command line on your development host:

1. Go to your wfdcfg_working_dir.

cd wfdcfg_working_dir

© 2014, QNX Software Systems Limited 15

2. Extract the files from the Wfdcfg archive using the tar command.

For more information on the tar command, refer to the Utilities Reference.

tar -xvf wfdcfg-archive.tgz

If you are on a Windows development host, and you are not using the tar

utility, ensure that you are using a compatible file archiver that properly

handles symbolic links.

You can manually copy the appropriate files if you find an issue with your

symbolic links. For a list of symbolic links in the archive, you can use a

command similar to this:

tar -tvf wfdcfg_archive.tgz | grep ^l

After you've extracted the files from the wfdcfg archive, the resulting directory structure

looks similar to this:

src

wfdcfg_working_dir

BUILD.txt
Makefile

wfdcfg.h

lib

nto public

wfdqnx

qconf-override.mk

stage-sh

Makefile

wfdcfgMakefile

common.mk
Makefile
wfdcfg.c

16 © 2014, QNX Software Systems Limited

Getting the source code

If you have a platform-specific archive, you may see some slight differences

in the directory structure.

Figure 2: wfdcfg archive directory structure.

You'll update the files wfdcfg.h and wfdcfg.c to add extensions that are specific

for your display hardware. Refer to Updating Wfdcfg source (adding extensions) (p.

23) for more information on how to modify the Wfdcfg library.

BUILD.txt provides you with some simple directions on how to build your source.

stage-sh is a helper script that creates a stage area from where you can build your

source. Refer to Building the Wfdcfg library (p. 27) for information on how to build

the Wfdcfg library.

© 2014, QNX Software Systems Limited 17

Chapter 5
Setting timing parameters

Timing is mandatory component of a mode.

The timing parameters are related to the horizontal and vertical blanking intervals.

These intervals refer to a part of the process of displaying images on a computer

monitor or television screen via raster scanning.

The horizontal blanking interval occurs once per line of image information and is

composed of: a horizontal sync pulse, a front porch, and a back porch.

The vertical blanking interval is the time betweeen the end of an active image and the

start of the next; it is composed of: a vertical sync pulse, a front porch, and a back

porch.

Timing parameters

You'll define the timing parameters based on your display hardware using the wfd

cfg_timing structure in Wfdcfg. You'll need the following timing parameters to be

set:

pixel_clock_kHz

The frequency (in kHz) that pixels are transmitted at. The clock remains

active throughout the entire horizontal and vertical blanking intervals, even

when pixels are not being transmitted.

hpixels

The width (in pixels) of the display. Together with vlines, hpixels

indicates the resolution of the display.

vlines

The height (in lines) of the display. Together with hpixels, vlines

indicates the resolution of the display.

hsw

The width of the horizontal synchronization pulse. This width refers to the

amount of time that the horizontal sync pulse is active. The horizontal sync

pulse is transmitted at the beginning of each video scanline. Its purpose is

to keep start of the horizontal video scanline in the display in sync with the

video source that created it. That is, when the scanline reaches the right

side of your display, the horizontal sync pulses indicates that it is time to

© 2014, QNX Software Systems Limited 19

return and start the next scanline at the left side of the display again. The

width of this horizontal synchronization pulse is measured in pixels.

vsw

The vertical synchronization pulse width. This width refers to the amount of

time that the vertical sync pulse is active. The vertical sync pulse is

transmitted at the beginning of each field and frame. Its purpose is to ensure

that the display scan starts at the top of the picture at the right time. That

is, when the last scanline on the bottom of the display has been reached,

the display must return and start the next scanline back at the top of the

screen for the next vertical cycle. The width of this vertical synchronization

pulse is measured in lines.

hfp

The horizontal front porch is the amount of time between the end of the

horizontal active time and the start of the horizontal synchronization pulse.

This time allows for the image to settle and to prevent the image from

interfering with sync extraction. The horizontal front porch is measured in

pixels.

vfp

The vertical front porch is the amount of time between the end of the vertical

active time and the start of the vertical synchronization pulse. The vertical

front porch is measured in lines.

hbp

The horizontal back porch is the amount of time between the end of the

horizontal sync pulse and the start of the next horizontal active time. The

horizontal back porch is measured in pixels.

vbp

The vertical back porch is the amount of time between the end of the vertical

sync pulse and the start of the next vertical active time. The vertical back

porch is measured in lines.

flags

A bitmask of wfdcfg_flags. You can use this field to configure settings

that are supported by your display driver. Appropriate settings for this flag

are likely based on your display and/or bridge specifications.

20 © 2014, QNX Software Systems Limited

Setting timing parameters

Setting timing parameters

The timing parameters that Wfdcfg requires are available in, or can be derived from,

the product specfication of your display hardware. Below is a table of typical timings

based on display resolutions and refresh rates:

vbphbpvfphfpvswhswvlineshpix

els

pix

el_clock_kHz

Display

796324107240080029760800x400 @ 60 Hz

2315234841047681024635001024x768 @ 60

Hz (CVT)

292163887128102412801090001280x1024 @ 60

Hz (CVT)

36148488544108019201485001080p @ 60 Hz

(1920x1080)

202205110540720128074250720p @ 60 Hz

(1280x720)

You'll need to configure these timing parameters, based on your product specification,

in your Wfdcfg source (wfdcfg.c) within a mode structure. The mode may also

include extensions, but the timing is the most important part. It's possible that in the

following circumstances, you may have multiple entries in your mode array:

• when you have more than one physical display connected

• when your display supports multiple modes

• when you're switching between displays, but only have one connected at a time

For example,

struct mode {
 const struct wfdcfg_timing timing;
 const struct wfdcfg_keyval *ext_list;
};

static const struct mode sample_timings[] = {
 {
 // 800x480 @ 60 Hz
 .timing = {
 .pixel_clock_kHz = 29760,
 .hpixels = 800, .hfp= 24, .hsw= 72, .hbp= 96, // 992 total
 .vlines = 480, .vfp= 3, .vsw= 10, .vbp= 7, // 500 total
 .flags = WFDCFG_INVERT_HSYNC,
 },
 .ext_list = (const struct wfdcfg_keyval[]){
 { "ext_1_example", .i = 1 },
 { "ext_2_example", .i = 2 },
 { NULL } // marks end of list
 },
 },
 {

© 2014, QNX Software Systems Limited 21

 // 1024x768 @ 60 Hz (CVT)
 .timing = {
 .pixel_clock_kHz = 63500,
 .hpixels = 1024, .hfp= 48, .hsw=104, .hbp=152, // 1328 total
 .vlines = 768, .vfp= 3, .vsw= 4, .vbp= 23, // 798 total
 .flags = WFDCFG_INVERT_VSYNC,
 },
 .ext_list = NULL,
 },
 {
 // 1280x1024 @ 60 Hz (CVT)
 .timing = {
 .pixel_clock_kHz = 109000,
 .hpixels = 1280, .hfp= 88, .hsw=128, .hbp=216, // 1712 total
 .vlines = 1024, .vfp= 3, .vsw= 7, .vbp= 29, // 1063 total
 .flags = WFDCFG_INVERT_VSYNC,
 },
 .ext_list = NULL,
 },
 {
 // 1080p @ 60 Hz (1920x1080)
 .timing = {
 .pixel_clock_kHz = 148500,
 .hpixels = 1920, .hfp= 88, .hsw= 44, .hbp=148, // 2200 total
 .vlines = 1080, .vfp= 4, .vsw= 5, .vbp= 36, // 1125 total
 .flags = 0,
 },
 .ext_list = NULL,
 },
 {
 // 720p @ 60 Hz (1280x720)
 .timing = {
 .pixel_clock_kHz = 74250,
 .hpixels = 1280, .hfp=110, .hsw= 40, .hbp=220, // 1650 total
 .vlines = 720, .vfp= 5, .vsw= 5, .vbp= 20, // 750 total
 .flags = 0,
 },
 .ext_list = NULL,
 },
 {
 // marks end of list
 .timing = {.pixel_clock_kHz = 0},
 },
};

22 © 2014, QNX Software Systems Limited

Setting timing parameters

Chapter 6
Updating Wfdcfg source (adding extensions)

You may want to update your Wfdcfg source if your display supports specific options

that you want to control.

For most part, other than the timing parameters, there's no need to update the Wfdcfg

source. However, some displays on some platforms may support specific options that

require extensions on the structures or implementation of callbacks. Not all display

drivers support the use of callback functions.

Extensions are added by defining an array of wfdcfg_keyval structures. Each

extension is identified through a name (key) and data that is associated with it.

struct wfdcfg_keyval {
 const char *key; /**< Identifier of extension */
 long i; /**< Data associated to extension */
 void *p; /**< Data associated to extension */
};

Usually, when there are extensions that are platform-specific, these extensions are

declared in a separate header file that is not wfdcfg.h. Conventionally, the header

file is named wfdcfg_platform.h where platform refers to the platform of your

target hardware.

Declaring extensions

If your display can support additional configuration or settings, then you'll declare

these extensions as constants in the source header file. Extensions can be added for:

• devices (wfdcfg_device)

• ports(wfdcfg_port)

• modes (wfdcfg_timing)

• mode lists (wfdcfg_mode_list)

Callback functions

An extension that provides the display driver a function to call when

appropriate. An extension for a callback function needs declaration of the

following:

• the name of the extension

• the prototype of the callback function

© 2014, QNX Software Systems Limited 23

For example, the following is a declaration of a callback function extension.

This function initializes the port and is to be called when the wfdcfg_port

is created.

/**
 * Port initialisation. If this port extension exists, the WFD driver
 * will call the given function when the port is created.
 * .p (of is a pointer to a function of type wfdcfg_ext_fn_port_init_t
 * (which returns EOK on success or another errno code on failure)
 * .i must be zero
 */
#define WFDCFG_EXT_FN_PORT_INIT "port_init"
typedef int (wfdcfg_ext_fn_port_init_t)(struct wfdcfg_port*);

Attributes

An extension that provides information for the configuration of the display

hardware.

The following are examples of such an extension:

/**
 * The HSP clock frequency in kHz. This is a device extension.
 * .p must be NULL
 * .i gives the clock speed in kHz.
 */
#define WFDCFG_EXT_HSP_CLOCK_KHZ "hsp_clock_kHz"

/**
 * Specifies the output format. This is a port extension.
 * .p must be NULL
 * .i is a value from enum imx5x_output_formats (default: RGB888)
 */
#define WFDCFG_EXT_OUTPUT_FORMAT "output_format"
enum imx5x_output_formats {
 /* 24 bits (use for 18-bit SPWG too) */
 WFDCFG_OUTPUT_FORMAT_RGB888 = 24,

 /* 18 bits (parallel LCD panels, not LVDS) */
 WFDCFG_OUTPUT_FORMAT_RGB666_PACKED = 18,

 /* 18 bits (LVDS) */
 WFDCFG_OUTPUT_FORMAT_RGB666_SPWG18 = 19,

 /* 16 bits (parallel LCD panels) */
 WFDCFG_OUTPUT_FORMAT_RGB565 = 16,
};

Defining extensions

Definitions of the extensions are usually added to the source file wfdcfg.c. However,

you can define them where you see fit, as long as you maintain binary compatibility.

It's generally expected that there are separate lists for the different types of extensions.

That is, you'll have one list for each of device, port, mode, and mode list extensions.

The following are examples of different extension definitions:

static const struct wfdcfg_keyval device_exts[] = {
 { WFDCFG_EXT_HSP_CLOCK_KHZ, .i = 200000 },
 { NULL }, // marks end of list
};

24 © 2014, QNX Software Systems Limited

Updating Wfdcfg source (adding extensions)

static int port_init(struct wfdcfg_port*);

static const struct wfdcfg_keyval port_exts[] = {
 { WFDCFG_EXT_FN_PORT_INIT, .p = WFDCFG_FNPTR(
 &port_init, wfdcfg_ext_fn_port_init_t*) },
 { NULL }, // marks end of list
};

static int
port_init(struct wfdcfg_port *port)
{
 (void)port;
 return EOK;
}

static const struct mode modes[] = {
 {
 // 800x480 @ 60.49 Hz
 .timing = {
 .pixel_clock_kHz = 32264,
 .hpixels = 800, .hfp= 60, .hsw=124, .hbp= 32, // 1016 total
 .vlines = 480, .vfp= 33, .vsw= 2, .vbp= 10, // 525 total
 .flags = WFDCFG_INVERT_VSYNC | WFDCFG_INVERT_HSYNC,
 },
 .ext_list = NULL,
 },
 { .timing = { .pixel_clock_kHz = 0 } } // marks end of list
};

© 2014, QNX Software Systems Limited 25

Chapter 7
Building the Wfdcfg library

After extracting the files from the Wfdcfg archive and modifying your source, you're

ready to rebuild the Wfdcfg library.

Remember that the directory where you extracted the Wfdcfg archive is referred to as

wfdcfg_working_dir.

Building from an existing stage area

If you've already configured a stage area, then:

1. From the command line on your development host, go to the directory where you

unzipped your Wfdcfg archive.

cd wfdcfg_working_dir

2. Ensure your environment is clean.

make clean

3. Use the make command to build.

make hinstall install

Your stage directory should now be populated with the library that you've just built.

Building without an existing stage area

A stage area is a directory location that mimics the local installation path(s) that you

would find under the QNX_TARGET variable of your development host. The stage area

is built up based on the content from the tree when make hinstall (headers) or

make install (binaries) is performed.

The stage area directory path is selected by setting the INSTALL_ROOT_ntomakefile

variable to the base path where your headers and libraries are to be installed. You also

need to set the USE_INSTALL_ROOT macro. This macro tells the makefiles to search

the INSTALL_ROOT_nto directory tree when the compiler and linker are seaching

for headers and libraries. It is cumbersome to set these values each time you perform

an installation, so the build environment facilitates the setting of these variables

through the use of a single override makefile that is specified using the

QCONF_OVERRIDE environment variable.

© 2014, QNX Software Systems Limited 27

You can use the stage-sh script that is included in the Wfdcfg archive to create a

stage area for you.

1. From the command line, go to your the directory where you unzipped your Wfdcfg

archive.

cd wfdcfg_working_dir

2. Run the provided script to create a stage area for building your source.

stage-sh

3. From within the shell created by stage-sh, ensure your environment is clean.

make clean

4. From within the shell created by stage-sh, use the make command to build.

make hinstall install

The stage directory that was created by running the stage-sh script should now

be populated with the library that you've just built.

For more information on building OS source, refer to Building Embedded Systems, or

to our community forums from our website, www.qnx.com.

28 © 2014, QNX Software Systems Limited

Building the Wfdcfg library

http://www.qnx.com/account/login.html

Chapter 8
Updating your target

After you've completed updating and building your Wfdcfg library, you are ready to

rebuild your QNX IFS and transfer it to your target.

Updating your buildfile

1. Navigate to the buildfile for your BSP under your bsp_working_dir:

src

bsp_working_dir

images install prebuilt

boards

build

hardware

target

Figure 3: buildfile

2. Add the Wfdcfg library to the buildfile.

/usr/lib/graphics/platform/libwfdcfg-sample.so=graphics/platform/libwfdcfg-sample.so

Acceptable paths for your built Wfdcfg library are:

• $GRAPHICS_ROOT

• Your default library search path

For more information on changing buildfiles, refer to Building Embedded Systems, or

to the BSP User Guide. The BSP User Guide that's specific to your target is available

from from our website, www.qnx.com.

© 2014, QNX Software Systems Limited 29

http://www.qnx.com/account/login.html

Building your QNX IFS

1. Go to the root directory for your BSP (bsp_working_dir).

2. Ensure your environment is clean.

make clean

3. Use the make to build your QNX IFS.

make

For more information on building your QNX IFS, refer to Building Embedded Systems,

or to the BSP User Guide. The BSP User Guide that's specific to your target is available

from from our website, www.qnx.com.

Transferring the QNX IFS to your target

From Building Embedded Systems, follow the instructions on how to transfer your

QNX IFS to your target.

30 © 2014, QNX Software Systems Limited

Updating your target

http://www.qnx.com/account/login.html

Chapter 9
Configuring Screen for your display

You need to configure your display in graphics.conf and restart Screen.

Configuring wfd device section

In your configuration file (graphics.conf), on your target, you need to specify the

Wfdcfg library (or libraries) and any parameters related to your display device. In the

wfd device section, ensure that you have the appropriate libraries specified for your

display. For example,

 begin wfd device 1
 wfd-dlls = libwfdcfg-imx6x-okaya.so libimx6xCSCgamma-generic.so libWFDimx6x.so
 grpx0 = lcd
 grpx1 = hdmi
 grpx2 = hdmi
 video-layer0 = lcd
 video-layer1 = hdmi
 end wfd device

You need to configure one wfd device section for each display you are using.

For more information on configuring Screen, refer to the Screen Developer's Guide.

Restarting Screen

Ensure the following:

• Your target hardware is running QNX Neutrino RTOS.

• On your target, you can run a shell and commands such as pidin.

To apply your new display configuration:

1. On your target, from the command line, stop screen by using the following

command:

slay screen

You can verify that the screen process is no longer running by using the following

command:

pidin ar

2. If not already set, ensure that your GRAPHICS_ROOT and LD_LIBRARY_PATH are

set to correct paths. For more information on setting these environment variables,

refer to the Screen Developer's Guide.

© 2014, QNX Software Systems Limited 31

3. Restart screen.

screen

4. Verify that there were no warnings generated from your new configuration by using

the following command:

sloginfo

5. Use any of the available sample Screen applications to verify that your display has

been correctly integrated for use with your target. For example:

sw-vsync

For more information on applying your Screen, configuration, refer to the Screen

Developer's Guide.

32 © 2014, QNX Software Systems Limited

Configuring Screen for your display

Chapter 10
OpenWF Display Configuration Library Reference

The Wfdcfg library provides the modes and attributes of your display hardware to your

display driver and to Screen. Your display driver (WFD driver) is the primary user of

the Wfdcfg library, but the composition manager component in Screen also uses the

modes and attributes from the Wfdcfg library.

© 2014, QNX Software Systems Limited 33

Definitions in wfdcfg.h

Preprocessor macro definitions for the wfdcfg.h header file in the library.

Definitions:

#define WFDCFG_EXT_PHYS_SIZE_MM "phys_size_mm"

A port extension that describes the physical size (in millimetres) of the display port.

Members of wfdcfg_keyval structure used for this extension are used as follows:

• p: pointer to an array of float (float size[2]={width, height};)

• i: set to 0

#define WFDCFG_EXT_FN_SET_POWER_MODE "set_power_mode"

A port extension function that's called to set the power mode on a port.

Members of wfdcfg_keyval structure used for this extension are used as follows:

• p: pointer to the function of type wfdcfg_ext_fn_set_power_mode_t

• i: set to 0

Library:

libwfdcfg

34 © 2014, QNX Software Systems Limited

OpenWF Display Configuration Library Reference

WFDCFG_FNPTR(FN, TYP)

Validate the type of a function pointer at compile time.

Synopsis:

#include <wfdqnx/wfdcfg.h>

WFDCFG_FNPTR(FN,TYP)

Arguments:

FN

A function pointer that you're validating

TYP

A function type that you're validating your function pointer against

Library:

libwfdcfg

Description:

This macro is used to validate that whether the specified function pointer (FN) is the

same type as the specified function type (TYP).

Returns:

The function pointer FN, if it is compatible with the function type specified; 0

otherwise.

© 2014, QNX Software Systems Limited 35

WFDCFG_FNPTR(FN, TYP)

wfdcfg_device

Opaque data type representing an OpenWF device

Synopsis:

struct wfdcfg_device;

Library:

libwfdcfg

Description:

This device is an abstraction of a display controller that supports one or more ports.

The device may be associated with device-extensions.

36 © 2014, QNX Software Systems Limited

OpenWF Display Configuration Library Reference

wfdcfg_device_create()

Create a wfdcfg device.

Synopsis:

#include <wfdqnx/wfdcfg.h>

int wfdcfg_device_create(struct wfdcfg_device **device,
 int deviceid,
 const struct wfdcfg_keyval *opts)

Arguments:

device

A handle to the device that is to be created

deviceid

The identification number of the OpenWF device

opts

An array of optional parameters that is terminated by .key=NULL

Library:

libwfdcfg

Description:

This function creates one device. You must create at least one device. Failure to create

a device results in the OpenWF display driver reporting an error.

Returns:

0 if device was successfully created; *device is set to an opaque pointer. A code

from errno.h if device failed to be created; *device remains unchanged. Possible

error codes include:

• ENOMEM: Unable to allocate a device

• ENOENT: Invalid/Unknown device ID

© 2014, QNX Software Systems Limited 37

wfdcfg_device_create()

wfdcfg_device_destroy()

Destroy a wfdcfg device.

Synopsis:

#include <wfdqnx/wfdcfg.h>

void wfdcfg_device_destroy(struct wfdcfg_device *device)

Arguments:

device

A handle to the device to be destroyed; if NULL, no action will be taken

Library:

libwfdcfg

Description:

Memory allocated that was allocated by create wfdcfg_device_create() is released. The

device's extension pointers are not valid after calling this function.

Returns:

Nothing.

38 © 2014, QNX Software Systems Limited

OpenWF Display Configuration Library Reference

wfdcfg_device_get_extension()

Retrieve an extension identified by a key (string) from a device.

Synopsis:

#include <wfdqnx/wfdcfg.h>

const struct wfdcfg_keyval* wfdcfg_device_get_extension(
 const struct wfdcfg_device *device,
 const char *key)

Arguments:

device

A handle to the device whose extension(s) you are retrieving

key

Identifier of extension to retrieve

Library:

libwfdcfg

Description:

The extension is valid between the time you create and destroy the device.

Returns:

Pointer to wfdcfg_keyval if the extension was found; NULL if the extension was not

found. It's considered acceptable for a device to have no extensions.

© 2014, QNX Software Systems Limited 39

wfdcfg_device_get_extension()

wfdcfg_ext_fn_set_power_mode_t

A port extension function that's called to set the power mode on a port.

Synopsis:

#include <wfdqnx/wfdcfg.h>

typedef int(wfdcfg_ext_fn_set_power_mode_t)
 (struct wfdcfg_port *port,
 enum wfdcfg_power_mode power_mode);

Arguments:

port

A handle to the display port on which the power mode is to be set

power_mode

The power mode (of type wfdcfg_power_mode) that the display port is to be

set to

Library:

libwfdcfg

Description:

Returns:

A code from @c errno.h; possible codes include:

• EINVAL: when a invalid power mode is passed

• EOK: on success

40 © 2014, QNX Software Systems Limited

OpenWF Display Configuration Library Reference

wfdcfg_flags

Flags used in the flags field of wfdcfg_timing structure.

Synopsis:

#include <wfdqnx/wfdcfg.h>

 enum wfdcfg_flags{
 WFDCFG_INVERT_HSYNC =_b(0)
 WFDCFG_INVERT_VSYNC =_b(1)
 WFDCFG_INVERT_DATA_EN =_b(2)
 WFDCFG_INVERT_CLOCK =_b(3)
 WFDCFG_INVERT_DATA =_b(4)
 WFDCFG_INVERT_HV_SYNC_RF =_b(5)
 WFDCFG_INTERLACE =_b(8)
 WFDCFG_DOUBLESCAN =_b(9)
 WFDCFG_DOUBLECLOCK =_b(10)
 WFDCFG_PREFERRED =_b(31)
};

Data:

WFDCFG_INVERT_HSYNC

Use an active-high horizontal sync pulse.

WFDCFG_INVERT_VSYNC

Use an active-high vertical sync pulse.

WFDCFG_INVERT_DATA_EN

Invert the "data enable" signal.

WFDCFG_INVERT_CLOCK

Invert the pixel clock signal.

WFDCFG_INVERT_DATA

Invert data.

WFDCFG_INVERT_HV_SYNC_RF

Drive HSYNC and VSYNC on the opposite edge of the pixel clock.

WFDCFG_INTERLACE

© 2014, QNX Software Systems Limited 41

wfdcfg_flags

Use interlacing.

WFDCFG_DOUBLESCAN

Enable scanline doubling.

WFDCFG_DOUBLECLOCK

Use CEA-861-D, double clock modes.

WFDCFG_PREFERRED

Use as default mode.

Library:

libwfdcfg

Description:

42 © 2014, QNX Software Systems Limited

OpenWF Display Configuration Library Reference

wfdcfg_keyval

Array(s) of this structure are used to allow for extensions.

Synopsis:

struct wfdcfg_keyval {
 const char * key ;
 long i ;
 void * p ;
};

Data:

const char * key

Identifier of extension.

long i

Data associated with extension.

void * p

Data associated with extension.

Library:

libwfdcfg

Description:

Extensions can exist on each of the following:

• device: access these via wfdcfg_device_get_extension() (p. 39).

• port: access these via wfdcfg_port_get_extension() (p. 53).

• mode: access these via wfdcfg_mode_get_extension() (p. 44).

• mode_list: access these via wfdcfg_mode_list_get_extension().

Several Wfdcfg library functions take this structure as an optional argument; certain

drivers pass data to the Wfdcfg library using this interface.

The i and p members of this structure depend on the key (when part of an array,

an element with key==NULL marks the end of that array). Unused i and/or p fields

should be set to 0 or NULL.

© 2014, QNX Software Systems Limited 43

wfdcfg_keyval

wfdcfg_mode_get_extension()

Retrieve an extension from the specified mode.

Synopsis:

#include <wfdqnx/wfdcfg.h>

const struct wfdcfg_keyval* wfdcfg_mode_get_extension(
 const struct wfdcfg_timing *mode,
 const char *key)

Arguments:

mode

A handle to the mode (timing) whose extension(s) you are retrieving

key

Identifier of extension to retrieve

Library:

libwfdcfg

Description:

Returns:

Pointer to wfdcfg_keyval if the extension was found; NULL if the extension was not

found. It's considered acceptable for a list to have no extensions.

44 © 2014, QNX Software Systems Limited

OpenWF Display Configuration Library Reference

wfdcfg_mode_list

Opaque data type representing a list of video modes

Synopsis:

struct wfdcfg_mode_list;

Library:

libwfdcfg

Description:

A mode is a set of attributes and extensions that can be set on a display port.

© 2014, QNX Software Systems Limited 45

wfdcfg_mode_list

wfdcfg_mode_list_create()

Create a list of video modes associated with specified port.

Synopsis:

#include <wfdqnx/wfdcfg.h>

int wfdcfg_mode_list_create(struct wfdcfg_mode_list **list,
 const struct wfdcfg_port *port,
 const struct wfdcfg_keyval *opts)

Arguments:

list

A handle to the list to be created

port

The port associated with the list to be created

opts

An array of optional parameters that is terminated by .key=NULL

Library:

libwfdcfg

Description:

Once created, use wfdcfg_mode_list_get_next() to retrieve mode (timing) entries in

the list.

Returns:

0 if port was successfully created; *list is set to an opaque pointer. A code from

errno.h if device failed to be created; *list remains unchanged. Possible error codes

include:

• ENOMEM: Unable to allocate a list

• ENOENT: Invalid port

46 © 2014, QNX Software Systems Limited

OpenWF Display Configuration Library Reference

wfdcfg_mode_list_destroy()

Destroy a list of video modes.

Synopsis:

#include <wfdqnx/wfdcfg.h>

void wfdcfg_mode_list_destroy(struct wfdcfg_mode_list *list)

Arguments:

list

A handle to the list to be destroyed; if NULL, no action will be taken.

Library:

libwfdcfg

Description:

Memory allocated that was allocated by create wfdcfg_mode_list_create() is released.

The list's extension pointers are not valid after calling this function.

Returns:

Nothing.

© 2014, QNX Software Systems Limited 47

wfdcfg_mode_list_destroy()

wfdcfg_mode_list_get_next()

Retrieve a mode (timing) from the specified list of video modes.

Synopsis:

#include <wfdqnx/wfdcfg.h>

const struct wfdcfg_timing* wfdcfg_mode_list_get_next(
 const struct wfdcfg_mode_list *list,
 const struct wfdcfg_timing *prev_timing)

Arguments:

list

A handle to the list to retrieve the mode from

prev_timing

A handle to the mode (timing) in the list that precedes the one to be retrieved

Library:

libwfdcfg

Description:

Timing is mandatory component of a mode. The mode may also include extensions.

If prev_timing is NULL, this function returns the first mode (timing) in the specified

list. Otherwise, this function returns the next mode (timing) in the list after

prev_timing.

Returns:

A pointer to the mode (wfdcfg_timing) in the list that follows the argument

prev_timing; a return value of NULL indicates that the end of the list has been

reached.

48 © 2014, QNX Software Systems Limited

OpenWF Display Configuration Library Reference

wfdcfg_port

Opaque data type representing an OpenWF display port

Synopsis:

struct wfdcfg_port;

Library:

libwfdcfg

Description:

This port is usually associated with an ID and a list of modes that include timing and

optional associated mode-extensions.

© 2014, QNX Software Systems Limited 49

wfdcfg_port

wfdcfg_port_create()

Create a wfdcfg port.

Synopsis:

#include <wfdqnx/wfdcfg.h>

int wfdcfg_port_create(struct wfdcfg_port **port,
 const struct wfdcfg_device *device,
 int portid,
 const struct wfdcfg_keyval *opts)

Arguments:

port

A handle to the port that is to be created

device

A handle to the device that is associated with the port to be created

portid

The identification number of the OpenWFD port

opts

An array of optional parameters that is terminated by .key=NULL

Library:

libwfdcfg

Description:

There must be at least one port created. Otherwise, the OpenWF display driver will

report an error.

Returns:

0 if port was successfully created; *port is set to an opaque pointer. A code from

errno.h if device failed to be created; *port remains unchanged. Possible error codes

include:

50 © 2014, QNX Software Systems Limited

OpenWF Display Configuration Library Reference

• ENOMEM: Unable to allocate a port

• ENOENT: Invalid/Unknown port ID

© 2014, QNX Software Systems Limited 51

wfdcfg_port_create()

wfdcfg_port_destroy()

Destroy a wfdcfg port.

Synopsis:

#include <wfdqnx/wfdcfg.h>

void wfdcfg_port_destroy(struct wfdcfg_port *port)

Arguments:

port

A handle to the device to be destroyed; if NULL, no action will be taken

Library:

libwfdcfg

Description:

Memory allocated that was allocated by create wfdcfg_port_create() is released. The

port's extension pointers are not valid after calling this function.

Returns:

Nothing.

52 © 2014, QNX Software Systems Limited

OpenWF Display Configuration Library Reference

wfdcfg_port_get_extension()

Retrieve an extension identified by a key (string) from a port.

Synopsis:

#include <wfdqnx/wfdcfg.h>

const struct wfdcfg_keyval* wfdcfg_port_get_extension(
 const struct wfdcfg_port *port,
 const char *key)

Arguments:

port

A handle to the port whose extension(s) you are retrieving

key

Identifier of the extension to retrieve

Library:

libwfdcfg

Description:

The extension is valid between the time you create and destroy the port.

Returns:

Pointer to wfdcfg_keyval if the extension was found; NULL if the extension was not

found. It's considered acceptable for a port to have no extensions.

© 2014, QNX Software Systems Limited 53

wfdcfg_port_get_extension()

wfdcfg_power_mode

Power modes for display.

Synopsis:

#include <wfdqnx/wfdcfg.h>

 enum wfdcfg_power_mode{
 WFDCFG_POWER_MODE_OFF = 0x7680
 WFDCFG_POWER_MODE_SUSPEND = 0x7681
 WFDCFG_POWER_MODE_LIMITED_USE = 0x7682
 WFDCFG_POWER_MODE_ON = 0x7683
};

Data:

WFDCFG_POWER_MODE_OFF

No power - frames lost.

WFDCFG_POWER_MODE_SUSPEND

Faster recovery than WFDCFG_POWER_MODE_OFF.

WFDCFG_POWER_MODE_LIMITED_USE

Frames maintained in hardware.

WFDCFG_POWER_MODE_ON

Fully operational.

Library:

libwfdcfg

Description:

Some power modes may not be possible for your specific display hardware. Recovery

time to WFDCFG_POWER_MODE_ON decreases from WFDCFG_POWER_MODE_OFF to

WFDCFG_POWER_MODE_SUSPEND to WFDCFG_POWER_MODE_LIMITED_USE and the

power consumption increases.

54 © 2014, QNX Software Systems Limited

OpenWF Display Configuration Library Reference

wfdcfg_timing

Structure that describes the video timing parameters for the display driver settings.

Synopsis:

struct wfdcfg_timing {
 _Uint32t pixel_clock_kHz ;
 _Uint32t hpixels ;
 _Uint32t vlines ;
 _Uint16t hsw ;
 _Uint16t vsw ;
 _Uint16t hfp ;
 _Uint16t vfp ;
 _Uint16t hbp ;
 _Uint16t vbp ;
 _Uint32t flags ;
};

Data:

_Uint32t pixel_clock_kHz

Frequency (in kHz) that pixels are transmitted at.

_Uint32t hpixels

Width (in pixels) of the display.

_Uint32t vlines

Height (in lines) of the display.

_Uint16t hsw

Width (in pixels) of horizontal sync pulse.

_Uint16t vsw

Width (in lines) of vertical sync pulse.

_Uint16t hfp

Horizontal front porch (in pixels)

_Uint16t vfp

Vertical front porch (in lines)

_Uint16t hbp

© 2014, QNX Software Systems Limited 55

wfdcfg_timing

Horizontal back porch (in pixels)

_Uint16t vbp

Vertical back porch (in lines)

_Uint32t flags

Bitmask of wfdcfg_flags values.

Library:

libwfdcfg

56 © 2014, QNX Software Systems Limited

OpenWF Display Configuration Library Reference

	Table of Contents
	About OpenWF Display Configuration
	Typographical conventions
	Technical support

	Before you begin
	Introduction to the Wfdcfg library
	Getting the source code
	Setting timing parameters
	Updating Wfdcfg source (adding extensions)
	Building the Wfdcfg library
	Updating your target
	Configuring Screen for your display
	OpenWF Display Configuration Library Reference
	Definitions in wfdcfg.h
	WFDCFG_FNPTR(FN, TYP)
	wfdcfg_device
	wfdcfg_device_create()
	wfdcfg_device_destroy()
	wfdcfg_device_get_extension()
	wfdcfg_ext_fn_set_power_mode_t
	wfdcfg_flags
	wfdcfg_keyval
	wfdcfg_mode_get_extension()
	wfdcfg_mode_list
	wfdcfg_mode_list_create()
	wfdcfg_mode_list_destroy()
	wfdcfg_mode_list_get_next()
	wfdcfg_port
	wfdcfg_port_create()
	wfdcfg_port_destroy()
	wfdcfg_port_get_extension()
	wfdcfg_power_mode
	wfdcfg_timing

