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About This Guide

The Adaptive Partitioning User's Guide will help you configure adaptive partitioning

to divide system resources between competing processes.

The following table may help you find information quickly in this guide:

Go to:For information on:

What is Adaptive Partitioning? (p. 9)Adaptive partitioning in general

Using the Thread Scheduler (p. 15)How the thread scheduler works

Setting Up and Using the Adaptive

Partitioning Thread Scheduler (p. 31)

Setting up and using the thread scheduler

Controlling Resources Using the Thread

Scheduler (p. 37)

Using the adaptive partitioning

architecture to solve different facets of

the problem of controlling the

consumption of resources in a system

Considerations for the Thread Scheduler

(p. 39)

Knowing when and how to use the thread

scheduler

Security for Scheduler Partitions (p. 49)Security considerations when partitioning

Testing and Debugging (p. 53)Checking for and fixing problems

Sample Buildfile (p. 59)Setting up an OS image

Frequently Asked Questions: Adaptive

Partitioning Thread Scheduler (p. 63)

Frequently Asked Questions about the

thread scheduler

Glossary (p. 93)Terminology used in this guide
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Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if( stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

6 © 2014, QNX Software Systems Limited
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Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

© 2014, QNX Software Systems Limited 7
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Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.
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Chapter 1
What is Adaptive Partitioning?

As described in the Adaptive Partitioning chapter of the System Architecture guide,

a partition is a virtual wall that separates competing processes or threads.

© 2014, QNX Software Systems Limited 9



What are partitions and what is adaptive partitioning?

Partitions let the system designer allocate minimum amounts of system resources to

each set of processes or threads. The primary resource considered is CPU time, but

can also include any shared resource, such as memory and file space (disk or flash).

QNX Neutrino adaptive partitioning currently supports only the allocation of

CPU time via the thread scheduler (p. 13).

Traditional partitions are static and work optimally when there's little or no dynamic

deployment of software; in dynamic systems, static partitions can be inefficient.

Adaptive partitions are more flexible because:

• You can dynamically add and configure them.

• They behave as a global hard real time scheduler under normal load, but can

continue to provide minimal interrupt latencies when the system is fully loaded.

• They distribute a partition's unused resources among partitions that require

additional resources when the system isn't loaded.

You can introduce adaptive partitioning without changing — or even recompiling —

your application code, although you do have to rebuild your system's OS image.

Are partitions box-like? No, they're better. Many competing resource partitioning

systems take their model from CPU virtualization, where the objective is to try to divide

a computer into a set of smaller computers that interact as little as possible (into a

number of boxes). This approach isn't very flexible; every thread, process, and byte of

memory is in exactly one box, and it can never move. Adaptive partitioning takes a

much more flexible view.

To begin, QNX Neutrino partitions are adaptive because:

• You can change configurations at run time.

• They are typically fixed at one configuration time.

• The partition behavior auto-adapts to conditions at run time. For example:

• Free time is redistributed to other scheduler partitions.

• Filesystems can bill time to clients with a mechanism that temporarily moves

threads between time partitions.

• Time partitions aren't required to have the same members.

As a result, adaptive partitions aren't boxes; they are much more powerful. In addition

to being adaptive, time partitions allow you to easily model the fundamentally different

behavior of CPU time when viewed as a resource.

10 © 2014, QNX Software Systems Limited
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Use a partition to encapsulate wild processes. You can create an application

partition for one or more processes that potentially run on high priorities. Then,

start the potentially problematic application(s) inside that partition so that

when a situation like this arises, the rest of the system will continue to function.

Since adaptive partitions are not “boxes” what are they?

An adaptive partition is a named set of rules. The rules are selected to control the

global resource behavior of the system. When a process or thread is associated with

a particular partition (scheduler), then its actions are governed by the rules of that

partition at that time.

For example, adaptive partitioning is similar to people who belong to clubs. Each

person can join several different clubs. They can even move from one club to another

club at times. However, while they are at a particular club, they agree to abide by the

rules of that specific club.

© 2014, QNX Software Systems Limited 11
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System and user requirements

For adaptive partitioning to operate properly, your system should meet these

requirements:

• On x86 systems, turn off any BIOS configuration that may cause the processor to

enter System Management Mode (SMM). A typical example is USB legacy support.

If the processor enters SMM, the adaptive partitioning thread scheduler continues

to function correctly, but CPU percentages apportioned to partitions will be

inaccurate.

A typical reason for preventing SMM is that it introduces interrupt latencies of

about 100 microseconds at unpredictable intervals.

• Adaptive partitioning isn't supported on 486 processors, because they don't have

a timebase counter, which the adaptive partitioning thread scheduler needs in

order to perform microbilling.

12 © 2014, QNX Software Systems Limited
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The thread scheduler

The adaptive partitioning thread scheduler is an optional thread scheduler that lets

you guarantee minimum percentages of the CPU's throughput to groups of threads,

processes, or applications. The percentage of the CPU time allotted to a partition is

called a budget.

The thread scheduler was designed on top of the core QNX Neutrino architecture

primarily to solve the following problems encountered in embedded systems design:

• to guarantee proper function when the system is fully loaded

• to prevent unimportant or untrusted applications from monopolizing the system

© 2014, QNX Software Systems Limited 13
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Chapter 2
Using the Thread Scheduler

The adaptive partitioning thread scheduler is an optional thread scheduler that lets

you guarantee minimum percentages of the CPU's throughput to groups of threads,

processes, or applications. The percentage of the CPU allotted to a partition is called

a budget.

The thread scheduler was designed on top of the core QNX Neutrino RTOS architecture

to primarily solve two problems in embedded systems design:

• to function properly under fully loaded conditions

• to prevent unimportant or untrusted applications from monopolizing the system

We call our partitions adaptive because their contents are dynamic:

• You can dynamically launch an application into a partition.

• Child threads and child processes automatically run in the same partition as their

parent.

• By default, when you use the standard QNX Neutrino send-receive-reply messaging,

message receivers automatically run in the partition of the message sender while

they're processing that message. This means that all resource managers, such as

drivers and filesystems, automatically bill CPU time (except overhead) to the budget

of their clients.

© 2014, QNX Software Systems Limited 15



Keeping track of CPU time

The adaptive partitioning thread scheduler throttles CPU usage by measuring the

average CPU usage of each partition. The average is computed over an averaging

window (typically 100 milliseconds), a value that is configurable.

However, the thread scheduler doesn't wait 100 milliseconds to compute the average.

In fact, it calculates it very often. As soon as 1 millisecond passes, the usage for this

1 millisecond is added to the usage of the previous 99 milliseconds to compute the

total CPU usage over the averaging window (i.e. 100 milliseconds).

Time

Averaging window

Current time

Time

Averaging window

Current time

..
.

Figure 1: The averaging window moves forward as time advances.

The window size defines the averaging time over which the thread scheduler attempts

to balance the partitions to their guaranteed CPU limits. You can set the averaging

window size to any value from 8 milliseconds to 400 milliseconds.

Different choices of the window size affect both the accuracy of load balancing and,

in extreme cases, the maximum delays seen by ready-to-run threads. For more

information, see the Considerations for the Thread Scheduler (p. 39) chapter.

Because the averaging window slides, it can be difficult for you to keep statistics over

a longer period, so the scheduler keeps track of two other windows:

• Window 2 — typically 10 times the window size.

• Window 3 — typically 100 times the window size.

To view the statistics for these additional windows, use the show -v or show -vv

option with the aps command.

The thread scheduler accounts for time spent to the actual fraction of clock ticks used,

and accounts for the time spent in interrupt threads and in the kernel on behalf of

user threads. We refer to this as microbilling.

Microbilling may be approximated on ARM targets if the board can't provide

a micro clock.

16 © 2014, QNX Software Systems Limited
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How is CPU time divided between partitions?

The thread scheduler is a fair-share scheduler. This means that it guarantees that

partitions receive a defined minimum amount of CPU time (their budget) whenever

they demand it. The thread scheduler is also a real time scheduler. That means it's a

preemptive, priority-based scheduler. These two requirements appear to conflict, but

the thread scheduler satisfies both of these requirements by scheduling through priority

at all times so that it doesn't need to limit a partition in order to guarantee some other

partition its budget.

Underload

Underload occurs when partitions demand less CPU time than their defined budgets,

over the averaging window. For example, if we have three partitions:

• System partition, with a 70% budget

• partition Pa, with a 20% budget

• partition Pb, with 10% budget

with light demand in all three partitions, the output of the aps show command might

be something like this:

                    +---- CPU Time ----+-- Critical Time --
Partition name   id | Budget |    Used | Budget |      Used
--------------------+------------------+-------------------
System            0 |    70% |   6.23% |  200ms |   0.000ms
Pa                1 |    20% |  15.56% |    0ms |   0.000ms
Pb                2 |    10% |   5.23% |    0ms |   0.000ms
--------------------+------------------+-------------------
Total               |   100% |  27.02% |

In this case, all three partitions demand less than their budgets.

Whenever partitions demand less than their budgets, the thread scheduler chooses

between them by picking the highest-priority running thread. In other words, when

underloaded, the thread scheduler is a strict real time scheduler. This is simply typical

of QNX Neutrino scheduling.

© 2014, QNX Software Systems Limited 17
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Figure 2: The thread scheduler's behavior when underloaded.

Free time

Free time occurs when one partition isn't running. The thread scheduler then gives

that partition's time to other running partitions. If the other running partitions demand

enough time, they're allowed to run over budget.

If a partition opportunistically goes over budget, it must pay back the borrowed time,

but only as much as the scheduler remembers (i.e. only the borrowing that occurred

in the last window).

For example, suppose we have these partitions:

• System partition, with a 70% budget, but running no threads

• partition Pa, with a 20% budget, running an infinite loop at priority 9

• partition Pb, with a 10% budget, running an infinite loop at priority 10

Because the System partition demands no time, the thread scheduler distributes the

remaining time to the highest-priority thread in the system. In this case, that's the

infinite-loop thread in partition Pb. So the output of the aps show command may

be:

                    +---- CPU Time ----+-- Critical Time --
Partition name   id | Budget |    Used | Budget |      Used
--------------------+------------------+-------------------
System            0 |    70% |   0.11% |  200ms |   0.000ms
Pa                1 |    20% |  20.02% |    0ms |   0.000ms
Pb                2 |    10% |  79.83% |    0ms |   0.000ms
--------------------+------------------+-------------------
Total               |   100% |  99.95% |

In this example, partition Pa receives its guaranteed minimum of 20%, but all of the

free time is given to partition Pb.

18 © 2014, QNX Software Systems Limited
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This is a consequence of the principle that the thread scheduler chooses between

partitions strictly by priority, as long as no partition is being limited to its budget. This

strategy ensures the most real time behavior.

But, there may be circumstances when you don't want partition Pb to receive all of

the free time just because it has the highest-priority thread. That may occur when,

say, when you choose to use Pb to encapsulate an untrusted or third-party application,

particularly when you are unable control its code.

In that case, you may want to configure the thread scheduler to run a more restrictive

algorithm that divides free time by the budgets of the busy partitions (rather than

assigning all of it to the highest-priority thread). To do so, set the

SCHED_APS_FREETIME_BY_RATIO flag (see “Scheduling policies” in the entry for

SchedCtl() in the QNX Neutrino C Library Reference), or use the aps modify -S

freetime_by_ratio command (see the Utilities Reference).

In our example, freetime-by-ratio mode might cause the aps show command to

display:

                    +---- CPU Time ----+-- Critical Time --
Partition name   id | Budget |    Used | Budget |      Used
--------------------+------------------+-------------------
System            0 |    70% |   0.04% |  200ms |   0.000ms
Pa                1 |    20% |  65.96% |    0ms |   0.000ms
Pb                2 |    10% |  33.96% |    0ms |   0.000ms
--------------------+------------------+-------------------
Total               |   100% |  99.96% |

which indicates that in freetime-by-ratio mode, the thread scheduler divides free time

between partitions Pa and Pb in roughly a 2:1 ratio, which is the ratio of their budgets.

Full Load

Full load occurs when all partitions demand their full budget. A simple way to

demonstrate this is to run while(1) loops in all of the sample partitions. In this

case, the aps show command might display:

                    +---- CPU Time ----+-- Critical Time --
Partition name   id | Budget |    Used | Budget |      Used
--------------------+------------------+-------------------
System            0 |    70% |  69.80% |  200ms |   0.000ms
Pa                1 |    20% |  19.99% |    0ms |   0.000ms
Pb                2 |    10% |   9.81% |    0ms |   0.000ms
--------------------+------------------+-------------------
Total               |   100% |  99.61% |

In this example, the requirement to meet the partitions' guaranteed budgets takes

precedence over priority.

In general, when partitions are at or over their budget, the thread scheduler divides

time between them by the ratios of their budgets, and balances usage to a few

percentage points of the partitions' budgets. (For more information on budget accuracy,

see “ Choosing the window size (p. 43) ” in the Considerations for Scheduling chapter

of this guide.)

© 2014, QNX Software Systems Limited 19
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Even at full load, the thread scheduler can provide real time latencies to an

engineerable set of critical threads (see Critical threads (p. 23) later in this chapter).

However, in that case, the scheduling of critical threads takes precedence over meeting

budgets.

Running
(highest-priority
ready thread)

Blocked
Ready

6

6

8

9

6

7

6

10
4

Adaptive Partition 1
(Multimedia)

Adaptive Partition 2
(Java application)

Blocked

Budget available Budget exhausted

Figure 3: The thread scheduler's behavior under a full load.

Summary of scheduling behavior

The following table summarizes how the thread scheduler divides time in normal and

freetime-by-ratio mode:

Freetime-by-ratioNormalPartition state

By priorityBy priorityUsage < budget

By ratio of budgetsBy priorityUsage > budget and there's free time

By ratio of budgetsBy ratio of budgetsFull load

By priorityBy priorityPartitions running a critical thread at any

load

The scheduler's overhead doesn't increase with the number of threads; but, it

may increase with the number of partitions, so you should use as few partitions

as possible.

20 © 2014, QNX Software Systems Limited
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Partition inheritance

Whenever a server thread in the standard QNX Neutrino send-receive-reply messaging

scheme receives a message from a client, QNX Neutrino considers the server thread

to be working on behalf of the client. So QNX Neutrino runs the server thread at the

priority of the client. In other words, threads receiving messages inherit the priority

of their sender.

With the thread scheduler, this concept is extended; we run server threads in the

partition of their client thread while the server is working on behalf of that client. So

the receiver's time is billed to the sender's scheduler partition.

What about any threads or processes that the server creates? Which partition do they

run in?

• New threads — If you receive a message from another partition, and you create a

new thread in response, the child thread runs in the sender's partition until the

child thread becomes receive-blocked. At that point, the child thread's partition is

reset to be its creator's partition.

• New processes — If you receive a message from another partition, and create a

process in response, the process is created in the sender's partition. Any threads

that the child process creates also run in the sender's partition.

If you don't want the server or any threads or processes it creates to run in the

client's partition, set the _NTO_CHF_FIXED_PRIORITY flag when the server

creates its channel. For more information, see ChannelCreate in the QNX

Neutrino C Library Reference.

6
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9

6

76
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4

Adaptive Partition 1
(Multimedia)

Adaptive Partition 2
(Java application)

9

10

Message
Message

File system
process

Figure 4: Server threads temporarily join the partition of the threads they work for.
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Send-receive-reply message-passing is the only form of thread communication

that automatically makes the server inherit the client's partition.

Pulses don't inherit the sender's partition. Instead, their handlers run in the process's

pulse-processing partition, which by default is the partition that the process was

initially created in. You can change the pulse-processing partition with the

SCHED_APS_JOIN_PARTITION command to SchedCtl(), specifying the process ID,

along with a thread ID of -1.

22 © 2014, QNX Software Systems Limited
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Critical threads

A critical thread is one that's allowed to run even if its partition is over budget (provided

that partition has a critical time budget). By default, QNX Neutrino automatically

identifies all threads that are initiated by an I/O interrupt as critical. However, you

can use SchedCtl() to mark selected threads as critical.

The ability to mark any thread as critical may require security control to prevent

its abuse as a DOS attack. For information about security, see Managing security

for the thread scheduler (p. 50) in the Security for Scheduler Partitions chapter

of this guide.

Critical threads always see realtime latencies, even when the system is fully loaded,

or any time other threads in the same partition are being limited to meet budgets. The

basic idea is that a critical thread is allowed to violate the budget rules of its partition

and run immediately, thereby obtaining the realtime response it requires. For this to

work properly, there must not be many critical threads in the system.

You can use a sigevent to make a thread run as critical:

1. Define and initialize the sigevent as normal. For example:

struct sigevent my_event;
SIGEV_PULSE_INIT (&my_event, coid, 10,
                  MY_SIGNAL_CODE, 6969);

2. Set the flag that will mark the thread that receives your event as a critical event

before you send the event:

SIGEV_MAKE_CRITICAL(&my_event);

This has an effect only if the thread receiving your event runs in a partition with a

critical-time budget.

3. Process the sigevent as normal in the thread that receives it. This thread doesn't

have to do anything to make itself a critical thread; the kernel does that

automatically.

To make a thread noncritical, you can use the SIGEV_CLEAR_CRITICALmacro when

you set up a sigevent.

The SIGEV_CLEAR_CRITICAL and SIGEV_MAKE_CRITICAL macros set a

hidden bit in the sigev_notify field. If you test the value of the sigev_notify

field of your sigevent after creating it, and if you've ever used the

SIGEV_MAKE_CRITICAL() macro, then use code like this:

switch (SIGEV_GET_TYPE(&my_event) ) {

instead of this:

switch (my_event.sigev_notify) {
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A thread that receives a message from a critical thread automatically becomes critical

as well.

You may mark selected scheduler partitions as critical and assign each partition a

critical time budget. Critical time is specifically intended to allow critical interrupt

threads to run over budget.

The critical time budget is specified in milliseconds. It's the amount of time all critical

threads may use during an averaging window. A critical thread will run even if its

scheduler partition is out of budget, as long as its partition has critical budget

remaining.

Critical time is billed against a partition while all these conditions are met:

• The running partition has a critical budget greater than zero.

• The top thread in the partition is marked as running critical, or has received the

critical state from receiving a SIG_INTR(), a sigevent marked as critical, or has

just received a message from a critical thread.

• The running partition must be out of percentage-CPU budget.

• There must be at least one other partition competing for CPU time.

Otherwise, the critical time isn't billed. The critical threads run whether or not the

time is billed as critical. The only time critical threads won't run is when their partition

has exhausted its critical budget (see “ Bankruptcy (p. 25) ”).

In order to be useful and effective, the number of critical threads in the system must

be few, and it's also ideal to give them high and unique priorities. Consequently, if

critical threads are the majority, the thread scheduler will rarely be able to guarantee

all of the partitions their minimum CPU budgets. In other words, the system degrades

to a priority-based thread scheduler when there are too many critical threads.

To gain benefit from being critical, a critical thread must be the highest priority thread

in the system, and not share its priority with other threads. If a ready-to-run critical

thread is behind other noncritical threads (either because others have a higher priority,

or are at the same priority and were made ready before your critical thread), then the

critical thread may stall if the partition is out of budget.

Although your thread is critical, it must wait for a higher priority, and earlier threads

sharing its partition to run first. However, if those other threads are noncritical, and

if the partition is out of budget, your critical thread won't run until the averaging

window rotates so that the partition once again has a budget.

A critical thread remains critical until it becomes receive-blocked. A critical thread

that's being billed for critical time won't be round-robin-timesliced (even if its

scheduling policy is round robin).

QNX Neutrino marks all sigevent structures that are returned from a user's

interrupt-event handler functions as critical. This makes all I/O handling threads

24 © 2014, QNX Software Systems Limited
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automatically critical. This is done to minimize code changes that you would

need to do for basic use of partition thread scheduling. If you don't want this

behavior to occur, specify the -c option to procnto in your buildfile.

To make a partition's critical budget infinite, set it to the number of processors times

the size of the averaging window. Do this with caution, as it can cause security

problems; see “ Managing security for the thread scheduler (p. 50) ” in the

Considerations for The Thread Scheduler chapter of this guide.

Bankruptcy

Bankruptcy occurs when the critical CPU time billed to a partition exceeds its critical

budget.

The System partition's critical budget is infinite; this partition can never

become bankrupt.

It's very important that you test your system under a full load to ensure that everything

works correctly, in particular to ensure that you've chosen the correct critical budgets.

One method to verify this is to start a while(1) thread in each partition to consume

all available time.

Bankruptcy is always considered to be a design error on the part of the application,

but the system's response is configurable. QNX Neutrino lets you set a recovery policy.

The options are:

Default

Do the minimum. When a partition runs out of critical budget, isn't allowed

to run again until it receives more budget, i.e. the sliding-averaging window

recalculates that partition's average CPU consumption to be a bit less than

its configured CPU budget. After bankruptcy, enough time must pass for

the calculated average CPU time of the partition to fall to its configured

budget. At the very least, this means that a number of milliseconds equal

to the critical budget must pass before that partition is scheduled again.

Force a reboot

This is intended for your regression testing. It's a good way of making sure

that code causing an unintended bankruptcy is never accidentally shipped

to your customers. We recommend that you turn off this option before you

ship.

Notify

The SchedCtl() function lets you attach a sigevent to each partition. The

thread scheduler delivers that sigevent when the corresponding partition
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becomes bankrupt. To prevent a possible flood of sigevents, the thread

scheduler will deliver at most one sigevent per registration. If you want

another notification, use SchedCtl() again and reattach the event to obtain

the next notification. As a result, QNX Neutrino arranges the rate of delivery

of bankruptcy notification to never exceed the application's ability to receive

them.

Cancel

The cancel option causes the bankrupt partition's critical-time budget to be

set to zero. That prevents it from running as critical until you restore its

critical-time budget, either through the SCHED_APS_MODIFY_PARTITION

command to the SchedCtl() function, or through the -B option to the aps

modify command.

You can set the bankruptcy policy with the aps utility (see the Utilities Reference) or

the SCHED_APS_SET_PARMS command to SchedCtl() (see the QNX Neutrino C Library

Reference).

Whenever a critical or normal budget is changed for any reason, there is an effect on

bankruptcy notification: it delays bankruptcy handing by two windows to prevent a

false bankruptcy detection if a partition's budget suddenly changes, for example, from

90% to 1%.

Canceling the budget on bankruptcy changes the partition's critical budget,

causing further bankruptcy detections to be suppressed for two window sizes.

In order to cause the entire system to stabilize after such an event, the thread scheduler

gives all partitions a two-window grace period against declaring bankruptcy when one

partition has its budget canceled.
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Adaptive partitioning thread scheduler and other thread schedulers

Priorities and thread scheduler policies are relative to one adaptive partition only;

priority order is respected within a partition, but not between partitions if the thread

scheduler needs to balance budgets. You can use the thread scheduler with the existing

FIFO, round robin, and sporadic scheduling policies. The scheduler, however, may

stop a thread from running before the end of its timeslice (round robin case), or before

the thread has run to completion (FIFO case).

This occurs when the thread's partition runs out of budget and some other partition

has budget, i.e. the thread scheduler doesn't wait for the end of a thread's timeslice

to determine whether to run a thread from a different partition. The scheduler takes

that decision every clock tick (where a tick is 1 millisecond on most machines). There

are 4 clock ticks per timeslice.

Round robin threads being billed for critical time aren't timesliced with threads of

equal priority.

A caveat about FIFO scheduling

Be careful not to misuse the FIFO scheduling policy. There's a technique for obtaining

mutual exclusion between a set of threads reading and writing shared data without

using a mutex: you can make all threads vying for the same shared data run at the

same priority.

Since only one thread can run at a time (at least, on a uniprocessor system), and with

FIFO scheduling, one thread never interrupts another, each has a monopoly on the

shared data while it runs. This is bad because any accidental change to the scheduler

policy or priority will likely cause one thread to interrupt the other in the middle of its

critical section. So it may lead to a code breakdown. If you accidentally put the threads

using this technique into different partitions (or let them receive messages from

different partitions), their critical sections will be broken.

If your application's threads use their priorities to control the order in which they run,

you should always place the threads in the same partition, and you shouldn't send

messages to them from other partitions.

Pairs of threads written to depend on executing in a particular order based on their

priorities should always be placed in the same partition, and you shouldn't send them

messages from other partitions.

In order to solve this problem, you must use mutexes, barriers, or pulses to control

thread order. This will also prevent problems if you run your application on a multicore

system. As a workaround, you can specify the _NTO_CHF_FIXED_PRIORITY flag to

ChannelCreate(), which prevents the receiving thread from running in the sending

thread's partition.
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In general, for mutual exclusion, you should ensure that your applications don't depend

on FIFO scheduling, or on the length of the timeslice.
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Using the thread scheduler and multicore together

On a multicore system, you can use scheduler partitions and symmetric multiprocessing

(SMP) to reap the rewards of both. For more information, see the Multicore Processing

User's Guide.

Note the following facts:

• On an SMP machine, the thread scheduler considers the time to be 100%, not

(say) 400% for a four-processor machine

• The thread scheduler first attempts to keep every processor busy; only then does

it apply budgets. For example, when you have a four-processor machine, and if

partitions are divided into 70%, 10%, 10%, and 10%, if there's only one thread

running in each partition, the thread scheduler runs all four threads all the time.

The thread scheduler and the aps command report the partition's consumed time

as 25%, 25%, 25%, and 25%.

It may seem unlikely to have only one thread per partition, since most systems have

many threads. However, there is a way this situation will occur on a multithreaded

system.

The runmask controls which CPUs a thread is allowed to run on. With careful (or

foolish) use of the runmask, it's possible to arrange things so that there aren't enough

threads that are permitted to run on a particular processor for the scheduler to meet

its budgets.

If there are several threads that are ready to run, and they're permitted to run on each

CPU, then the thread scheduler correctly guarantees each partition's minimum budget.

On a hyperthreaded machine, actual throughput of partitions may not match

the percentage of CPU time usage reported by the thread scheduler. This

discrepancy occurs because on a hyperthreaded machine, throughput isn't

always proportional to time, regardless of what kind of scheduler is being used.

This scenario is most likely to occur when a partition doesn't contain enough

ready threads to occupy all of the pseudo-processors on a hyperthreaded

machine.

Scheduler partitions and BMP

Certain combinations of runmasks and partition budgets can have surprising results.

For example, suppose we have a two-CPU SMP machine, with these partitions:

• Pa, with a budget of 50%

• System, with a budget of 50%
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Now, suppose the system is idle. If you run a priority-10 thread that's locked to CPU

1 and is in an infinite loop in partition Pa, the thread scheduler interprets this to

mean that you intend Pa to monopolize CPU 1. That's because CPU 1 can provide

only 50% of the entire machine's processing time.

If you run another thread at priority 9, also locked to CPU 1, but in the System

partition, the thread scheduler interprets that to mean you also want the System

partition to monopolize CPU 1.

The thread scheduler has a dilemma: it can't satisfy the requirements of both partitions.

What it actually does is allow partition Pa to monopolize CPU 1.

This is why: from an idle start, the thread scheduler observes that both partitions have

available budget. When partitions have available budget, the thread scheduler schedules

in realtime mode, which is strict priority scheduling. So partition Pa runs. However,

because CPU 1 can never satisfy the budget of partition Pa; Pa never runs out of

budget. Therefore, the thread scheduler remains in realtime mode and the lower-priority

System partition never runs.

For this example, the aps show command might display:

                    +---- CPU Time ----+-- Critical Time --
Partition name   id | Budget |    Used | Budget |      Used
--------------------+------------------+-------------------
System            0 |    50% |   0.09% |  200ms |   0.000ms
Pa                1 |    50% |  49.93% |    0ms |   0.000ms
--------------------+------------------+-------------------
Total               |   100% |  50.02% |

The System partition receives no CPU time even though it contains a thread that is

ready to run.

Similar situations can occur when there are several partitions, each having a budget

less than 50%, but whose budgets sum to 50% or more.

Avoiding infinite loops is a good way to avoid these situations. However, if you're

running third-party software, you may not have control over the code.
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Chapter 3
Setting Up and Using the Adaptive Partitioning Thread
Scheduler

To use the thread scheduler, you'll need to first build an image, and then create

scheduler partitions to launch processes in partitions.
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Building an image

To use the thread scheduler, you must add the [module=aps] attribute to the

command that launches procnto in your OS image's buildfile. For example:

[module=aps] PATH=/proc/boot procnto -vv

Once you've added this line, use mkifs to rebuild your OS image, and then put the

image in /.boot. For details, see Building Embedded Systems.

You don't need to recompile your applications in order to run them in

partitions.
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Creating scheduler partitions

On boot up, the system creates the initial partition, number 0, called System. The

System partition initially has a budget of 100%. You can create partitions and set

their budgets in your buildfile, with command-line utilities, or dynamically through

the API defined in sys/sched_aps.h. When you create a partition, its budget is

subtracted from its parent partition's budget.

To see which partitions you've created, use the aps show command. For more

information about the aps utility, see aps.

Using a buildfile

To create a partition in your buildfile, add a line like this to the startup script:

sched_aps name budget

You can also use the aps in your startup script to set security options. For example,

to create a partition called Drivers with a CPU budget of 20% and then use our

recommended security option, add these lines to your buildfile's startup script:

sched_aps Drivers 20
aps modify -s recommended

Using the command line

To create a partition from the command line, use the aps utility's create option. For

example:

aps create -b15 DebugReserve

creates a partition named DebugReserve with a budget of 15%.

When you create a partition, its budget is taken from its parent partition's

budget. The parent partition is usually the system partition.

Using a program

To create a partition from a program, use the SCHED_APS_CREATE_PARTITION

command to SchedCtl(). For example:

sched_aps_create_parms creation_data;

memset(&creation_data, 0, sizeof(creation_data));
creation_data.budget_percent = 15;
creation_data.critical_budget_ms = 0;
creation_data.name = "DebugReserve";

ret = SchedCtl( SCHED_APS_CREATE_PARTITION, &creation_data,
                sizeof(creation_data));
if (ret != EOK) {
   printf("Couldn't create partition \"%s\": %s (%d).\n",
            creation_data.name, strerror(errno), errno);
} else {
   printf ("The new partition's ID is %d.\n", creation_data.id);
}
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Note that SchedCtl() puts the partition's ID in the sched_aps_create_parms

structure.
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Launching a process in a partition

You can use options in your buildfile to launch applications at boot time. In general,

you need to launch only the command that starts a multiprocess application, since

child processes of your initial command — including shells and commands run from

those shells — run in the same partition.

You can also launch a process into a partition at the command line. The interface

defined in sys/sched_aps.h lets you launch individual threads into a partition and

move currently running threads into another partition.

Using a buildfile

To launch a command into a partition, use the [sched_aps=partition_name]

attribute in your buildfile's startup script. For example:

[+session pri=35 sched_aps=DebugReserve] ksh &

launches a high-priority shell in the DebugReserve partition.

The statements you use to start a command in a partition may appear anywhere in the

startup script after you've created the partition.

Using the command line

To launch a program in a partition from the command line, use the

-Xaps=partition_name option of the on command. (The X refers to an external

scheduler, the thread scheduler in this case.) For example:

on -Xaps=DebugReserve ksh

launches a shell into the DebugReserve partition.

Using a program

To launch a program into a partition from a program, start the program (e.g by calling

spawn), and then use the SCHED_APS_JOIN_PARTITION command to SchedCtl()

to make the program run in the appropriate partition. For example, this code makes

the current process join a given partition:

sched_aps_join_parms join_data;

memset(&join_data, 0, sizeof(join_data));
join_data.id = partition_ID;
join_data.pid = 0;
join_data.tid = 0;

ret = SchedCtl( SCHED_APS_JOIN_PARTITION, &join_data,
                sizeof(join_data));
if (ret != EOK) {
   printf("Couldn't join partition %d: %s (%d).\n",
            join_data.id, strerror(errno), errno);
} else {
   printf ("Process is now in partition %d.\n", join_data.id);
}
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Viewing partition use

The most common use of aps is to list the partitions and the CPU time they're using.

To list partitions and the CPU time they're consuming, use the aps show command:

$ aps show
                    +---- CPU Time ----+-- Critical Time --
Partition name   id | Budget |    Used | Budget |      Used
--------------------+------------------+-------------------
System            0 |    60% |  36.24% |  100ms |   0.000ms
partitionA        1 |    20% |   2.11% |    0ms |   0.000ms
partitionB        2 |    20% |   1.98% |    0ms |   0.000ms
--------------------+------------------+-------------------
Total               |   100% |  40.33% |

To display CPU usage over the longer windows (typically 10 times and 100 times the

length of the averaging window), add the -v option:
$ aps show -v
                    +----------- CPU Time ------------+-- Critical Time --
                    |        |           Used         |        |
Partition name   id | Budget | 0.100s   1.00s   10.0s | Budget |      Used
--------------------+---------------------------------+-------------------
System            0 |    60% | 20.91%   3.23%   4.33% |  100ms |   0.000ms
partitionA        1 |    20% |  1.78%   2.09%   2.09% |    0ms |   0.000ms
partitionB        2 |    20% |  1.71%   2.03%   2.03% |    0ms |   0.000ms
--------------------+---------------------------------+-------------------
Total               |   100% | 24.40%   7.34%   8.44% |

If you specify more than one v option, the aps utility's output results also shows you

the critical budget usage over the longer windows.

If you want to display the output of the aps show command every 5 seconds, use

the -l option in the command as in aps show -l. You can also use the -d option

to change the length of the delay of the output results.

For more information about the aps utility, see the Utilities Reference.
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Chapter 4
Controlling Resources Using the Thread Scheduler

The thread scheduler is a component of the QNX Neutrino adaptive partitioning

architecture. The thread scheduler solves the problem of controlling the consumption

of resources in a system. For example, we might want to control these resources to:

• prevent an application from consuming too many resources, such that it starves

another application

• maintain a reserve of resources for emergency purposes, such as a disaster-recovery

system, or a field-debugging shell

• limit well-behaved applications to a set share of the resource allocation for the

system. For example, when a QNX Neutrino user builds a system that serves several

end users, the QNX Neutrino user might want to bill their end users by the amount

of throughput or capacity they are allocated on the shared system.

However, the details for controlling a resource are very different depending on the type

of resource.

There are some usage and implementation questions to answer about thread scheduler

partitions:

Answer for the Thread schedulerQuestion

When more time appears.When do you get more of the

resource?

Time usage over the last 100 milliseconds (a rolling window). The 100ms is

configurable; however, it is typically short.

How much history of resource

consumption does the

adaptive partitioning system

use to make decisions?

Yes. A child partition can never be given a larger CPU share than its parent partition.

When a child scheduler partition is created, we subtract the child's budget (partition

size) from the size of its parent so that a child is separate from its parent.

Why: The hierarchical accounting rules needed for a child partition to be a

component of a parent partition are too CPU-time intensive for scheduling because

scheduling operations occur thousands of times every second, and continue forever.

Hierarchy of partitions: Does

the partition size limit of a

parent limit the size of the

child partitions?

Yes. There is a maximum of eight scheduler partitions.

Why: For every scheduling operation, the thread scheduler must examine every

partition before it can pick a thread on which to run. That may occur 50000 times

Is there a limit to the number

of partitions?

per second on a 700MHz x86 (i.e. a slow machine). So it's important to limit the

number of scheduler partitions to keep the scheduler overhead to a minimum.
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Answer for the Thread schedulerQuestion

No. Scheduler partitions are named in a small flat namespace that is unique to the

thread scheduler.

Is the hierarchy of partitions

represented in a path

namespace?

The percentage of CPU time.In what units are partitions

sized?

The size, or budget of a scheduler partition is the guaranteed minimum amount of

CPU time that threads (in partitions), will be allowed to consume over the next

What do the terms guaranteed,

minimum size, and maximum

size mean for partitions? 100ms rolling window. Scheduler partitions don't have a maximum size (i.e. an

amount of consumption that would cause the thread scheduler to stop running

threads in a partition) because they were using too much of the system's resources.

Instead, the thread scheduler allows a partition to overrun or exceed its budget

when other partitions are not using their guaranteed minimums. This behavior is

specific to scheduling. It's designed to make the most possible use of the CPU at

all times (i.e. keep the CPU busy if at least one thread is ready to run).

Every timer interrupt (typically, every millisecond), every message/pulse send, receive

or reply, every signal, every mutex operation, and on every stack fault, and including

What mechanism enforces

partition consumption rules?

When are these rules applied? many times for process manager operations (creation/destruction of processes or

threads and open() operations on elements of the path namespace).

Enforcement mechanism: If a partition is over budget (meaning that the consumption

of CPU time over the last 100 milliseconds exceeds the partition's size, and other

partitions are also demanding time) and a thread wants to run, the thread scheduler

doesn't run the thread; it runs some other thread. Only when enough time has

elapsed, so that the average CPU time use of that partition (over the last 100

milliseconds) falls below the partition's size, will the scheduler run the thread.

However, the thread is guaranteed to eventually run.

Yes, threads are members of scheduler partitions. We say they're running in a

scheduler partition. However, a mechanism designed to avoid priority-inversion

Can we say that a partition has

members? What is the

member? problems means that occasionally threads can temporarily move to other partitions.

The different threads of a process may be in different scheduler partitions.

The aps command, using options for scheduler partitions only.What utility-commands are

used to configure partitions?
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Chapter 5
Considerations for the Thread Scheduler

You typically use the thread scheduler to:

• engineer a system to work in a predictable or defined manner when it's fully loaded

• prevent unimportant or untrusted applications from monopolizing the system

In either case, you need to configure the parameters for the thread scheduler with the

entire system in mind. The basic decisions are:

• How many scheduler partitions should you create, and what software should go

into each?

• What guaranteed CPU percentage should each scheduler partition receive?

• What should be the critical budget, if any, of each scheduler partition?

• What size, in milliseconds, should the time-averaging window be?
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Determining the number of scheduler partitions and their contents

It seems reasonable to put functionally-related software into the same scheduler

partition, and frequently that's the right choice. However, adaptive partitioning thread

scheduling is a structured way of deciding when not to run software. So the actual

method is to separate the software into different scheduler partitions if it should be

starved of CPU time under different circumstances.

The maximum number of partitions you can create is

eight.

For example, if the system is a packet router that:

• routes packets

• collects and logs statistics for packet routing

• handles route-topology protocols with peer routers

• collects and logs route-topology metrics

it may seem reasonable to have two scheduler partitions: one for routing, and one for

topology. Certainly logging routing metrics is functionally related to packet routing.

However, when the system is overloaded, meaning there's more outstanding work than

the machine can possibly accomplish, you need to decide what work to do slowly. In

this example, when the router is overloaded with incoming packets, it's still important

to route them. But you may decide that if you can't do everything, you'd rather route

packets than collect the routing metrics. By the same analysis, you might conclude

that route-topology protocols should continue to run, using much less of the machine

than routing itself, but run quickly when they need to.

Such an analysis leads to three partitions:

• a partition for routing packets, with a large share, say 80%

• a partition for topology protocols, say 15%, but with maximum thread priorities

that are higher than those for packet routing

• a partition for logging both the routing metrics and topology-protocol metrics

In this case, we chose to separate the functionally-related components of routing and

logging the routing metrics because we prefer to starve just one if we're forced to starve

something. Similarly, we chose to group two functionally-unrelated components, the

logging of routing metrics and the logging of topology metrics, because we want to

starve them under the same circumstances.
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Choosing the percentage of CPU for each partition

The amount of CPU time that each scheduler partition tends to use under unloaded

conditions is a good indication of the budget you should assign to it. If your application

is a transaction processor, it may be useful to measure CPU consumption under a few

different loads and construct a graph of offered load versus the CPU consumed.

Typically, the key to obtaining the right combination of partition budgets is to try them:

1. Leave security turned off.

2. Load a test machine with realistic loads.

3. Examine the latencies of your time-sensitive threads with the IDE System Profiler

tool.

4. Try different patterns of budgets, which you can easily change at run time with the

aps command.

You can't delete partitions, but, you can remove all of its corresponding

processes, and then change that specific partition's budget to 0%.

Setting budgets to zero

It's possible to set the budget of a partition to zero as long as the

SCHED_APS_SEC_NONZERO_BUDGETS security flag isn't set—see the

SCHED_APS_ADD_SECURITY command for SchedCtl().

Threads in a zero-budget partition run only in these cases:

• All other nonzero-budget partitions are idle.

• The zero-budget partition has a nonzero critical budget, in which case its critical

threads run.

• A thread receives a message from a partition with a nonzero budget, in which case

the receiving thread runs temporarily in the sender's partition.

When is it useful to set the budget of a partition to zero?

It useful to set the budget of a partition to zero when:

• A partition is permanently empty of running threads; you can set its budget to zero

to effectively turn it off. When a zero-budget partition is idle, it isn't considered to

produce free time (see “Summary of scheduling behavior (p. 20)” in the Using the

Thread Scheduler chapter of this guide). A partition with a nonzero budget that

never runs threads puts the thread scheduler permanently in free-time mode, which

may not be the desired behavior.

• You want noncritical code to run only when some other partition is idle.
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• The partition is populated by resource managers, or other software, that runs only

in response to receiving messages. Putting them in a zero-budget partition means

you don't have to separately engineer a partition budget for them. (Those resource

managers automatically bill their time to the partitions of their clients.)

Typically, setting a partition's budget to zero is not recommended. (This is why

the SCHED_APS_SEC_RECOMMENDED security setting doesn't permit partition

budgets to be zero.) The main risk in placing code into a zero-budget partition

is that it may run in response to a pulse or event (i.e. not a message), and

therefore, not run in the sender's partition. As a result, when the system is

loaded (i.e. there's no free time), those threads may simply not run; they might

hang, or things might occur in the wrong order.

For example, it's hazardous to set the System partition's budget to zero. On a

loaded machine with a System partition of zero, requests to procnto to create

processes and threads may hang, for example, when MAP_LAZY is used. In

addition, if your system uses zero-budget partitions, you should carefully test

it with all other partitions fully loaded with while(1) loops.

Setting budgets for resource managers

Ideally we'd like resource managers, such as filesystems, to run with a budget of zero.

That way they'd always be billing time to their clients. However, some device drivers

realize too late which client a particular thread was doing work for. Consequently,

some device drivers may have background threads for audits or maintenance that

require CPU time that can't be attributed to a particular client. In those cases, you

should measure the resource manager's background and unattributable loads, and

then add that amount to its partition's budget.

• If your server has maintenance threads that never serve clients, then it

should be in a partition with a nonzero budget.

• If your server communicates with its clients by sending messages, or by

using mutexes or shared memory (i.e. anything other than receiving

messages), then your server should be in a partition with a nonzero budget.

You can set the size of the time-averaging window to be from 8 to 400 milliseconds.

This is the time over which the thread scheduler attempts to balance scheduler

partitions to their guaranteed CPU limits. Different choices of window sizes affect

both the accuracy of load balancing and, in extreme cases, the maximum delays seen

by ready-to-run threads.
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Choosing the window size

You can set the size of the time-averaging window to be from 8 to 400 milliseconds.

This is the time over which the thread scheduler attempts to balance scheduler

partitions to their guaranteed CPU limits. Different choices of window sizes affect

both the accuracy of load balancing and, in extreme cases, the maximum delays seen

by ready-to-run threads.

Accuracy

Some things to consider:

• A small window size reduces the accuracy of CPU time balancing. The error is

+/-(tick_size / window_size). For example, if the window size is 10

milliseconds, the accuracy is about 10 percentage points.

• If a partition opportunistically goes over budget (because other partitions are using

less than their guaranteed budgets), it must pay back the borrowed time, but only

as much as the thread scheduler remembers (i.e. only the borrowing that occurred

in the last window).

A small window size means that a scheduler partition that opportunistically goes

over budget might not have to pay the time back. If a partition sleeps for longer

than the window size, it won't get the time back later. So load balancing won't be

accurate over the long term if both the system is loaded, and some partitions sleep

for longer than the window size.

• If the window size is small enough that some partition's percentage budget becomes

less than a tick, the partition will get to run for at least 1 tick during each window,

giving it 1 tick / window_size_in_ticks per cent of the CPU time, which may be

considerably larger than the partition's actual budget. As a result, other partitions

may not get their CPU budgets.

Delays compared to priority scheduling

In an underload situation, the thread scheduler doesn't delay ready-to-run threads,

but the highest-priority thread might not run if the thread scheduler is balancing

budgets.

In very unlikely cases, a large window size can cause some scheduler partitions to

experience runtime delays, but these delays are always less than what would occur

without adaptive partitioning thread scheduling. There are two cases where this can

occur.

Case 1
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If a scheduler partition's budget is budget milliseconds, then the delay is never longer

than:

window_size − smallest_budget + largest_budget

This upper bound is only ever reached when low-budget and low-priority scheduler

partitions interact with two other scheduler partitions in a specific way, and then only

when all threads in the system are ready to run for very long intervals. This maximum

possible delay has an extremely low chance of occurring.

For example, given these scheduler partitions:

• Partition A: 10% share; always ready to run at priority 10

• Partition B: 10% share; when it runs, it runs at priority 20

• Partition C: 80% share; when it runs, it runs at priority 30

This delay happens when the following occurs:

• Let B and C sleep for a long time. A will run opportunistically and eventually run

for 100 milliseconds (the size of the averaging window).

• Then B wakes up. It has both available budget and a higher priority, so it runs.

Let's call this time Ta, since it's the last time partition A ran. Since C continues

to sleep, B runs opportunistically.

• At Ta + 90 milliseconds, partition A has just paid back all the time it

opportunistically used (the window size minus partition A's budget of 10%).

Normally, it would run on the very next tick because that's when it would next have

a budget of 1 millisecond, and B is over budget.

• But let's say that, by coincidence, C chooses to wake at that exact time. Because

it has budget and a higher priority than A, it runs. It proceeds to run for another

80 milliseconds, which is when it runs out of budget.

• Only now, at Ta + 90 ms + 80 ms, or 170 milliseconds later, does A get to run

again.

This scenario can't occur unless a high-priority partition wakes up exactly when

a lower-priority partition just finishes paying back its opportunistic run time.

Case 2

Still rare, but more common, is a delay of:

window_size − budget

milliseconds, which may occur to low-budget scheduler partitions with, on average,

priorities equal to other partitions.

With a typical mix of thread priorities, when ready to run, each scheduler partition

typically experiences a maximum delay of much less than the window_size milliseconds.

For example, let's suppose we have these scheduler partitions:
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• partition A: 10% share, always ready to run at priority 10

• partition B: 90% share, always ready to run at priority 20, except that every 150

milliseconds, it sleeps for 50 milliseconds.

This delay occurs when the following happens:

• When partition B sleeps, partition A is already at its budget limit of 10 milliseconds

(10% of the window size).

• But then A runs opportunistically for 50 milliseconds, which is when B wakes up.

Let's call that time Ta, the last time partition A ran.

• B runs continuously for 90 milliseconds, which is when it exhausts its budget. Only

then does A run again; this is 90 milliseconds after Ta.

However, this pattern occurs only if the 10% application never suspends (which is

exceedingly unlikely), and if there are no threads of other priorities (also exceedingly

unlikely).

Approximating the delays

Because these scenarios are complicated, and the maximum delay time is a function

of the partition shares, we approximate this rule by saying that the maximum

ready-queue delay time is twice the window size.

If you change the tick size of the system at runtime, do so before defining the

windows size of the partition thread scheduler, because QNX Neutrino converts

the window size from milliseconds to clock ticks for internal use.

The practical way to verify that your scheduling delays are correct is to load your system

with stress loads, and use the System Profiler tool from the IDE to monitor the delays.

The aps command lets you change budgets dynamically, so you can quickly confirm

that you have the correct configuration of budgets.
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Practical limits

If you use adaptive partitions, you need to be aware of the following limitations:

• The API allows a window size as short as 8 milliseconds, but practical window sizes

may need to be larger. For example, in an eight-partition system, with all partitions

busy, to reasonably expect all eight to run during every window, the window size

needs to be at least 8 timeslices long, which for most systems is 32 milliseconds.

• Overloads aren't reported to users. The Adaptive Partition scheduler does detect

overload and acts to limit some partitions to guarantee the percentage shares of

others, but it doesn't inform anything outside of the kernel that an overload was

detected. The problem is that an overload might occur (or might not occur) on

every scheduling operation, which can occur at the rate of 50000 per second on

a 200mhz machine (an older, slower machine).

• SCHED_RR threads might not round robin in partitions whose portion of the

averaging window is smaller than one timeslice. For example, when the timeslice

is 4 ms (the default) and the adaptive partitioning scheduler's window size is 100

ms (the default), then SCHED_RR threads in a 4% partition may not round-robin

correctly.

• If you use adaptive partitioning and bound multiprocessing (BMP), some

combinations of budgets might not be met. Threads in a zero-budget partition

should run only when all other nonzero-budget partitions are idle. On SMP machines,

zero-budget partitions may incorrectly run when some other partitions are demanding

time. At all times, all partitions' minimum budgets are still guaranteed, and

zero-budget partitions won't run if all nonzero-budget partitions are ready to run.

For detailed information, see Using the thread scheduler and multicore together

(p. 29).

• To calculate the total microcycle used in a window size, the product of P × W × N

must be less than 2,147,483,648, where:

• P is the processor clock rate (in Hz)

• W is the APS window size (in seconds)

• N is the number of processors on the SMP device

The default value of W is 0.1 (100 milliseconds) and, given this value, the following

constraints apply:

• 1 processor: maximum clock rate 21.5 GHz

• 2 processors: maximum clock rate 10.7 GHz

• 4 processors: maximum clock rate 5.4 GHz

• 8 processors: maximum clock rate 2.7 GHz
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• As reported by the aps show -v command on ARM targets, the 10 and 100

window averages occasionally give incorrect information, but this has no effect on

scheduling.
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Uncontrolled interactions between scheduler partitions

There are cases where a scheduler partition can prevent other applications from being

given their guaranteed percentage CPU:

Interrupt handlers

The time used in interrupt handlers is never throttled. That is, we always choose to

execute the globally highest-priority interrupt handler, independent of its scheduler

partition. This means that faulty hardware or software that causes too many interrupts

can effectively limit the time available to other applications.

Time spent in interrupt threads (e.g. those that use InterruptAttachEvent()) is correctly

charged to those threads' partitions.
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Chapter 6
Security for Scheduler Partitions

By default, anyone on the system can add partitions and modify their attributes. We

recommend that you use the SCHED_APS_ADD_SECURITY command to SchedCtl(),

or the aps command to specify the level of security that suits your system.
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Managing security for the thread scheduler

The following list shows the main security options (including both the option for the

aps command and the corresponding SchedCtl() flag), in increasing order of security:

none or the SCHED_APS_SEC_OFF flag

Anyone on the system can add partitions and modify their attributes.

basic or the SCHED_APS_SEC_BASIC flag

Only root in the System partition can change the overall scheduling

parameters and set critical budgets.

flexible or the SCHED_APS_SEC_FLEXIBLE flag

Only root in the System partition can change scheduling parameters or

change critical budgets. However, root running in any partition can create

subpartitions, join threads into its own subpartitions and modify

subpartitions. This lets applications create their own local subpartitions out

of their own budgets. The percentage for budgets must not be zero.

recommended or the SCHED_APS_SEC_RECOMMENDED flag

Only root from the System partition can create partitions or change

parameters. This arranges a 2-level hierarchy of partitions: the System

partition and its children. Only root, running in the System partition, can

join its own thread to partitions. The percentage for budgets must not be

zero.

Unless you're testing the partitioning aspects and want to change all of the

parameters without restarting, you should set at least basic security.

After setting up the scheduler partitions, you can use

SCHED_APS_SEC_PARTITIONS_LOCKED to prevent further unauthorized changes.

For example:

sched_aps_security_parms p;

APS_INIT_DATA( &p );
p.sec_flags = SCHED_APS_SEC_PARTITIONS_LOCKED;
SchedCtl( SCHED_APS_ADD_SECURITY, &p, sizeof(p));

Before you call SchedCtl(), ensure that you initialize all the members of the

data structure associated with the command. You can use the APS_INIT_DATA()

macro to do this.
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The security options listed above are composed of the following options (but it's more

convenient to use the compound options):

root0_overall or the SCHED_APS_SEC_ROOT0_OVERALL flag

You must be root running in the System partition in order to change the

overall scheduling parameters, such as the averaging window size.

root_makes_partitions or the SCHED_APS_SEC_ROOT_MAKES_PARTITIONS

flag

You must be root in order to create or modify partitions.

sys_makes_partitions or the SCHED_APS_SEC_SYS_MAKES_PARTITIONS

flag

You must be running in the System partition in order to create or modify

partitions.

parent_modifies or the SCHED_APS_SEC_PARENT_MODIFIES flag

Allows partitions to be modified (SCHED_APS_MODIFY_PARTITION), but

you must be running in the parent partition of the partition being modified.

Modify means to change a partition's percentage or critical budget, or attach

events with the SCHED_APS_ATTACH_EVENTS command.

nonzero_budgets or the SCHED_APS_SEC_NONZERO_BUDGETS flag

A partition may not be created with, or modified to have, a zero budget.

Unless you know your partition needs to run only in response to client

requests, i.e. receipt of messages, you should set this option.

root_makes_critical or the SCHED_APS_SEC_ROOT_MAKES_CRITICAL flag

You have to be root in order to create a nonzero critical budget or change

an existing critical budget.

sys_makes_critical or the SCHED_APS_SEC_SYS_MAKES_CRITICAL flag

You must be running in the System partition to create a nonzero critical

budget or change an existing critical budget.

root_joins or the SCHED_APS_SEC_ROOT_JOINS flag

You must be root in order to join a thread to a partition.

sys_joins or the SCHED_APS_SEC_SYS_JOINS flag

You must be running in the System partition in order to join a thread.

parent_joins or the SCHED_APS_SEC_PARENT_JOINS flag

You must be running in the parent partition of the partition you wish to join.
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join_self_only or the SCHED_APS_SEC_JOIN_SELF_ONLY flag

A process may join only itself to a partition.

partitions_locked or the SCHED_APS_SEC_PARTITIONS_LOCKED flag

Prevent further changes to any partition's budget, or overall scheduling

parameters, such as the window size. Set this after you've set up your

partitions.

Security and critical threads

Any thread can make itself critical, and any designer can make any sigevent critical

(meaning that it will cause the eventual receiver to run as critical), but this isn't a

security issue. That's because a thread marked as critical has no effect on the thread

scheduler unless the thread is in a partition that has a critical budget. The thread

scheduler has security options that control who may set or change a partition's critical

budget.

For the system to be secure against possible critical thread abuse, it's important to:

• assign a critical budget only to the partitions that need one

• move as much application software as possible out of the System partition (which

has an infinite critical budget)
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Chapter 7
Testing and Debugging

Adaptive partitioning can even make debugging an embedded system easier during

development or deployment by providing an “emergency door” into the system. Simply

create a partition that you can run diagnostic tools in; if you don't need to use the

partition, the thread scheduler allocates its budget among the other partitions. This

provides you with access to the system without compromising its performance.
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Instrumented kernel trace events

The instrumented kernel emits trace events when:

• a scheduler partition's budget changes (including when the partition is created)

• a scheduler partition's name changes (i.e. when the partition is created)

• a thread runs —in wide mode, these events include the partition ID and indicate

whether or not the thread is running as critical

• a scheduler partition becomes bankrupt

In addition, all events include the scheduler partition ID and its budget. You can use

traceprinter to display the contents of the trace file. You can also use the IDE to

parse and display a trace file.
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Using the IDE (trace events)

You can—and should—use the System Profiler tool from the IDE to check your system's

latencies. For more information about using this tool and the IDE, see the IDE User's

Guide.
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Using other methods

The easiest method to test a system that uses the thread scheduler is from the

command line.

Be sure to test your system in a fully loaded state, because that's where problems are

likely to occur. Create a program that consumes resources by looping forever, run it

in each partition, and then do the following:

• Watch for bankruptcies, which you should consider to be programming errors. You

can use SchedCtl with the SCHED_APS_BNKR_* flags to control what happens

when a partition exhausts its critical budget. This can range from delivering an

event to rebooting the system. For more information, see the QNX Neutrino Library

Reference.

• Ensure that all latencies are acceptable for your system.

• Use the aps command to change your partitions' budgets. The new budgets come

into effect at the beginning of the next averaging window. Since the window size

is typically 100 ms, you can quickly try many different combinations of budgets.
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Emergency access to the system

You can use adaptive partitioning to make it easier to debug an embedded system by

providing emergency access to it:

• during development — create a partition and start io-pkt and qconn in it. Then,

if a runaway process ties up the system, you can use the IDE to debug and query

the system.

• during deployment — create a partition and start io-pkt and inetd in it. If you

encounter a problem, you can telnet into the system.

In either case, if you don't need to use this partition, the thread scheduler allocates

its budget among the other partitions. This provides you with emergency access to the

system without compromising performance.

A different approach is to create a separate partition in which to run any questionable

applications; if they run wild, the rest of the system should continue to work normally.
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Appendix A
Sample Buildfile

The following buildfile shows you how to add the adaptive partitioning module to

procnto. It also includes commands that create partitions, start a program in the

partition, and set the security level.

In a real buildfile, you can't use a backslash (\) to break a long line into shorter

pieces, but we've done that here, just to make the buildfile easier to read.

[compress=3]
[virtual=x86,bios] .bootstrap = {
    startup-bios

    # PATH is the *safe* path for executables (confstr(_CS_PATH...))
    # LD_LIBRARY_PATH is the *safe* path for libraries
    # (confstr(_CS_LIBPATH)). That is, it's the path searched for libs
    # in setuid/setgid executables.

    # The module=aps enables the adaptive partitioning scheduler.

    [module=aps] PATH=/proc/boot:/bin:/usr/bin:/sbin:/usr/sbin \
        LD_LIBRARY_PATH=/proc/boot:/lib:/lib/dll:/usr/lib \
        procnto-smp-instr 
}

# Start-up script

[+script] .script = {
    # Programs require the runtime linker (ldqnx.so) to be at a fixed
    # location. To save memory, make everyone use the libc in the boot
    # image. For speed (fewer symbolic lookups), we point to libc.so.3
    # instead of libc.so.
    procmgr_symlink ../../proc/boot/libc.so.3 /usr/lib/ldqnx.so.2

    # Create some adaptive partitions during system startup:
    #   - IOPKT with a 20% budget
    #   - QCONN with a 20% budget
    # NOTE: To specify a critical budget, use the "aps modify" command
    #       when the filesystem on the disk is available.
    sched_aps IOPKT 20
    sched_aps QCONN 20

    # Start the system logger.
    slogger &
    slogger2 &
    dumper -d /var/dumps

    # Start the PCI server.
    seedres
    pci-bios &
    waitfor /dev/pci

    display_msg .
    display_msg Welcome to QNX Neutrino 6.6.0 on an PC-compatible
    display_msg BIOS system with APS enabled

    # Get the disk up and running.
    devb-eide blk automount=hd0t179:/ &

    waitfor /bin
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    # Further commands can now be run from disk.

    # USB services
    display_msg "Start USB services..."
    io-usb -dehci &
    waitfor /dev/io-usb/io-usb 4
    waitfor /dev/io-usb/devu-ehci.so 4

    display_msg "Starting Input services..."
    io-hid -d ps2ser kbd:kbddev:ps2mouse:mousedev \
       -d usb /dev/io-usb/io-usb &
    waitfor /dev/io-hid/io-hid 10

    # Start up some consoles.
    display_msg Starting consoles
    devc-pty &
    devc-con-hid -n4 &
    reopen /dev/con1

    display_msg Starting serial port driver
    devc-ser8250 -b115200 &

    # Start the networking manager in the IOPKT partition. Don't
    # forget devnp.shim.so for compatibility with io-net drivers.
    on -X aps=IOPKT io-pkt-v4-hc -d /lib/dll/devn-pcnet.so &

    # Start some services.
    pipe &
    random -t &

    waitfor /dev/io-net/en0
    dhcp.client -i en0 -m -u -t1 -A 0

    #waitfor /dev/dbgmem

    # Create an additional parition with services:
    aps create -b10 INETD
    on -X aps=INETD inetd &
    on -X aps=QCONN qconn &

    # Specify a critical budget for a partition created during startup:
    aps modify -B 10 IOPKT

    # Use the "recommended" security level for the partitions:
    aps modify -s recommended

    # These env variables are inherited by all the programs that follow:
    SYSNAME=nto
    TERM=qansi

    # Start some extra shells on other consoles:
    reopen /dev/con2
    [+session] sh &
    reopen /dev/con3
    [+session] sh &
    reopen /dev/con4
    [+session] sh &

    # Start the main shell
    reopen /dev/con1
    [+session] sh &
}

[perms=0777] 
# Include the current "libc.so". It will be created as a real file
# using its internal "SONAME", with "libc.so" being a symlink to it.
# The symlink will point to the last "libc.so.*" so if an earlier
# libc is needed (e.g. libc.so.3) add it before the this line.
libc.so
libelfcore.so.1
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libslog2.so

#######################################################################
## uncomment for USB driver
#######################################################################
#libusbdi.so
devu-ehci.so

fs-qnx6.so
fs-qnx4.so
cam-disk.so
io-blk.so
libcam.so

#devn-pcnet.so
#devnp-shim.so
#libsocket.so

[data=copy] 

devc-con
pci-bios
seedres
devc-ser8250
dumper
devb-eide
mount
slogger
slogger2
sh
cat
ls
pidin
less
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Appendix B
Frequently Asked Questions: Adaptive Partitioning Thread
Scheduler

This appendix contains a set of frequently asked questions (FAQ) and answers. It

covers the implementation details of the scheduling extensions contained in QNX

Neutrino adaptive partitioning, as well as any common questions related to partitions

in general.

The information contained in this Frequently Asked Questions section is subject

to change at any time without notice. QSS makes no representation or warranty

regarding the information and is not responsible whatsoever for reliance on the

information contained herein.
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Scheduling behavior

How does the thread scheduler guarantee a partition's minimum CPU budget?

The thread scheduler guarantees a minimum CPU budget by ensuring that other

partitions don't overrun their budget. This determination is made every clock tick.

The clock interrupt handler invokes the thread scheduler. That means it runs a

miniimum of every clock period (typically every millisecond). On each clock tick:

• On a uniprocessor, it examines the partition of the currently running thread to see

if it should keep running. The adaptive partition (AP) thread scheduler will decide

that a thread should stop running if its partition has less available time

(budget-cycles minus used-cycles during this averaging window) than what is

necessary to pay for the duration of the next clock period. If the currently running

partition fails this test, then the AP portion of the clock handler sets a “must

examine all partitions” flag.

• On an SMP processor, the AP scheduler's portion of the clock interrupt handler

always sets the “must examine all partitions” flag.

• If the currently running partition fails this test, then the adaptive partitioning portion

of the clock handler sets a “must examine all partitions” flag.

On exit from the QNX Neutrino clock interrupt handler, the handler examines the flag.

If set, it causes the system to immediately enter the kernel and invoke the full

scheduling algorithm.

The full thread scheduler algorithm examines all partitions. It stops running the current

partition if it's about to run out of budget (i.e. it no longer has enough to pay for another

quarter clock period, in addition to one clock period for each additional CPU — if the

system is multicore). In other words, the thread scheduler guarantees that budgets

are met by forcing a partition to temporarily stop running if it will run over its budget

before the next time the scheduler is in control of the system. This also requires that

some other partition has budget and threads that are ready to run.

When does the scheduler guarantee that a partition gets its budget?

The thread scheduler guarantees that budgets are met by forcing a partition to

temporarily stop running if it runs over its budget before the next time when the

scheduler is in control of the system.

The thread scheduler makes sure that a partition gets at least its budget in the current

averaging window when:

• The partition becomes ready to run often enough to consume at least its budget

worth of time.

• On multicore machines:
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let B(p) be the budget, in percent of partition p•

• let R(p) be the number of ready to run threads in our partition, and

• let N be the number of CPUs

Then the thread scheduler guarantees that partition p gets B(p) percent of CPU

time over the last averaging window if:

R(p) >= N * B(p)/100

In other words, it means that when the partition has enough ready to run threads

to occupy the processors in the system.

• The scheduler didn't bill any critical time to any partition.

In other words, budgets are guaranteed if the system is busy enough and no partition

has used its critical budget.

Does a 100-ms window mean a CPU time-averaging occurs only once in every 100

ms?

See the next answer.

How often does the algorithm enforce partition budgets?

A 100-ms averaging window stores a detailed history of CPU usage for each of the

last 100 millisecond intervals. Rather, it stores a history of CPU usage, with detail for

each of the last 100 millisecond intervals. The window rotates, or slides forward in

time, for every clock tick. So the window provides precise information about the average

CPU consumption every millisecond (or clock period).

Between clock ticks, when the thread scheduler algorithm is called, CPU usage of

each partition is approximated with the assumption that each partition will likely run

continuously at least until the next clock tick.

In other words, the thread scheduler computes the used CPU time and enforces the

budgets, many times per millisecond.

What system assumptions does the design of thread scheduler make?

In order to guarantee that the partitions get their guaranteed minimum CPU budgets,

the design assumes:

• The clock interrupt handler runs periodically. In other words, the users don't inhibit

clock interrupts.

• The ClockCycles() function is monotonic, except for 64-bit wraparound.

• The ClockCycles() function increases at a constant rate.

• Useful work done by the processor is proportional to ClockCycles().

• The ClockCycles() functions, as seen by each CPU on an SMP. machine, increment

at the same rate (though there may be a constant offset between each processor's

ClockCycles()).

• Each CPU works at the same rate on SMP machines.
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• The resolution of ClockCycles() is at least 1/200th of the clock period between

timer ticks.

• The user doesn't change the size of the averaging window often.

When does the thread scheduler calculate percentage CPU usage?

Never. It avoids doing division in order to execute quickly.

The scheduler only compares a partition's CPU usage with its budget, expressed as a

total time over the last averaging window rather than as a percentage. To make a quick

comparison, both usage and budgets are treated internally as counts of ClockCycles(),

not as percentages.

How often does the thread scheduler compute CPU usage?

At least once every clock period (typically every millisecond). However, it also does it

on kernel calls, such as message and pulse sending or mutex releases. For example,

on a 733MHz x86 machine that performs a lot of I/O, the scheduler computes CPU

usage around 50 times every millisecond.

When is the scheduler's behavior realtime?

Within a single partition, the thread scheduler always follows POSIX scheduling rules,

i.e. preemptive priority-based scheduling with FIFO and sporadic policies. So a partition

looks somewhat like a complete system in POSIX.

However the CPU time, seen by a partition, may be sliced by threads running in other

partitions.

So the question remains: when does a partition get continuous realtime? Since our

definition of realtime is to schedule strictly by priority, the answer is the thread

scheduler schedules strictly by priority whenever a set of partitions has used less than

their budgets over the last averaging window. This implies that all threads run by

priority-preemption rules as long as their partitions have not exhausted their budget

in the current averaging window. In brief, it's realtime when a partition is using less

than its budget.

What is free-time mode?

See the next answer.

What is free time?

Free-time mode is a specific budget situation when at least one partition with a nonzero

budget isn't using all of its budget. Free-time mode means other partitions may use

up the free time even if they exceed their own budgets. This is one of the reasons why

adaptive partitioning is adaptive.

The extra time a partition gets in free time mode is called free time, but it isn't always

free; sometimes it must be paid back.

Do you have to repay free time?
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Partly. In general, only the free time during the last averaging window needs to be

paid back.

For example, suppose that partition p1 has exhausted its budget, and another partition

p2 has available budget. Therefore partition p2 is running. Now assume that partition

p2 becomes idle (i.e. goes to sleep) for 10 milliseconds. Because partition p2 has no

competition and is in free-time mode, partition p1 begins running and exceeds its

budget by 10 milliseconds.

Now, say partition p2 wakes up. The partition p2 won't run until the averaging window

rotates enough to carry the history of its CPU over-usage past 100 milliseconds into

the past. So, p2 may not run until window-size − budget milliseconds passes. This

interval, where p2, is suspended is effectively paying back the free time.

In general, when free time is less than window size — budget must be paid back.

In a different example, suppose partition p2 goes to sleep for a minute. In this situation,

partition p1 runs opportunistically and subsequently consumes 100% of the CPU.

When partition p2 wakes up, it will have available budget, and partition p1 will be

over budget, so partition p1 will run.

The partition p2 won't run again until window rotation removes history of its CPU

usage past 100 milliseconds in the past. So in this case, partition p2 needs to pay

back only window-size − budget milliseconds of the minute of CPU time that ran

because partition p1 was asleep.

While the partition is over budget (because of the free time it received) — it won't run

at all until enough time has passed to cause the total usage (recorded in the averaging

window) to fall below budget. It implies that the partition has stopped running until

its stopped time compensates for the free time it took earlier.

An exception is free time that occurred just before a call to

SchedCtl(SCHED_APS_SET_PARMS,...) to change the window size. Changing

the window size wipes the scheduler's memory so free time just before a change in

window size isn't paid back.

How does the thread scheduler behave on HyperThreaded (HT) processors?

Adaptive partitioning treats a two-headed HT processor as a multicore system with

two CPUs. It assumes that each virtual processor has equal and constant throughput.

Whereas this is true for SMP machines, it's true on HT machines only when the system

is sufficiently loaded to keep both pseudo-CPUs busy. Adaptive partitioning requires

that a system's throughput be proportional to the ClockCycles() function.

How long can a round-robin thread run with the thread scheduler?

Without the thread scheduler (i.e. using classic QNX Neutrino scheduling), a

round-robin thread:

• may be preempted at any time by a higher-priority thread
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• if not preempted or if there is no other thread at the same priority, it runs until it

gives up control voluntarily

• if not preempted and there is another thread at equal priority, it runs for 4 ticks

(nominally 4 milliseconds) before being time-sliced with other thread

With the thread scheduler, a round-robin thread:

• may be preempted at any time by a higher priority thread in the same scheduler

partition

• runs until it gives up control or its partition runs out of budget — if not preempted,

and if there is no other thread of the same priority in that partition

• may start running if its partition gets more budget on the next clock tick. This

happens for a ready to run round-robin thread (in a partition that is out of budget).

This also happens since the rotation of the window gives that available partition

budget back.

• runs for 4 ticks (nominally 4 milliseconds), before being time-sliced with the other

thread — if its partition has

• at least 4 milliseconds of available budget

• not been preempted

• another thread of equal priority

The scheduler overrides the time slice for a round-robin thread. When a partition has

more than 4 ticks of available time left in its budget, thread scheduler behavior is the

same as the classic QNX Neutrino scheduling. However on a loaded system, it's best

to assume that a Round-Robin thread may be sliced every tick.

When a round-robin thread is preempted by the scheduler, it will be able to run a

thread in a different partition. In other words, round-robin behavior is unchanged

relative to the other threads in the same partition.

How long can a FIFO thread run with the thread scheduler?

Without the thread scheduler, if not preempted by a higher priority thread, a FIFO

thread runs until it gives up control voluntarily.

With the thread scheduler, a FIFO thread runs if not preempted by a higher priority

thread in the same partition until it gives up control voluntarily, or its partition runs

out of budget.

FIFO behavior is unchanged as long as your partition has budget. On a loaded system,

it's best to assume that a FIFO thread may be time sliced every millisecond with

threads in other partitions. However, relative to all other threads in the same partition,

FIFO behavior is the same as in classic QNX Neutrino scheduling.

How long can a sporadic (SS) thread run with the thread scheduler?

Without the thread scheduler, if not preempted by a higher priority thread, an SS

thread runs until it gives up control voluntarily. Since the priority of an SS thread
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alternates between normal and low priorities, it's likely to be preempted when running

at its low priority.

With the thread scheduler, the SS thread runs if not preempted by a higher priority

thread in the same partition until it gives up control voluntarily or its partition runs

out of budget.

Some developers set the higher priority of a sporadic-scheduled thread to be the

highest priority in the system, in order to make the thread nonpreemptible during its

high-priority mode. With the thread scheduler, the thread is non-preemptible only as

long as its partition hasn't exhausted its budget.

Sporadic scheduling behavior is unchanged as long as your partition has budget. On

a loaded system, it's best to assume that an SS thread may be time-sliced every

millisecond with threads in other partitions. However, relative to all other threads in

the same partition, SS behavior is the same as in classic QNX Neutrino scheduling.

How often does the thread scheduler algorithm run?

See the next answer.

How often does the thread scheduler enforce budgets?

The thread scheduler runs and enforces budgets:

• every clock tick

• every time a thread sleeps or blocks for a mutex

• whenever a thread becomes ready after it has received an event, pulse, or message.

The frequency depends on how often messaging occurs.

How do power-saving modes affect scheduling?

If the system suspends, scheduler is unaware of the interruption. Upon resumption,

partitions will have the same percentage consumption they had at suspension.

If the system varies the processor speed to conserve power, scheduler is unaware of

the variation. Although the scheduler guarantees that all partitions get their budget

percentages, it assumes that each millisecond has the same throughput. This means

that partition budget enforcement is effectively inaccurate for the 100 milliseconds

(or window size) after the CPU changes speed. Thereafter, it's inaccurate.

How does changing the clock period (using ClockPeriod()) affect scheduling?

If you change the clock period, the thread scheduler can't schedule accurately because

it's unaware of the change in the size of the tick. However, calling

SchedCtl(SET_APS_PARMS,...) with the existing window size causes the scheduler

to recalculate all internal parameters that depend on the size of the clock period.

Correspondingly this calling restores accuracy.

As described in the Adaptive Partitioning User's Guide, you should set the window

size after changing the clock period.
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Microbilling

How does microbilling work?

Microbilling refers to the accounting for the CPU time that is used by a thread to a

much finer resolution than the clock period between tick interrupts.

The thread scheduler has been implemented where threads send or receive messages

many times (as opposed to a single time) per clock period. Adaptive partitioning

scheduling would not be possible if we were limited to counting integer ticks of CPU

time. That's because most threads send or receive messages, or otherwise block, many

times per clock period.

Microbilling works by taking a fine-resolution timestamp every time a thread changes

state from ready to not-ready, and charging differences between sequential timestamps

against that partition's used CPU cycles count.

Microbilling uses the system call ClockCycles() to get that fine-resolution timestamp.

How often does thread scheduler microbill?

The thread scheduler microbills each time that:

• one thread stops running and another starts running

• a clock tick occurs

How does ClockCycles() work?

The thread scheduler always depends on the processor being used. On x86 processors,

QNX Neutrino uses a free-running counter that is implemented on the CPU chip itself.

This counter is read with a single instruction.

On x86 processors, ClockCyles() increase by about 1 billion counts every second on

a 1 GHz processor.

On processors that don't have a free-running counter for the purpose of being a

fine-grained clock, QNX Neutrino emulates ClockCyles(). For example, on ARM

processors, QNX Neutrino reads the intermediate value of the countdown timer that's

used to trigger the clock interrupts. This value tells how far you're into the current

clock tick. QNX Neutrino further adds a scaled version of how far you're into the current

clock tick to a constant determined at the last clock tick to get an emulated

ClockCycles() value.

On some processors, such as ARM, the countdown timer used for emulating

ClockCycles() is located off-chip and requires slow I/O operations to read it. On other

processors, the countdown timer is located on-chip, and can be quickly read.

How accurate is microbilling?

See the next answer.
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How accurate is ClockCycles()?

The accuracy of microbilling or ClockCycles() is determined by the accuracy of the

clock oscillator source used in the CPU. However, since the scheduling is relative

between partitions, it doesn't require ClockCycles() be equal to the absolute time; it

requires only that ClockCycles() be proportional to the work done by CPU. In fact, a

wrongly calibrated ClockCycles() has no effect on the accuracy of the thread scheduler.

What is the resolution of thread timing?

It's the resolution of the ClockCycles() function. The resolution of clock cycles varies

from platform to platform. In most cases, the resolution is much finer.

The thread scheduler requires 1/200 of a tick to meet its specification for

accuracy. In some platforms, such as x86, the resolution is on the order of

nanoseconds.
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Averaging window

How does the averaging window work?

The averaging window consists of tables. There are two tables per partition, one for

the CPU time spent while critical, and another for any CPU time spent. The tables

have one slot per timer tick. So a 100-ms averaging window, with a 1-ms clock period,

has 100 slots. Each slot is used to hold the CPU time spent during a particular tick

interval. For example:

[99ms ago][98 ms ago][97 ms ago]....[1 ms ago][current ms]

The slots hold the total CPU times of all threads in that partition as measured by

consecutive calls to ClockCycles(). Note that total CPU times are then scaled by a

carefully chosen factor so that all numbers fit into a 32-bit unsigned integer register.

At any time, the sum of the elements of a table represents the total CPU time used

by that partition over the averaging period.

When the scheduler stops a thread running, it adds the time spent by that thread since

when it started, or since the last tick, into the current ms slot of the table. If the

thread was running as critical, the scheduler also adds the time to the current ms

slot of that partition's critical time table. The scheduler also does this when a clock

tick occurs.

However, on a clock tick, after billing the current thread to its partition's [current

ms] slot, the scheduler also rotates the table. To rotate the table, it does the following:

• deletes the 99ms-ago slot

• shifts the entire table to the left by one slot, moving the time in the 98ms-ago slot

to the 99ms-ago slot etc.

• creates a new current-ms slot, which the scheduler initializes to zero

This is called window rotation. Each rotation effectively provides available budget back

to the partition that ran 99 ms ago. Window rotation is implemented without summing

the entire table, shifting the table, or calls to the malloc() or free() functions.

What is the window-rotation algorithm?

The averaging window isn't physically rotated. It's logically rotated:

• A separate field, used_cycles, is always maintained to contain the total of every

slot in the table.

• An integer, cur_hist_index, is an index into the table and points to the slot for

the current ms.
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• On microbilling, the scheduler adds the CPU time of the current thread to both

the current slot in the table, and also to the total field. For example:

usage_hist[cur_hist_index] += delta_time;
used_cycles += delta_time;

• On window rotation, the scheduler does the following:

• subtracts the oldest slot from the total:

used_cycles -= usage_hist[(cur_hist_index +1) MOD 100]

• increments the table index, modulo its table size (say 100):

cur_hist_index = (cur_hist_index+1) MOD 100

This is done for every partition, for both normal and critical CPU time.

Can I change the window size?

See the next answer.

How does changing the window size affect scheduling?

You can change the window size with the SchedCtl(SCHED_APS_SET_PARMS,...)

on the fly. The scheduler doesn't malloc() new tables, but it does zero the history in

all tables, zeros all the totals, and zeros the table indexes.

The effect is to wipe the memory of the scheduler. Here the scheduler assumes that

no partition has run in the last x ms, where x is the new window size.

We recommend you leave the window size at the default, or set it during startup. Also,

you shouldn't change the window size often.

How do maximum latencies relate to the averaging window size?

In general, the longer the averaging window, the longer the partition has to wait before

it gets the CPU time.

For example, with a 100 milliseconds averaging window and a partition p with a 10%

budget, the partition p will exhaust its budget if it runs continuously for 10

milliseconds. It has to wait another 90 milliseconds before window rotations cause

the averaging window to lose memory of its past execution. So, it will be 90

milliseconds before the partition p gets some available budget back and runs again.

However, in most real systems that engage in inter-partition interaction, partition p's

10 milliseconds of running time is likely to get spread out in the averaging window.

So even if p exhausts the budget soon, it will most likely get available budget back in

much less than 90 milliseconds.

The Adaptive Partitioning User's Guide describes an unlikely scenario where two

interacting partitions result in a larger latency than the window size budget.
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Scheduling algorithm

How does the thread scheduler pick a thread to run?

See the next answer.

How does the scheduling algorithm work?

The thread scheduler evaluates a merit function on each partition and chooses the

partition with the highest merit. It then picks the highest-priority thread in that

partition. A partition with budget has more merit than a partition that has exhausted

its budget.

First, let's look at a few helper functions. The details are provided below:

• The COMPETING(p) function is a boolean function of partition p. It returns True

if:

• partition p is currently running a thread of priority greater than zero

Or:

• partition p contains a thread that is ready to run, and has a priority greater than

zero

• The HAS_BUDGET(p) function is a boolean function of partition p. It returns True

if cycles_used(p) + cycles_left_in_current_tick <= budget_cy 

cles(p)

where:

cycles_used(p)

The CPU time that the partition has used during the current averaging

window.

budget_cycles(p)

The size of the averaging window, expressed in ClockCycles() (not

milliseconds - ms) multiplied by the percentage budget of p.

• The MAY_RUN_CRITICAL(p) function is a boolean function of partition p. It

returns True if:

• partition p is configured with a critical budget that's greater than zero

• partition p has used, during the last averaging window, a critical time that is

less than its critical budget minus 1/32 of a tick

• the highest-priority thread that's ready to run or is currently running in partition

p is allowed to run as critical.
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• The HIGHEST_PRIO(p) function is the numerical priority of the highest priority

thread that is either running or ready to run in partition p.

• If the partition has a nonzero budget, then the relative function free (RFF(p))

function is: 1 - used_cycles(p)/budget_cycles(p)

If the partition has a zero budget, then RFF(p) is defined to be a constant smaller

than the smallest possible value of RFF() for all other nonzero partitions.

Some operating modes, defined by these boolean expressions, are also defined:

underload

When COMPETING(p) && (HAS_BUDGET(p)||MAY_RUN_CRITICAL(p))

== True for at least one partition p.

all_at_load

When COMPETING(p) == True for all p, and HAS_BUD 

GET(p)||MAY_RUN_CRITICAL(p) == False, for all partitions p.

free_time

When COMPETING(p) == False for at least one partition p that has a

nonzero budget.

idle

when COMPETING(p) == False, for all partitions p.

The scheduler picks up one of the merit functions, depending on the

operating mode:

underload

merit(p) = (COMPETING(p), HAS_BUD 

GET(p)||MAY_RUN_CRITICAL(p), HIGHEST_PRIO(p),

RFF(p) )

all_at_limit

merit(p) = (COMPETING(p), RFF(p))

free_time, default

merit(p) = (COMPETING(p), HAS_BUD 

GET(p)||MAY_RUN_CRITICAL(p), HIGHEST_PRIO(p),

RFF(p) )

free_time, SCHEDPOL_RATIO

merit(p) = (COMPETING(p), HAS_BUD 

GET(p)||MAY_RUN_CRITICAL(p), RFF(p) )
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idle

Undefined.

If the mode is idle, the scheduler chooses to run the idle thread in the System partition.

Otherwise, the scheduler chooses to run the highest-priority thread that has a

compatible runmask for the CPU on which the scheduler was invoked from the partition

p such that:

merit(p) > merit(p')

for all p' not equal to p.

Merit functions return tuples, and are compared as tuples. For example:

(a,b) < (c,d) if (a<c) || ( (a=c) && (b<d) ) 

How does the scheduler find the highest-priority thread in a partition?

It does it very quickly. Each partition has a bitmap that tracks the priority levels

(between 0 to 255) that are in use by some ready to run thread in that partition.

Each time the scheduler makes a thread ready to run, it sets the bit corresponding to

that thread's priority. When the scheduler runs a thread (its state changes from ready

to run), the scheduler examines the queue of threads in that partition that are

ready-to-run and at the same priority. If there are no other threads of that priority, the

scheduler clears the bit for that thread's priority.

When the scheduler needs to know the highest priority thread that is ready to run in

a partition, it uses the bitmap to index a table that maps integers to the number of

their highest 1 bit. This is done with a set of tables to avoid the need for 2255 table

elements.

The same mechanism is also used in classic QNX Neutrino scheduling. The macros

are:

• DISPATCH_SET()

• DISPATCH_CLEAR()

• DISPATCH_HIGHEST_PRI()

How are RFFs (relative fraction free) computed?

For the scheduling algorithm, the computation of RFF() requires floating-point division.

However, QNX Neutrino doesn't perform floating-point operation inside the kernel or

even fixed-point division; these operations are very slow on some platforms.

QNX Neutrino computes a function equivalent to RFF() that requires only addition and

multiplication.

How does the scheduler algorithm avoid division and floating-point mathematics?
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For the scheduling algorithm, the computation of RFF() requires floating-point division.

However, QNX Neutrino doesn't need the absolute values of RFF(); it needs to know

only the relative ordering of RFF(p1), RFF(p2), .... RFF(pn).

Therefore, QNX Neutrino computes a different function that has the same ordering

properties as RFF(). This function is computable with only addition and 16×16 bit

multiplication.

The idea is:

1. relative_fraction_free(P), orRFF(P) = 1 - cycles_used/budget_cy 

cles

However, instead of finding partition p, such that RFF(p) > RFF(p') for p' not

equal p, define relative_fraction_used(p) = RFU(p) = cy 

cles_used/budget_cycles , and find partition p such that RFU(p) <

RFU(p') for p' not equal to p.

2. Then find a function that has the same ordering properties as RFU():

• Find:

used_cycles(p0)/budget_cycles(p0) < used_cycles(p1)/bud 

get_cycles(p2)< .... < used_cycles(pn)/budget_cycles(pn)

• let

k = budget_cycles(p0) * budget_cycles(p1) * ... * budget_cy 

cles(pn), then

• k/budget_cycles(p0)*used_cycles(p0) < k/budget_cy 

cles(p1)*used_cycles(p1) < ... < k/budget_cy 

cles(pn)*used_cycles(pn), as long as all numbers are >0.

• Values of c(p)=K/budget_cycles(p), for all p, are computed once, or

whenever any partition's percentage budget is changed. The values are stored

and aren't recalculated during scheduling

• At scheduling time, QNX Neutrino computes f(p) = used_cycles(p) *

c(p)

and compare f(p) to f(p') to find which has the better RFF().

However, there are two complications:

Running out of bits

So far, f(p) = used_cycles(p) * c(p) requires 64-bit multiplication.

However, since the accuracy specification is 0.2%, QNX Neutrino scales all

values of c(p) by a common factor, until the largest value fits in 16 bits.
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QNX Neutrino also shifts used_cycles(p) until its largest possible value

fits in 16 bits. Therefore, at scheduling time, QNX Neutrino computes only:

f(p) = (used_cycles(p)>>scaling_factor) * scaled_c(p)

Zero-budget partitions

The above algorithms nominally require QNX Neutrino to multiply and divide

everything by zero. However RFF() of a zero-budget partition is defined to

be a constant that is smaller than any nonzero partition's possible value of

RFF(). QNX Neutrino defines RFU(p) for a zero budget partition as a constant

that is greater than RFU(). The largest value of f() is window size *

c(pm) where c(pm) > c(p') for all p' not equal to pm.

Therefore, QNX Neutrino can set f() for a zero-budget partition as:

f_zero = 1 + window size*c(pm)

and then scale it as described for running out of bits.

The window size is expressed in

cycles.

How does the scheduler algorithm determine if a thread that's allowed to run as critical,

should actually run as critical?

See the next answer.

How does the scheduler algorithm decide when to bill critical time?

When the scheduler algorithm picks a thread that is allowed to run as critical to run,

it doesn't always charge its CPU time to its partition's critical budget. A thread t

charges its CPU time to the critical budget of its partition p only when the following

are true when the scheduler algorithm is invoked:

• thread t has the highest priority in the system

• thread t is allowed to run as critical now

• partition p has a critical budget configured to be greater than zero

• CPU cycles used by all threads in partition p during the last averaging window are

less than the critical budget of partition p

• partition p has exhausted its normal CPU budget

• at least one partition, p' not equal to p, has

COMPETING(p') &&(HAS_BUDGET(p')||MAY_RUN_CRITICAL(p')) == True

For definitions of COMPETING(), HAS_BUDGET(), and MAY_RUN_CRITICAL(), see

“How does the scheduling algorithm work?” in Scheduling behaviour.

What are the algorithm's size limitations?
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The mathematics of the algorithm are extendable to any number of partitions. However,

these are the limitations of the current implementation:

• It has <= 32 partitions, because of use of bit sets and 32-bit integers.

• It has <= 16 partitions, because of an internal step of RFF calculation limited to

16×16 bit multiplication.

• It has <= 8 partitions, a practical limit to prevent the scheduler from consuming

too much memory or CPU time.

• You must specify budgets, in integer percentages, e.g. 30% or 31%, but not 30.5%.

• There's no limit on the number of threads per partition.

What are the algorithm's accuracy limitations?

Accuracy refers to the closeness of the scheduler's guarantee or limit that a partition

can consume only its budget on a loaded system. For QNX Neutrino, the accuracy is

measured based on whichever is greater:

• 0.5%

Or

• Tick size (in ms) or window size (in ms). For a 100 milliseconds window with a

default tick, this is 1%.

When you changes the averaging window size to x ms, the accuracy is undefined

for the next x ms.

The first limitation comes from the accuracy in which the RFF() calculation is carried

out. The accuracy of RFF() is calculated to a limited number of bits, specifically to

speed up the scheduling algorithm.

The second limitation comes from the uncertainty in predicting how long a thread runs

before it voluntarily blocks, is preempted by a higher-priority thread, or when the next

tick interrupt occurs. This limitation comes from the fact that the thread scheduler

has guaranteed control of the system only every tick (but may run more often).

In practice, the last limitation implies that when a window size is changed, the

scheduler clears its history of used CPU time. So the partition (p) with the highest

priority thread runs for budget(p)*window size (ms) before another partition

runs. After the window size (in milliseconds) has elapsed, all budgets are again

guaranteed. So a partition, configured for a budget of 40%, with a 100 milliseconds

averaging window, is considered to be scheduled accurately when its usage over the

last 100 ms was 39 to 41 ms. This happens when the window size hasn't changed in

the last 100 milliseconds. In practice, the scheduling accuracy is usually much better.

When is the scheduling algorithm approximated?

In order to save overhead, a very short version of the scheduling algorithm is used on

some paths involved in message passing. This short version is implemented with the
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internal scheduler functions, such as ready_ppg(), block_and_ready_ppg() and

adjust_priority_ppg().
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Overhead

Which partition is the overhead associated with scheduling charged to?

Let's consider all kernel calls, such as messaging and mutexting, that switch threads

to be overhead. Call the initial running thread t1, and the next thread t2. Let's consider

the kernel calls that are initiated by t1 and cause t1 to stop running and t2 to start

running.

The overhead is split between t1 and t2, but mostly to t1 with the following details:

Is charged to the partition

of:

Time to:

t1Enter the kernel

t1Run the scheduling algorithm

t2Do a context switch

t2Exit the kernel

Which partition is the overhead for processing interrupts charged to?

There are two parts of interrupt servicing: the interrupt handler and the interrupt

thread.

If you service interrupts with an interrupt thread, most of the time spent servicing the

interrupt is the thread's time, and only a small part of the time is spent in the interrupt

handler. The interrupt handler determines the thread to which the interrupt event

should be delivered.

If you service interrupts with an interrupt handler, all of the time spent servicing the

interrupt is in the handler.

The time spent in an interrupt thread is charged against the partition of that thread.

The time spent in an interrupt handler is charged against the partition that's running

at that time.

Since the interrupts occur in random, time spent in interrupt handler is spread evenly

over all running partitions.

What is the CPU overhead with the thread scheduler?

The QNX Neutrino results indicate that heavy compiling benchmarks that involve a

lot of filesystem-related messaging are about 1% slower on x86 platforms when using

the thread scheduler.

What is the memory overhead with the thread scheduler?
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Data

A few kilobytes of fixed overhead along with 2 KB per partition.

Code

About 18 KB.

Both of these are in the kernel space.

What factors increase the overhead for the thread scheduler?

In approximate order of importance, the cost of the thread scheduler increases with:

• the number of scheduling operations, such as sending messages, events and signals

sent, mutex operations, and sleeps

• the platform — in particular, ARM is noticeably slower because of the I/O needed

to implement ClockCycles()

• the frequency of clock ticks

• the number of partitions

• the use of runmasks

In all the above cases, the increase is approximately linear.

The following factors don't affect the cost of scheduling at all:

• the number of threads

• the length of the averaging window (except for a very small effect when changing

the window size)

• the choice of percentage budgets

• the choice of thread priorities

• the choice of FIFO, round-robin, or sporadic thread policies
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Critical threads and bankruptcy

How does the scheduler mark a thread as critical?

See the next answer.

How does the thread scheduler know that a thread is critical?

QNX Neutrino maintains a data block, the thread_entry, representing the state of

each thread. It contains three state bits for controlling the critical threads that indicate

whether or not the thread is:

• always allowed to run as critical

• allowed to run as critical until it blocks

• currently running as critical (and is consuming its partition's critical budget).

These state bits are turned on as follows:

When the user calls SchedCtl() with the

SCHED_APS_MARK_CRITICAL command on that thread.

Always allowed

When the thread receives an event from an interrupt handler,

a message from another thread marked either always allowed

Until blocked

to run critical, or allow critical until it blocks an event, on

which the user has previously called the macro,

SIGEV_MAKE_CRITICAL()

When the scheduler algorithm decides that thread would not

have been eligible to run if it hadn't been allowed to run as

critical.

Currently running

as critical

Do critical threads expose security?

No.

You can set your own thread to be critical, or receive a critically tagged event or

message. This way, the thread gets the property of the allowed to run critical flag. You

must configure the partition with a nonzero critical budget to:

• affect the critical budget, and

• cause its partition to run when it's out of budget (thereby taking time from some

other partition).

Setting a nonzero critical budget on a partition is controlled. For the recommended

scheduler partition security settings, only root, running in the parent partition of a

target partition, can set a nonzero critical budget.

When does the scheduler check for bankruptcy?
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To save time, the thread scheduler only polls partitions for bankruptcy only on each

clock tick (rather than every scheduling operation). So typically, bankruptcy is detected

one millisecond (or clock period) after a partition's critical budget has been exhausted.

How does the scheduler detect bankruptcy?

QNX Neutrino compares the total critical time (over the last averaging window) to the

partition's configured maximum critical time budget. Each partition maintains a

separate rotating window for tracking critical time usage. The history window for this

critical time identifies, for each millisecond of the last 100 milliseconds, which part

of the total CPU time was considered to be critical time.
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Inheritance

What is partition inheritance?

Partition inheritance occurs when the scheduler bills the CPU time of a thread not to

its own partition, but to the partition of a different thread. This feature makes the

thread scheduler adaptive.

When does partition inheritance occur?

Partition inheritance occurs under two situations:

• when one thread is working on behalf of another

When a client thread sends a message to a server thread, that server thread is

considered to be working on the client thread's behalf. In this case, QNX Neutrino

charges the execution time of the receiving thread, from the time it receives the

message and up to the time it waits for the next message, to the partition of the

sending thread.

This means that resource managers, such as filesystems, automatically bill their

time to their appropriate clients. This implies that partitions containing only resource

managers don't need to be reengineered every time a new client is added to the

system.

• when not inheriting would cause excessive delays (in a special case of mutex

inheritance)

How does mutex partition and inheritance work?

When threads line up for access to a mutex, QNX Neutrino doesn't consider the thread

holding the mutex to be waiting on behalf of the threads waiting for the mutex. So,

there is no inheritance of partitions.

However, there is a special scenario when the thread holding the mutex is in a partition

that ran out of available budget. In this scenario, the thread can't run and release the

mutex. All the threads waiting for that mutex are stalled until enough window rotations

have occurred for mutex-holding partitions to regain some available budget. This is

particularly nasty if the user has configured that partition to have a zero budget.

So, when a thread t1 holds a mutex in a partition that has exhausted its budget, and

another thread t2 attempts to seize the mutex, QNX Neutrino puts thread t2 to sleep

until thread t1 releases the mutex (which is classic mutex handling), and then changes

the partition of p1 to be p2 until it releases the mutex, provided the budget of partition

p2 is nonzero. This prevents extended delays, should the current mutex holder run

out of budget.

How fast is partition inheritance?
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Very fast.

The data block that QNX Neutrino keeps for each thread, the thread_entry, has a

pointer to its containing partition. So inheritance is simply a matter of swapping the

pointer. Often, QNX Neutrino doesn't even need to update the microbilling because

the same partition is executing before and after the inheritance.

Why is partition inheritance for message passing secure?

Sending a message to a process effectively gives the sender's partition budget to the

receiver thread (temporarily). However, to receive threads in that manner, the receiver

process must have been started under the root user.
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Budgets

Can I change the budgets dynamically?

You can change a partition's budget any time.

How does a budget change affect scheduling?

See the next answer.

How quickly does a budget change take effect?

The operation is quick and doesn't reset the scheduler or cause any change to the

partition's history of CPU usage that is stored in the averaging window.

However, if you change the budget of a partition from 90% to 10%, the partition could

suddenly become over budget. In this situation, the partition may not run again until

enough window rotations have occurred to lower the partition's used cycles below its

budget.

When does a change in budgets take effect?

A change in budget takes effect at the next tick interrupt or next scheduling operation

i.e. typically, in less than one millisecond.

What is a partition with zero budget?

Threads in a partition with a defined budget of zero runs if all nonzero partitions are

sleeping. These threads also run if they inherit the partition of thread that sends a

message. Zero-budget partitions are most useful for resource managers with no internal

daemon threads. They're also useful for turning off unused partitions.

How does the scheduler guarantee that the sum of all partitions' budgets is 100%?

At startup, QNX Neutrino creates the first partition (the System partition) with a budget

of 100%. Thereafter, when a thread running in a partition creates a new partition, the

current partition is considered as the parent and the new partition is the child. The

budget of the child is always taken from the budget of the parent, and may never

reduce the parent's budget below zero. So creating partitions produces a hierarchy of

partitions that subdivide the System's original budget of 100%.

How does the scheduler prevent an untrusted thread from increasing its partition's

budget?

For any change to occur, the scheduler partition security would have to be:

• unlocked to permit budget changes

• set to permit non-root users to modify budgets

• set to permit a partition to modify its own budget (usually only the parent can

modify a partition's budget)
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Note that a thread in a partition can't increase its budget more than the budget of its

parent partition.

How can I cheat to exceed my partition's budget?

You can:

• change the window size often

• provide your partition an infinite critical budget and set yourself to run as critical

As the root user, unlock the scheduler partition configuration and turn off the

scheduler partition security.

In order to do either of these, you must be the root user, unlock the scheduler

partition configuration and turn off the scheduler partition security.

The following ideas look promising, but:

• Giving your own partition more budget (it can't exceed its parent's, even if security

is off).

• Setting your thread priority to 255 (you can starve everything else in your partition,

but not another partition).

• Setting your thread policy to FIFO and loop (you can starve everything else in your

partition, but not another partition.)

• Creating your own partition (the child partition's budget can't be greater than your

own).
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Joining a partition

How does joining a thread to a partition work?

See the next answer.

How fast is joining a thread to a partition?

Each thread_entry (the control block that QNX Neutrino maintains for each thread)

has a pointer to its containing partition. Joining a thread means only changing this

pointer. The act of joining is very fast. Most of the time is spent in entering the kernel

in order to swap the pointer.
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QNX Neutrino system considerations

Why doesn't QNX Neutrino allow a partition to be deleted?

It's safer and much more efficient not to delete a partition. A suggested alternative is

to set the partition's budget to zero.

To delete a partition, QNX Neutrino would have to locate all threads (or assert that

there are none) in a partition and move them to some other partition.

Threads are mapped to their partitions with a single pointer. There is no back pointer,

as it would require a linked list to implement a many-to-one mapping to chain together

all threads.

In addition, QNX Neutrino would require additional kernel memory for a two-way queue

through all thread_entries. In addition, QNX Neutrino also have to do two-way

queue extractions every time it (QNX Neutrino) inherited partitions (e.g. message

sending) while evading the simultaneous destruction of other threads.

How does the thread scheduler plug into procnto?

See the next answer.

Is the classic scheduler still present when the thread scheduler is active?

Adaptive partitioning scheduler is part of the kernel.

It is shipped as a library module (libmod) that is built into the image along with

procnto. The procnto also contains the code for the classic QNX Neutrino scheduler

when the thread scheduler module is not present. However, when the thread scheduler

module is present, procnto initializes the thread scheduler instead of the classic

scheduler. The thread scheduler then directs a set of function pointers, one for each

primitive scheduling operation (such as ready(), block(), etc.), to its own function

constants. Subsequently, it creates the system partition, which it returns to procnto.

Does the thread scheduler inhibit I/O interrupts?

Yes. The thread scheduler calls InterruptDisable() for slightly longer than the time

required to call ClockCycles() each time it must microbill. That includes not inhibiting

interrupts to get mutual exclusion between the clock interrupt handler, scheduling

algorithm, getting partition statistics, or changing budgets.

SchedCtl(SCHED_APS_PARTITION_STATS,...)

Is there a performance limitation on how often I can call

SchedCtl(SCHED_APS_PARTITION_STATS,...) to get statistics?

Other than the cost of the SchedCtl() kernel call, the answer is no.

Getting statistics doesn't inhibit interrupts, or delay window rotations or the scheduling

algorithm (on other SMP processors.) Consistent retrieval of statistics is accomplished
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by detecting collisions and having the API withdraw and retry. Note that the call to

SchedCtl(SCHED_APS_PARTITION_STATS API..) fails with EINTR only in the

unlikely case of three consecutive collisions. In general, this can occur only if the user

has set the clock period to such a short value that it's likely unsafe for the rest of the

system.
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Appendix C
Glossary

averaging window

A sliding window, 100 ms long by default, over which the thread scheduler

calculates the CPU percentage usage.

the thread scheduler also keeps track of the usage over longer windows,

strictly for reporting purposes. window 2 is typically 10 times the length of

the averaging window, and window 3 is typically 100 times the length of

the averaging window.

bankruptcy

What happens when critical threads exhaust their partition's critical time

budget.

budget

The CPU time, expressed as a fraction of 100%, that a partition is guaranteed

to receive when it demands it.

CPU share

Another word for budget.

critical budget

A time, in milliseconds, that critical threads are allowed to run even if their

partition is out of CPU budget.

critical thread

A thread that's allowed to run, even if its partition is out of CPU budget,

provided its partition has a nonzero critical budget.

fair-share schedulers

A class of thread schedulers that consider dynamic processor loads, rather

than only fixed thread priorities, in order to guarantee groups of threads

some kind of minimum service.

free time

A time period when some partitions aren't demanding their guaranteed CPU

percentage.

inheritance
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What happens when one thread, usually a message receiver, temporarily

adopts the properties of another thread, usually the message sender.

inheritance of partition

What occurs when a message-receiving thread runs in the partition of its

message-sender.

microbilling

Calculating the small fraction of a clock tick used by threads that block

frequently, and counting this time against the threads' partitions.

partition

A division of CPU time, memory, file resources, or kernel resources with

some policy of minimum guaranteed usage.

scheduler partition

A named group of threads with a minimum guaranteed CPU budget.

thread scheduler

Lets you guarantee minimum percentages of the CPU's throughput (using

budgets) to groups of threads, processes, or applications.

throttling

Not running threads in one partition, in favor of running threads in another

partition, in order to guarantee each their minimum CPU budgets.

underload

The situation when the CPU time that the partitions demand is less than

their CPU budgets.
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FIFO scheduling 27
file space, budgeting (not implemented) 10
free time, sharing 18
free-time mode 66
full-load situations 19

H

HAS_BUDGET() 74
highest priority thread 76
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kernel 54, 90
trace events 54

L

latencies 10, 12, 23, 41, 55, 56
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critical threads 23
interrupt 10
System Management Mode (SMM) 12

M

MAP_LAZY 42
MAY_RUN_CRITICAL() 74
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free time, sharing 18
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interactions between 48
interrupt handlers 48
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locking 52
number of, determining 40
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displaying current 36
starting in 35
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System 33
threads 51

joining 51
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