
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

QDB Developer's Guide

©2001–2015, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Thursday, July 9, 2015

Table of Contents

About This Guide ...7
Typographical conventions ...8

Technical support ...10

Chapter 1: Getting Started with QDB ...11

Starting the QDB server ...12

Loading QDB databases ...13

Unloading QDB databases ...14

PPS configuration path ...15

Database configuration objects ..17

Database storage ..22

Schema files ..23

Summary of database files ...25

Chapter 2: QDB Command Line ...27

Temporary storage filesystem ...32

Database integrity testing ..33

Sharing connections between clients ..34

Shared caching ..35

Advantages of shared caching ...35

Database recovery ...36

Busy timeout ..38

Handling corrupt databases ...39

Chapter 3: QDB Client ..41

Backing up and restoring databases ..44

Chapter 4: QDB Example ..45

Connecting to a database ..46

Using asynchronous mode ..46

Executing a statement ...47

Getting the result of a query ..48

Using a result ...49

Disconnecting from the server ..50

Sample program ...51

Chapter 5: Datatypes in QDB ..53

Storage classes ...54

Column affinity ...55

QDB Developer's Guide

Determination of column affinity ...55

Column affinity example ..56

Comparison expressions ..57

Comparison example ..58

Operators ...59

Sorting, grouping and compound SELECT statements ..60

Other affinity modes ...61

User-defined collation sequences ...62

Assigning collation sequences from SQL ..62

Collation sequences example ..63

Chapter 6: QDB Virtual Machine Opcodes ...65

Instruction format and execution ..66

Virtual machine features ..67

Viewing programs generated by QDB ...68

The opcodes ...70

Chapter 7: Writing User-Defined Functions ...95

User scalar/aggregate functions ..96

User collation routines ..98

Collation algorithm example ...101

SQLite C/C++ API ...102

sqlite3_result_* ..102

sqlite3_value_* ...103

sqlite3_user_data ..105

Chapter 8: QDB API Reference ..107

qdb_backup() ...108

qdb_binding_t ..110

qdb_bkcancel() ...114

qdb_cell() ..116

qdb_cell_length() ..118

qdb_cell_type() ...120

qdb_collation() ...122

qdb_column_decltype() ...124

qdb_column_index() ...126

qdb_column_name() ...128

qdb_columns() ...130

qdb_connect() ..131

qdb_data_source() ..133

qdb_disconnect() ..135

qdb_freeresult() ..136

qdb_getdbsize() ..137

qdb_geterrcode() ..139

Table of Contents

qdb_geterrmsg() ...141

qdb_getoption() ..143

qdb_getresult() ...145

qdb_gettransstate() ...147

qdb_interrupt() ...149

qdb_last_insert_rowid() ...151

qdb_mprintf() ...153

qdb_parameters() ...156

qdb_printmsg() ...158

qdb_query() ...160

qdb_rowchanges() ...162

qdb_rows() ...164

qdb_setbusytimeout() ..165

qdb_setoption() ..167

qdb_snprintf() ..169

qdb_statement() ...171

qdb_stmt_decltypes() ..173

qdb_stmt_exec() ...176

qdb_stmt_free() ..178

qdb_stmt_init() ...180

qdb_vacuum() ..183

qdb_vmprintf() ...185

Chapter 9: QDB SQL Reference ...187

Row ID and Autoincrement ..188

Comments ...190

Expressions ..191

Keywords ...199

Statements ..204

ALTER TABLE ...204

ANALYZE ..205

ATTACH DATABASE ...206

CREATE INDEX ...207

CREATE TABLE ...208

CREATE TRIGGER ...211

CREATE VIEW ...214

DELETE ...214

DETACH DATABASE ..215

DROP INDEX ..215

DROP TABLE ..216

DROP TRIGGER ..216

DROP VIEW ..217

EXPLAIN ..217

INSERT ..218

QDB Developer's Guide

ON CONFLICT ...218

PRAGMA ..220

REINDEX ..227

REPLACE ...227

SELECT ..228

TRANSACTION ...230

UPDATE ...232

VACUUM ..232

Chapter 10: fileset Reference ..235

Table of Contents

About This Guide

The QNX Database (QDB) Developer's Guide accompanies the QDB database server

and is intended for application developers.

This table may help you find what you need in this book:

See:For information about:

Getting Started with QDB (p. 11)Launching QDB and managing databases

QDB Command Line (p. 27)Using the QDB command utility

QDB Client (p. 41)Executing SQL statements from the

command line

QDB Example (p. 45)Writing a client application to use QDB

Datatypes in QDB (p. 53)Supported data types

QDB Virtual Machine Opcodes (p. 65)Opcodes used to execute SQL statements

Writing User-Defined Functions (p. 95)Writing your own SQL or collation

functions

QDB API Reference (p. 107)Client API functions

QDB SQL Reference (p. 187)SQL commands

© 2015, QNX Software Systems Limited 7

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

8 © 2015, QNX Software Systems Limited

About This Guide

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

© 2015, QNX Software Systems Limited 9

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

10 © 2015, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Getting Started with QDB

The QNX Database (QDB) server is a small-footprint, embeddable SQL database server.

It is designed as an easy-to-configure QNX Neutrino resource manager.

QDB is based on the SQLite project (http://www.sqlite.org) and inherits many

of SQLite's features. QDB has these features:

• support for most ANSI SQL-92 syntax

• transactions

• concurrent access

• synchronous safe writes

• triggers, views, multiple attached databases

• small footprint

• network access to databases using QNet

• simple API for accessing the database

• result storing for repeated use

• result passing from one application to another

• in-memory database support

• auto-attach support, to join disparate databases into a single, virtual database

© 2015, QNX Software Systems Limited 11

Starting the QDB server

QDB uses the Persistent Publish/Subscribe (PPS) service to dynamically configure

databases. Before starting QDB, you must set up PPS. You can then use QDB to load

and unload databases.

To set up and use QDB:

The first step is optional and is possible only if you've installed the QNX SDK

for Apps and Media. The action described herein improves performance

but isn't necessary to successfully use QDB.

1. In a QNX Neutrino terminal, enter io-fs-media to start the IO service for reading

and writing to RAM-based locations.

Although it's not required, we recommend running your QDB databases in RAM;

for example, from a tmpfs filesystem. You can also run databases from locations

in QNX filesystems and flash filesystems but performance may suffer with these

two filesystem types due to the inherent slowness in writing to the storage media.

2. Enter pps to start PPS as a background process.

PPS creates a root directory (/pps by default) to store the PPS configuration

objects, which are text files that describe the configuration of QDB databases.

3. Enter mkdir -p /pps/qnx/qdb to create the directory structure used in the PPS

configuration path.

4. Enter qdb followed by any desired options to start the QDB server.

For debugging purposes, you should start qdb with -v and -V options to get verbose

output. The -v option is cumulative, with each additional v adding a level of

verbosity, up to seven levels. The -V option sends output to the console and to the

sloginfo log file.

The PPS and QDB server processes are running. You can now add and remove database

configuration objects to and from the directory named in the PPS configuration path

to dynamically load and unload databases.

12 © 2015, QNX Software Systems Limited

Getting Started with QDB

Loading QDB databases

To load a database into QDB:

• Copy an existing configuration object or, from a client application using the open()

and write() system calls, output the list of configuration attributes and values into

the config subdirectory under the PPS configuration path (/pps/qnx/qdb/).

The configuration object is a text file, accessed through PPS, that lists database

parameters as attribute-value pairs. This file must name the database storage file

and can optionally name SQL command files that define the schema of the database

and populate it with initial data, as explained in “Database configuration objects

(p. 17)”.

QDB parses the configuration object's contents and tries to load the database with

the same name as the object. QDB then creates a status object that indicates the

database state after the loading attempt. If the storage file named in the

configuration object doesn't exist, QDB creates the storage file and if directed,

populates the database with initial data.

The directory that will contain the new storage file must exist before you

start loading the database. Otherwise, the loading fails and QDB sets the

status to Error.

© 2015, QNX Software Systems Limited 13

Loading QDB databases

Unloading QDB databases

To unload a database from QDB:

• Delete the configuration object with the same name as the database to unload,

from the config subdirectory under the PPS configuration path

(/pps/qnx/qdb/).

QDB removes the database from its control. Any databases that are attached go

into the AttachWait state and can't be accessed until the missing database is

reloaded (see the “Database configuration objects (p. 17)” section for details on

the AutoAttach parameter). QDB also deletes the status file in the status

subdirectory because the database is no longer visible.

No files referred to in the configuration object, including the raw storage

file, are deleted when the database is unloaded. To delete a database, the

storage file must be deleted in the filesystem.

14 © 2015, QNX Software Systems Limited

Getting Started with QDB

PPS configuration path

QDB requires a dedicated location for storing the database configuration and status

objects. This location is called the PPS configuration path. The database configuration

objects are text files that control database setup. The status objects are text files that

report the database states.

The config subdirectory

The contents of the config subdirectory under the PPS configuration path determine

which databases are currently visible to QDB. QDB monitors this location for file

additions and removals. When a file is added to config, QDB parses the file's contents

and tries to load the database with the same name as the file. When a file is removed

from the subdirectory, QDB unloads the database, meaning it removes the database

from visibility but doesn't delete it.

The status subdirectory

The files in the status subdirectory report the states of databases that QDB attempted

to load. Each status file contains a Status attribute, whose value can be one of:

Initializing

The database configuration object has been seen and the database is

initializing.

Error

There was an error with the configuration of the database.

Valid

The database has been configured and can be accessed.

AttachWait

The database is waiting for an auto-attached database to become available

before configuration can continue.

Overriding the PPS configuration path

The default PPS configuration path for QDB is /pps/qnx/qdb. You can override this

default path to run multiple instances of QDB. This is useful if you want to run

databases with different connection settings.

The PPS configuration path is based on the PPS mountpoint. Before starting QDB,

you can start PPS with either the default mountpoint (/pps) by using no command-line

options, or with an overriden mountpoint by using the -m option, as in the following

example:

pps -m /temp

© 2015, QNX Software Systems Limited 15

PPS configuration path

You can then override the PPS configuration path by running the qdb utility with the

-c option, as follows:

qdb -c /temp/qdb

The directory named in the PPS configuration path must exist before you start QDB.

You can launch multiple instances of QDB with different configuration paths so long

as each path is based on the PPS mountpoint. So in the above example, you could

also run an instance of QDB with the PPS configuration path /temp/customerdbs.

We recommend you use separate QDB device mountpoints for separate QDB instances;

this is done with the -n option on the qdb command line. For details, see the QDB

Command Line (p. 27) chapter.

16 © 2015, QNX Software Systems Limited

Getting Started with QDB

Database configuration objects

QDB databases are managed with configuration objects, each of which configures one

database. The configuration objects are text files that specify the paths to the database

schema and storage files as well as policy settings such as backups.

The files are named after the databases that they configure. For example, suppose

you have two media content databases named hdd and cdrom. You would then create

two configuration objects named hdd and cdrom. For an overview of all

database-related files, see “Summary of database files (p. 25)”.

By using a separate SQLite storage file for each database, QDB allows you to

dynamically load and unload individual databases so you can keep in memory only

the data needed for the active client application.

QDB doesn't support “on-the-fly” configuration changes after a database is

loaded. To modify the configuration, you must unload the database, update

its configuration object, and reload the database. You must also ensure that

the changes are compatible with the previous configuration.

Configuration object contents

The database configuration object gets parsed by QDB to set up the database. Lines

specifying parameters are in the form key::value. Unknown parameter types are

ignored and so they can be made into comments, but you must still use the :: delimiter

on the comment line. For example, you can enter MyComment:: on a line and QDB

will treat it as an unsupported parameter and ignore that line when parsing the file.

For an example of a database configuration, see “Sample configuration object (p.

21)”.

The configuration object must contain this parameter:

Filename

The name of the database storage file, which is the raw SQLite file. It must

have an absolute path but it can refer to any file location. At database loading

time, either this file or the directory in which it will be created must exist;

otherwise, the loading attempt fails and QDB sets the status to Error. If the

database file doesn't exist but its parent directory does, the file is restored

from the newest valid backup (if possible) or a blank database file is created.

All other database configuration parameters are optional. You can define these

parameters:

© 2015, QNX Software Systems Limited 17

Database configuration objects

AutoAttach

A comma-separated list of other databases to attach to the current one (using

the SQL ATTACH DATABASE statement) whenever a database connection

is established.

Attached databases are a convenience to provide access to tables that are

physically stored in different database files. This is useful for breaking up

a database into separate pieces for performance reasons (each piece gets

its own lock, which makes multi-user access more responsive). It's also

useful for transfering parts of a database to different storage medias such

as RAM filesystems.

QDB allows you to include attached databases in other maintenance

operations, such as backup or vacuum.

If any attached database is unavailable at loading time, QDB sets

the current database's status to AttachWait and makes the database

inaccessible.

BackupAttached, SizeAttached, VacuumAttached

These entries control what maintenance operations should apply to attached

databases when a command is issued to the main database. Each parameter

lists the attached databases affected by the operation.

Suppose you have a main database named mp3_tunes_0 with two attached

databases named mp3_tunes_1 and mp3_tunes_2 and you define these

paramaters:

AutoAttach::mp3_tunes_1,mp3_tunes_2

VacuumAttached::mp3_tunes_1

In this case, a qdb_vacuum() (p. 183) operation on mp3_tunes_0 will also

vacuum mp3_tunes_1 but not mp3_tunes_2.

Any database named in an operation-based attachment parameter

such as VacuumAttached must also be named in AutoAttach,

or that database won't be processed during the operation.

For more details on the scope of maintenance operations for attached

databases, refer to qdb_backup() (p. 108), qdb_getdbsize() (p. 137), and

qdb_vacuum() (p. 183).

18 © 2015, QNX Software Systems Limited

Getting Started with QDB

BackupDir

A comma-separated list of directories that store database backups. When

you specify multiple directories, they're used in rotation to store the backup

files. This feature ensures that should a backup be interrupted or aborted

by a power failure, another older backup is still available.

These directories must exist at loading time (though they don't need to

contain valid backups); otherwise, the loading attempt fails and QDB sets

the database status to Error. If any existing backup files are located in these

directories, they are sorted by date and overwritten oldest-to-newest when

performing backup operations and used in newest-to-oldest order when

restoring a missing or corrupt database.

BackupVia

An interim directory that the database is copied into as part of the backup.

To make sure the backup is consistent, QDB places a read lock on the

database while copying and compressing it, so the database may be locked

a long time if the destination is slow (e.g., flash).

Suppose you specify:

BackupVia::/dev/shmem

When backing up, QDB locks the database, copies it to /dev/shmem, and

releases the lock. Then, in a second step, QDB copies and compresses the

database into the location specified by BackupDir, without needing to lock

the database.

ClientSchemaFile

The name of the file (with an absolute path) that contains the SQL commands

to execute every time a client calls qdb_connect() (p. 131).

Use this feature for changing database settings that can't be premanently

modified. An example would be the PRAGMA commands, which modify

non-table data such as journaling mode or case-sensitive-like status. Don't

use client schema files to do regular database work because doing so will

slow down new connections.

You can also use this mechanism to implement cross-database triggers.

Collation, Function

These entries install user-provided collation (sorting) routines and

scalar/aggregate functions. The argument format is a comma-separated list

of library symbols in the form tag@library.so, where tag is the symbol name

© 2015, QNX Software Systems Limited 19

Database configuration objects

of the function description structure and library.so is the name of the shared

library containing the code.

Unlike the paths to other key files, the library file paths can be relative or

absolute. Relative paths are looked up in the library search directories (refer

to dlopen() in the QNX Neutrino C Library Reference for more detail). In this

release, you can install only one collation function but many scalar functions

per database. For the latter type of functions, you can specify symbols from

as many shared libraries as you want. For example, you could write:

Collation::UTF-8_Sort@libsort.so

Function::sampleData@libstats.so,implToMtrc@libunits.so

For information about the function description structures and the setup and

sorting functions that you must define, see the Writing User-Defined

Functions (p. 95) chapter.

QDB checks for the existence of the libraries and the specified symbols at

loading time. If any are not found, the loading attempt fails and QDB sets

the database status to Error.

Compression

The compression algorithm to apply to backups. The supported options are:

• none (for no compression, which is the default)

• lzo (for LZO compression)

• bzip (for BZIP2 compression)

• diocopy (for direct I/O copy)

The lzo compression algorithm is the fastest but the bzip algorithm offers

the highest compression. Direct I/O doesn't perform any compression; instead,

QDB uses the fileset (p. 235) utility to copy the database using direct

memory access (DMA). Direct I/O is a fast way to back up data if the

persistent storage supports DMA.

The compressed files are named by adding the appropriate extensions to

the original database filenames. By default, backup files aren't compressed.

CompressionVia

This entry is used with the BackupVia entry and any Compression setting

specified for the backup. By default, the BackupVia feature first makes a

raw/uncompressed copy of the database in the temporary directory and then

performs the compression. This works if you have enough space and it

read-locks the database for the least amount of time, but you can use less

space (at the expense of more time) by compressing during the copy. This

20 © 2015, QNX Software Systems Limited

Getting Started with QDB

option is false by default; if you set it to true, the compression is done in

the first step.

DataSchemaFile

The name of the file (with an absolute path) that creates the initial data in

the database. This text file contains the SQL commands to populate the

database when it is created.

This option is processed only if the SchemaFile option is set.

SchemaFile

The name of the file (with an absolute path) that contains the SQL commands

to create the initial schema of tables, indexes, and views for the database.

The schema file is used only to set up the database if it didn't already exist.

An initial schema is optional; without an initial schema, a new database will

be empty.

Sample configuration object

This basic database configuration names the files for storing the database, defining

the schema, and populating the database with initial data:

Filename::/root/tmpfs/cdrom0_db

SchemaFile::/etc/mm/sql/mmsync.sql

DataSchemaFile::/etc/mm/sql/mmsync_data.sql

You would give the configuration object the same name as the database storage file

(cdrom0_db).

© 2015, QNX Software Systems Limited 21

Database configuration objects

Database storage

QDB uses raw SQLite files to store databases individually. Each database configuration

object must provide a path to the raw storage file for the database being defined.

Storage files for different databases can be kept in different areas of the filesystem

or in different filesystems altogether.

Database storage files can be stored on any QNX or POSIX filesystem with read/write

access (including memory-based filesystems, such as tmpfs). QDB can run from QNX

filesystems visible via Qnet, but can't run from a CIFS or NFS filesystem or a non-POSIX

system such as /dev/shmem/.

When loading a database, QDB creates the storage file in the location specified in the

configuration object if the storage file doesn't exist.

When unloading a database, QDB leaves the storage file intact; it's up to the application

to take appropriate action by either copying or deleting the storage file.

22 © 2015, QNX Software Systems Limited

Getting Started with QDB

Schema files

Schema files contain all the SQL commands to create the database schema the way

you want, populate the database after creation, or run whenever a client connects to

the database.

Schema creation file

This file defines the tables, views, indexes, and triggers that make up the database.

Here's an example of a schema creation file:

CREATE TABLE library (

 fid INTEGER PRIMARY KEY AUTOINCREMENT,

 ftype INTEGER DEFAULT 0 NOT NULL,

 last_sync INTEGER DEFAULT 0 NOT NULL,

 last_played INTEGER DEFAULT 0 NOT NULL,

 filename TEXT DEFAULT '' NOT NULL,

 offset TEXT DEFAULT '' NOT NULL

);

CREATE TABLE library_genres (

 genre_id INTEGER PRIMARY KEY AUTOINCREMENT,

 genre TEXT

);

CREATE INDEX library_genres_index_1 on library_genres(genre);

CREATE TABLE library_artists (

 artist_id INTEGER PRIMARY KEY AUTOINCREMENT,

 artist TEXT

);

CREATE INDEX library_artists_index_1 on library_artists(artist);

Data schema file

This file contains SQL commands to populate the database with initial data just after

creation. Here's an example of a data schema file:

INSERT INTO library_genres(genre_id, genre)

 VALUES(1, NULL);

INSERT INTO library_artists(artist_id, artist)

 VALUES(1, NULL);

INSERT INTO library_artists(artist_id, artist)

 VALUES(2, "The Beatles");

INSERT INTO library_artists(artist_id, artist)

 VALUES(3, "The Rolling Stones");

INSERT INTO library_artists(artist_id, artist)

 VALUES(4, "The Doors");

Client schema file

© 2015, QNX Software Systems Limited 23

Schema files

This file contains SQL commands to execute whenever a client connects to the

database. Here's an example of a client schema file:

PRAGMA journal_mode = PERSIST;

PRAGMA case_sensitive_like = true;

PRAGMA locking_mode = EXCLUSIVE;

24 © 2015, QNX Software Systems Limited

Getting Started with QDB

Summary of database files

QDB database configuration uses many files. Suppose you want to create a database

named customerdb and store its data in /usr/local/db/ and its schema definition

files in your home directory of /home/user1/, and that you're using the default PPS

configuration path (/pps/qnx/qdb/). You would then need the following files to set

up this database:

PurposeFile

Text file acting as configuration object, which provides paths to

other setup files and specifies policy settings such as auto-attached

databases

/pps/qnx/qdb/config/customerdb

Status file created by QDB to indicate database state after attempted

loading

/pps/qnx/qdb/status/customerdb

Raw SQLite file (created by QDB if necessary) that stores database

content

/usr/local/db/customerdb

Schema definition file that defines tables, views, indexes, and

triggers that make up database

/home/user1/customerdb.sql

Data schema file that specifies initial data for populating database/home/user1/customerdb_data.sql

Client schema file that defines commands to run whenever a client

connects

/home/user1/customerdb_connect.sql

QDB device file used for PPS object publishing/dev/qdb/customerdb

© 2015, QNX Software Systems Limited 25

Summary of database files

Chapter 2
QDB Command Line

Configure and maintain QDB databases

Synopsis:

 qdb [-A] [-c config_path] [-C policy] [-D] [-I test]

 [-n mountpoint] [-N control] [-o option[,option2...]]

 [-P permissions] [-r mode] [-R mode] [-s [data@]routine]

 [-t timeout] [-T timeout] [-v[v...]V] [-W time] [-X path]

Options:

-A

Turn off exclusive mode to allow other applications to use the database files.

-c config_path

Specify an overridden PPS configuration path. See the “PPS configuration

path (p. 15)” section for more information.

-C policy

Specify a database connection sharing policy. The policy can be one of:

• unique

• private

• reuse

• share

See the “Sharing connections between clients (p. 34)” section for more

information.

-D

Disable the shared cache. You should use this option only if you need to

debug shared caching (p. 35).

-I test

Perform a database integrity test at loading time. The test can be one of:

• none

• basic

© 2015, QNX Software Systems Limited 27

• partial

• full

See the “Database integrity testing (p. 33)” section for more information.

-n mountpoint

QDB resource manager mountpoint. The default is /dev/qdb.

-N control

Name of the database control entry. The default is .control.

-o option [,option2...]

Configure miscellaneous options. The options are:

• unblock=0 | 1 — set whether or not to install an unblock handler (i.e.,

to allow a signal to interrupt an SQL operation).

• threadmax — set the maximum number of threads to allocate to qdb;

the default is 64.

• threadhi — set the maximum number of threads that can be kept in

a blocked state ready to work.

• threadlo — set the minimum number of threads to keep in a blocked

state ready for work.

• rwbias=r|w — set preferential access for readers (with 'r') or writers

(with 'w') when multiple threads are contending for a database lock. By

default, no preferential access is granted; you can override this setting

to improve performance.

• tempstore=directory— set the directory name where qdb places certain

temporary files. You can set this to a tmpfs RAM disk location to prevent

excessive disk access.

• bkcopy=buffer_size — set the size of the buffer to use when making a

backup or compressing. The default value is 64 KB, and is probably

acceptable for most cases.

• trace — log SQL statements before qdb executes them. You must set

verbosity (-v) to six for this feature to work.

• profile — log SQL statements and the time it took to execute them,

after qdb finishes executing them. You can additionally specify the -W

time option to log only SQL statements that take longer than the time

specified in milliseconds. You must set verbosity (-v) to six for this

feature to work.

28 © 2015, QNX Software Systems Limited

QDB Command Line

• verchk=none|major|minor|revision|strict — check the

compatibility between the SQLite version from which QDB was built and

that of the installed SQLite library.

The default value is strict, which means the exact revision, including

any patches, must match between two the SQLite versions. For example,

if you're running a QDB service built from version 3.7.11-patch17 but

your installed SQLite library is of version 3.7.11 (but no patch), the

version check fails and QDB doesn't start.

By relaxing the strictness of the version checking, you can use a SQLite

library with a version different from the one that QDB was built from.

See also thread_pool_create() in the QNX Neutrino C Library reference.

-P permissions

Define access permissions for the database and backup files. By default

this is 0664.

-r mode

Set the connection recovery mode. The mode specifies what happens when

a database problem is discovered and corrected. It can be one of:

• manual — clients receive ESTALE errors until they disconnect and

reconnect.

• auto — clients are automatically reconnected, and receive no notification

that a problem was detected and repaired.

-R mode

Set the database creation and recovery mode. The mode can be one of:

• manual

• auto

• set

See the “Database recovery (p. 36)” section for more information.

-s [data@]routine

Change the configuration of a user-defined collation sequence. The collation

setup function expects data in the same format as you would specify it

through qdb_collation() (p. 122). For example, -s en_US@cldr would name

the cldr collation routine and invoke its setup function at startup, passing

in the en_US string.

© 2015, QNX Software Systems Limited 29

Note that the data portion of the argument is optional; specifying a -s

argument without data lets you set the configuration of a collation to its

default setting.

This release supports only one collation per database and hence, you can

provide only one -s argument. Any user-defined collation has its setup

function invoked at startup, regardless of whether you provided any data

using this option. However, to pass nondefault data to the collation setup

function, you must use this option and include data in its value.

-t timeout [block | nonblock]

Set the busy-wait timeout on database access, in milliseconds. By default,

this is 5000 milliseconds. See the “Busy timeout (p. 38)” section for more

information.

-T timeout [block | nonblock]

Set the busy-wait timeout on database connection, in milliseconds. By

default, this is 5000 milliseconds. See the “Busy timeout (p. 38)” section

for more information.

-v

Increase output verbosity. The more -v options you specify, the more verbose

the output. You can specify up to seven -v levels. Messages are written to

the sloginfo log.

-V

Replicate output messages to the console and the sloginfo log.

-W time

Used with the -o profile option to log only those SQL statements that

take longer than time (which is specified in milliseconds). The default for

time is 5000 milliseconds.

-X path

Set a script to run when qdb encounters a corrupt database. See “Handling

corrupt databases (p. 39)”.

Description:

The qdb utility lets you set the properties of a database connection. You can override

default paths to the configuration object or the device file, set the creation and recovery

modes, and configure miscellaneous options such as the number of threads used by

qdb.

30 © 2015, QNX Software Systems Limited

QDB Command Line

The -v option causes qdb to output the results of database operations to sloginfo;

this verbose mode is useful for troubleshooting your setup and database usage. The

verbose option can be used with the trace and profile settings under the -o option to

log the results of SQL statement execution.

© 2015, QNX Software Systems Limited 31

Temporary storage filesystem

The filesystem that qdb uses for temporary storage must support POSIX file locking.

File locking is required for database vacuuming.

The qdb utility checks its temporary storage as follows:

• If the tempstore option (-o tempstore) is specified on the command line,

qdb checks to see if the specified location:

• exists

• is writable

• is not /dev/shmem

• is not a link to /dev/shmem

If all the above conditions are met, qdb sets the internal temporary storage to the

location specified by the tempstore option. If any of the above conditions are

not met, qdb logs errors to slog and fails to start up.

• If no tempstore option is specified on the command line, qdb uses the

environment variable TMPDIR to obtain the location to use for temporary storage.

The qdb utility then checks if TMPDIR exists and the location specified by this

variable:

• exists

• is writable

• is not /dev/shmem

• is not a link to /dev/shmem

If all the above conditions are met, qdb sets the internal temporary storage to the

value of TMPDIR. If any of the above conditions are not met, qdb logs errors to

slog and fails to start up.

32 © 2015, QNX Software Systems Limited

QDB Command Line

Database integrity testing

At startup, the qdb utility tests the integrity of databases, according to the -I option

specified. It executes statements based on this option's setting, as follows:

• none — don't perform a database integrity check.

• basic — verify only that qdb can parse a string.

• partial — validate the PRAGMA database list. This is equivalent to running the

PRAGMA database_list; command.

• full — validate the database integrity. This is equivalent to running the

PRAGMA integrity_check; command.

The more verification qdb performs at startup, the greater the time needed for

startup. For production environments, you need to find the optimal balance

between the amount of verification required and the time needed to start qdb.

You can execute SQL statements on your QDB databases from the command line using

the qdbc (p. 41) utility.

© 2015, QNX Software Systems Limited 33

Database integrity testing

Sharing connections between clients

You can allow multiple clients to share a database connection. This is controlled by

the -C option. The connection modes are:

unique

Each individual client request gets a new connection. This mode exists for

pre-3.3.1 SQLite libraries, which were not thread-safe in any way.

private

Each client has a private persistent connection for its session; this connection

is created when the client attaches and destroyed when it detaches. This

mode is the backward-compatible mode; it is also the mode that must be

used when you don't pass QDB_CONN_DFLT_SHARE flag to qdb_connect()

(p. 131).

reuse

Like private, except that connections are returned to a pool rather than

being destroyed, and can be assigned from there to a new client for use in

its duration.

share

Like unique, except a connection pool is also used. This mode multiplexes

all clients over a small number of active database connections.

Connection sharing exists because a non-negligible amount of work must be done to

establish a database connection—QDB must allocate memory, access files, attach

databases and callback functions, configure connection parameters, and more. If

clients do not assume any state, then this processing work can be avoided. The QDB

server detects if connection parameters have been changed by a client, and restores

them when the connection moves in or out of the pool in unique, reuse, or share

modes.

This connection sharing should be safe (unless the client destructively modifies the

environment via SQL, such as by executing a DETACH DATABASE statement). However,

for full backward compatibility, connection sharing can be overridden on each

qdb_connect() call, and the default libqdb access mode is private.

If a client is leaving open transactions across multiple calls to qdb_statement(), then

it needs a dedicated connection (private or reuse, or it shouldn't set the

QDB_CONN_DFLT_SHARE flag).

34 © 2015, QNX Software Systems Limited

QDB Command Line

Shared caching

The default startup mode for qdb is with both shared caching and exclusive mode

enabled. You can change this as follows:

• To disable shared caching, use the -D command-line option.

• When shared caching is enabled, qdb reserves exclusive privileges for writing to

the database. To allow other applications to use the database files, use the -A

option.

The qdb utility exits immediately if it is started with shared cache

disabled but exclusive mode enabled. For example:

qdb -v -D -otempstore=/fs/tmpfs -Rset

qdb: Exclusive locking mode requires that shared cache

be enabled

Advantages of shared caching

Shared caching both improves performance times and reduces the total amount of

memory required for multiple database connections by having multiple connections

share the same memory cache.

For example, without shared caching, if 1 MB of memory is required for each database

connection, 40 connections require 40 MB of memory. However, with shared caching,

these 40 connections could share a common memory cache of, say, 25 MB (or another

size determined by your environment and performance requirements). Furthermore,

there is no duplication in memory, so you may be able to hold all or most of the

database, greatly reducing the need for disk I/O.

© 2015, QNX Software Systems Limited 35

Shared caching

Database recovery

The -R option controls the recovery actions QDB performs when it encounters a missing

or corrupt database file. The options are:

auto

In this mode, file manipulation is fully automatic and a best-effort is always

made to establish a valid database connection at startup. Files are backed

up individually and restored individually.

A corrupt or missing database file is restored from the most recent, valid

backup that can be located. If there's no such backup, then a blank database

is recreated from the original schema definition.

manual

In this mode, the only action performed is to create a blank database from

the original schema definition if the database file is missing at startup.

Databases are not restored from backups. If the file is corrupt, the server

will not start. If the file is missing or corrupt at runtime, no access to that

database is permitted, and it will not be restored or re-created. This mode

is intended to allow the creation of a new system, or to give manual control

over error recovery (for example, to preserve the corrupt database for later

analysis).

set

In this mode, backups of attached databases are treated as a coherent set,

so an error with any one of the component databases causes QDB to restore

a complete and matching set of all database files. This is useful if attached

databases refer to each other.

The set master is the database that attaches other databases (by using the

AutoAttach option in the configuration object). The backup set contains

the set master and all attached databases that have BackupAttached

enabled. Note that the set master can be backed up incrementally and still

belong to the set.

We recommend the following actions to back up and restore your databases

as a coherent set:

• For the set master database, in the database configuration object:

• In the AutoAttach option, list all the databases you want to attach.

For example:

36 © 2015, QNX Software Systems Limited

QDB Command Line

AutoAttach::mp3_tunes_1,mp3_tunes2

• In the BackupAttached option, list all dependant databases. For

example:

BackupAttached::mp3_tunes_1,mp3_tunes_2

• Use the -R set option when starting qdb.

• When doing backups, call qdb_backup() (p. 108) on the set master with the

scope argument set to QDB_ATTACH_DEFAULT.

© 2015, QNX Software Systems Limited 37

Database recovery

Busy timeout

The two timeout settings are differentiated as follows:

• The -t option sets the default user-level timeout that applies to each qdb_connect()

(p. 131) connection. You can privately modify this setting with qdb_setbusytimeout()

(p. 165).

• The -T option sets the global internal timeout that applies to database connections

made without a client context. Examples include connections for verifying existing

databases, constructing new databases at startup, and auto-attaching databases.

A value of block is equivalent to an infinite timeout period, and nonblock is

equivalent to a timeout period of 0.

38 © 2015, QNX Software Systems Limited

QDB Command Line

Handling corrupt databases

The -X option lets you provide the qdb utility with a program or script to run when it

encounters a corrupt database. If the script appears to run correctly, the database

server will continue to run; the recovery script is responsible for stopping and restarting

the qdb service if necessary.

The following is a sample qdb startup command with the -X option:

qdb -X /usr/bin/recover_db.sh

Below is a sample script that can be launched by qdb when it encounters a corrupt

database. You can copy the code and save it as recover_db.sh to use in the above

command.

#!/bin/ksh

Corrupt database recovery script

Set up some variables.

Database (DB) name comes from argv[1], or $1.

There is no way to automatically get the PPS object name from the

DB name so the database PPS object name is made up of a path

set by the system integrator and the DB name.

QDBPPSPATH=/pps/qnx/qdb/

DBNAME=$1

DBPPSCOBJ=${QDBPPSPATH}/config/${DBNAME}

DBPPSSOBJ=${QDBPPSPATH}/status/${DBNAME}

DBFILENAME=$(grep "^Filename\:\:" "${DBPPSCOBJ}" | cut -f3- -d \:)

BACKUPDIRS_STR=$(grep "^BackupDir\:\:" "${DBPPSCOBJ}" | cut -f3- -d \:)

IFS=","

set -A BACKUPDIRS_ARR -- ${BACKUPDIRS_STR}

PPSCOBJCONTENT=$(cat "${DBPPSCOBJ}" | grep -v "^@${DBNAME}\$")

Delete the PPS object, then wait for the status object to go.

The script waits for 2.5 seconds but continues even if the

status object is still there; the script logs an error in this case.

DBPPSSOBJ_DELETED=0

rm ${DBPPSCOBJ}

for i in 1 2 3 4 5; do

 if [! -e ${DBPPSSOBJ}]; then

 DBPPSSOBJ_DELETED=1

 break;

 fi

 sleep 0.5

done

if ["${DBPPSSOBJ_DELETED}" -eq "0"]; then

 echo "Status object \"${DBPPSSOBJ}\" still exists; continuing anyway."

fi

© 2015, QNX Software Systems Limited 39

Handling corrupt databases

Delete the database file and any backups. The backup deletion should

be customized by the integrator to delete only the appropriate backup

filenames (for example DBNAME.gz).

NOTE: This example doesn't consider auto-attached databases.

If you are using auto-attached databases or any other advanced

configuration, you may need to do some special handling.

rm ${DBFILENAME}

for dir in ${BACKUPDIRS_ARR[@]}; do

 rm -f ${dir}/${DBNAME} ${dir}/${DBNAME}.*

done

Re-create the PPS configuration object.

echo "${PPSCOBJCONTENT}" > ${DBPPSCOBJ}

EOF

• To kill qdb without killing the script, send SIGTERM (the default for slay).

This way, qdb keeps the thread used by popen() to start the script available

and logs output until the script quits.

• If you send SIGKILL, qdb is killed immediately. The script continues to

run but its output is lost.

40 © 2015, QNX Software Systems Limited

QDB Command Line

Chapter 3
QDB Client

Execute SQL statements on QDB databases

Synopsis:

 qdbc [-a scope] [-B] [-d database] [-f format] [-q] [-S]

 [-t timeout] [-v[v...]] [-V] [sql]

Options:

-a scope

Set the scope of operation for the -B, -S, and -V options. This can be one

of:

• default — act on attached databases as specified in the configuration

object (honoring the value of the VacuumAttached, BackupAttached,

and SizeAttached parameters). This gives backward-compatible

behavior.

• all — always act on any attached databases, regardless of configuration

object settings.

• none — act only on the connected database itself, never on any attached

databases.

-B

Perform a backup (the equivalent of calling qdb_backup() (p. 108)). The

scope of this operation is determined by the configuration object for the

database specified by -d or QDBC_DBNAME, or by the -a option, if specified.

-d database

The database you want to execute the SQL statement or other operation on.

If this isn't specified, the value of the QDBC_DBNAME environment variable

is used.

-f format

Format for the output. If this option isn't specified, the simple format is

used by default. Can be one of:

• simple — plain text, including column names, with field data separated

by a pipe character (|); this is the default setting

© 2015, QNX Software Systems Limited 41

• html — HTML-encoded text

• sgml — SGML-encoded text

• data — plain text, without column names, with field data separated by

a tab character

-q

Reset verbosity to quiet mode.

-S

Print the database size information (the equivalent of calling qdb_getdbsize()

(p. 137)) for the database specified by -d or QDBC_DBNAME. The scope of

this operation is determined by the database configuration object or the -a

option, if specified.

-t timeout

Set the database connection timeout, in milliseconds.

-v[v...]

Increase verbosity. You can set up to seven -v options.

-V

Perform a vacuum operation (the equivalent of calling qdb_vacuum() (p.

183)). The scope of this operation is determined by the configuration object

for the database specified by -d or QDBC_DBNAME, or by the -a option, if

specified.

sql

An SQL statement you want to run on the specified database. This statement

should be quoted and end in a semicolon. If no SQL statement is specified,

qdbc enters interactive mode and takes input from the command line, giving

you an SQL prompt. When you are finished entering SQL statements, press

Ctrl–C to exit.

Description:

The QDB Client utility allows you to execute SQL statements on a QDB database

without having to write code. It also allows you to perform backup, vacuum, and size

query operations. This can be useful when developing QDB applications.

The -B, -S, -V, and sql options are mutually exclusive; you can't specify more than

one.

42 © 2015, QNX Software Systems Limited

QDB Client

The result of each SQL statement is displayed on the standard output by qdbc, if the

-q option isn't set. You can also redirect a file containing SQL statements as input to

qdbc, for example:

qdbc < sql.txt

If you don't provide SQL code on the qdbc command-line, qdbc enters interactive

mode. In this mode, you can enter as many consecutive SQL statements as you want.

Statements entered in interactive mode don't need to be enclosed in quotation marks,

but must end in semicolons.

© 2015, QNX Software Systems Limited 43

Backing up and restoring databases

You can back up databases to permanent storage (or any POSIX filesystem that allows

read/write access) by:

• calling qdb_backup() (p. 108) from a client application

• passing the -b option to qdbc (p. 41).

• using the resource manager interface as follows:

echo backup dbname >/dev/qdb/.control

These methods are affected by options in the database configuration object (p. 17).

To restore a database, start qdb with the -R option set to auto. For more information

about this option, see the “Database Recovery (p. 36)” section in the QDB Command

Line chapter.

You can cancel a database backup in client code by calling qdb_bkcancel() (p. 114).

You can also cancel a backup operation using the QDB resource manager interface:

echo cancel >/dev/qdb/.control

44 © 2015, QNX Software Systems Limited

QDB Client

Chapter 4
QDB Example

QDB provides methods for client applications to query a database and step through

the query results. The sample program shown here provides a walkthrough of the

sequence of QDB method calls necessary to connect to, query, and disconnect from

a QDB database.

Your client application should perform these general steps:

1. Connect to a database by calling qdb_connect() (p. 131).

2. Query the database and examine the result:

a. Execute an SQL statement on the database by calling qdb_statement() (p. 171).

b. Get the result set for the statement by calling qdb_getresult() (p. 145).

c. Read a data cell from the result set by calling qdb_cell() (p. 116) and then use

the data as needed.

d. Free the result set by calling qdb_freeresult() (p. 136).

e. Repeat these steps to execute statements and use their results as many times

as required.

3. Close the database connection with qdb_disconnect() (p. 135).

© 2015, QNX Software Systems Limited 45

Connecting to a database

Connecting to a database requires that you know its name and use the name to obtain

a handle from the QDB client library that your application links with.

The name is used in the device path provided to the connection function:

qdb_hdl_t *dbhandle; // The QDB database handle

dbhandle = qdb_connect("/dev/qdb/customerdb", 0);

if (dbhandle == NULL) {

 fprintf(stderr, "Connect failed: %s\n", strerror(errno));

}

Two threads can share the same database connection, provided that they

coordinate between themselves. Alternatively, each thread can call

qdb_connect() and have its own connection.

Using asynchronous mode

By default, QDB completes execution of SQL statements against a database before

returning from qdb_statement() (p. 171). However, you can connect to QDB using

asynchronous mode by setting the QDB_CONN_STMT_ASYNC in flags in the call to

qdb_connect() (p. 131).

While some errors, such as syntax errors, can be caught before qdb_statement() returns

in this mode, others, such as database constraint violations, may not be generated

until the statement is completed. These errors are available only to a subsequent

qdb_getresult() (p. 145) call.

The advantage of asynchronous operation is that it allows parallelism between the

client application and the database engine, especially in cases where the client will

later retrieve the statement result anyway (e.g., SELECT statements). The danger of

asynchronous operation is that the client must be aware that the statement may not

necessarily have completed or indicated all errors, and must be coded to call

qdb_getresult() to retrieve any errors.

The mode you should use depends on the type of operation you are doing. If it is

primarily SELECT statements, then you can use asynchronous mode and let the

database engine run, because you are calling back in anyway for the rows/results. If

you are primarily doing database maintenance (i.e., INSERT, UPDATE, and DELETE

statements), then you probably want synchronous statement execution so you can use

just one API call.

46 © 2015, QNX Software Systems Limited

QDB Example

Executing a statement

Executing statements against a QDB database requires that you know and follow the

QDB-supported SQL syntax, as described in the QDB SQL Reference (p. 187) chapter.

You must, of course, connect to the database before attempting to execute statements

against it. See “Connecting to the database (p. 46)”.

One example is to run the following query:

 int rc;

 qdb_hdl_t *dbhandle;

 rc = qdb_statement(dbhandle, "SELECT * FROM customers;");

 if (rc == -1) {

 char *errmsg;

 errmsg = qdb_geterrmsg(dbhandle);

 fprintf(stderr, "QDB Error: %s\n", errmsg);

 }

It is important to escape any strings that you pass in to qdb_statement(). For example,

if you pass in the string:

 SELECT lastname FROM customerdb WHERE lastname='O'Neil';

you would get an error, because the string in the WHERE clause would be interpreted

as just 'O', because the second single quotation mark signals the end of the string,

and the remaining characters produce an error. To correctly run the query, escape the

single quotation mark in the middle of the string, as follows:

 SELECT lastname FROM customerdb WHERE lastname='O''Neil';

The second single quotation mark (') is escaped by the first single quotation mark.

© 2015, QNX Software Systems Limited 47

Executing a statement

Getting the result of a query

Some queries give results but others don't. For example, the data results for UPDATE,

INSERT, or DELETE statements always contain 0 rows. When running a SELECT

statement, there may or may not be rows that matched your query, so it is always a

good idea to check whether you have data by examining the return value of

qdb_statement().

You can still call qdb_getresult() for statements with 0 rows in the result set.

In fact, it may be the only way to retrieve the result. If the connection was

opened with the QDB_CONN_STMT_ASYNC flag set, then qdb_statement()

returns before the statement has been completed (see “Using asynchronous

mode (p. 46)”). With complex statements, this may mean a delayed error.

To help debug your application, you can print the fetched result to stdout() to visualize

your data, using this call:

qdb_printmsg(stdout, result, QDB_FORMAT_SIMPLE);

Here's an example of getting the results of an operation:

 qdb_result_t *result;

 // requires a statement previously run

 result = qdb_getresult(dbhandle);

 if (result == NULL) {

 char *errmsg;

 errmsg = qdb_geterrmsg(dbhandle);

 fprintf(stderr, "Error getting result: %s\n", errmsg);

 }

Memory for the results is allocated when the statement is run on the database, so you

must free the result structure or you will have memory leaks. Do this by calling

qdb_freeresult() (p. 136), as shown in the example later in this chapter. Never call

free() yourself.

48 © 2015, QNX Software Systems Limited

QDB Example

Using a result

A result is a block of memory containing a description of each cell and the cell's data.

There are functions that give you easy access to this data:

UseFunction Name

Returns the number of columnsqdb_columns() (p. 130)

Returns the number of rows. An empty

result will return 0.

qdb_rows() (p. 164)

Returns the type of data in a cell

(QDB_INTEGER, QDB_REAL, QDB_TEXT,

QDB_BLOB, QDB_NULL).

qdb_cell_type() (p. 120)

Returns the column name from the

database schema

qdb_column_name() (p. 128)

Returns the cell data as a void pointer

that can be cast to the correct type

qdb_cell() (p. 116)

Gets the column number that matches the

passed in name

qdb_column_index() (p. 126)

Returns the length of a cell's dataqdb_cell_length() (p. 118)

Prints the contents of a result, which can

be useful for debugging

qdb_printmsg() (p. 158)

© 2015, QNX Software Systems Limited 49

Using a result

Disconnecting from the server

To disconnect from the server when you no longer need to use it:

 int rc;

 rc = qdb_disconnect(dbhandle);

 if (rc == -1) {

 fprintf(stderr, "Disconnect failed: %s\n", strerror(errno));

 }

50 © 2015, QNX Software Systems Limited

QDB Example

Sample program

#include <unistd.h>

#include <stdlib.h>

#include <errno.h>

#include <stdio.h>

#include <string.h>

#include <qdb/qdb.h>

/**

 * This sample program connects to the database and does one INSERT

 * and one SELECT.

 *

 * The database name is assumed to be /dev/qdb/customerdb, with this schema:

 * CREATE TABLE customers(

 * customerid INTEGER PRIMARY KEY AUTOINCREMENT,

 * firstname TEXT,

 * lastname TEXT

 *);

 */

int main(int argc, char **argv) {

 int rc;

 qdb_hdl_t *hdl;

 qdb_result_t *res;

 char *errmsg;

 // Connect to the database

 hdl = qdb_connect("/dev/qdb/customerdb", 0);

 if (hdl == NULL){

 fprintf(stderr, "Error connecting to database: %s\n",

 strerror(errno));

 return EXIT_FAILURE;

 }

 // INSERT a row into the database.

 rc = qdb_statement(hdl,

 "INSERT INTO customers(firstname, lastname) VALUES('Dan', 'Cardamore');");

 if (rc == -1) {

 errmsg = qdb_geterrmsg(hdl);

 fprintf(stderr, "Error executing INSERT statement: %s\n",

 errmsg);

 return EXIT_FAILURE;

 }

 // SELECT one row from the database

 // This statement combines the first and last names into full names.

 rc = qdb_statement(hdl,

© 2015, QNX Software Systems Limited 51

Sample program

 "SELECT firstname || ' ' || lastname AS fullname FROM customers

 LIMIT 1;");

 if (rc == -1) {

 errmsg = qdb_geterrmsg(hdl);

 fprintf(stderr, "Error executing SELECT statement: %s\n",

 errmsg);

 return EXIT_FAILURE;

 }

 // Get the result

 res = qdb_getresult(hdl);

 if (res == NULL) {

 errmsg = qdb_geterrmsg(hdl);

 fprintf(stderr, "Error getting result: %s\n",

 errmsg);

 return EXIT_FAILURE;

 }

 if (qdb_rows(res) == 1) {

 printf("Got a customer's full name: %s\n",

 (char *)qdb_cell(res, 0, 0));

 }

 else {

 printf("No customers in the database!\n");

 }

 // Free the result

 rc = qdb_freeresult(res);

 if (rc == -1) {

 fprintf(stderr, "Error freeing SQL statement results: %s\n",

 strerror(errno));

 return EXIT_FAILURE;

 }

 // Disconnect from the server

 rc = qdb_disconnect(hdl);

 if (rc == -1) {

 fprintf(stderr, "Error disconnecting from database: %s\n",

 strerror(errno));

 return EXIT_FAILURE;

 }

 return EXIT_SUCCESS;

}

52 © 2015, QNX Software Systems Limited

QDB Example

Chapter 5
Datatypes in QDB

QDB databases, which are stored in SQLite files, allow any value stored in any database

field to have one of five standard storage classes. The SQLite design doesn't enforce

data typing on database columns but instead maps each input value to a storage class

based on the column's type affinity (preference).

QDB uses these storage classes to format data and to apply comparison or mathematical

operators when evaluating queries and ordering and grouping the results.

© 2015, QNX Software Systems Limited 53

Storage classes

Each value stored in a QDB database (or manipulated by the database engine) has

one of the following storage classes:

• NULL — a NULL value.

• INTEGER — a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes, depending on the

magnitude of the value.

• REAL — a floating-point value, stored as an 8-byte IEEE floating-point number.

• TEXT — a text string, stored using the database encoding (UTF-8).

• BLOB — a Binary Large OBject, stored exactly as it was input.

Any column in a database except an INTEGER PRIMARY KEY may be used to store

any type of value. The exception to this rule is described under “Other Affinity Modes

(p. 61)” as strict affinity mode.

All values supplied to QDB, whether as literals embedded in SQL statements or values

bound to precompiled SQL statements are assigned a storage class before the SQL

statement is executed. Under the circumstances described below, the database engine

may convert values between numeric storage classes (INTEGER and REAL) and TEXT

during query execution.

Storage classes are initially assigned as follows:

• values specified as literals enclosed by single or double quotes in SQL statements

are assigned the storage class TEXT

• literals specified as unquoted numbers with no decimal point or exponent are

assigned the INTEGER storage class

• literals specified as unquoted numbers with a decimal point or exponent are

assigned the REAL storage class

• NULL values are assigned the NULL storage class

• literals specified using the X'ABCD' notation are assigned the BLOB storage class

The storage class of a value that is the result of an SQL scalar operator depends on

the outermost operator of the expression.

54 © 2015, QNX Software Systems Limited

Datatypes in QDB

Column affinity

In QDB, the type of a value is associated with the value itself, not with the column or

variable in which the value is stored. (This is sometimes called manifest typing.) All

other SQL databases engines that we are aware of use the more restrictive system of

static typing where the type is associated with the container, not the value.

In order to maximize compatibility between QDB and other database engines, QDB

supports the concept of “type affinity” on columns. The type affinity of a column is

the recommended type for data stored in that column. The key here is that the type

is recommended, not required. Any column can still store any type of data, in theory.

It's just that some columns, given the choice, will prefer to use one storage class over

another. The preferred storage class for a column is called its affinity.

Each column in an QDB database is assigned one of the following type affinities:

• TEXT

• NUMERIC

• INTEGER

• NONE

A column with TEXT affinity stores all data using the storage classes NULL, TEXT or

BLOB. If numerical data is inserted into a column with TEXT affinity, it is converted

to text form before being stored.

A column with NUMERIC affinity may contain values using all five storage classes.

When text data is inserted into a NUMERIC column, an attempt is made to convert it

to an integer or real number before it's stored. If the conversion is successful, then

the value is stored using the INTEGER or REAL storage class. If the conversion can't

be performed, the value is stored using the TEXT storage class. No attempt is made

to convert NULL or BLOB storage classes.

A column that uses INTEGER affinity behaves in the same way as a column with

NUMERIC affinity, except that if a real value with no floating point component (or text

value that converts to such) is inserted, it is converted to an integer and stored using

the INTEGER storage class.

A column with affinity NONE doesn't prefer one storage class over another. It makes

no attempt to coerce data before it's inserted.

Determination of column affinity

The type affinity of a column is determined by the declared type of the column,

according to the following rules:

1. If the datatype contains the string “INT”, then it is assigned INTEGER affinity.

© 2015, QNX Software Systems Limited 55

Column affinity

2. If the datatype of the column contains any of the strings “CHAR”, “BLOB”, or

“TEXT”, then that column has TEXT affinity. Notice that the type VARCHAR contains

the string “CHAR” and is thus assigned TEXT affinity.

3. If the datatype for a column contains the string “BLOB” or if no datatype is

specified, then the column has affinity NONE.

4. Otherwise, the affinity is NUMERIC.

If you create a table using a CREATE TABLE table AS SELECT... statement, then

all columns have no datatype specified, and they are given no affinity.

Column affinity example

CREATE TABLE t1(

 t TEXT,

 nu NUMERIC,

 i INTEGER,

 no BLOB

);

-- Storage classes for the following row:

-- TEXT, REAL, INTEGER, TEXT

INSERT INTO t1 VALUES('500.0', '500.0', '500.0', '500.0');

-- Storage classes for the following row:

-- TEXT, REAL, INTEGER, REAL

INSERT INTO t1 VALUES(500.0, 500.0, 500.0, 500.0);

56 © 2015, QNX Software Systems Limited

Datatypes in QDB

Comparison expressions

QDB features the following comparison operators:

• =, <, <=, >, >= and !=, for arithmetic comparisons

• IN, an operation to test for set membership

• IS, which works similar to = except when at least one operand is NULL. If both

operands are NULL, IS evaluates to 1 (true). If one operand is NULL but the other

isn't, the operator evaluates to 0 (false).

• IS NOT, which works similar to != except when at least one operand is NULL. If

both operands are NULL, IS NOT evaluates to 0 (false). If one operand is NULL

but the other isn't, the operator evaluates to 1 (true).

• BETWEEN, the ternary comparison operator, which tests if a value lies within a range

The results of a comparison depend on the storage classes of the two values being

compared, according to the following rules:

• A value with storage class NULL is considered less than any other value (including

another value with storage class NULL).

• An INTEGER or REAL value is less than any TEXT or BLOB value. When you compare

an INTEGER or REAL to another INTEGER or REAL, a numerical comparison is

performed.

• A TEXT value is less than a BLOB value. When you compare two TEXT values, the

C library function memcmp() is used to determine the result.

• When you compare two BLOB values, the result is always determined using

memcmp().

QDB may attempt to convert values between the numeric storage classes (INTEGER

and REAL) and TEXT before performing a comparison. For binary comparisons, this

is done in the cases enumerated below. The term “expression” below refers to any

SQL scalar expression or literal other than a column value.

• When a column value is compared to the result of an expression, the affinity of the

column is applied to the result of the expression before the comparison takes place.

• When two column values are compared, if one column has INTEGER or NUMERIC

affinity and the other doesn't, the NUMERIC affinity is applied to any values with

storage class TEXT extracted from the non-NUMERIC column.

• When the results of two expressions are compared, no conversions occur. The

results are compared as they are presented. If a string is compared to a number,

the number will always be less than the string.

© 2015, QNX Software Systems Limited 57

Comparison expressions

In QDB, the expression a BETWEEN b AND c is equivalent to a >= b AND a <=

c, even if this means that different affinities are applied to a in each of the comparisons

required to evaluate the expression.

Expressions of the type a IN (SELECT b) are handled by the rules enumerated

above for binary comparisons (e.g. in a similar manner to a = b). For example, if b

is a column value and a is an expression, then the affinity of b is applied to a before

any comparisons take place.

QDB treats the expression a IN (x, y, z) as equivalent to a = z OR a = y OR

a = z.

Comparison example

CREATE TABLE t1(

 a TEXT,

 b NUMERIC,

 c BLOB

);

-- Storage classes for the following row:

-- TEXT, REAL, TEXT

INSERT INTO t1 VALUES('500', '500', '500');

-- 60 and 40 are converted to '60' and '40'

-- and values are compared as TEXT.

SELECT a < 60, a < 40 FROM t1;

1|0

-- Comparisons are numeric. No conversions are required.

SELECT b < 60, b < 600 FROM t1;

0|1

-- Both 60 and 600 (storage class NUMERIC) are less than '500'

-- (storage class TEXT).

SELECT c < 60, c < 600 FROM t1;

0|0

58 © 2015, QNX Software Systems Limited

Datatypes in QDB

Operators

All mathematical operators (which is to say, all operators other than the concatenation

operator ||) apply NUMERIC affinity to all operands prior to being carried out. If one

or both operands cannot be converted to NUMERIC, then the result of the operation

is NULL.

For the concatenation operator, TEXT affinity is applied to both operands. If either

operand cannot be converted to TEXT (because it is NULL or a BLOB) then the result

of the concatenation is NULL.

© 2015, QNX Software Systems Limited 59

Operators

Sorting, grouping and compound SELECT statements

When query results are sorted by an ORDER BY clause, values with storage class NULL

come first, followed by INTEGER and REAL values interspersed in numeric order,

followed by TEXT values in collating sequence order and, finally, BLOB values in

memcmp() order. No storage class conversions occur before the sort.

When grouping values with the GROUP BY clause, values with different storage classes

are considered distinct, except for INTEGER and REAL values, which are considered

equal if they are numerically equal. No affinities are applied to any values as the result

of a GROUP BY clause.

The compound SELECT operators UNION, INTERSECT and EXCEPT perform implicit

comparisons between values. No affinity is applied to comparison operands for the

implicit comparisons associated with UNION, INTERSECT, or EXCEPT—the values

are compared as is. For more details, see Compound SELECT statements (p. 230).

60 © 2015, QNX Software Systems Limited

Datatypes in QDB

Other affinity modes

The earlier sections describe the operation of the database engine in normal affinity

mode. QDB features two other affinity modes:

Strict-affinity mode

If a conversion between storage classes is required, the database engine

returns an error and the current statement is rolled back.

No-affinity mode

No conversions between storage classes are performed. Comparisons between

values of different storage classes (except for INTEGER and REAL) are always

false.

© 2015, QNX Software Systems Limited 61

Other affinity modes

User-defined collation sequences

By default, when QDB compares two text values, the result of the comparison is

determined using memcmp(), regardless of the text encoding. QDB lets you supply

arbitrary comparison functions, known as user-defined collation sequences, to use

instead ofmemcmp(). SeeWriting User-Defined Functions (p. 95) for more information.

QDB features three built-in collation sequences:

BINARY

Compare string data using memcmp(), regardless of text encoding. This is

the default comparison method.

NOCASE

The same as BINARY, except that the 26 uppercase characters used by the

English language are converted to their lowercase equivalents before the

comparison is performed.

RTRIM

The same as BINARY, except that trailing spaces are ignored.

The last two sequences are intended for testing purposes.

Assigning collation sequences from SQL

Each column of each table has a default collation type. If a column requires a collation

type other than BINARY, you can define the preferred collation type by specifying a

COLLATE clause as part of the CREATE TABLE (p. 208) column definition.

Whenever QDB compares two text values, it uses a collation sequence to determine

the results of the comparison according to the following rules:

• If either operand has a collation sequence explicitly named by the COLLATE clause

in the SQL expression, the named collation type takes precedence over that in the

column definition. If both operands have named collation sequences, then the

collation type for the left operand determines the collation sequence used.

• For binary comparison operators (=, <, >, <=, >=, and !=), if either operand is a

column, then the default collation type of the column determines the collation

sequence to use for the comparison. If both operands are columns, then the collation

type for the left operand determines the collation sequence used.

• If neither operand is a column, then the BINARY collation sequence is used.

The expression x BETWEEN y and z is equivalent to x >= y AND x <= z. The

expression x IN (SELECT y ...) is handled in the same way as the expression x

62 © 2015, QNX Software Systems Limited

Datatypes in QDB

= y for the purposes of determining the collation sequence to use. The collation

sequence used for expressions of the form x IN (y, z ...) is the default collation

type of x if x is a column, or BINARY otherwise.

An ORDER BY clause that's part of a SELECT (p. 228) statement may be assigned a

collation sequence to be used for the sort operation explicitly. In this case, the collation

sequence named by the COLLATE clause is used. Otherwise, if the expression sorted

by an ORDER BY clause is a column, then the default collation type of the column is

used to determine sort order. If the expression is not a column, then the BINARY

collation sequence is used.

Collation sequences example

The examples below identify the collation sequences that would be used to determine

the results of text comparisons that may be performed by various SQL statements.

Note that a text comparison may not be required, and no collation sequence used, in

the case of numeric, BLOB, or NULL values.

CREATE TABLE t1(

 x INTEGER PRIMARY KEY,

 a, /* collating sequence BINARY */

 b COLLATE BINARY, /* collating sequence BINARY */

 c COLLATE RTRIM, /* collating sequence RTRIM */

 d COLLATE NOCASE /* collating sequence NOCASE */

);

/* Text comparison a=b is performed using the BINARY sequence. */

SELECT x FROM t1 WHERE a = b ORDER BY x;

--result 1 2 3

/* Text comparison a=b is performed using the RTRIM sequence. */

SELECT x FROM t1 WHERE a = b COLLATE RTRIM ORDER BY x;

--result 1 2 3 4

/* Text comparison d=a is performed using the NOCASE sequence. */

SELECT x FROM t1 WHERE d = a ORDER BY x;

--result 1 2 3 4

/* Text comparison a=d is performed using the BINARY sequence. */

SELECT x FROM t1 WHERE a = d ORDER BY x;

--result 1 4

/* Text comparison 'abc'=c is performed using the RTRIM sequence. */

SELECT x FROM t1 WHERE 'abc' = c ORDER BY x;

--result 1 2 3

/* Text comparison c='abc' is performed using the RTRIM sequence. */

SELECT x FROM t1 WHERE c = 'abc' ORDER BY x;

--result 1 2 3

/* Grouping is performed using the NOCASE sequence (Values

© 2015, QNX Software Systems Limited 63

User-defined collation sequences

** 'abc', 'ABC', and 'Abc' are placed in the same group). */

SELECT count(*) FROM t1 GROUP BY d ORDER BY 1;

--result 4

/* Grouping is performed using the BINARY sequence. 'abc' and

** 'ABC' and 'Abc' form different groups */

SELECT count(*) FROM t1 GROUP BY (d || '') ORDER BY 1;

--result 1 1 2

/* Sorting or column c is performed using the RTRIM sequence. */

SELECT x FROM t1 ORDER BY c, x;

--result 4 1 2 3

/* Sorting of (c||'') is performed using the BINARY sequence. */

SELECT x FROM t1 ORDER BY (c||''), x;

--result 4 2 3 1

/* Sorting of column c is performed using the NOCASE sequence. */

SELECT x FROM t1 ORDER BY c COLLATE NOCASE, x;

--result 2 4 3 1

64 © 2015, QNX Software Systems Limited

Datatypes in QDB

Chapter 6
QDB Virtual Machine Opcodes

QDB uses a virtual machine to execute SQL statements. You can configure QDB to

list the opcodes of the programs generated to execute the SQL statements and you

can trace program execution.

Before you can easily interpret virtual machine programs, you must understand the

instruction format and virtual machine features.

© 2015, QNX Software Systems Limited 65

Instruction format and execution

Each instruction in the virtual machine consists of an opcode and up to three operands

named P1, P2, and P3. P1 may be an arbitrary integer. P2 must be a non-negative

integer. In any operation that might cause a jump, P2 is always the jump destination.

P3 may point to a function, a data structure, or a string, or it may be NULL. Some

operators use all three operands, some use one or two, and some use none.

The virtual machine begins execution on instruction number 0. Execution continues

until:

1. a Halt instruction is seen, or

2. the program counter becomes one greater than the address of last instruction, or

3. there is an execution error.

When the virtual machine halts, all memory that it allocated is released, and all

database cursors it may have had open are closed. If the execution stopped due to an

error, any pending transactions are terminated, and changes made to the database

are rolled back.

66 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

Virtual machine features

The virtual machine contains an operand stack of unlimited depth. Many of the opcodes

use operands from the stack. See the individual opcode descriptions for details.

The virtual machine can have zero or more cursors. Each cursor is a pointer into a

single table or index within the database. There can be multiple cursors pointing at

the same index or table. All cursors operate independently, even cursors pointing to

the same indexes or tables. The only way for the virtual machine to interact with a

database file is through a cursor. Instructions in the virtual machine can create a new

cursor (Open), read data from a cursor (Column), advance the cursor to the next entry

in the table (Next) or index (NextIdx), and so on. All cursors are automatically closed

when the virtual machine terminates.

The virtual machine contains an arbitrary number of fixed memory locations with

addresses beginning at zero and growing upward. Each memory location can hold an

arbitrary string. The memory cells are typically used to hold the result of a scalar

SELECT that is part of a larger expression.

The virtual machine contains a single sorter. The sorter is able to accumulate records,

sort those records, then play the records back in sorted order. The sorter is used to

implement the ORDER BY clause of a SELECT statement.

The virtual machine contains a single list, which stores a list of integers. This list is

used to hold the row IDs for records of a database table that needs to be modified.

The WHERE clause of an UPDATE or DELETE statement scans through the table and

writes the row ID of every record to be modified into the list. Then the list is played

back and the table is modified in a separate step.

The virtual machine can contain an arbitrary number of sets. Each set holds an arbitrary

number of strings. Sets are used to implement the IN operator with a constant

right-hand side.

The virtual machine can open a single external file for reading. This external read file

is used to implement the COPY command.

Finally, the virtual machine can have a single set of aggregators. An aggregator is a

device used to implement the GROUP BY clause of a SELECT. An aggregator has one

or more slots that can hold values being extracted by the select. The number of slots

is the same for all aggregators and is defined by the AggReset operation. At any point

in time, a single aggregator is current or “has focus”. There are operations to read or

write to memory slots of the aggregator in focus. There are also operations to change

the focus aggregator and to scan through all aggregators.

© 2015, QNX Software Systems Limited 67

Virtual machine features

Viewing programs generated by QDB

Every SQL statement that QDB interprets results in a program for the virtual machine.

However, if you precede the SQL statement with the keyword EXPLAIN, the virtual

machine doesn't execute the program. Instead, the instructions of the program are

returned like a query result. This feature is useful for debugging and for learning how

the virtual machine operates, and for profiling an SQL statement. The following is an

example of the output from the statement EXPLAIN DELETE FROM tbl1 WHERE

two<20;:

p3p2p1opcodeaddr

00Transaction0

0219VerifyCookie1

00ListOpen2

tbl130Open3

00Rewind4

120Next5

10Column6

020Integer7

50Ge8

00Recno9

00ListWrite10

50Goto11

00Close12

00ListRewind13

30OpenWrite14

190ListRead15

00MoveTo16

00Delete17

150Goto18

00ListClose19

00Commit20

68 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

All you have to do is add the EXPLAIN keyword to the front of the SQL statement.

But if you use the .explain command to qdb first, it will set up the output mode to

make the program more easily viewable.

You can put the QDB virtual machine in a mode where it will trace its execution by

writing messages to standard output; and you can use the non-standard SQL PRAGMA,

comments to turn tracing on and off. To turn tracing on, enter:

PRAGMA vdbe_trace=on;

You can turn tracing back off by entering a similar statement but changing the value

on to off.

© 2015, QNX Software Systems Limited 69

Viewing programs generated by QDB

The opcodes

There are currently more than 120 opcodes defined by the virtual machine. All currently

defined opcodes are described in the list below.

AbsValue

Treat the top of the stack as a numeric quantity. Replace it with its absolute

value. If the top of the stack is NULL, its value is unchanged.

Add

Pop the top two elements from the stack, add them together, and push the

result back onto the stack. If either element is a string, then it is converted

to a double using the atof() function before the addition. If either operand

is NULL, the result is NULL.

AddImm

Add the value P1 to whatever is on top of the stack. The result is always an

integer.

To force the top of the stack to be an integer, just add 0.

AggFinal

Execute the finalizer function for an aggregate. P1 is the memory location

that is the accumulator for the aggregate.

P2 is the number of arguments that the step function takes and P3 is a

pointer to the FuncDef for this function. The P2 argument is not used by

this opcode. It is there only to disambiguate functions that can take varying

numbers of arguments. The P3 argument is needed only for the degenerate

case where the step function was not previously called.

AggStep

Execute the step function for an aggregate. The function has P2 arguments.

P3 is a pointer to the FuncDef structure that specifies the function. Use

memory location P1 as the accumulator.

The P2 arguments are popped from the stack.

And

Pop two values off the stack. Take the logical AND of the two values and

push the resulting boolean value back onto the stack.

70 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

AutoCommit

Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll back

any currently active btree transactions. If there are any active VMs (apart

from this one), then the COMMIT or ROLLBACK statement fails.

This instruction causes the VM to halt.

BitAnd

Pop the top two elements from the stack. Convert both elements to integers.

Push back onto the stack the bitwise AND of the two elements. If either

operand is NULL, the result is NULL.

BitNot

Interpret the top of the stack as an value. Replace it with its

ones-complement. If the top of the stack is NULL, its value is unchanged.

BitOr

Pop the top two elements from the stack. Convert both elements to integers.

Push back onto the stack the bitwise OR of the two elements. If either

operand is NULL, the result is NULL.

Blob

P3 points to a Binary Large OBject (BLOB) that is P1 bytes long. Push this

value onto the stack. This instruction is not coded directly by the compiler.

Instead, the compiler layer specifies an OP_HexBlob opcode, with the

hexadecimal string representation of the BLOB as P3. This opcode is

transformed to an OP_Blob the first time it is executed.

This opcode ignores P2.

Callback

Pop P1 values off the stack and form them into an array. Then invoke the

callback function using the newly formed array as the third parameter.

Clear

Delete all contents of the database table or index whose root page in the

database file is given by P1. But, unlike Destroy, do not remove the table

or index from the database file.

The table being cleared is in the main database file if P2 is 0. If P2 is 1,

then the table to be cleared is in the auxiliary database file that is used to

store tables create using CREATE TEMPORARY TABLE.

See also: Destroy (p. 73)

© 2015, QNX Software Systems Limited 71

The opcodes

Close

Close a cursor previously opened as P1. If P1 is not currently open, this

instruction is a no-op.

CollSeq

P3 is a pointer to a CollSeq struct. If the next call to a user function or

aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will be

returned. This is used by the built-in min(), max() and nullif() functions.

This opcode ignores P1 and P2.

Column

Interpret the data that cursor P1 points to as a structure built using the

MakeRecord instruction. (See the MakeRecord opcode for additional

information about the format of the data.) Push onto the stack the value of

the P2th column contained in the data. If there are fewer than P2+1 values

in the record, push a NULL onto the stack.

If the KeyAsData opcode has previously executed on this cursor, then the

field might be extracted from the key rather than the data.

If P1 is negative, then the record is stored on the stack rather than in a

table. If P1 is -1, the top of the stack is used, if P1 is -2, the next on the

stack is used, and so forth. The value pushed is always just a pointer into

the record that is stored further down on the stack. The column value is not

copied. The number of columns in the record is stored on the stack just

above the record itself.

If the column contains fewer than P2 fields, then push a NULL. Or if P3 is

of type P3_MEM, then push the P3 value. The P3 value will be the default

value for a column that has been added using the ALTER TABLE ADD

COLUMN command. If P3 is an ordinary string, just push a NULL. When P3

is a string, it is really just a comment describing the value to be pushed,

not a default value.

Concat

Look at the first P1+2 elements of the stack. Append them all together, with

the lowest element first. The original P1+2 elements are popped from the

stack if P2 is 0 and retained if P2 is 1. If any element of the stack is NULL,

then the result is NULL.

When P1 is 1, this routine makes a copy of the top stack element into

memory obtained from sqliteMalloc().

72 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

ContextPop

Restore the Vdbe context to the state it was in when ContextPush was

last executed. The context stores the last insert row ID, the last statement

change count, and the current statement change count.

ContextPush

Save the current Vdbe context, so that it can be restored by a ContextPop

opcode. The context stores the last insert row ID, the last statement change

count, and the current statement change count.

CreateIndex

Allocate a new index in the main database file if P2 is 0 or in the auxiliary

database file if P2 is 1. Push the page number of the root page of the new

index onto the stack.

This opcode ignores P1.

CreateTable

Allocate a new table in the main database file if P2 is 0 or in the auxiliary

database file if P2 is 1. Push the page number for the root page of the new

table onto the stack.

The difference between a table and an index is this: A table must have a

4-byte integer key and can have arbitrary data. An index has an arbitrary key

but no data.

See also: CreateIndex (p. 73)

This opcode ignores P1.

Delete

Delete the record at which the P1 cursor is currently pointing.

The cursor will be left pointing at either the next or the previous record in

the table. If it is left pointing at the next record, then the next Next

instruction will be a no-op. Hence it is OK to delete a record from within a

Next loop.

If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is

incremented (otherwise not).

If P1 is a pseudo-table, then this instruction is a no-op.

Destroy

Delete an entire database table or index whose root page in the database

file is given by P1.

© 2015, QNX Software Systems Limited 73

The opcodes

The table being destroyed is in the main database file if P2 is 0. If P2 is 1,

then the table to be cleared is in the auxiliary database file that is used to

store tables create using CREATE TEMPORARY TABLE.

If the auto-vacuum mode is enabled, then it is possible that another root

page might be moved into the newly deleted root page in order to keep all

root pages contiguous at the beginning of the database. The former value

of the root page that moved (i.e., its value before the move occurred) is

pushed onto the stack. If no page movement was required (because the table

being dropped was already the last one in the database), then a zero is

pushed onto the stack. If auto-vacuum is disabled, then a zero is pushed

onto the stack.

See also: Clear (p. 71)

Distinct

Use the top of the stack as a record created using MakeRecord. P1 is a

cursor on a table that declared an index. If that table contains an entry that

matches the top of the stack, then fall through. If the top of the stack

matches no entry in P1, then jump to P2.

The cursor is left pointing at the matching entry if it exists. The record on

the top of the stack is not popped.

This instruction is similar to NotFound except that this operation doesn't

pop the key from the stack.

The instruction is used to implement the DISTINCT operator on SELECT

statements. The P1 table is not a true index but rather a record of all results

that have been produced so far.

See also: Found (p. 76), NotFound (p. 86), IsUnique (p. 81), NotExists

(p. 86)

Divide

Pop the top two elements from the stack, divide the first element (what was

on top of the stack) from the second element (the next on stack), and push

the result back onto the stack. If either element is a string, then it is

converted to a double using the atof() function before the division. Division

by zero returns NULL. If either operand is NULL, the result is NULL.

DropIndex

Remove the internal (in-memory) data structures that describe the index

named P3 in database P1. This is called after an index is dropped in order

to keep the internal representation of the schema consistent with what is

on disk.

74 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

DropTable

Remove the internal (in-memory) data structures that describe the table

named P3 in database P1. This opcode is called after a table is dropped in

order to keep the internal representation of the schema consistent with what

is on disk.

DropTrigger

Remove the internal (in-memory) data structures that describe the trigger

named P3 in database P1. This is called after a trigger is dropped in order

to keep the internal representation of the schema consistent with what is

on disk.

Dup

Make a copy of the P1th element of the stack and push it to the top of the

stack. The top of the stack is element 0, so the instruction Dup 0 0 0 will

make a copy of the top of the stack.

If the content of the P1th element is a dynamically allocated string, then a

new copy of that string is made if P2 is 0. If P2 is note 0, then just a pointer

to the string is copied.

Also see the Pull (p. 88) instruction.

Eq

Pop the top two elements from the stack. If they are equal, then jump to

instruction P2. Otherwise, continue to the next instruction.

If the 0x100 bit of P1 is true and either operand is NULL, then make the

jump. If the 0x100 bit of P1 is clear, then fall through if either operand is

NULL.

If the 0x200 bit of P1 is set and either operand is NULL, then both operands

are converted to integers prior to comparison. NULL operands are converted

to zero and non-NULL operands are converted to 1. Thus, for example, with

0x200 set, NULL==NULL is true, whereas it would normally be NULL.

Similarly, NULL==123 is false when 0x200 is set, but is NULL when the

0x200 bit of P1 is clear.

The least significant byte of P1 (mask 0xff) must be an affinity

character—n, t, i, or o—or 0x00. An attempt is made to coerce both values

according to the affinity before the comparison is made. If the byte is 0x00,

numeric affinity is used.

Once any conversions have taken place, and neither value is NULL, the

values are compared. If both values are BLOBs, or both are text, then

memcmp() is used to determine the results of the comparison. If both values

© 2015, QNX Software Systems Limited 75

The opcodes

are numeric, then a numeric comparison is used. If the two values are of

different types, then they are unequal.

If P2 is zero, do not jump. Instead, push an integer 1 onto the stack if the

jump would have been taken, or a 0 if not. Push a NULL if either operand

was NULL.

If P3 is not NULL, it is a pointer to a collating sequence (a CollSeq

structure) that defines how to compare text.

Expire

Cause precompiled statements to expire. An expired statement fails with an

error code of QDB_SCHEMA if it is ever executed (via sqlite3_step()).

If P1 is 0, then all SQL statements expire. If P1 is non-zero, then only the

currently executing statement is affected.

FifoRead

Attempt to read a single integer from the FIFO and push it onto the stack.

If the FIFO is empty, then push nothing but instead jump to P2.

This opcode ignores P1.

FifoWrite

Write the integer on the top of the stack into the FIFO.

ForceInt

Convert the top of the stack into an integer. If the current top of the stack

is not numeric (meaning it's a NULL or a string that doesn't look like an

integer or floating-point number), then pop the stack and jump to P2. If the

top of the stack is numeric, then convert it into the least integer that is

greater than or equal to its current value if P1 is 0, or to the least integer

that is strictly greater than its current value if P1 is 1.

Found

The top of the stack holds a BLOB constructed by MakeRecord. P1 is an

index. If an entry that matches the top of the stack exists in P1, then jump

to P2. If the top of the stack doesn't match any entry in P1 then fall through.

The P1 cursor is left pointing at the matching entry if it exists. The BLOB

is popped off the top of the stack.

This instruction is used to implement the IN operator where the left-hand

side is a SELECT statement. P1 is not a true index but is instead a temporary

index that holds the results of the SELECT statement. This instruction just

76 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

checks to see if the left-hand side of the IN operator (stored on the top of

the stack) exists in the result of the SELECT statement.

See also: Distinct (p. 74), NotFound (p. 86), IsUnique (p. 81), NotEx

ists (p. 86)

Function

Invoke a user function (P3 is a pointer to a Function structure that defines

the function) with P2 arguments taken from the stack. Pop all arguments

from the stack and push back the result.

P1 is a 32-bit bitmask indicating whether or not each argument to the

function was determined to be constant at compile time. If the first argument

was constant, then bit 0 of P1 is set. This is used to determine whether

metadata associated with a user function argument using the

sqlite3_set_auxdata() API may be safely retained until the next invocation

of this opcode.

See also: AggStep (p. 70) and AggFinal (p. 70)

Ge

This opcode works just like the Eq opcode except that the jump is taken if

the second element down on the stack is greater than or equal to the top of

the stack. See the Eq (p. 75) opcode for additional information.

Gosub

Push the current address plus 1 onto the return address stack, then jump

to address P2.

The return address stack is of limited depth. If too many OP_Gosub

operations occur without intervening OP_Returns, then the return address

stack will fill up and processing will abort with a fatal error.

This opcode ignores P1.

Goto

An unconditional jump to address P2. The next instruction executed will be

the one at index P2 from the beginning of the program.

This opcode ignores P1.

Gt

This works just like the Eq opcode except that the jump is taken if the second

element down on the stack is greater than the top of the stack. See the Eq

(p. 75) opcode for additional information.

© 2015, QNX Software Systems Limited 77

The opcodes

Halt

Exit immediately. All open cursors and FIFOs are closed automatically.

P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), or

sqlite3_finalize(). For a normal halt, this should be QDB_OK (0). For errors,

it can be some other value. If P1 is non-zero, then P2 will determine whether

or not to rollback the current transaction. Do not roll back if P2 is OE_Fail.

Do the rollback if P2 is OE_Rollback. If P2 is OE_Abort, then back out all

changes that have occurred during this execution of the VDBE, but do not

rollback the transaction.

If P3 is not null, then it is an error message string.

There is an implied Halt 0 0 0 instruction inserted at the very end of

every program. So a jump past the last instruction of the program is the

same as executing Halt.

HexBlob

P3 is an UTF-8 SQL hex encoding of a Binary Large OBject (BLOB). The

BLOB is pushed onto the VDBE stack.

The first time this instruction executes, in transforms itself into a Blob

opcode with a binary BLOB as P3.

This opcode ignores P1 and P2.

IdxDelete

The top of the stack is an index key built using the MakeIdxKey opcode.

This opcode removes that entry from the index.

IdxGE

The top of the stack is an index entry that omits the row ID. Compare the

top of stack against the index that P1 is currently pointing to. Ignore the

row ID on the P1 index.

If the P1 index entry is greater than or equal to the top of the stack then

jump to P2. Otherwise fall through to the next instruction. In either case,

the stack is popped once.

If P3 is the "+" string (or any other non-NULL string), then the index taken

from the top of the stack is temporarily increased by an epsilon prior to the

comparison. This makes the opcode work like IdxGT except that if the key

from the stack is a prefix of the key in the cursor, the result is false whereas

it would be true with IdxGT.

78 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

IdxGT

The top of the stack is an index entry that omits the row ID. Compare the

top of stack against the index that P1 is currently pointing to. Ignore the

row ID on the P1 index.

The top of the stack might have fewer columns than P1.

If the P1 index entry is greater than the top of the stack, then jump to P2.

Otherwise fall through to the next instruction. In either case, the stack is

popped once.

IdxInsert

The top of the stack holds an SQL index key made using the MakeIdxKey

instruction. This opcode writes that key into the index P1. Data for the entry

is nil.

This instruction works only for indexes. The equivalent instruction for tables

is OP_Insert.

IdxIsNull

The top of the stack contains an index entry such as might be generated by

the MakeIdxKey opcode. This routine looks at the first P1 fields of that

key. If any of the first P1 fields are NULL, then a jump is made to address

P2. Otherwise it falls straight through.

The index entry is always popped from the stack.

IdxLT

The top of the stack is an index entry that omits the row ID. Compare the

top of stack against the index that P1 is currently pointing to. Ignore the

row ID on the P1 index.

If the P1 index entry is less than the top of the stack, then jump to P2.

Otherwise fall through to the next instruction. In either case, the stack is

popped once.

If P3 is the "+" string (or any other non-NULL string), then the index taken

from the top of the stack is temporarily increased by an epsilon prior to the

comparison. This makes the opcode work like IdxLE.

IdxRowid

Push onto the stack an integer which is the last entry in the record at the

end of the index key pointed to by cursor P1. This integer should be the row

ID of the table entry to which this index entry points.

See also: Rowid (p. 89).

© 2015, QNX Software Systems Limited 79

The opcodes

If

Pop a single boolean from the stack. If the boolean popped is true, then

jump to P2. Otherwise continue to the next instruction. An integer is false

if zero, and true otherwise. A string is false if it has zero length, and true

otherwise.

If the value popped of the stack is NULL, then take the jump if P1 is true,

and fall through if P1 is false.

IfMemPos

If the value of memory cell P1 is 1 or greater, jump to P2. This opcode

assumes that memory cell P1 holds an integer value.

IfNot

Pop a single boolean from the stack. If the boolean popped is false, then

jump to P2. Otherwise continue to the next instruction. An integer is false

if zero, and true otherwise. A string is false if it has zero length, and true

otherwise.

If the value popped of the stack is NULL, then take the jump if P1 is true

and fall through if P1 is false.

Insert

Write an entry into the table of cursor P1. A new entry is created if it doesn't

already exist or the data for an existing entry is overwritten. The data is the

value on the top of the stack. The key is the next value down on the stack.

The key must be an integer. The stack is popped twice by this instruction.

If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is

incremented (otherwise not). If the OPFLAG_LASTROWID flag of P2 is set,

then row ID is stored for subsequent return by the sqlite3_last_insert_row

ID() function (otherwise it's unmodified).

This instruction works only on tables. The equivalent instruction for indexes

is OP_IdxInsert.

Int64

P3 is a string representation of an integer. Convert that integer to a 64-bit

value and push it onto the stack.

This opcode ignores P1 and P2.

Integer

Push the 32-bit integer value P1 onto the stack.

80 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

IntegrityCk

Do an analysis of the currently open database. Push onto the stack the text

of an error message describing any problems. If there are no errors, push an

ok onto the stack.

The root page numbers of all tables in the database are integer values on

the stack. This opcode pulls as many integers as it can off of the stack and

uses those numbers as the root pages.

If P2 is not zero, the check is done on the auxiliary database file, not the

main database file. P1 is ignored.

This opcode is used for testing purposes only.

IsNull

If any of the top abs(P1) values on the stack are NULL, then jump to P2.

Pop the stack P1 times if P1 is greater than 0. If P1 is less than 0, leave

the stack unchanged.

IsUnique

The top of the stack is an integer record number. Call this record number

R. The next on the stack is an index key created using MakeIdxKey. Call

it K. This instruction pops R from the stack but it leaves K unchanged.

P1 is an index. So it has no data and its key consists of a record generated

by OP_MakeRecord where the last field is the row ID of the entry that the

index refers to.

This instruction asks if there is an entry in P1 where the field matches K

but the row ID is different from R. If there is no such entry, then there is an

immediate jump to P2. If any entry does exist where the index string matches

K but the record number is not R, then the record number for that entry is

pushed onto the stack and control falls through to the next instruction.

See also: Distinct (p. 74), NotFound (p. 86), NotExists (p. 86), Found

(p. 76)

Last

The next use of the Rowid, Column, or Next instruction for P1 will refer to

the last entry in the database table or index. If the table or index is empty

and P2 is greater than 0, then jump immediately to P2. If P2 is 0 or if the

table or index is not empty, fall through to the following instruction.

© 2015, QNX Software Systems Limited 81

The opcodes

Le

This works just like the Eq opcode, except that the jump is taken if the

second element down on the stack is less than or equal to the top of the

stack. See the Eq (p. 75) opcode for additional information.

LoadAnalysis

Read the sqlite_stat1 table for database P1 and load the content of

that table into the internal index hash table. This will cause the analysis to

be used when preparing all subsequent queries.

Lt

This works just like the Eq opcode, except that the jump is taken if the

second element down on the stack is less than the top of the stack. See the

Eq (p. 75) opcode for additional information.

MakeRecord

Convert the top abs(P1) entries of the stack into a single entry suitable for

use as a data record in a database table or as a key in an index. The details

of the format are irrelevant as long as the OP_Column opcode can decode

the record later and as long as the sqlite3VdbeRecordCompare() function

correctly compares two encoded records. Refer to source code comments

for the details of the record format.

The original stack entries are popped from the stack if P1 is greater than 0

but remain on the stack if P1 is less than 0.

If P2 is not zero and one or more of the entries are NULL, then jump to the

address given by P2. This feature can be used to skip a uniqueness test on

indexes.

P3may be a string that is P1 characters long. The nth character of the string

indicates the column affinity that should be used for the nth field of the

index key (i.e., the first character of P3 corresponds to the lowest element

on the stack).

The mapping from character to affinity is as follows:

• n = NUMERIC

• i = INTEGER

• t = TEXT

• o = NONE

If P3 is NULL, then all index fields have the affinity NONE.

82 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

MakeRecordI

This opcode works just like OP_MakeRecord except that it reads an extra

integer from the stack (thus reading a total of abs(P1+1) entries) and

appends that extra integer to the end of the record as a variant. This results

in an index key.

MemIncr

Increment the integer valued memory cell P1 by 1. If P2 is not zero and the

result after the increment is exactly 1, then jump to P2.

This instruction throws an error if the memory cell is not initially an integer.

MemInt

Store the integer value P1 in memory cell P2.

MemLoad

Push a copy of the value in memory location P1 onto the stack.

If the value is a string, then the value pushed is a pointer to the string that

is stored in the memory location. If the memory location is subsequently

changed (using OP_MemStore), then the value pushed onto the stack will

change too.

MemMax

Set the value of memory cell P1 to the maximum of its current value and

the value on the top of the stack. The stack is unchanged.

This instruction throws an error if the memory cell is not initially an integer.

MemMove

Move the content of memory cell P2 to memory cell P1. Any prior content

of P1 is erased. Memory cell P2 is left containing a NULL.

MemNull

Store a NULL in memory cell P1.

MemStore

Write the top of the stack into memory location P1. P1 should be a small

integer, since space is allocated for all memory locations between 0 and P1

inclusive.

After the data is stored in the memory location, the stack is popped once if

P2 is 1. If P2 is zero, then the original data remains on the stack.

© 2015, QNX Software Systems Limited 83

The opcodes

MoveGe

Pop the top of the stack and use its value as a key. Reposition cursor P1 so

that it points to the smallest entry that is greater than or equal to the key

that was popped from the stack. If there are no records greater than or equal

to the key, and P2 is not zero, then jump to P2.

See also: Found (p. 76), NotFound (p. 86), Distinct (p. 74), MoveLt (p.

84), MoveGt (p. 84), MoveLe (p. 84).

MoveGt

Pop the top of the stack and use its value as a key. Reposition cursor P1 so

that it points to the smallest entry that is greater than the key from the stack.

If there are no records greater than the key, and P2 is not zero, then jump

to P2.

See also: Found (p. 76), NotFound (p. 86), Distinct (p. 74), MoveLt (p.

84), MoveGe (p. 84), MoveLe (p. 84).

MoveLe

Pop the top of the stack and use its value as a key. Reposition cursor P1 so

that it points to the largest entry that is less than or equal to the key that

was popped from the stack. If there are no records less than or equal to the

key, and P2 is not zero, then jump to P2.

See also: Found (p. 76), NotFound (p. 86), Distinct (p. 74), MoveGt (p.

84), MoveGe (p. 84), MoveLt (p. 84).

MoveLt

Pop the top of the stack and use its value as a key. Reposition cursor P1 so

that it points to the largest entry that is less than the key from the stack. If

there are no records less than the key, and P2 is not zero, then jump to P2.

See also: Found (p. 76), NotFound (p. 86), Distinct (p. 74), MoveGt (p.

84), MoveGe (p. 84), MoveLe (p. 84).

Multiply

Pop the top two elements from the stack, multiply them together, and push

the result back onto the stack. If either element is a string, then it is

converted to a double using the atof() function before the multiplication. If

either operand is NULL, the result is NULL.

84 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

MustBeInt

Force the top of the stack to be an integer. If the top of the stack is not an

integer and cannot be converted into an integer without data loss, then jump

immediately to P2, or if P2 is 0, raise a QDB_MISMATCH exception.

If the top of the stack is not an integer and P2 is not zero and P1 is 1, then

the stack is popped. In all other cases, the depth of the stack is unchanged.

Ne

This works just like the Eq opcode, except that the jump is taken if the

operands from the stack are not equal. See the Eq (p. 75) opcode for

additional information.

Negative

Treat the top of the stack as a numeric quantity. Replace it with its additive

inverse. If the top of the stack is NULL, its value is unchanged.

NewRowid

Get a new integer record number (rowid) used as the key to a table. The

record number is a number not already being used as a key in the database

table that cursor P1 points to. The new record number is pushed onto the

stack.

If P2 is greater than 0, then P2 is a memory cell that holds the largest

previously generated record number. No new record numbers are allowed to

be less than this value. When this value reaches its maximum, a QDB_FULL

error is generated. The P2memory cell is updated with the generated record

number. This P2 mechanism is used to help implement the

AUTOINCREMENT feature.

Next

Advance cursor P1 so that it points to the next key/data pair in its table or

index. If there are no more key/data pairs, then fall through to the following

instruction; if the cursor advance was successful, jump immediately to P2.

See also: Prev (p. 88)

Noop

Do nothing. This instruction is often useful as a jump destination.

Not

Interpret the top of the stack as a boolean value, and replace it with its

complement. If the top of the stack is NULL, its value is unchanged.

© 2015, QNX Software Systems Limited 85

The opcodes

NotExists

Use the top of the stack as a integer key. If a record with that key doesn't

exist in table of P1, then jump to P2. If the record does exist, then fall

through. The cursor is left pointing to the record if it exists. The integer key

is popped from the stack.

The difference between this operation and NotFound is that this operation

assumes the key is an integer and that P1 is a table whereas NotFound

assumes key is a BLOB constructed from MakeRecord and P1 is an index.

See also: Distinct (p. 74), Found (p. 76), NotFound (p. 86), IsUnique

(p. 81).

NotFound

The top of the stack holds a BLOB constructed by MakeRecord. P1 is an

index. If no entry exists in P1 that matches the BLOB, then jump to P2. If

an entry does exist, fall through. The cursor is left pointing to the entry that

matches. The BLOB is popped from the stack.

The difference between this operation and Distinct is that Distinct

doesn't pop the key from the stack.

See also: Distinct (p. 74), Found (p. 76), NotExists (p. 86), IsUnique

(p. 81).

NotNull

Jump to P2 if the top P1 values on the stack are all not NULL. If P1 is

greater than 0, the stack is popped P1 times. If P1 is less than or equal to

0, the stack is left unchanged.

Null

Push a NULL onto the stack.

NullRow

Move the cursor P1 to a null row. Any OP_Column operations that occur

while the cursor is on the null row will always push a NULL onto the stack.

OpenPseudo

Open a new cursor that points to a fake table that contains a single row of

data. Any attempt to write a second row of data causes the first row to be

deleted. All data is deleted when the cursor is closed.

A pseudo-table created by this opcode is useful for holding the NEW or OLD

tables in a trigger.

86 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

OpenRead

Open a read-only cursor for the database table whose root page is P2 in a

database file. The database file is determined by an integer from the top of

the stack. A 0 means the main database, and a 1 means the database used

for temporary tables. Give the new cursor an identifier of P1. The P1 values

need not be contiguous, but all P1 values should be small integers. It is an

error for P1 to be negative.

If P2 is 0, then take the root page number from the next element on the

stack.

There will be a read lock on the database whenever there is an open cursor.

If the database was unlocked prior to this instruction, then a read lock is

acquired as part of this instruction. A read lock allows other processes to

read the database but prohibits any other process from modifying the

database. The read lock is released when all cursors are closed. If this

instruction attempts to get a read lock but fails, the script terminates with

an EBUSY error code.

The P3 value is a pointer to a KeyInfo structure that defines the content

and collating sequence of indexes. P3 is NULL for cursors that are not

pointing to indexes.

See also OpenWrite (p. 87).

OpenVirtual

Open a new cursor P1 to a transient or virtual table. The cursor is always

opened for reading and writing, even if the main database is read-only. The

transient or virtual table is deleted automatically when the cursor is closed.

P2 is the number of columns in the virtual table. The cursor points to a

BTree table if P3 is 0, and to a BTree index if P3 is not 0. If P3 is not NULL,

it points to a KeyInfo structure that defines the format of keys in the index.

OpenWrite

Open a read/write cursor named P1 on the table or index whose root page

is P2. If P2 is 0, then take the root page number from the stack.

The P3 value is a pointer to a KeyInfo structure that defines the content

and collating sequence of indexes. P3 is NULL for cursors that are not

pointing to indexes.

This instruction works just like OpenRead, except that it opens the cursor

in read/write mode. For a given table, there can be one or more read-only

cursors or a single read/write cursor, but not both.

See also OpenRead (p. 87).

© 2015, QNX Software Systems Limited 87

The opcodes

Or

Pop two values off the stack. Take the logical OR of the two values and push

the resulting boolean value back onto the stack.

ParseSchema

Read and parse all entries from the QDB_MASTER table of database P1

that match the WHERE clause P3.

This opcode invokes the parser to create a new virtual machine, then runs

the new virtual machine. It is thus a reentrant opcode.

Pop

Pop P1 elements off the top of the stack and discarded.

Prev

Back up cursor P1 so that it points to the previous key/data pair in its table

or index. If there is no previous key/value pair, then fall through to the

following instruction. If the cursor backup was successful, then jump

immediately to P2.

Pull

Remove the P1th element from its current location on the stack and push

it back on top of the stack. The top of the stack is element 0, so Pull 0

0 0 is a no-op. Pull 1 0 0 swaps the top two elements of the stack.

See also the Dup (p. 75) instruction.

Push

Overwrite the value of the P1th element down on the stack (P1 is 0 is the

top of the stack) with the value of the top of the stack. Then pop the top of

the stack.

ReadCookie

Read cookie number P2 from database P1 and push it onto the stack. A

value of P2==0 is the schema version, while P2==1 is the database format.

P2==2 is the recommended pager cache size, and so forth. P1==0 is the

main database file and P1==1 is the database file used to store temporary

tables.

There must be a read-lock on the database (either a transaction must be

started or there must be an open cursor) before executing this instruction.

Real

The string value P3 is converted to a real and pushed on to the stack.

88 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

This opcode ignores P1 and P2.

Remainder

Pop the top two elements from the stack, divide the first (the element that

was on top of the stack) by the second (the element that was next on the

stack) and push the remainder after division onto the stack. If either element

is a string, then it is converted to a double using the atof() function before

the division. Division by zero returns NULL. If either operand is NULL, the

result is NULL.

ResetCount

This opcode resets the VM's internal change counter to 0. If P1 is true, then

the value of the change counter is copied to the database handle change

counter (returned by subsequent calls to sqlite3_changes()) before it is reset.

This is used by trigger programs.

Return

Jump immediately to the next instruction after the last unreturned

OP_Gosub. If an OP_Return has occurred for all OP_Gosub, then processing

aborts with a fatal error.

Rewind

The next use of the Rowid, Column, or Next instruction for P1 will refer to

the first entry in the database table or index. If the table or index is empty

and P2>0, then jump immediately to P2. If P2 is 0 or if the table or index

is not empty, fall through to the following instruction.

RowData

Push onto the stack the complete row data for cursor P1. There is no

interpretation of the data. It is just copied onto the stack exactly as it is

found in the database file.

If the cursor is not pointing to a valid row, a NULL is pushed onto the stack.

Rowid

Push onto the stack an integer that's the key of the table entry that P1 is

currently pointing to.

RowKey

Push onto the stack the complete row key for cursor P1. There is no

interpretation of the key. It is just copied onto the stack exactly as it is found

in the database file.

If the cursor is not pointing to a valid row, a NULL is pushed onto the stack.

© 2015, QNX Software Systems Limited 89

The opcodes

Sequence

Push onto the stack an integer that's the next available sequence number

for cursor P1. The sequence number on the cursor is incremented after the

push.

SetCookie

Write the top of the stack into cookie number P2 of database P1. A value

of P2==0 indicates the schema version, while a value of P2==1 indicates

the database format. P2==2 is the recommended pager cache size, and so

forth. P1==0 is the main database file and P1==1 is the database file used

to store temporary tables.

A transaction must be started before executing this opcode.

SetNumColumns

Before the OP_Column opcode can be executed on a cursor, this opcode

must be called to set the number of fields in the table.

This opcode sets the number of columns for cursor P1 to P2.

If OP_KeyAsData is to be applied to cursor P1, it must be executed before

this opcode.

ShiftLeft

Pop the top two elements from the stack, convert both elements to integers,

and push back onto the stack the second element shifted left by N bits,

where N is the top element on the stack. If either operand is NULL, the

result is NULL.

ShiftRight

Pop the top two elements from the stack, convert both elements to integers,

and push back onto the stack the second element shifted right by N bits,

where N is the top element on the stack. If either operand is NULL, the

result is NULL.

Sort

This opcode is similar to OP_Rewind, except that it increments an

undocumented global variable used for testing.

Sorting is accomplished by writing records into a sorting index, then

rewinding that index and playing it back from beginning to end. We use the

OP_Sort opcode instead of OP_Rewind to do the rewinding so that the

global variable will be incremented and regression tests can determine

whether or not the optimizer is correctly optimizing out sorts.

90 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

Statement

Begin an individual statement transaction that's part of a larger

BEGIN..COMMIT transaction. This opcode is needed so that the statement

can be rolled back after an error without having to roll back the entire

transaction. The statement transaction will automatically commit when the

VDBE halts.

The statement is begun on the database file with index P1. The main

database file has an index of 0, and the file used for temporary tables has

an index of 1.

String

The string value P3 is pushed onto the stack. If P3 is 0, then a NULL is

pushed onto the stack. P3 is assumed to be a null-terminated string encoded

with the database native encoding.

This opcode ignores P1 and P2.

String8

P3 points to a null-terminated UTF-8 string. This opcode is transformed into

an OP_String before it is executed for the first time.

This opcode ignores P1 and P2.

Subtract

Pop the top two elements from the stack, subtract the first (the element

that was on top of the stack) from the second (the element that was next on

the stack) and push the result back onto the stack. If either element is a

string, then it is converted to a double using the atof() function before the

subtraction. If either operand is NULL, the result is NULL.

ToBlob

Force the value on the top of the stack to be a BLOB. If the value is numeric,

convert it to a string first. Strings are simply reinterpreted as BLOBs with

no change to the underlying data.

A NULL value is not changed by this routine; it remains NULL.

ToInt

Force the value on the top of the stack to be an integer. If the value is

currently a real number, drop its fractional part. If the value is text or BLOB,

try to convert it to an integer using the equivalent of atoi(); store 0 if no such

conversion is possible.

A NULL value is not changed by this routine. It remains NULL.

© 2015, QNX Software Systems Limited 91

The opcodes

ToNumeric

Force the value on the top of the stack to be numeric (either an integer or

a floating-point number). If the value is text or BLOB, try to convert it to a

number using the equivalent of atoi() or atof(); store 0 if no such conversion

is possible.

A NULL value is not changed by this routine. It remains NULL.

ToText

Force the value on the top of the stack to be text. If the value is numeric,

convert it to a character sequence using the equivalent of printf(). BLOB

values are unchanged and are afterwards simply interpreted as text.

A NULL value is not changed by this routine. It remains NULL.

Transaction

Begin a transaction. The transaction ends when a Commit or Rollback

opcode is encountered. Depending on the ON CONFLICT setting, the

transaction might also be rolled back if an error is encountered.

P1 is the index of the database file on which the transaction is started. Index

0 is the main database file and index 1 is the file used for temporary tables.

If P2 is non-zero, then a write transaction is started. A RESERVED lock is

obtained on the database file when a write transaction is started. No other

process can start another write transaction while this transaction is underway.

Starting a write transaction also creates a rollback journal. A write transaction

must be started before any changes can be made to the database. If P2 is

2 or greater, then an EXCLUSIVE lock is also obtained on the file.

If P2 is zero, then a read lock is obtained on the database file.

Vacuum

Vacuum the entire database. This opcode will cause other virtual machines

to be created and run. It may not be called from within a transaction.

Variable

Push the value of variable P1 onto the stack. A variable is an unknown in

the original SQL string as handed to sqlite3_compile(). Any occurrence of

the ? character in the original SQL is considered a variable. Variables in the

SQL string are number from left to right beginning with 1. The values of

variables are set using the sqlite3_bind() API.

92 © 2015, QNX Software Systems Limited

QDB Virtual Machine Opcodes

VerifyCookie

Check the value of global database parameter number 0 (the schema version)

and make sure it is equal to P2. P1 is the database number, which is 0 for

the main database file, 1 for the file holding temporary tables, and some

higher number for auxiliary databases.

The cookie changes its value whenever the database schema changes. This

operation is used to detect when the cookie has changed and the current

process needs to reread the schema.

Either a transaction needs to have been started or an OP_Open needs to be

executed (to establish a read lock) before this opcode is invoked.

© 2015, QNX Software Systems Limited 93

The opcodes

Chapter 7
Writing User-Defined Functions

QDB allows you to write your own functions for manipulating data. The QDB library

includes several data structures and functions useful for defining custom functionality,

while the SQLite API provides methods your custom code can call to access arguments

or set results.

There are two types of user-defined functions you can write for QDB to use: functions

that transform some data (called scalar or aggregate functions), and functions that

order data (called collation functions). The first type is invoked using the SELECT

SQL statement, while the second by using the COLLATE clause. An example of a

built-in scalar function is ABS(), while BINARY() is an example of a built-in collation

function (see “Database configuration objects (p. 17)”).

To define functions that QDB can use, you need to compile them into a DLL. You then

tell QDB to load the DLL by setting the Collation and Function options in the

database configuration object for each required function.

© 2015, QNX Software Systems Limited 95

User scalar/aggregate functions

User scalar/aggregate functions are specified in the configuration object with the

Function::tag@library.so option, where tag is the name of the struct

qdb_function entry describing the function, and library.so is the name of a DLL

containing your code (this can be an absolute path or a relative path within the library

search path). This is set up as follows:

static void myfunc(sqlite3_context *context, int narg,

 sqlite3_value **value)

{

}

struct qdb_function ftag = {

 "func", SQLITE_UTF8, 1, NULL, myfunc, NULL, NULL };

The tag value in this case is ftag, the function name as visible to SQL is func, and

the function called is myfunc(), which can retrieve the fourth field (here NULL) as its

sqlite3_user_data().

The ftag was used to clarify the example. You would probably use the name

func here so it was the same as the SQL name.

There can be multiple functions defined (in the same or different DLLs), but each

must have a Function:: entry in the configuration object for the database it is

associated with, and each must have a struct qdb_function with a unique name

describing it.

The qdb_function structure has these members:

struct qdb_function {

 char *name;

 int encoding;

 int narg;

 void *arg;

 void (*func)(struct sqlite3_context *, int, struct Mem **);

 void (*step)(struct sqlite3_context *, int, struct Mem **);

 void (*final)(struct sqlite3_context *);

};

name

The name used for this function in SQL statements. This is limited to 255

bytes, exclusive of the null-terminator, and it can't contain any special

tokens, or start with a digit. Any attempt to create a function with an invalid

name will result in an SQLITE_ERROR error.

96 © 2015, QNX Software Systems Limited

Writing User-Defined Functions

encoding

The character encoding of strings passed to your function. Can be one of:

• SQLITE_UTF8

• SQLITE_UTF16

• SQLITE_UTF16BE

• SQLITE_UTF16LE

narg

The number of arguments that the function or aggregate takes. If this

argument is -1, then the function or aggregate may take any number of

arguments. The maximum number of arguments to a new SQL function is

127. A number larger than 127 for the third argument results in an

SQLITE_ERROR error.

arg

An arbitrary pointer to user data that is passed to your function each time

it's invoked. The function can gain access to this pointer by using the

sqlite_user_data() function.

func, step, final

Pointers to your function or aggregate. A scalar function requires an

implementation of the func callback only; NULL pointers should be passed

as the step and final arguments. An aggregate function requires an

implementation of step and final, and NULL should be passed for func.

Specifying an inconsistent set of callback values, such as a func and a final,

or an step but no final, results in an SQLITE_ERROR return.

© 2015, QNX Software Systems Limited 97

User scalar/aggregate functions

User collation routines

Collation routines can be used to order results from a SELECT (p. 228) statement. You

can define your own routine and tell QDB to use it by providing the COLLATE keyword

in the ORDER BY clause.

These routines are specified in the database configuration object with the

Collation::tag@library.so option, where tag is the name of the qdb_collation

entry describing the collation, and library.so is the name of a DLL object containing

your code (this can be an absolute path or a relative path within the library search

path).

The code is set up as follows:

static int mysort(void *arg,

 int l1, const void *s1, int l2, const void *s2)

{

 return(0);

}

struct qdb_collation ctag = {

 "nosort", SQLITE_UTF8, NULL, mysort, NULL

};

In this case, the tag value for the structure is ctag, the collation name as visible to

SQL is nosort, and the C function that implements your collation routine is called

mysort() and has a NULL value for its arg argument. For more information on defining

SQLite collation sequences, refer to the SQLite docs on sqlite3_create_collation().

Full details on the meaning of each qdb_collation field are given in the subsection

that follows.

The ctag tag was used to clarify the example. You would probably use the

name nosort here so the tag name matched the SQL name.

In this release, you can define only one collation per database. This collation must be

loaded in the configuration object, by specifying a Collation:: entry that lists the

name of the struct qdb_collation describing the collation, followed by the

library filename.

The qdb_collation struct

The qdb_collation structure has these members:

struct qdb_collation {

 char *name;

 int encoding;

98 © 2015, QNX Software Systems Limited

Writing User-Defined Functions

 void *arg;

 int (*compare)(void *, int, const void *, int, const void *);

 int (*setup)(void *, const void *, int, char **);

};

name

The name used for this function in SQL statements. This is limited to 255

bytes, exclusive of the null-terminator, and it can't contain any special tokens

or start with a digit. Any attempt to create a function with an invalid name

will result in an SQLITE_ERROR error.

encoding

The character encoding of strings passed to your function. Can be one of:

• SQLITE_UTF8

• SQLITE_UTF16

• SQLITE_UTF16BE

• SQLITE_UTF16LE

arg

An arbitrary pointer to user data that is passed as the first argument to either

the comparison or setup function, each time it's invoked. The function can

gain access to this pointer by using the sqlite_user_data() function.

compare

A pointer to your comparison function.

setup

A pointer to a setup function to allow dynamic configuration of sort order at

runtime.

The setup function

The setup function takes this form:

int (*setup)(void *arg, const void *data, int nbytes, char **errmsg);

The function parameters are:

void *arg

The context pointer. This is the same as the arg to the compare function,

and is copied from the arg field in the qdb_collation structure.

© 2015, QNX Software Systems Limited 99

User collation routines

const void *data, int nbytes

The data used to configure the sort. When the routine is invoked at startup,

these values are NULL and 0. At runtime, they refer to the data provided to

the qdb_collation() (p. 122) function. QDB doesn't interpret the format in

any way; the DLL must cooperate with the caller of qdb_collation() to

exchange data of a known format.

char **errmsg

A pointer to an error message string that is available to qdb_geterrmsg() and

is displayed on failure (actually, at startup, QDB will fail it; at runtime,

qdb_collation() will fail and this string will be available through

qdb_geterrmsg()).

The function returns either a POSIX errno value or EOK (if it succeeds).

If a collation structure has a non-NULL setup entry, then this function is invoked at

startup and passed NULL for data and 0 for nbytes, which gives it a hint to use the

default configuration. Then, whenever you call qdb_collation(), the setup function is

invoked with new data.

If a collation has no dynamic configuration, it can specify NULL for the setup entry.

Note that this entry can't be changed at runtime.

100 © 2015, QNX Software Systems Limited

Writing User-Defined Functions

Collation algorithm example

Here is an example of a collation algorithm that uses the data pointer arg to compare

two items. The DLL would export the following entries:

my_sort_ctx_t my_sort_ctx = { ... };

static int my_compare_func(void *arg,

 int l1, const void *s1,

 int l2, const void *s2)

{

 /* Custom code for comparing two items */

}

static int my_setup_func(void *arg, const void *data, char **errmsg)

{

 /* Custom code for initializing collation based on setup data

 in my_sort_ctx (which is referred to by arg) */

 return errno;

}

struct qdb_collation my_sort = {

 .name="my_sort", .encoding=SQLITE_UTF8, .arg=&my_sort_ctx,

 .compare=my_compare_func, .setup=my_setup_func };

Here, the collation routine is described by a structure named my_sort and calls the

my_compare_func() function to do the actual sorting. This function is given data that

is stored in the my_sort_ctx structure and passed in the arg argument. The same data

is also passed in to the setup function, my_setup_func().

You would install this routine to QDB in the configuration object with this setting:

Collation::my_sort@/usr/lib/libqdb_mysort.so

© 2015, QNX Software Systems Limited 101

Collation algorithm example

SQLite C/C++ API

This is an abridged version of the C/C++ API documentation for SQLite, which covers

just the functions you might call in user-defined functions. For the full API

documentation, see the SQLite website (www.sqlite.org).

When consulting SQLite documentation, ensure that it corresponds to the

SQLite library version that QDB is using. At the time of this writing, the latest

version of SQLite is listed on the SQLite homepage, and the official

documentation is updated for major releases (e.g., going from version 3.6.X

to 3.7.X). You can find out the library version QDB is using by looking in the

sloginfo log just after you start the QDB service, or by calling the

sqlite_version() function.

sqlite3_result_*

void sqlite3_result_blob(

 sqlite3_context*, const void*, int n, void(*)(void*));

void sqlite3_result_double(

 sqlite3_context*, double);

void sqlite3_result_error(

 sqlite3_context*, const char*, int);

void sqlite3_result_error16(

 sqlite3_context*, const void*, int);

void sqlite3_result_int(

 sqlite3_context*, int);

void sqlite3_result_int64(

 sqlite3_context*, long long int);

void sqlite3_result_null(

 sqlite3_context*);

void sqlite3_result_text(

 sqlite3_context*, const char*, int n, void(*)(void*));

void sqlite3_result_text16(

 sqlite3_context*, const void*, int n, void(*)(void*));

void sqlite3_result_text16be(

102 © 2015, QNX Software Systems Limited

Writing User-Defined Functions

 sqlite3_context*, const void*, int n, void(*)(void*));

void sqlite3_result_text16le(

 sqlite3_context*, const void*, int n, void(*)(void*));

void sqlite3_result_value(

 sqlite3_context*, sqlite3_value*);

User-defined functions invoke these routines in order to set their return value. The

sqlite3_result_value() routine returns an exact copy of one of the arguments to the

function.

Your user-defined function should pass as the first argument the sqlite3_context*

that was passed to it by QDB.

sqlite3_value_*

const void *sqlite3_value_blob(

 sqlite3_value*);

int sqlite3_value_bytes(

 sqlite3_value*);

int sqlite3_value_bytes16(

 sqlite3_value*);

double sqlite3_value_double(

 sqlite3_value*);

int sqlite3_value_int(

 sqlite3_value*);

long long int sqlite3_value_int64(

 sqlite3_value*);

const unsigned char *sqlite3_value_text(

 sqlite3_value*);

const void *sqlite3_value_text16(

 sqlite3_value*);

const void *sqlite3_value_text16be(

 sqlite3_value*);

const void *sqlite3_value_text16le(

 sqlite3_value*);

int sqlite3_value_type(

 sqlite3_value*);

© 2015, QNX Software Systems Limited 103

SQLite C/C++ API

This group of routines returns information about arguments to a user-defined function.

User-defined function implementations use these routines to access their arguments.

The sqlite3_value_type() routine returns one of:

• SQLITE_INTEGER

• SQLITE_FLOAT

• SQLITE_TEXT

• SQLITE_BLOB

• SQLITE_NULL

If the result is a BLOB, then the sqlite3_value_blob() routine returns the number of

bytes in that BLOB. No type conversions occur. If the result is a string (or a number

since a number can be converted into a string), then sqlite3_value_bytes() converts

the value into a UTF-8 string and returns the number of bytes in the resulting string.

The value returned doesn't include the \000 terminator at the end of the string. The

sqlite3_value_bytes16() routine converts the value into a UTF-16 encoding and returns

the number of bytes (not characters) in the resulting string. The \u0000 terminator

is not included in this count.

These routines attempt to convert the value where appropriate. For example, if the

internal representation is FLOAT, and a text result is requested, sprintf() is used

internally to do the conversion automatically. The following table details the conversions

that are applied:

ConversionRequested TypeInternal Type

Result is 0INTEGERNULL

Result is 0.0FLOATNULL

Result is NULL pointerTEXTNULL

Result is NULL pointerBLOBNULL

Convert from integer to

float

FLOATINTEGER

ASCII rendering of the

integer

TEXTINTEGER

Same as for INTEGER to

TEXT

BLOBINTEGER

Convert from float to

integer

INTEGERFLOAT

ASCII rendering of the floatTEXTFLOAT

Same as FLOAT to TEXTBLOBFLOAT

104 © 2015, QNX Software Systems Limited

Writing User-Defined Functions

ConversionRequested TypeInternal Type

Use atoi()INTEGERTEXT

Use atof()FLOATTEXT

No changeBLOBTEXT

Convert to TEXT, then use

atoi()

INTEGERBLOB

Convert to TEXT, then use

atof()

FLOATBLOB

Add a \000 terminator if

needed

TEXTBLOB

sqlite3_user_data

void *sqlite3_user_data(sqlite3_context*);

The arg member to the qdb_function struct used to register user functions is

available to the implementation of the function using this call.

© 2015, QNX Software Systems Limited 105

SQLite C/C++ API

Chapter 8
QDB API Reference

QDB provides a comprehensive API for managing databases and accessing data. Using

the API, your client application can:

• attach to a database session

• set database properties

• create and execute SQL statements

• inspect the results of SELECT queries

© 2015, QNX Software Systems Limited 107

qdb_backup()

Start a database backup

Synopsis:

#include <qdb/qdb.h>

int qdb_backup(qdb_hdt_t *db,
int scope);

Arguments:

db

A pointer to the database handle.

scope

The scope of the backup. Possible values are:

QDB_ATTACH_DEFAULT

Act on attached databases as specified in the configuration object,

honoring the value of the VacuumAttached, BackupAttached,

and SizeAttached parameters. This gives backward-compatible

behavior.

QDB_ATTACH_ALWAYS

Always act on any attached databases, regardless of configuration

object settings.

QDB_ATTACH_NEVER

Act only on the connected database itself, never on any attached

databases.

Library:

qdb

Description:

This function performs a backup on the connected database db and optionally any

attached databases, depending on the scope argument. Backups are controlled in the

108 © 2015, QNX Software Systems Limited

QDB API Reference

configuration object, with the BackupDir and Compression options. For more

information about these options, see the Database configuration objects (p. 17) section.

A client can cancel a backup operation by calling qdb_bkcancel() (p. 114). If a backup

is canceled (either by a client or through the QDB resource manager interface), the

call to qdb_backup() fails and returns -1, with errno set to EINTR.

Returns:

0

Success.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 109

qdb_backup()

qdb_binding_t

Information to bind data to an SQL statement variable

Synopsis:

#include <qdb/qdb.h>

typedef struct {
 int index;
 int type;
 int len;
 const void *data;
 unsigned long long intcopy;
} qdb_binding_t;

Data:

index

The index of the variable parameter in the precompiled statement that this

data should be bound to. The placeholder is in the form of ?n, where n is a

number between 1 and 999.

type

The data type. Can be one of: QDB_NULL, QDB_BLOB, QDB_TEXT,

QDB_INTEGER, or QDB_REAL.

len

The length of the data argument. This number excludes the null-terminator

for QDB_TEXT, and is set to sizeof(double) for QDB_REAL and size

of(int64_t) for QDB_INTEGER.

data

The data to bind. The data must be the same size as what's set in len,

because len bytes are read during the binding. For example, for the

QDB_REAL type, whose length is sizeof(double), if you assign a float

to data, only half the bytes will be read, resulting in unknown behavior. To

correct this, use a double for data.

intcopy

A 64-bit field for holding a copy of integer values. This field may or may not

be used.

110 © 2015, QNX Software Systems Limited

QDB API Reference

Library:

qdb

Description:

The qdb_binding_t structure stores the information needed to bind a data value

to a variable parameter in a prepared SQL statement. This information includes fields

describing the data type and length as well as a reference to the data value.

You should always initialize an instance of qdb_binding_t with one of the

convenience macros. It is not recommended to manually set the fields in the binding

structure one-by-one.

The variables in the macro prototypes have these meanings:

• bind is the address of the qdb_binding_t structure

• i is the index member (which references the statement variable you're binding the

data to)

• t is the type member

• l is the len member

• d is the data member

The following macros can be used to define a single data-binding structure:

QDB_SETBIND(bind, i, t, l, d)

Bind in any specified data type.

QDB_SETBIND_INT(bind, i, d)

Bind in a 64-bit integer; subsequent changes to the same integer variable

alter the bound data.

QDB_SETBIND_NULL(bind, i)

Bind in NULL.

QDB_SETBIND_TEXT(bind, i, d)

Bind in text.

QDB_SETBIND_INTCOPY(bind, i, d)

Bind in a copy of an integer; subsequent changes to the same integer variable

do not alter the bound data. Also, with this macro only, you can bind data

of varying sizes because the intcopy field is used to store a copy of the

integer value, and this field can accept assignments from narrower variable

types; for example, 32- or even 16-bit integers.

© 2015, QNX Software Systems Limited 111

qdb_binding_t

QDB_SETBIND_BLOB(bind, i, d)

Bind in a blob.

QDB_SETBIND_REAL(bind, i, d)

Bind in a real number.

The single structure-based macros are useful only when your statement has one variable.

In this case, you can just pass in the address of the structure when calling

qdb_stmt_exec() (p. 176) (and set binding_count to 1 to indicate there's only one

binding item). If you need to define multiple variables, you must declare an array of

qdb_binding_t structures and then fill in the individual array entries. You can do

this by using the array-based data-binding macros.

These macros have names of the form QDB_SETARRAYBIND_*. There is a matching array

macro for each single-structure macro, with identical parameters. For example,

QDB_SETARRAYBIND accepts the same five parameters as QDB_SETBIND, and binds any

specified data type. The only difference is that for array macros, the i argument acts

as an index not only for the parameter variable being bound but also for the array entry

being written.

Suppose you're using an array of binding structures to assign data to multiple variable

parameters in an SQL statement. To bind the first parameter, call one of the macro

arrays with the index i set to 1 to fill in the first structure in the array. For the second

parameter, use an index of 2, and so on.

After you've defined the data for the statement variables, you can execute the SQL

statement by calling qdb_stmt_exec(), passing in the statement ID and a reference to

the array of qdb_binding_t structures. Any variables that aren't defined are

interpreted as NULL.

There's a limit to the amount of data that can be sent to a database with

qdb_stmt_exec(). This limit is the lesser of the following values:

• the limit set by the database

• x = 231 - (binding_count + 1) × 12, where x is the data limit, in bytes

Examples:

The following code sample shows the difference between the QDB_SETBIND_INT and

QDB_SETBIND_INTCOPY macros:

qdb_binding_t qbind[2];

int64_t i = 17;

QDB_SETARRAYBIND_INT(qbind, 1, i);

112 © 2015, QNX Software Systems Limited

QDB API Reference

QDB_SETARRAYBIND_INTCOPY(qbind, 2, i);

int stmtid = qdb_stmt_init(

 "INSERT INTO testtable (val1, val2) VALUES (?1, ?2);");

for (i=0; i<10; i++) {

 qdb_stmt_exec(stmtid, qbind, 2);

}

Both bound parameters refer to the local variable i initially; however, the loop uses

this variable as the index, causing a different value to be inserted in the first column

each time qdb_stmt_exec() runs. The first parameter changes because

QDB_SETBIND_INT only stores the variable address (and not the value itself) in the

binding structure, so modifying the variable modifies the bound value as well. The

second parameter remains unchanged because QDB_SETBIND_INTCOPY makes a

copy of the passed-in value. So, the resulting table values are:

val1 | val2

===========

 0 | 17

 1 | 17

 2 | 17

...

 9 | 17

See qdb_stmt_init() (p. 180) for an example on how to compile, execute, and free an

SQL statement.

© 2015, QNX Software Systems Limited 113

qdb_binding_t

qdb_bkcancel()

Cancel a database backup

Synopsis:

#include <qdb/qdb.h>

int qdb_bkcancel(qdb_hdl_t *db,
 int *nactive);

Arguments:

db

A pointer to the database handle.

nactive

A pointer to a location for storing the number of aborted backup operations.

You can use this to see if a backup was interrupted and needs to be

rescheduled. If don't need this information, set this parameter to NULL.

Library:

qdb

Description:

This function cancels all active backup operations for databases on the QDB server

associated with the specified handle.

Returns:

0

Success.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

114 © 2015, QNX Software Systems Limited

QDB API Reference

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 115

qdb_bkcancel()

qdb_cell()

Return a cell's data

Synopsis:

#include <qdb/qdb.h>

void *qdb_cell(qdb_result_t *res,
 int row,
 int col);

Arguments:

res

A pointer to a result structure to check.

row

The row number of the cell, where the first row is 0.

col

The column number of the cell, where the first column is 0.

Library:

qdb

Description:

This function returns the data from one cell from a database query result. The returned

pointer points to the beginning of the data. You must cast the pointer to the appropriate

data type. For example:

uint64_t storage_type = *(uint64_t*)qdb_cell(res, 0, 0);

Returns:

A pointer

A pointer to the beginning of the cell's data.

NULL

An error occurred (errno is set).

116 © 2015, QNX Software Systems Limited

QDB API Reference

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 117

qdb_cell()

qdb_cell_length()

Return the length of a cell's data

Synopsis:

#include <qdb/qdb.h>

int qdb_cell_length(qdb_result_t *res,
 int row,
 int col);

Arguments:

res

A pointer to a result structure to check.

row

The row number of the cell, where the first row is 0.

col

The column number of the cell, where the first column is 0.

Library:

qdb

Description:

This function returns the length of the specified cell in a database query result. This

is useful for variable-length datatypes, such as QDB_TEXT and QDB_BLOB.

For QDB_TEXT, this function doesn't count the terminating null

character.

Returns:

>=0

The length of the specified cell's data, in bytes.

-1

An error occurred (errno is set).

118 © 2015, QNX Software Systems Limited

QDB API Reference

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 119

qdb_cell_length()

qdb_cell_type()

Return a cell's datatype

Synopsis:

#include <qdb/qdb.h>

int qdb_cell_type(qdb_result_t *res,
 int row,
 int col);

Arguments:

res

A pointer to a result structure to check.

row

The row number of the data cell, where the first row is 0.

col

The column number of the data cell, where the first column is 0.

Library:

qdb

Description:

This function returns the type of the specified cell, which you can use to cast the cell

data to the proper C datatype. The datatypes that can be returned are defined in

<qdb/qdb.h>:

Variable LengthANSI C TypeReturn Type

NoNULLQDB_UNSUPPORTED

Noint64_tQDB_INTEGER

NodoubleQDB_REAL

Yeschar *QDB_TEXT

Yesvoid *QDB_BLOB

NoNULLQDB_NULL

120 © 2015, QNX Software Systems Limited

QDB API Reference

If the data can have variable length, then you should check its length by calling

qdb_cell_length() (p. 118). The text type QDB_TEXT (char *) is always null-terminated.

Returns:

>=0

The datatype of the specified cell.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 121

qdb_cell_type()

qdb_collation()

Change the runtime configuration of user-defined collation sequences

Synopsis:

#include <qdb/qdb.h>

int qdb_collation(qdb_hdl_t *db,
 void *data,
 int nbytes,
 int reindex);

Arguments:

db

A pointer to the database handle.

data

A pointer to arbitrary configuration data used by the user-defined collation

library.

nbytes

The length of data, in bytes.

reindex

A flag to indicate if QDB should reindex any database indexes that would

be affected by changing the collation. If any indexes exist that have a

COLLATE component, then these must be regenerated to reflect the

potentially new sorting order.

Library:

qdb

Description:

This function configures user-defined collation sequences attached to the database.

These collation sequences are listed under the Collation option in the database

configuration object. The setup() function of each entry is invoked with the specified

data and nbytes, and any error raised by that function is returned to the client.

Otherwise, the collation routine is expected to use the data in a proprietary manner

to configure itself to a new sort order. The collation routine and the client must both

122 © 2015, QNX Software Systems Limited

QDB API Reference

know what format this configuration data is in. You can consider strings as a simple

self-documenting extensible format (e.g. getsubopt() style).

Returns:

0

Success.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 123

qdb_collation()

qdb_column_decltype()

Retrieve the declared type for a column in a result set

Synopsis:

#include <qdb/qdb.h>

const char *qdb_column_decltype(qdb_result_t *result,
int col);

Arguments:

result

A pointer to a result structure.

col

The index of the column type to return, where 0 (zero) indicates the first

column.

Library:

qdb

Description:

The function qdb_column_decltype() returns the declared type of the specified column

of a result set. The result set is specified by the result argument. The returned string

is valid until qdb_freeresult() is called.

If the specified column is the result of an expression or subquery, an empty string is

returned.

To use qdb_column_decltype(), you must set the option

QDB_OPTION_COLUMN_DECLTYPES by calling qdb_setoption(). By default,

this option is off.

Returns:

A pointer

A pointer to the specified column's declared type.

124 © 2015, QNX Software Systems Limited

QDB API Reference

NULL

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 125

qdb_column_decltype()

qdb_column_index()

Return a column's index

Synopsis:

#include <qdb/qdb.h>

int qdb_column_index(qdb_result_t *result,
 const char *name);

Arguments:

result

A pointer to a result structure to check.

name

The name of the column to get the index number for.

Library:

qdb

Description:

This function returns the index for specified column name, name.

Returns:

>=0

The index of the specified column.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

126 © 2015, QNX Software Systems Limited

QDB API Reference

Safety:

YesThread

© 2015, QNX Software Systems Limited 127

qdb_column_index()

qdb_column_name()

Return a column's name

Synopsis:

#include <qdb/qdb.h>

const char *qdb_column_name(qdb_result_t *res,
 int col);

Arguments:

res

A pointer to a result structure to check.

col

The index of the column name to return, where the leftmost column is 0.

Library:

qdb

Description:

This function returns the name of a specified column index col, as defined in a

database schema when the table was created.

Returns:

A pointer to the specified column's name, or NULL if an error occurred (errno is set).

The string containing the column name is part of the results set, so the string memory

is freed (along with the rest of the results set memory) by qdb_freeresult(). If you want

to keep the column name longer, you must create a copy of the string (and manage

that copy's memory).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

128 © 2015, QNX Software Systems Limited

QDB API Reference

Safety:

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 129

qdb_column_name()

qdb_columns()

Return the number of columns in a result

Synopsis:

#include <qdb/qdb.h>

int qdb_columns(qdb_result_t *res);

Arguments:

res

A pointer to a result structure to check.

Library:

qdb

Description:

This function returns the number of columns in the result structure res. If your query

matches 0 rows, you can still have a value greater than 0 for the number of columns.

You should use qdb_rows() (p. 164) to determine if the results are empty.

Returns:

>=0

The number of columns in the result set.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

130 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_connect()

Connect to a database

Synopsis:

#include <qdb/qdb.h>

qdb_hdl_t *qdb_connect(const char *dbname,
 int flags);

Arguments:

dbname

The database device name (e.g., /dev/qdb/customerdb).

flags

Flags for determining parameters of the connection. This argument can be

0 (no flags) or a combination of:

QDB_CONN_DFLT_SHARE

Use the default database connection share mode (as given in the

-C command-line option to QDB). Without this flag, a private

connection is forced.

QDB_CONN_NONBLOCKING

If this flag is set, qdb_statement() (p. 171) fails and returns

immediately (setting errno to EBUSY) if the database file is locked.

By default, qdb_statement() waits for at least the busy timeout

period (set using qdb_setbusytimeout() (p. 165)) if the database is

locked, before returning with a failure result.

Setting this flag also makes subsequent calls to qdb_connect()

nonblocking (as if the -T command-line option were 0).

QDB_CONN_STMT_ASYNC

Execute statements asynchronously. In this mode, qdb_statement()

(p. 171) may return before the statement has finished executing

against the database (see “Using asynchronous mode (p. 46)”).

© 2015, QNX Software Systems Limited 131

qdb_connect()

Library:

qdb

Description:

This function connects to the database specified by dbname and sets parameters for

the database connection. When successful, the function returns a pointer to a handle

for the new connection. You need to call this function for every database or for

concurrent access to one database.

Two threads can share the same database connection, provided that they

coordinate between themselves. Alternatively, each thread can call

qdb_connect() and have its own connection.

You should terminate all connections by calling qdb_disconnect() (p. 135) when you're

finished using them.

Returns:

A valid pointer to an opaque database connection (qdb_hdl_t)

Success.

NULL

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

132 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_data_source()

Extract the data source for a database

Synopsis:

#include <qdb/qdb.h>

int qdb_data_source(qdb_hdl_t *hdl,
 char *buffer,
 int buflen);

Arguments:

hdl

A pointer to the database handle.

buffer

A buffer to hold the resulting source path information. You can set this

parameter to NULL to make the function return the required buffer size. The

buffer is managed by the client application, not by QDB.

buflen

The length of buffer; this argument is relevant only when the buffer is not

NULL.

Library:

qdb

Description:

This function provides a description of the source used to initialize the database. This

source may be one of several paths, or a list of the schema creation and data population

files, depending on the state of the specified database when the qdb utility is started

and on how the database is initialized:

• If the database is empty, the string will be empty.

• If the database is created with a schema only, the string will be the path to the

schema file used to create the database.

• If the database is created with a schema and initialized with a data schema, the

string will be a colon-delimited list of schema:data schema1[:data schema2...]

© 2015, QNX Software Systems Limited 133

qdb_data_source()

• If the database is created from an existing database that is neither corrupted nor

a backup database, the string will be the path to that database (which will be the

same as the Filename entry).

• If the database is created from a backup database, the string will be the path to

the restoring database from one of the BackupDir entries.

If you don't know the buffer size required to hold the data source string, call

qdb_data_source() with buffer set to NULL and use the function's return value for the

amount of memory to allocate for the buffer. Then, call qdb_data_source() again,

passing in the address of the created buffer in buffer, to get the data source.

Returns:

>=0

Depending on the arguments, either the required size of the buffer to store

the data source or the length of the string stored in buffer (both size values

include the null-terminator).

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

134 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_disconnect()

Disconnect from a database

Synopsis:

#include <qdb/qdb.h>

int qdb_disconnect(qdb_hdt_t *db);

Arguments:

db

A pointer to the handle of the database to disconnect from.

Library:

qdb

Description:

This function terminates the connection with a database previously connected to with

qdb_connect() (p. 131).

You should disconnect from all databases when you're finished using them.

Returns:

>=0

Success.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 135

qdb_disconnect()

qdb_freeresult()

Free the result of an SQL statement

Synopsis:

#include <qdb/qdb.h>

int qdb_freeresult(qdb_result_t *res);

Arguments:

res

A pointer to a result structure to free.

Library:

qdb

Description:

This function frees a result previously returned from qdb_getresult() (p. 145). You must

call qdb_freeresult() when you're finished using a result set, to reduce your application's

memory footprint.

Returns:

0

Success.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

136 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_getdbsize()

Return the size of a database

Synopsis:

#include <qdb/qdb.h>

int qdb_getdbsize(qdb_hdt_t *db,
 int scope,
 uint32_t *page_size,
 uint32_t *total_pages,
 uint32_t *free_pages);

Arguments:

db

A pointer to the database handle.

scope

The scope of the operation. See the description of the scope argument in

qdb_backup() (p. 108) for more information.

page_size

A pointer to a location for storing the size (in bytes) of a page in the database

file.

total_pages

A pointer to a location for storing the number of pages in the database file.

free_pages

A pointer to a location for storing the number of pages not being used to

store data.

Library:

qdb

Description:

This function provides information about the size of the database file associated with

the database handle db. The database's size on the filesystem is page_size ×

total_pages.

© 2015, QNX Software Systems Limited 137

qdb_getdbsize()

If you vacuum the database, QDB deletes the free pages so the total pages goes down,

free pages goes to 0, and the database file becomes smaller. For more information,

see the VACUUM (p. 232) SQL command, qdb_vacuum() (p. 183) function, and the

Auto-vacuum section (p. 221) of the PRAGMA command.

For an attached database to be included in the size calculation of the main

database (i.e., the one with handle db), the attached database must be listed

under the SizeAttached option in the configuration object for the main

database.

Returns:

>=0

Success.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

138 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_geterrcode()

Return the last error code

Synopsis:

#include <qdb/qdb.h>

int qdb_geterrcode(qdb_hdl_t *db);

Arguments:

db

A pointer to the database handle.

Library:

qdb

Description:

This function returns the SQL error code for the most recent call to one of:

• qdb_backup()

• qdb_getdbsize()

• qdb_getoption()

• qdb_getresult()

• qdb_setoption()

• qdb_statement()

• qdb_vacuum()

You typically call this function after one of the above functions fails.

Returns:

>0

The SQL error code from the last failed QDB operation.

0

There is no error, or the database handle is invalid.

© 2015, QNX Software Systems Limited 139

qdb_geterrcode()

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

140 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_geterrmsg()

Return the last error string

Synopsis:

#include <qdb/qdb.h>

const char *qdb_geterrmsg(qdb_hdl_t *db);

Arguments:

db

A pointer to the database handle.

Library:

qdb

Description:

This function returns a string containing an error message for the most recent call to

one of:

• qdb_backup()

• qdb_getdbsize()

• qdb_getoption()

• qdb_getresult()

• qdb_setoption()

• qdb_statement()

• qdb_vacuum()

You typically call this function after one of the above functions fails. If the error

occurred within the SQL library, the returned string is an SQLite error message. If the

error occurred in the QDB system, the returned string is a POSIX errno message.

Returns:

A pointer to an unmodifiable string containing the error message from the last QDB

operation, or an empty string if there is no error. If the database handle is invalid, the

function returns a pointer to a string containing the POSIX "not connected" errno

message.

© 2015, QNX Software Systems Limited 141

qdb_geterrmsg()

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

142 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_getoption()

Return the value for a database session option

Synopsis:

#include <qdb/qdb.h>

int qdb_getoption(qdb_hdl_t *db,
 int option);

Arguments:

db

A pointer to the database handle.

option

The option you want to query. See qdb_setoption() (p. 167) for a list of

database options.

Library:

qdb

Description:

This function returns the value of option for the database db.

Returns:

1

The value of the option is 1 (on).

0

The value of the option is 0 (off).

-1

The option isn't supported (errno is set).

Classification:

QNX Neutrino

© 2015, QNX Software Systems Limited 143

qdb_getoption()

Safety:

NoInterrupt handler

NoSignal handler

YesThread

144 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_getresult()

Return the result of an SQL statement

Synopsis:

#include <qdb/qdb.h>

qdb_result_t *qdb_getresult(qdb_hdt_t *db);

Arguments:

db

A pointer to the database handle.

Library:

qdb

Description:

After running a SELECT statement on the database, you can retrieve its result using

qdb_getresult(). All rows that match the query are returned in one result set,

represented as a qdb_result_t structure, which is an opaque data type. You can

get further information about the result using these functions:

• qdb_cell() (p. 116)

• qdb_cell_length() (p. 118)

• qdb_column_index() (p. 126)

• qdb_column_name() (p. 128)

• qdb_columns() (p. 130)

• qdb_printmsg() (p. 158)

• qdb_rows() (p. 164)

When you're finished using the result, you must free it by calling qdb_freeresult() (p.

136) .

Returns:

A pointer to the query result

Success.

© 2015, QNX Software Systems Limited 145

qdb_getresult()

NULL

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

146 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_gettransstate()

Return the transaction state for a QDB connection

Synopsis:

#include <qdb/qdb.h>

int qdb_gettransstate(qdb_hdl_t *db);

Arguments:

db

A pointer to the database handle.

Library:

qdb

Description:

This function returns the transaction state for the specified QDB connection. If an

SQL transaction is in progress over the connection, the function returns 1. If no SQL

transaction is happening, 0 is returned. If there's an SQL error, -1 is returned (you

can use qdb_geterrmsg() (p. 141) to get the error string).

You can use this function to determine how to clean up after an SQL error; for example,

if you execute several commands in a transaction and need to determine which

statement is causing the error.

Returns:

1

An SQL transaction is in progress.

0

No SQL transaction is in progress.

-1

An SQL error occurred (errno is set).

Classification:

QNX Neutrino

© 2015, QNX Software Systems Limited 147

qdb_gettransstate()

Safety:

NoInterrupt handler

NoSignal handler

YesThread

148 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_interrupt()

Interrupt long-running queries

Synopsis:

#include <qdb/qdb.h>

int qdb_interrupt(qdb_hdl_t *db);

Arguments:

db

A pointer to the database handle.

Library:

qdb

Description:

This function interrupts all currently running queries that are using the specified

connection handle (db) and rolls back any uncommitted transactions. If qdb_interrupt()

is called on a connection when no query is executing, it doesn't do anything.

If the QDB connection is synchronous, you must call this function in a thread other

than the one that initiated the query. In asynchronous mode (p. 46), this function

may be called from the same thread.

If a query is nearly finished when you call this function, the query might not get

interrupted and instead finish executing.

The qdb_interrupt() call is active until all currently running queries associated with

db either finish executing or are successfully interrupted. For queries started after the

qdb_interrupt() call was issued but before the count of active queries reaches 0, they're

interrupted as if they had been running prior to the call. Any queries started after the

active query count reaches 0 aren't affected by this function.

You must not disconnect from the database while this call is still active;

otherwise, the database may end up in an inconsistent state.

Returns:

© 2015, QNX Software Systems Limited 149

qdb_interrupt()

0

Success.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

150 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_last_insert_rowid()

Return the primary key of the last inserted row

Synopsis:

#include <qdb/qdb.h>

uint64_t qdb_last_insert_rowid(qdb_hdt_t *db,
 qdb_result_t *result);

Arguments:

db

A pointer to the database handle. You can pass NULL for this argument if

you provide a value for result and you set the

QDB_OPTION_LAST_INSERT_ROWID option when calling qdb_setoption()

(p. 167). Note that this option is enabled by default.

result

A pointer to the result set you want to query. If you pass in NULL, the

function queries the server connection db for the last qdb_statement() (p.

171) call.

Library:

qdb

Description:

This function returns the row ID of the last INSERT statement. Each entry in a QDB

table has a unique integer key called the row ID. This key is always available as an

undeclared column named ROWID, OID, or _ROWID_. If the table has a column of

type INTEGER PRIMARY KEY, then that column is an alias for the rowid.

The qdb_last_insert_rowid() function first looks in result (if the

QDB_OPTION_LAST_INSERT_ROWID option is enabled), returning the information

for the statement that produced the result. If result is NULL or

QDB_OPTION_LAST_INSERT_ROWID is disabled, the function queries the database

handle db and returns the information about the last executed statement.

If this function returns 0, check errno to make sure that it is EOK, indicating that no

rows were inserted (you should set errno to 0 before calling this function if you want

© 2015, QNX Software Systems Limited 151

qdb_last_insert_rowid()

to distinguish between an error and 0 rows). If errno is set, there was an error with

the request.

If an INSERT occurs within a trigger, then the row ID of the inserted row is returned

by this function as long as the trigger is running. When the trigger terminates, the

function will return the last value inserted before the trigger fired.

Returns:

>0

The integer primary key of the last inserted row.

0

An error occurred (errno is set) or no rows were inserted.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

152 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_mprintf()

Print formatted output to a new string

Synopsis:

#include <qdb/qdb.h>

char *qdb_mprintf(const char* format, ...);

Arguments:

format

A pointer to a formatting string to process. The formatting string determines

what additional arguments you need to provide. For more information, see

printf() in the QNX Neutrino C Library Reference.

Library:

qdb

Description:

This function is a variant of sprintf() from the standard C library. The resulting string

is written into memory obtained from malloc(), so there's no possibility of buffer

overflow. The function implements some additional formatting options that are useful

for constructing SQL statements.

The qdb_statement() (p. 171) function also allows you to format strings in the

same way and doesn't require you to free the resulting string. However,

qdb_mprintf() is useful for building queries from multiple strings.

You should call free() to free the strings returned by this function.

All the usual printf() formatting options apply. The qdb_mprintf() function adds these

options:

%q

This option works like %s: it substitutes a null-terminated string from the

argument list; however, %q also doubles each single-quote character (').

This is useful inside a string literal. By doubling each single-quote character,

%q escapes that character and allows it to be inserted into the SQL statement.

© 2015, QNX Software Systems Limited 153

qdb_mprintf()

%Q

This option works like %q except that it adds single quotes around the

contents of the entire string. Or, if the parameter in the argument list is a

NULL pointer, %Q substitutes the text NULL in place of the %Q option.

%z

This option works like %s except that after the source string (which is the

argument referred to by %s) has been copied into the formatted string, the

source string memory doesn't have to be freed.

Returns:

A pointer to an escaped string

Success.

NULL

An error occurred (errno is set).

Examples:

Suppose some string variable contains the following text:

char *zText = "It's a happy day!";

You can use this text in an SQL statement as follows:

qdb_mprintf("INSERT INTO table VALUES('%q')", zText);

Because the %q formatting option is used, the single-quote character in zText is

escaped, and the generated SQL is:

INSERT INTO table1 VALUES('It''s a happy day!')

This is correct. Had you used %s instead of %q, the generated SQL would have looked

like this:

INSERT INTO table1 VALUES('It's a happy day!');

This second example is an SQL syntax error. As a general rule, you should always use

%q instead of %s when inserting text into a string literal.

Suppose you're unsure if your text reference is NULL. You can use this reference as

follows:

char *zSQL = qdb_mprintf("INSERT INTO table VALUES(%Q)", zText);

The code above will render a correct SQL statement in the zSQL variable even if the

zText variable is a NULL pointer.

154 © 2015, QNX Software Systems Limited

QDB API Reference

The %z option is handy for nested strings:

char id[] = "12345678";

char *nested = qdb_mprintf(

 "SELECT msid FROM mediastores WHERE id = %Q", id);

char *sql = qdb_mprintf(

 "DELETE FROM library WHERE msid = (%z);", nested);

qdb_exec(sql);

free(sql);

The nested string doesn't have to be freed after it gets copied into the formatted string

and the SQL code within the formatted string is executed.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 155

qdb_mprintf()

qdb_parameters()

Get or set database connection parameters

Synopsis:

#include <qdb/qdb.h>

int qdb_parameters(qdb_hdl_t *db,
 int mask,
 int bits);

Arguments:

db

A pointer to the database handle.

mask

A bitmask representing the connection parameters you want to update.

bits

The bits corresponding to the parameters you want to enable. If a bit is in

mask but not in bits, the parameter is unset (i.e., disabled).

Library:

qdb

Description:

This function queries or modifies the database connection parameters. You can set

or unset the QDB_CONN_NONBLOCKING and QDB_CONN_STMT_ASYNC bits (see the

flags argument for qdb_connect() (p. 131) for a description of these settings). You can't

change the QDB_CONN_DFLT_SHARE bit.

The function returns the previous bitmask (i.e., parameter settings), so the parameter

settings can be temporarily changed and restored.

Returns:

>=0

The previous value of the bitmask.

156 © 2015, QNX Software Systems Limited

QDB API Reference

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 157

qdb_parameters()

qdb_printmsg()

Print data from a query result

Synopsis:

#include <qdb/qdb.h>

int qdb_printmsg(FILE *fp,
 qdb_result_t *result,
 int format);

Arguments:

fp

A handle for a file to print the results to.

result

The query result you want to print.

format

The desired format of the results. Can be one of:

QDB_FORMAT_SIMPLE

Minimal formatting.

QDB_FORMAT_HTML

HTML formatting, suitable for viewing in a browser.

QDB_FORMAT_COLUMN

Column formatting, so the results appear under column names.

Library:

qdb

Description:

This function prints the results of a SELECT query to a file. You must specify a standard

file stream in file, such as stdout.

Returns:

158 © 2015, QNX Software Systems Limited

QDB API Reference

>=0

The number of rows in the results.

-1

An error occurred (errno is set).

Errors:

EINVAL

An invalid format was specified.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 159

qdb_printmsg()

qdb_query()

Perform a database query

Synopsis:

#include <qdb/qdb.h>

qdb_result_t *qdb_query(qdb_hdl_t *db,
int size_hint,
const char *fmt, ...);

Arguments:

db

A pointer to the database handle.

size_hint

An estimate (in bytes) of how much memory to initially allocate to receive

the database result. Specifying a value of 0 will use a default initial setting.

If you know the rough order of magnitude of the result in advance (either

very small or very large), then you can improve performance by specifying

that value in the size_hint. In all cases, the full result will be received.

fmt

A string that controls the format of the output, as described in

qdb_statement() (p. 171).

Library:

qdb

Description:

This convenience function provides a single-interface alternative to calling

qdb_statement() (p. 171) and qdb_getresult() (p. 145), and offers a potential performance

improvement if the statement and result communication can be made with a single

context switch.

Returns:

>=0

Success.

160 © 2015, QNX Software Systems Limited

QDB API Reference

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 161

qdb_query()

qdb_rowchanges()

Return the number of rows affected by an SQL statement

Synopsis:

#include <qdb/qdb.h>

uint64_t qdb_rowchanges(qdb_hdt_t *db
 qdb_result_t *result);

Arguments:

db

A pointer to the database handle. You can pass in NULL for this argument

if you provide a value for result and the QDB_OPTION_ROW_CHANGES option

has been set by qdb_setoption() (p. 167) (it's set by default).

result

A pointer to the result set you want to query. If you pass in NULL, the

function queries the result from the last qdb_statement() (p. 171) call on db.

Library:

qdb

Description:

This function returns the number of rows affected by an SQL statement. It first looks

in result (if the QDB_OPTION_ROW_CHANGES option has been set by qdb_setoption()

(p. 167)), returning the number of rows for the statement that produced the result. If

result is NULL or QDB_OPTION_ROW_CHANGES is not set, the function queries the

database handle db and returns the information about the last executed statement.

If this function returns 0, check errno to make sure that it is EOK, indicating that no

row was affected—you should set errno to 0 before calling this function if you want

to distinguish between an error and 0 rows. If errno is not EOK, there was an error with

the request.

Returns:

>0

The number of rows affected.

162 © 2015, QNX Software Systems Limited

QDB API Reference

0

An error occurred (errno is set) or 0 rows were affected.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 163

qdb_rowchanges()

qdb_rows()

Return the number of rows in a result set

Synopsis:

#include <qdb/qdb.h>

int qdb_rows(qdb_result_t *res);

Arguments:

res

A pointer to a result structure to check.

Library:

qdb

Description:

This function returns the number of rows in the specified result set. If your query

matched no rows in the database, this function returns 0.

Returns:

>=0

The number of rows in the result set.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

164 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_setbusytimeout()

Set the busy timeout for a database connection

Synopsis:

#include <qdb/qdb.h>

int qdb_setbusytimeout(qdb_hdt_t *db,
 int timeout);

Arguments:

db

A pointer to the database handle to set the timeout for.

timeout

The timeout period, in milliseconds. This value may also be:

QDB_TIMEOUT_NONBLOCK

The equivalent of setting a timeout of 0. Calls to qdb_statement()

(p. 171) return immediately with failure if the database file is

locked.

QDB_TIMEOUT_BLOCK

The equivalent of an infinite timeout period. Calls to

qdb_statement() (p. 171) will wait indefinitely or until the database

is unlocked, at which point the call will succeed.

Library:

qdb

Description:

This function sets the busy timeout for the database connection specified by db. The

initial value can be specified on the qdb command line with the -t option; by default,

it's 5000 ms. Specifying a value of 0 is the same as setting QDB_TIMEOUT_NONBLOCK.

The timeout is the amount of time that a client can attempt to access a database

before it returns EBUSY. If two clients attempt to write to the database, the database

is locked while the first client is writing and the second client's attempt will fail if the

busy timeout period expires.

© 2015, QNX Software Systems Limited 165

qdb_setbusytimeout()

The QDB_CONN_NONBLOCKING flag is affected by the timeout value. If you

set or toggle QDB_CONN_NONBLOCKING, the busy timeout value is set to 0 or

back to the -t value. Similarly, if you set the timeout to be

QDB_TIMEOUT_NONBLOCK, the QDB_CONN_NONBLOCKING flag is set.

The QDB_CONN_NONBLOCKING flag bit can be set with qdb_connect() (p. 131)

and toggled with qdb_parameters() (p. 156).

Returns:

>=0

Success. The previous busy timeout setting is returned.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

166 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_setoption()

Set a database connection option

Synopsis:

#include <qdb/qdb.h>

int qdb_setoption(qdb_hdt_t *db,
int option,
int value);

Arguments:

db

A pointer to the database handle.

option

The option to set. It can be one of:

QDB_OPTION_LAST_INSERT_ROWID

Automatically put the last inserted ROWID into any result you

fetch. If this option isn't set, that data isn't included in the result

structure and calling qdb_last_insert_rowid() (p. 151) will query

the database connection for this information instead.

By default, this option is on.

QDB_OPTION_ROW_CHANGES

Put the number of rows affected by a statement into any result

you fetch. If this option isn't set, that data isn't included in the

result structure and calling qdb_rowchanges() (p. 162) will query

the database connection for this information instead.

By default, this option is on.

QDB_OPTION_COLUMN_NAMES

Write the column names into the qdb_result_t structure

returned by qdb_getresult() (p. 145). If this option isn't set, that

data isn't provided and calling qdb_column_index() (p. 126) won't

work.

By default, this option is on.

© 2015, QNX Software Systems Limited 167

qdb_setoption()

QDB_OPTION_COLUMN_DECLTYPES

Write the declared column types in the qdb_result_t structure

returned by qdb_getresult() (p. 145). If this option isn't set, that

data isn't provided and calling qdb_column_decltype() (p. 124)

won't work.

By default, this option is off.

value

The new value for the option, either 0 (off) or 1 (on).

Library:

qdb

Description:

This function sets options for the database connection db. By default, all supported

options are enabled (on) except for QDB_OPTION_COLUMN_DECLTYPES.

Returns:

>=0

Success. The previous value for option is returned.

-1

The specified option isn't supported (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

168 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_snprintf()

Print formatted output to a length-bounded string

Synopsis:

#include <qdb/qdb.h>

char *qdb_snprintf(int n,
 char *buf,
 const char *format, ...);

Arguments:

n

The maximum number of characters to store in the buf string, including the

null-terminator. The function will always write a null-terminator if n is

positive.

buf

A pointer to the buffer for storing the formatted string.

format

A pointer to a formatting string to process. The formatting string determines

what additional arguments you need to provide. For more information, see

printf() in the QNX Neutrino C Library Reference.

Library:

qdb

Description:

This function is a variant of snprintf() in the standard C library. However, it is different

from snprintf() in these ways:

• qdb_snprintf() returns a pointer to the buffer rather than the number of characters

written

• the order of the n and buf parameters is reversed

• qdb_snprintf() always writes a null-terminator if n is positive

For more information about additional formatting options, see qdb_mprintf() (p. 153).

© 2015, QNX Software Systems Limited 169

qdb_snprintf()

You shouldn't use the return value of this function. In future versions, it

may be changed to return the number of characters written rather than a

pointer to the buffer.

Returns:

A pointer to the formatted output string (buf)

Success.

NULL

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

170 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_statement()

Execute an SQL statement

Synopsis:

#include <qdb/qdb.h>

int qdb_statement(qdb_hdt_t *db,
const char *format, ...);

Arguments:

db

A pointer to the database handle.

format

A pointer to a formatting string to process. The formatting string determines

what additional arguments you need to provide. The string that results from

combining format and the additional arguments is executed as SQL code

on the database.

Library:

qdb

Description:

This function combines the formatting string in format with the values of the additional

arguments to construct an SQL command string and then executes that string on the

database referred to by db.

Individual statements within the command string must be completed with and separated

by semicolons. There's no length restriction for the command string.

The formatting string and additional arguments work in the same way as with printf()

(all the same conversion specifiers apply). There are additional conversion specifiers,

%q and %Q, which in general should be used instead of %s for inserting text into a

literal string. The %q specifier properly escapes special characters for SQL. For more

information, see qdb_mprintf() (p. 153).

To determine how many rows were affected by the SQL command string, you can call

qdb_rowchanges() (p. 162) after executing the command string.

© 2015, QNX Software Systems Limited 171

qdb_statement()

Because qdb_rowchanges() returns the number of rows affected by only the

last SQL statement executed by qdb_statement(), we recommend defining only

one statement in each qdb_statement() call; otherwise, if there's an issue, you

won't be able to determine which statement failed.

By default, the SQL code is executed on the database before qdb_statement() returns.

However, if the connection is in asynchronous mode (p. 46), this function may return

before the SQL code completes execution and may not report errors. In this case, you

need to call qdb_getresult() (p. 145) to retrieve any errors.

Returns:

>=0

Success.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

172 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_stmt_decltypes()

Get the declared column types for a prepared statement

Synopsis:

#include <qdb/qdb.h>

int qdb_stmt_decltypes(qdb_hdl_t *db,
 int stmtid,
 char **buf,
 ssize_t bufsize,
 ssize_t *required_size);

Arguments:

db

A pointer to the database handle.

stmtid

The prepared statement ID returned by qdb_stmt_init().

buf

A pointer to a buffer for storing the column types.

bufsize

The actual buffer size, in bytes.

required_size

The required buffer size, in bytes, for storing all declared column types. The

function always fills in this field, even if you provide a sufficiently large

buffer.

Library:

qdb

Description:

This function gets the declared column types for the prepared statement referred to

by stmtid. The behavior of this function depends on the argument settings:

© 2015, QNX Software Systems Limited 173

qdb_stmt_decltypes()

• If buf is undefined (i.e., NULL) and bufsize is 0, the number of bytes needed for

the buffer is written in required_size and the total number of columns in the

statement is returned.

• If buf is defined and bufsize is less than required_size, only partial data is written

in the buffer and the number of valid declared column types is returned.

• If buf is defined and bufsize is greater than or equal to required_size, the declared

column types are written in the buffer and the total number of columns is returned.

When this function returns, the beginning of buf is an array of pointers to strings,

which are also stored in the buffer. These buffer strings contain the individual declared

column types. Note that if a column is the result of an expression or subquery, an

empty string is written in the corresponding buffer position.

You must allocate (and manage) the memory in buf. If you need to know the buffer

size required to store the results, call this function with bufsize set to 0. The function

will write the necessary number of bytes in required_size. You can then use this value

to allocate the required amount of memory and call the function again, passing in a

pointer to the newly allocated buffer.

Returns:

>=0

Success. The returned value is either the number of columns in the statement

or the number of valid declared column types, depending on the arguments.

-1

An error occurred (errno is set).

Examples:

The following code sample demonstrates how you can call qdb_stmt_decltypes() once

to determine the required buffer size and again to retrieve the declared column types:

char **pp;

ssize_t required_size, bufsize = 0;

int cols, i;

if ((cols = qdb_stmt_decltypes(db, stmtid, NULL,

 0, &required_size)) > 0) {

 pp = malloc(required_size);

 if (pp) {

 bufsize = required_size;

 cols = qdb_stmt_decltypes(db, stmtid, pp,

 bufsize, &required_size);

 for (i=0; i<cols; i++)

 printf("column %d: %s\n", i, pp[i]);

 free(pp);

174 © 2015, QNX Software Systems Limited

QDB API Reference

 }

}

You can optimize the use of qdb_stmt_decltypes() by providing a buffer that you

estimate is large enough before you call this function for the first time. On return, if

bufsize is greater than or equal to required_size, then all the data has been returned

and you don't need to call the function again. This also lets you re-use a single,

sufficiently large buffer.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 175

qdb_stmt_decltypes()

qdb_stmt_exec()

Execute a precompiled statement

Synopsis:

#include <qdb/qdb.h>

int qdb_stmt_exec(qdb_hdl_t *db,
 int stmtid,
 qdb_binding_t *bindings,
 uint8_t binding_count);

Arguments:

db

A pointer to the database handle.

stmtid

The ID of a precompiled statement to execute.

bindings

An array of qdb_binding_t (p. 110) structures containing pointers to data

that will be bound to the variable parameters in the precompiled statement.

binding_count

The number of items in bindings.

Library:

qdb

Description:

This function executes a precompiled statement prepared with qdb_stmt_init() (p.

180). If the SQL string previously passed to qdb_stmt_init() contains variable parameters,

you can bind data to these parameters by placing the data values in one or more

qdb_binding_t structures and then passing in these structures through the bindings

argument. Parameters that aren't filled in are interpreted as NULL.

Returns:

176 © 2015, QNX Software Systems Limited

QDB API Reference

0

Success.

-1

An error occurred (errno is set).

Examples:

See qdb_stmt_init() (p. 180) for an example on how to compile, execute, and free an

SQL statement.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 177

qdb_stmt_exec()

qdb_stmt_free()

Free a precompiled statement

Synopsis:

#include <qdb/qdb.h>

int qdb_stmt_free(qdb_hdl_t *db,
int stmtid)

Arguments:

db

A pointer to the database handle.

stmtid

The ID of a precompiled statement to free.

Library:

qdb

Description:

This function frees a statement previously compiled by qdb_stmt_init() (p. 180). It's

not strictly necessary to call this function, as all precompiled statements are freed

when you call qdb_disconnect() (p. 135).

Returns:

0

Success.

-1

An error occurred (errno is set).

Examples:

See qdb_stmt_init() (p. 180) for an example on how to compile, execute, and free an

SQL statement.

178 © 2015, QNX Software Systems Limited

QDB API Reference

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2015, QNX Software Systems Limited 179

qdb_stmt_free()

qdb_stmt_init()

Initialize a precompiled statement

Synopsis:

#include <qdb/qdb.h>

int qdb_stmt_init(qdb_hdl_t *db,
 const char *sql,
 uint32_t len)

Arguments:

db

A pointer to the database handle.

sql

An SQL statement. This statement may contain variable parameters of the

form ?n, where n is a number between 1 and 999. These placeholders can

be filled in with data on a subsequent call to qdb_stmt_exec() (p. 176).

len

The length of sql.

Library:

qdb

Description:

This function initializes a prepared (precompiled) SQL statement. A prepared statement

is compiled once but can be executed multiple times. This function returns a statement

ID for the precompiled statement, which you need to pass in to qdb_stmt_exec() (p.

176).

QDB executes precompiled statements faster than uncompiled statements, so this

approach can optimize your application's performance when executing frequently used

statements.

You can free precompiled statements using qdb_stmt_free() (p. 178), although all

precompiled statements are freed when you call qdb_disconnect() (p. 135).

Returns:

180 © 2015, QNX Software Systems Limited

QDB API Reference

>=0

Success. The returned value is the prepared statement's ID. Note that 0 is

a valid statement ID.

-1

An error occurred (errno is set).

Examples:

The following code sample shows how to compile, execute, and free an SQL statement:

int stmtid;

qdb_binding_t qbind[2];

uint64_t msid, limit;

const char *sql = "SELECT fid FROM library

 WHERE msid=?1 LIMIT ?2;";

stmtid = qdb_stmt_init(db, sql, strlen(sql)+1);

if (stmtid == -1) {

 // Could not compile

 return -1;

}

msid = 1;

limit = 10;

QDB_SETBIND_INT(&qbind[0], 1, msid);

QDB_SETBIND_INT(&qbind[1], 2, limit);

if (qdb_stmt_exec(db, stmtid, qbind, 2) == -1) {

 // Could not execute

 return -1;

}

qdb_stmt_free(db, stmtid);

Note the +1 added to the length of the string returned by strlen(); this sends QDB the

final NULL character required of a valid string.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

© 2015, QNX Software Systems Limited 181

qdb_stmt_init()

Safety:

YesThread

182 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_vacuum()

Vacuum a database

Synopsis:

#include <qdb/qdb.h>

int qdb_vacuum (qdb_hdt_t *db,
 int scope);

Arguments:

db

A pointer to the database handle.

scope

The scope of the operation (see the scope argument in qdb_backup() (p.

108) for more information).

Library:

qdb

Description:

This function starts a vacuum operation on the specified database and any

auto-attached databases (which are listed in the main databases' .aa file). This is an

alternative to using the VACUUM (p. 232) command for each database.

You can call qdb_getdbsize() (p. 137) to determine whether a database should be

vacuumed.

If the auto-vacuum mode is enabled (see the PRAGMA (p. 232) SQL command for

details), databases are vacuumed whenever free space is created. By default,

auto-vacuum mode is disabled.

Returns:

0

Success.

-1

An error occurred (errno is set).

© 2015, QNX Software Systems Limited 183

qdb_vacuum()

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

184 © 2015, QNX Software Systems Limited

QDB API Reference

qdb_vmprintf()

Print formatted output to a new string

Synopsis:

#include <qdb/qdb.h>

char *qdb_vmprintf(const char* format,
 va_list arg);

Arguments:

format

A pointer to a formatting string to process. The formatting string determines

what additional arguments you need to provide. For more information, see

printf() in the QNX Neutrino C Library Reference.

arg

A variable-argument list of the additional arguments. You must have

initialized this list with the va_start() macro.

Library:

qdb

Description:

This function is a variant of the vsprintf() from the standard C library. For more

information about additional formatting options, see qdb_mprintf() (p. 153).

Returns:

A pointer to a formatted string

Success.

NULL

An error occurred (errno is set).

Classification:

QNX Neutrino

© 2015, QNX Software Systems Limited 185

qdb_vmprintf()

Safety:

NoInterrupt handler

NoSignal handler

YesThread

186 © 2015, QNX Software Systems Limited

QDB API Reference

Chapter 9
QDB SQL Reference

QDB supports a subset of ANSI SQL-92. The supported capabilities are presented in

the following sections:

• Details on the Row ID and Autoincrement (p. 188) features

• Syntax for SQL Comments (p. 190)

• Syntax and semantics of SQL Expressions (p. 191)

• SQL Keywords (p. 199) recognized by QDB

• Information about Statements (p. 204)

© 2015, QNX Software Systems Limited 187

Row ID and Autoincrement

In QDB, every row of every table has a 64-bit signed integer row ID. The row ID for

each row is unique among all rows in the same table. You can prevent row IDs from

ever being reused in a table by using the AUTOINCREMENT keyword.

Description:

You can access the row ID of an QDB table using one the special column names ROWID,

ROWID, or OID. However, if you declare an ordinary table column to use one of those

special names, then the use of that name refers to the declared column, not to the

internal row ID.

If a table contains a column of type INTEGER PRIMARY KEY, then that column

becomes an alias for the row ID. You can then access the row ID using any of four

different names: the original three names described above, or the name given to the

INTEGER PRIMARY KEY column. All these names are aliases for one another and

work equally well in any context.

When you insert a new row into a QDB table, you can either specify the row ID as part

of the INSERT statement, or the database engine can assign it automatically. To

specify a row ID manually, just include it in the list of values to be inserted. For

example:

CREATE TABLE test1(a INT, b TEXT);

INSERT INTO test1(rowid, a, b) VALUES(123, 5, 'hello');

If no row ID is specified on the insert, an appropriate row ID is created automatically.

By default, QDB gives the newly created row a row ID that is one larger than the largest

row ID in the table prior to the insert. If the table is initially empty, then QDB uses a

row ID of 1. If the largest row ID is equal to the largest possible number that can be

stored in a signed 64-bit integer (9223372036854775807), then the database engine

starts picking candidate IDs at random until it finds one that isn't already used.

The normal row ID selection algorithm described above will generate monotonically

increasing unique row IDs as long as you never use the maximum row ID value and

you never delete the entry in the table with the largest row ID. If you ever delete rows

or if you ever create a row with the maximum possible row ID, then row IDs from

previously deleted rows might be reused when you create new rows, and newly created

row IDs might not be in strictly ascending order.

The AUTOINCREMENT Keyword

If a column has the type INTEGER PRIMARY KEY AUTOINCREMENT, then a slightly

different row ID selection algorithm is used. The row ID chosen for the new row is one

larger than the largest row ID that has ever before existed in that same table. If the

table has never before contained any data, then the database engine uses a row ID of

188 © 2015, QNX Software Systems Limited

QDB SQL Reference

1. If the table has previously held a row with the largest possible row ID, then new

INSERTs are not allowed and any attempt to insert a new row fails with a QDB_FULL

error.

QDB keeps track of the largest row ID that a table has ever held using the special

QDB_SEQUENCE table. The QDB_SEQUENCE table is created and initialized

automatically whenever a normal table that contains an AUTOINCREMENT column is

created. The content of the QDB_SEQUENCE table can be modified using ordinary

UPDATE, INSERT, and DELETE statements. But make sure you know what you are

doing before you undertake such changes — making modifications to this table will

likely perturb the AUTOINCREMENT key generation algorithm.

The behavior implemented by the AUTOINCREMENT keyword is subtly different from

the default behavior. With AUTOINCREMENT, rows with automatically selected row

IDs are guaranteed to have row IDs that have never been used before by the same

table in the same database. And the automatically generated row IDs are guaranteed

to be monotonically increasing. These are important properties in certain applications.

But if your application doesn't require this behavior, you should probably stay with

the default behavior, since the use of AUTOINCREMENT requires QDB to perform

additional work as each row is inserted and thus causes INSERTs to run a little more

slowly.

© 2015, QNX Software Systems Limited 189

Row ID and Autoincrement

Comments

Comments make your SQL queries easier to read and understand.

Syntax:

-- single-line

/* multiple-lines [*/]

Description:

Comments aren't SQL commands, but can occur in SQL queries. They are treated as

whitespace by the parser. They can begin anywhere whitespace can be found, including

inside expressions that span multiple lines.

SQL comments extend only to the end of the current line.

C comments can span any number of lines. If there is no terminating delimiter, they

extend to the end of the input. This is not treated as an error. A new SQL statement

can begin on a line after a multiline comment ends. C comments can be embedded

anywhere whitespace can occur, including inside expressions, and in the middle of

other SQL statements. C comments do not nest. SQL comments inside a C comment

will be ignored.

190 © 2015, QNX Software Systems Limited

QDB SQL Reference

Expressions

SQL expressions are subcomponents of most other commands. Expressions combine

one or more values, operators, and SQL functions to produce a result that can used

in the enclosing command.

Syntax:

expr binary-op expr |
expr [NOT] { LIKE | GLOB } expr [ESCAPE expr] |
unary-op expr |
(expr) |
[[database-name .] [table-name .] column-name |
literal-value |
parameter |
function-name (expr-list | *) |
expr ISNULL |
expr NOTNULL |
expr [NOT] BETWEEN expr AND expr |
expr [NOT] IN (value-list) |
expr [NOT] IN (select-statement) |
expr [NOT] IN [database-name .] table-name |
[EXISTS] (select-statement) |
CASE [expr] (WHEN expr THEN expr)+ [ELSE expr] END |
CAST (expr AS type)
expr COLLATE collation-name

Description:

SQL expressions are made up of several smaller components, including literals for

specifying exact values, operators for comparing values and performing pattern

matching, and functions for calculating and modifying values. These smaller

components evaluate to a single result that's used in a broader SQL command.

Operators

QDB understands the following binary operators, in order from highest to lowest

precedence:

||

* / %

+ -

<< >> & |

< <= > >=

= == != <> IN

AND

OR

The supported unary prefix operators are:

- + ! ~ NOT

© 2015, QNX Software Systems Limited 191

Expressions

The COLLATE operator can be thought of as a unary postfix operator. The COLLATE

operator has the highest precedence. It always binds more tightly than any prefix unary

operator or any binary operator.

The unary operator [Operator +] is a no-op. It can be applied to strings, numbers, or

BLOBs, and it always gives as its result the value of the operand.

Note that there are two variations of the equals and not equals operators. Equals can

be either = or ==. The non-equals operator can be either != or <>. The || operator is

“concatenate” — it joins together the two strings of its operands. The operator %

outputs the remainder of its left operand modulo its right operand.

The result of any binary operator is a numeric value, except for the || concatenation

operator, which gives a string result.

Literal values

A literal value is an integer number or a floating point number. Scientific notation is

supported. The “.” character is always used as the decimal point even if the locale

setting specifies “,” for this role—the use of “,” for the decimal point would result in

syntactic ambiguity. A string constant is formed by enclosing the string in single

quotation marks ('). A single quotation mark within the string can be encoded by

putting two single quotes in a row, as in Pascal. C-style escapes using the backslash

character are not supported because they are not standard SQL. BLOB literals are

string literals containing hexadecimal data and preceded by a single “x” or “X”

character. For example:

X'53514697465'

A literal value can also be the token NULL.

Parameters

A parameter specifies a placeholder in the expression for a literal value that is filled

in at runtime using qdb_stmt_exec() (p. 176). Parameters can take several forms:

?NNN

A question mark followed by a number, NNN, holds a spot for the NNN-th

parameter. NNN must be between 1 and 999.

?

A question mark that is not followed by a number holds a spot for the next

unused parameter.

:AAAA

A colon followed by an identifier name holds a spot for a named parameter

with the name AAAA. Named parameters are also numbered. The number

192 © 2015, QNX Software Systems Limited

QDB SQL Reference

assigned is the next unused number. To avoid confusion, it is best to avoid

mixing named and numbered parameters.

@AAAA

An “at” sign works exactly like a colon.

$AAAA

A dollar-sign followed by an identifier name also holds a spot for a named

parameter with the name AAAA. The identifier name in this case can include

one or more occurrences of "::" and a suffix enclosed in “(...)” containing

any text at all. This syntax is the form of a variable name in the Tcl

programming language.

Parameters that are not assigned values using qdb_stmt_exec() are treated as

NULL.

LIKE

The LIKE operator does a pattern-matching comparison. The operand to the right

contains the pattern; the left-hand operand contains the string to match against the

pattern.

A percent symbol(%) in the pattern matches any sequence of zero or more characters

in the string. An underscore (_) in the pattern matches any single character in the

string. Any other character matches itself or its lower/upper case equivalent (i.e.,

case-insensitive matching). (A bug: QDB understands only upper/lower case for 7-bit

Latin characters. Hence the LIKE operator is case sensitive for 8-bit iso8859 characters

or UTF-8 characters. For example, the expression 'a' LIKE 'A' is TRUE but 'æ'

LIKE 'Æ' is FALSE.).

If the optional ESCAPE clause is present, then the expression following the ESCAPE

keyword must evaluate to a string consisting of a single character. This character may

be used in the LIKE pattern to include literal percent or underscore characters. The

escape character followed by a percent symbol, underscore or itself matches a literal

percent symbol, underscore or escape character in the string, respectively. The infix

LIKE operator is implemented by calling the user function like(X,Y) (p. 195).

GLOB

The GLOB operator is similar to LIKE, but uses the UNIX file-globbing syntax for its

wildcards. Also, GLOB is case sensitive, unlike LIKE. Both GLOB and LIKE may be

preceded by the NOT keyword to invert the sense of the test. The infix GLOB operator

is implemented by calling the user function glob(X,Y) (p. 195) and can be modified by

overriding that function.

© 2015, QNX Software Systems Limited 193

Expressions

Column Names

A column name can be any of the names defined in the CREATE TABLE statement

or one of the following special identifiers: ROWID, OID, or _ROWID_. These special

identifiers all describe the unique random integer key (the row key) associated with

every row of every table. The special identifiers refer to the row key only if the CREATE

TABLE statement doesn't define a real column with the same name. Row keys act like

read-only columns. A row key can be used anywhere a regular column can be used,

except that you cannot change the value of a row key in an UPDATE or INSERT

statement. SELECT * ... doesn't return the row key.

SELECT statements

SELECT statements can appear in expressions as either the right-hand operand of the

IN operator, as a scalar quantity, or as the operand of an EXISTS operator. As a scalar

quantity or the operand of an IN operator, the SELECT should have only a single

column in its result. Compound SELECTs (connected with keywords like UNION or

EXCEPT) are allowed. With the EXISTS operator, the columns in the result set of the

SELECT are ignored and the expression returns TRUE if one or more rows exist and

FALSE if the result set is empty. If no terms in the SELECT expression refer to value

in the containing query, then the expression is evaluated once prior to any other

processing and the result is reused as necessary. If the SELECT expression does

contain variables from the outer query, then the SELECT is reevaluated every time it

is needed.

When a SELECT is the right operand of the IN operator, the IN operator returns TRUE

if the result of the left operand is any of the values generated by the select. The IN

operator may be preceded by the NOT keyword to invert the sense of the test.

When a SELECT appears within an expression but is not the right operand of an IN

operator, then the first row of the result of the SELECT becomes the value used in

the expression. If the SELECT yields more than one result row, all rows after the first

are ignored. If the SELECT yields no rows, then the value of the SELECT is NULL.

CAST

A CAST expression changes the datatype of the expr into the type specified by type,

where type can be any nonempty type name that is valid for the type in a column

definition of a CREATE TABLE statement.

Functions

Both simple and aggregate functions are supported. A simple function can be used

in any expression. Simple functions return a result immediately based on their inputs.

Aggregate functions may only be used in a SELECT statement. Aggregate functions

compute their result across all rows of the result set.

Core Functions

194 © 2015, QNX Software Systems Limited

QDB SQL Reference

The functions shown below are available by default.

abs(X)

Return the absolute value of argument X.

coalesce(X,Y,...)

Return a copy of the first non-NULL argument. If all arguments are NULL,

then NULL is returned. There must be at least 2 arguments.

glob(X,Y)

This function is used to implement the X GLOB Y syntax of QDB.

hex(X)

The argument is interpreted as a BLOB. The result is a hexadecimal rendering

of the content of that BLOB.

ifnull(X,Y)

Return a copy of the first non-NULL argument. If both arguments are NULL,

then NULL is returned. This behaves the same as coalesce() above.

last_insert_rowid()

Return the row ID of the last row inserted from this connection to the

database. This is the same value that would be returned from the

qdb_last_insert_rowid() (p. 151).

length(X)

Return the string length of X in characters.

like(X,Y [,Z])

This function is used to implement the X LIKE Y [ESCAPE Z] syntax of

SQL. If the optional ESCAPE clause is present, then the user-function is

invoked with three arguments. Otherwise, it is invoked with two arguments

only.

lower(X)

Return a copy of string X with all characters converted to lower case.

ltrim(X [,Y])

Return a string formed by removing any and all characters that appear in Y

from the left side of X. If the Y argument is omitted, spaces are removed.

© 2015, QNX Software Systems Limited 195

Expressions

max(X,Y,...)

Return the argument with the maximum value. Arguments may be strings

in addition to numbers. The maximum value is determined by the usual sort

order. Note thatmax() is a simple function when it has two or more arguments

but converts to an aggregate function if given only a single argument.

min(X,Y,...)

Return the argument with the minimum value. Arguments may be strings

in addition to numbers. The minimum value is determined by the usual sort

order. Note thatmin() is a simple function when it has two or more arguments

but converts to an aggregate function if given only a single argument.

nullif(X,Y)

Return the first argument if the arguments are different, otherwise return

NULL.

quote(X)

This routine returns a string which is the value of its argument suitable for

inclusion into another SQL statement. Strings are surrounded by single

quotes with escapes on interior quotes as needed. BLOBs are encoded as

hexadecimal literals. The current implementation of VACUUM uses this

function. The function is also useful when you're writing triggers to implement

undo/redo functionality.

random(*)

Return a random integer between -2147483648 and +2147483647.

randomblob(N)

Return a N-byte BLOB containing pseudo-random bytes. N should be a

postive integer.

replace(X,Y,Z)

Return a string formed by substituting string Z for every occurrence of string

Y in string X. The BINARY collating sequence is used for comparisons.

round(X[, Y])

Round off the number X to Y digits to the right of the decimal point. If the

Y argument is omitted, 0 is assumed.

196 © 2015, QNX Software Systems Limited

QDB SQL Reference

rtrim(X [,Y])

Return a string formed by removing any and all characters that appear in Y

from the right side of X. If the Y argument is omitted, spaces are removed.

soundex(X)

Compute the soundex encoding of the string X. The string "?000" is returned

if the argument is NULL.

sqlite_version()

Return the version string for the SQLite library that is running. Example:

"3.7.9"

substr(X,Y,Z)

Return a substring of input string X that begins with the Y-th character and

which is Z characters long. The leftmost character of X is number 1. If Y is

negative, the first character of the substring is found by counting from the

right rather than the left. QDB is configured to support UTF-8, so characters

indexes refer to actual UTF-8 characters, not bytes.

trim(X [,Y])

Return a string formed by removing any and all characters that appear in Y

from both sides of X. If the Y argument is omitted, spaces are removed.

typeof(X)

Return the type of the expression X. The possible return values are

• "null"

• "integer"

• "real"

• "text"

• "blob"

QDB's type handling is explained in the chapter Datatypes in QDB (p. 53).

upper(X)

Return a copy of input string X converted to all uppercase letters. The

implementation of this function uses the C library routine toupper(), which

means it may not work correctly on UTF-8 strings.

Aggregate Functions

In any aggregate function that takes a single argument, that argument can be preceded

by the keyword DISTINCT. In such cases, duplicate elements are filtered before being

© 2015, QNX Software Systems Limited 197

Expressions

passed into the aggregate function. For example, the function count(distinct X)

will return the number of distinct values of column X instead of the total number of

non-NULL values in column X.

avg(X)

Return the average value of all non-NULL X within a group. String and BLOB

values that don't look like numbers are interpreted as 0. The result of avg()

is always a floating point value, even if all inputs are integers.

count([X])

The first form, which takes the argument X, returns the number of times

that X is not NULL in a group. The second form, which takes no arguments,

returns the total number of rows in the group.

max(X)

Return the maximum value of all values in the group. The usual sort order

is used to determine the maximum.

min(X)

Return the minimum non-NULL value of all values in the group. The usual

sort order is used to determine the minimum. NULL is returned only if all

values in the group are NULL.

sum(X), total(X)

Return the numeric sum of all non-NULL values in the group. If there are

no non-NULL input rows or all values are NULL, then sum() returns NULL,

and total() returns 0.0. NULL is not normally a helpful result for the sum of

no rows, but the SQL standard requires it, and most other SQL database

engines implement sum() that way, so QDB does it in the same way to be

compatible. The total() function is provided as a convenient way to work

around this design problem in the SQL language.

The result of total() is always a floating point value. The result of sum() is

an integer value if all non-NULL inputs are integers. If any input to sum() is

neither an integer or a NULL, then sum() returns a floating point value which

might be an approximation to the true sum.

The sum() function throws an “integer overflow” exception if all inputs are

integers or NULL and an integer overflow occurs at any point during the

computation. The total() function never throws an exception.

198 © 2015, QNX Software Systems Limited

QDB SQL Reference

Keywords

QDB recognizes more than 100 SQL keywords related to command names, operators,

sorting directives, and table, column, and query constraints. You must use special

syntax to use keywords as names of program objects.

Description:

The SQL standard specifies a huge number of keywords that you can not use as the

names of tables, indexes, columns, databases, user-defined functions, collations,

virtual table modules, or any other named object. The list of keywords is so long that

few people can remember them all. For most SQL code, your safest bet is to never

use any word in the English language as the name of a user-defined object.

If you want to use a keyword as a name, you need to quote it. There are three ways of

quoting keywords in QDB:

'keyword'

A keyword in single quotes is interpreted as a literal string if it occurs in a

context where a string literal is allowed, otherwise it is understood as an

identifier.

"keyword"

A keyword in double-quotes is interpreted as an identifier if it matches a

known identifier. Otherwise it is interpreted as a string literal.

[keyword]

A keyword enclosed in square brackets is always understood as an identifier.

This is not standard SQL. This quoting mechanism is used by MS Access

and SQL Server and is included in QDB for compatibility.

Quoted keywords are unaesthetic. To help you avoid them, QDB allows many keywords

to be used unquoted as the names of databases, tables, indices, triggers, views,

columns, user-defined functions, collations, attached databases, and virtual function

modules. In the list of keywords that follows, keywords that can be used as identifiers

are shown in italics. Keywords that must be quoted in order to be used as identifiers

are shown in bold.

QDB adds new keywords from time to time when it take on new features. So to prevent

your code from being broken by future enhancements, you should normally quote any

identifier that is a word in English, even if you do not have to.

The following are the keywords currently recognized by QDB:

• ABORT

© 2015, QNX Software Systems Limited 199

Keywords

• ADD

• AFTER

• ALL

• ALTER

• ANALYZE

• AND

• AS

• ASC

• ATTACH

• AUTOINCREMENT

• BEFORE

• BEGIN

• BETWEEN

• BY

• CASCADE

• CASE

• CAST

• CHECK

• COLLATE

• COMMIT

• CONFLICT

• CONSTRAINT

• CREATE

• CROSS

• CURRENT_DATE

• CURRENT_TIME

• CURRENT_TIMESTAMP

• DATABASE

• DEFAULT

• DEFERRABLE

• DEFERRED

• DELETE

• DESC

• DETACH

• DISTINCT

• DROP

200 © 2015, QNX Software Systems Limited

QDB SQL Reference

• EACH

• ELSE

• END

• ESCAPE

• EXCEPT

• EXCLUSIVE

• EXPLAIN

• FAIL

• FOR

• FOREIGN

• FROM

• FULL

• GLOB

• GROUP

• HAVING

• IF

• IGNORE

• IMMEDIATE

• IN

• INDEX

• INITIALLY

• INNER

• INSERT

• INSTEAD

• INTERSECT

• INTO

• IS

• ISNULL

• JOIN

• KEY

• LEFT

• LIKE

• LIMIT

• MATCH

• NATURAL

• NOT

© 2015, QNX Software Systems Limited 201

Keywords

• NOTNULL

• NULL

• OF

• OFFSET

• ON

• OR

• ORDER

• OUTER

• PLAN

• PRAGMA

• PRIMARY

• QUERY

• RAISE

• REFERENCES

• REINDEX

• RENAME

• REPLACE

• RESTRICT

• RIGHT

• ROLLBACK

• ROW

• SELECT

• SET

• TABLE

• TEMP

• TEMPORARY

• THEN

• TO

• TRANSACTION

• TRIGGER

• UNION

• UNIQUE

• UPDATE

• USING

• VACUUM

• VALUES

202 © 2015, QNX Software Systems Limited

QDB SQL Reference

• VIEW

• VIRTUAL

• WHEN

• WHERE

Special names

The following words are not keywords in QDB, but are used as names of system objects.

They can be used as identifiers for a different type of object.

• _ROWID_

• MAIN

• OID

• ROWID

• SQLITE_MASTER

• SQLITE_SEQUENCE

• SQLITE_TEMP_MASTER

• TEMP

© 2015, QNX Software Systems Limited 203

Keywords

Statements

QDB recognizes more than 20 types of SQL statements that create, modify, and delete

tables, indexes, and triggers, and perform specialized tasks such as database cleanup.

The statements described in this appendix are:

• ALTER TABLE (p. 204)

• ANALYZE (p. 205)

• ATTACH DATABASE (p. 206)

• CREATE INDEX (p. 207)

• CREATE TABLE (p. 208)

• CREATE TRIGGER (p. 211)

• CREATE VIEW (p. 214)

• DELETE (p. 214)

• DETACH DATABASE (p. 215)

• DROP INDEX (p. 215)

• DROP TABLE (p. 216)

• DROP TRIGGER (p. 216)

• DROP VIEW (p. 217)

• EXPLAIN (p. 217)

• INSERT (p. 218)

• ON CONFLICT (p. 218)

• PRAGMA (p. 220)

• REINDEX (p. 227)

• REPLACE (p. 227)

• SELECT (p. 228)

• TRANSACTION (p. 230)

• UPDATE (p. 232)

• VACUUM (p. 232)

ALTER TABLE

Rename or add a new column to an existing table

Synopsis:

ALTER TABLE [database-name .] table-name
 {RENAME TO new-table-name} | {ADD [COLUMN] column-def}

204 © 2015, QNX Software Systems Limited

QDB SQL Reference

Description:

QDB's version of the ALTER TABLE command lets you add a new column to or rename

an existing table. It isn't possible to remove a column from a table.

The RENAME TO syntax is used to rename the table identified by

[database-name.]table-name to new-table-name. This command cannot be used to

move a table between attached databases, only to rename a table within the same

database.

If the table being renamed has triggers or indexes, then these remain attached to the

table after it has been renamed. However, if there are any view definitions or statements

executed by triggers that refer to the table being renamed, these are not automatically

modified to use the new table name. If this is required, the triggers or view definitions

must be dropped and recreated by hand to use the new table name.

The ADD [COLUMN] syntax is used to add a new column to an existing table. The

new column is always appended to the end of the list of existing columns. The

column-def may take any of the forms permissible in a CREATE TABLE statement,

with the following restrictions:

• The column may not have a PRIMARY KEY or UNIQUE constraint.

• The column may not have a default value of CURRENT_TIME, CURRENT_DATE or

CURRENT_TIMESTAMP.

• If a NOT NULL constraint is specified, then the column must have a default value

other than NULL.

The execution time of the ALTER TABLE command is independent of the amount of

data in the table. The ALTER TABLE command runs as quickly on a table with 10

million rows as it does on a table with one row.

After ADD COLUMN has been run on a database, that database will not be readable

by QDB until the database is cleaned up with the VACUUM (p. 232) statement.

ANALYZE

Analyze indexes to optimize queries

Synopsis:

ANALYZE [database-name .] [table-name]

Description:

The ANALYZE command gathers statistics about indexes and stores them in a special

tables in the database where the query optimizer can use them to help make better

index choices. If no arguments are given, all indexes in all attached databases are

analyzed. If a database name is given as the argument, all indexes in that database

© 2015, QNX Software Systems Limited 205

Statements

are analyzed. If the argument is a table name, then only indexes associated with that

table are analyzed.

The database-name can be the name of any attached database. You don't have to

supply the database name of non-attached database; if you do, use main.

The initial implementation stores all statistics in a single table named sqlite_stat1.

Future enhancements may create additional tables with the same name pattern except

with the 1 changed to a different digit. The sqlite_stat1 table can't be erased by

the DROP (p. 216) command, but all its content can be deleted with the DELETE (p.

214) statement, which has the same effect.

ATTACH DATABASE

Add a database to the current connection

Synopsis:

ATTACH [DATABASE] database-filename AS database-name

Description:

The ATTACH DATABASE statement adds another database file to the current database

connection. If the filename contains punctuation characters, it must be placed inside

quotation marks. The names main and temp refer to the main database and the

database used for temporary tables. These cannot be detached. Attached databases

are removed using the DETACH DATABASE (p. 215) statement.

You can read from and write to an attached database, and you can modify the schema

of the attached database.

You cannot create a new table with the same name as a table in an attached database,

but you can attach a database that contains tables whose names are duplicates of

tables in the main database. It is also permissible to attach the same database file

multiple times.

Tables in an attached database can be referred to using the syntax

database-name.table-name. If an attached table doesn't have a duplicate table name

in the main database, it doesn't require a database name prefix. When a database is

attached, all of its tables that don't have duplicate names become the default table

of that name. Any tables of that name attached afterwards require the table prefix. If

the default table of a given name is detached, then the last table of that name attached

becomes the new default.

Transactions involving multiple attached databases are atomic. There is a compile-time

limit of 10 attached database files.

206 © 2015, QNX Software Systems Limited

QDB SQL Reference

CREATE INDEX

Create an index

Synopsis:

CREATE [UNIQUE] INDEX [IF NOT EXISTS] [database-name .]
index-name ON table-name (column-name [, column-name]*)

column-name =
name [COLLATE collation-name] [ASC | DESC]

Description:

The CREATE INDEX command consists of the keywords CREATE INDEX followed by

the name of the new index, the keyword ON, the name of a previously created table

that is to be indexed, and a parenthesized list of names of columns in the table that

are used for the index key. Each column name can be followed by one of the ASC or

DESC keywords to indicate sort order, but the sort order is ignored in the current

implementation. Sorting is always done in ascending order.

The COLLATE clause following each column name defines a collating sequence used

for text entries in that column. The default collating sequence is the collating sequence

defined for that column in the CREATE TABLE statement. If no collating sequence

is otherwise defined, the built-in BINARY collating sequence is used.

There are no arbitrary limits on the number of indexes that can be attached to a single

table, nor on the number of columns in an index.

If the UNIQUE keyword appears between CREATE and INDEX, then duplicate index

entries are not allowed. Any attempt to insert a duplicate entry will result in an error.

The exact text of each CREATE INDEX statement is stored in the sqlite_master

or sqlite_temp_master table, depending on whether the table being indexed is

temporary. Every time the database is opened, all CREATE INDEX statements are

read from the sqlite_master table and used to regenerate QDB's internal

representation of the index layout.

If the optional IF NOT EXISTS clause is present and another index with the same

name aleady exists, then this command becomes a no-op.

Indexes are removed with the DROP INDEX (p. 215) command.

© 2015, QNX Software Systems Limited 207

Statements

CREATE TABLE

Create a table

Synopsis:

CREATE [TEMP | TEMPORARY] TABLE [IF NOT EXISTS] [database-name.]

table-name (
column-def [, column-def]*

 [, constraint]*
)

CREATE [TEMP | TEMPORARY] TABLE [database-name.]
table-name AS select-statement

column-def =
name [type] [[CONSTRAINT name] column-constraint]*

type =
typename |
typename (number) |
typename (number , number)

column-constraint =
NOT NULL [conflict-clause] |
PRIMARY KEY [sort-order] [conflict-clause] [AUTOINCREMENT]
|
UNIQUE [conflict-clause] |
CHECK (expr) |
DEFAULT value |
COLLATE collation-name

constraint =
PRIMARY KEY (column-list) [conflict-clause] |
UNIQUE (column-list) [conflict-clause] |
CHECK (expr) [conflict-clause]

conflict-clause =
ON CONFLICT conflict-algorithm

Description:

A CREATE TABLE statement is followed by the name of a new table and a

parenthesized list of column definitions and constraints. The table name can be either

an identifier or a string. Tables names that begin with sqlite_ are reserved for use

by the engine.

Each column definition consists of the column name followed by the datatype for that

column, then one or more optional column constraints. The datatype for the column

doesn't restrict what data may be put in that column. See the chapter Datatypes in

QDB (p. 53) for additional information.

208 © 2015, QNX Software Systems Limited

QDB SQL Reference

There are no arbitrary limits on the number of columns or on the number of constraints

in a table. As well, there is no arbitrary limit on the amount of data in a row.

Tables are removed using the DROP TABLE (p. 216) statement.

Temp keyword

If the TEMP or TEMPORARY keyword is used, then the created table is visible only

within that same database connection and is automatically deleted when the database

connection is closed. Any indexes created on a temporary table are also temporary.

Temporary tables and indexes are stored in a separate file distinct from the main

database file.

If a database-name is specified, then the table is created in the named database. It

is an error to specify both a database-name and the TEMP keyword, unless the

database-name is temp. If no database name is specified, and the TEMP keyword is

not present, the table is created in the main database.

Default constraint

The DEFAULT constraint specifies a default value to use for a column when doing an

INSERT. The value may be NULL, a string constant or a number. The default value

may also be one of the special case-independant keywords CURRENT_TIME,

CURRENT_DATE, or CURRENT_TIMESTAMP. If the value is NULL, a string constant,

or number, it is literally inserted into the column whenever an INSERT statement that

doesn't specify a value for the column is executed.

If the value is CURRENT_TIME, CURRENT_DATE, or CURRENT_TIMESTAMP, then the

current UTC date and/or time is inserted into the column. For CURRENT_TIME, the

format is HH:MM:SS. For CURRENT_DATE, the format is YYYY-MM-DD. The format

for CURRENT_TIMESTAMP is YYYY-MM-DD HH:MM:SS.

Primary Key constraint

Specifying a PRIMARY KEY normally just creates a UNIQUE index on the corresponding

columns. However, if the primary key is on a single column that has the INTEGER

datatype, then that column is used internally as the actual key of the B-Tree for the

table. This means that the column may hold only unique integer values. (Except for

this one case, QDB ignores the datatype specification of columns and allows any kind

of data to be put in a column regardless of its declared datatype.)

If a table doesn't have an INTEGER PRIMARY KEY column, then the B-Tree key will

be an automatically generated integer. The B-Tree key for a row can always be accessed

using one of the special names ROWID, OID, or _ROWID_. This is true regardless of

whether or not there is an INTEGER PRIMARY KEY. An INTEGER PRIMARY KEY

column can also include the keyword AUTOINCREMENT. The AUTOINCREMENT keyword

modifies the way that B-Tree keys are automatically generated. Additional detail on

automatic B-Tree key generation is given in the “Row ID and Autoincrement (p. 188)”

section.

© 2015, QNX Software Systems Limited 209

Statements

The SQL standard specifies that PRIMARY KEY should always imply NOT

NULL. Unfortunately, due to a long-standing coding oversight, SQLite has

allowed NULL values in PRIMARY KEY columns. At the time of this writing,

SQLite continues to allow NULL values in PRIMARY KEY columns to support

legacy code. However, SQLite may eventually be changed to support the

SQL standard. Therefore, developers should design new programs to conform

to the SQL standard.

Unique constraint

The UNIQUE constraint is similar to the PRIMARY KEY constraint, except that a table

may have any number of UNIQUE constraints. Each UNIQUE constraint creates an

index on the specified columns. This index must contain unique keys.

Collate constraint

The COLLATE constraint specifies what text-collating function (p. 62) to use when

comparing text entries for the column. The built-in BINARY collating function is used

by default.

Not Null constraint

A NOT NULL constraint dictates that the associated column may not contain a NULL

value. Attempting to set the column value to NULL when inserting a new row or updating

an existing one causes a constraint violation.

Check constraint

CHECK constraints are now supported and enforced. Each time a new row is inserted

into the table or an existing row is updated, the expression associated with each CHECK

constraint is evaluated and cast to a NUMERIC value. If the result is zero (integer value

0 or real value 0.0), then a constraint violation has occurred. If the CHECK expression

evaluates to NULL, or any other non-zero value, it is not a constraint violation.

Constraint conflict resolution

Constraint violations are handled by constraint conflict resolution algorithms. Each

PRIMARY KEY, UNIQUE, NOT NULL, and CHECK constraint has a default algorithm

for resolving constraint conflicts. The optional conflict-clause following a constraint

lets you specify an alternative algorithm for resolving constraint conflicts. The default

algorithm is ABORT. Different constraints within the same table may have different

conflict resolution algorithms.

If a COPY, INSERT, or UPDATE command specifies a different conflict resolution

algorithm, then that algorithm is used in place of the default algorithm specified in

the CREATE TABLE statement. See the section ON CONFLICT (p. 218) for additional

information.

Statement storage and interpretation

210 © 2015, QNX Software Systems Limited

QDB SQL Reference

The CREATE TABLE AS form defines the table to be the result set of a query. The

names of the table columns are the names of the columns in the result.

The exact text of each CREATE TABLE statement is stored in the sqlite_master

table. Every time the database is opened, all CREATE TABLE statements are read

from the sqlite_master table and used to regenerate QDB's internal representation

of the table layout. If the original command was a CREATE TABLE AS, then an

equivalent CREATE TABLE statement is synthesized and stored in sqlite_master

in place of the original command. The text of CREATE TEMPORARY TABLE statements

is stored in the sqlite_temp_master table.

If the optional IF NOT EXISTS clause is present and another table with the same

name aleady exists, then this command becomes a no-op.

CREATE TRIGGER

Create a trigger

Synopsis:

CREATE [TEMP | TEMPORARY] TRIGGER [IF NOT EXISTS] trigger-name

 [BEFORE | AFTER] database-event ON [database-name .]
table-name trigger-action

CREATE [TEMP | TEMPORARY] TRIGGER [IF NOT EXISTS] trigger-name

 INSTEAD OF database-event ON [database-name .]
view-name trigger-action

database-event =
DELETE |
INSERT |
UPDATE |
UPDATE OF column-list

trigger-action =
[FOR EACH ROW] [WHEN expression]
BEGIN
trigger-step ; [trigger-step ;]*
END

trigger-step =
update-statement | insert-statement |
delete-statement | select-statement

© 2015, QNX Software Systems Limited 211

Statements

Description:

The CREATE TRIGGER statement is used to add triggers to the database schema.

Triggers are database operations (the trigger-action) that are automatically performed

when a specified database event (the database-event) occurs.

A trigger may be specified to fire whenever a DELETE, INSERT, or UPDATE of a

particular database table occurs, or whenever one or more specified columns of a table

are updated.

At this time, QDB supports only FOR EACH ROW triggers, not FOR EACH STATEMENT

triggers. Hence explicitly specifying FOR EACH ROW is optional. FOR EACH ROW

implies that the SQL statements specified as trigger-stepsmay be executed (depending

on the WHEN clause) for each database row being inserted, updated or deleted by the

statement causing the trigger to fire.

Both the WHEN clause and the trigger-steps may access elements of the row being

inserted, deleted, or updated using references of the form NEW.column-name and

OLD.column-name, where column-name is the name of a column from the table that

the trigger is associated with. OLD and NEW references may be used only in triggers

on trigger-events for which they are relevant, as follows:

Valid referencesCommand

NEW references are validINSERT

NEW and OLD references are validUPDATE

OLD references are validDELETE

If a WHEN clause is supplied, the SQL statements specified as trigger-steps are executed

only for rows for which the WHEN clause is true. If no WHEN clause is supplied, the

SQL statements are executed for all rows.

The specified trigger-time determines when the trigger-steps will be executed relative

to the insertion, modification or removal of the associated row.

An ON CONFLICT clause may be specified as part of an UPDATE or INSERT

trigger-step. However if an ON CONFLICT clause is specified as part of the statement

causing the trigger to fire, then this conflict handling policy is used instead.

Triggers are automatically dropped when the table that they are associated with is

dropped.

You may create triggers on views as well as ordinary tables, by specifying INSTEAD

OF in the CREATE TRIGGER statement. If one or more ON INSERT, ON DELETE,

or ON UPDATE triggers are defined on a view, then it is not an error to execute an

INSERT, DELETE, or UPDATE statement on the view, respectively. Thereafter, executing

an INSERT, DELETE, or UPDATE on the view causes the associated triggers to fire.

212 © 2015, QNX Software Systems Limited

QDB SQL Reference

The real tables underlying the view are not modified (except possibly explicitly, by a

trigger program).

Examples:

Assuming that customer records are stored in the customers() table, and that order

records are stored in the orders() table, the following trigger ensures that all associated

orders are redirected when a customer changes his or her address:

CREATE TRIGGER update_customer_address

 UPDATE OF address ON customers

 BEGIN

 UPDATE orders SET address = new.address

 WHERE customer_name = old.name;

 END;

With this trigger installed, executing the statement:

UPDATE customers SET address = '1 Main St.'

 WHERE name = 'Jack Jones';

causes the following to be automatically executed:

UPDATE orders SET address = '1 Main St.'

 WHERE customer_name = 'Jack Jones';

Note that triggers may behave oddly when created on tables with INTEGER PRIMARY

KEY fields. If a BEFORE trigger program modifies the INTEGER PRIMARY KEY field

of a row that will be subsequently updated by the statement that causes the trigger

to fire, then the update may not occur. The workaround is to declare the table with a

PRIMARY KEY column instead of an INTEGER PRIMARY KEY column.

A special SQL function RAISE() may be used within a trigger-program, with the

following syntax

RAISE (ABORT, error-message) |

RAISE (FAIL, error-message) |

RAISE (ROLLBACK, error-message) |

RAISE (IGNORE)

When one of the first three forms is called during trigger-program execution, the

specified ON CONFLICT processing is performed (either ABORT, FAIL or ROLLBACK)

and the current query terminates. An error code of SQLITE_CONSTRAINT is returned

to the user, along with the specified error message.

When RAISE(IGNORE) is called, the remainder of the current trigger program, the

statement that caused the trigger program to execute and any subsequent trigger

programs that would of been executed are abandoned. No database changes are rolled

back. If the statement that caused the trigger program to execute is itself part of a

trigger program, then that trigger program resumes execution at the beginning of the

next step.

Triggers are removed using the DROP TRIGGER (p. 216) statement.

© 2015, QNX Software Systems Limited 213

Statements

CREATE VIEW

Create a view

Synopsis:

CREATE [TEMP | TEMPORARY] VIEW [IF NOT EXISTS] [database-name.]

view-name AS select-statement

Description:

The CREATE VIEW command assigns a name to a prepackaged SELECT (p. 228)

statement. Once the view is created, it can be used in the FROM clause of another

SELECT in place of a table name.

The TEMP or TEMPORARY keyword means the view that is created is visible only to

the process that opened the database and is automatically deleted when the database

is closed.

If a database-name is specified, then the view is created in the named database. It

is an error to specify both a database-name and the TEMP keyword, unless the

database-name is temp. If no database name is specified, and the TEMP keyword is

not present, the table is created in the main database.

You cannot COPY, DELETE, INSERT, or UPDATE a view. Views are read-only in QDB.

However, in many cases you can use a TRIGGER (p. 211) on the view to accomplish

the same thing. Views are removed with the DROP VIEW (p. 217) command.

DELETE

Remove records from a table

Synopsis:

DELETE FROM [database-name .] table-name [WHERE expr]

Description:

The DELETE command is used to remove records from a table. The command is

followed by the name of the table from which records are to be removed.

Without a WHERE clause, all rows of the table are removed. If a WHERE clause is

supplied, only those rows that match the expression are removed.

214 © 2015, QNX Software Systems Limited

QDB SQL Reference

DETACH DATABASE

Detach from a database

Synopsis:

DETACH [DATABASE] database-name

Description:

This statement detaches an additional database connection previously attached using

the ATTACH DATABASE (p. 206) statement. It is possible to have the same database

file attached multiple times using different names, and detaching one connection to

a file will leave the others intact.

This statement will fail if QDB is in the middle of a transaction.

DROP INDEX

Remove an index

Synopsis:

DROP INDEX [IF EXISTS] [database-name .] index-name

Description:

The DROP INDEX statement removes an index added with the CREATE INDEX (p.

207) statement. The index named is completely removed from the disk. The only way

to recover the index is to reenter the appropriate CREATE INDEX command.

The DROP INDEX statement doesn't reduce the size of the database file in the default

mode. Empty space in the database is retained for later INSERTs. To remove free

space in the database, use the VACUUM (p. 232) command. If the auto-vacuum mode

is enabled for a database, then space will be freed automatically by DROP INDEX.

The optional IF EXISTS clause suppresses the error that would normally result if

the index doesn't exist.

© 2015, QNX Software Systems Limited 215

Statements

DROP TABLE

Remove a table

Synopsis:

DROP TABLE [IF EXISTS] [database-name.] table-name

Description:

The DROP TABLE statement removes a table added with the CREATE TABLE (p. 208)

statement. The name specified is the table name. It is completely removed from the

database schema and the disk file. The table can not be recovered. All indexes

associated with the table are also deleted.

The DROP TABLE statement doesn't reduce the size of the database file in the default

mode. Empty space in the database is retained for later INSERTs. To remove free

space in the database, use the VACUUM (p. 232) command. If the auto-vacuum mode

is enabled for a database, then space will be freed automatically by DROP TABLE.

The optional IF EXISTS clause suppresses the error that would normally result if

the table doesn't exist.

DROP TRIGGER

Remove a trigger

Synopsis:

DROP TRIGGER [IF EXISTS] [database-name .] trigger-name

Description:

The DROP TRIGGER statement removes a trigger created by the CREATE TRIGGER

(p. 211) statement. The trigger is deleted from the database schema.

Triggers are automatically dropped when the associated table is

dropped.

216 © 2015, QNX Software Systems Limited

QDB SQL Reference

DROP VIEW

Remove a view

Synopsis:

DROP VIEW [IF EXISTS] view-name

Description:

The DROP VIEW statement removes a view created by the CREATE VIEW (p. 214)

statement. The name specified is the view name. It is removed from the database

schema, but no actual data in the underlying base tables is modified.

EXPLAIN

Report VM instructions for a command

Synopsis:

EXPLAIN sql-statement

Description:

The EXPLAIN command modifier is a non-standard extension. The idea comes from

a similar command found in PostgreSQL, but the operation is completely different.

If the EXPLAIN keyword appears before any other QDB SQL command, then instead

of actually executing the command, the QDB library will report back the sequence of

virtual machine instructions it would have used to execute the command had the

EXPLAIN keyword not been present. This is useful for performance analysis.

For additional information about virtual machine instructions see the documentation

on QDB opcodes (p. 65) for the virtual machine.

© 2015, QNX Software Systems Limited 217

Statements

INSERT

Insert data into a table

Synopsis:

INSERT [OR conflict-algorithm] INTO [database-name .]
table-name [(column-list)] VALUES(value-list) |

INSERT [OR conflict-algorithm] INTO [database-name .]
table-name [(column-list)] select-statement

Description:

The INSERT statement comes in two basic forms. The first form (with the VALUES

keyword) creates a single new row in an existing table. If no column-list is specified,

then the number of values must be the same as the number of columns in the table.

If a column-list is specified, then the number of values must match the number of

specified columns. Columns of the table that do not appear in the column list are

filled with the default value, or with NULL if no default value is specified.

The second form of the INSERT statement takes its data from a SELECT statement.

The number of columns in the result of the SELECT must exactly match the number

of columns in the table if no column list is specified, or it must match the number of

columns named in the column list. A new entry is made in the table for every row of

the SELECT result. The SELECT may be simple or compound. If the SELECT statement

has an ORDER BY clause, the ORDER BY is ignored.

The optional conflict-clause allows the specification of an alternative constraint-conflict

resolution algorithm to use during this one command. See ON CONFLICT (p. 218) for

additional information. For compatibility with MySQL, the parser allows the use of the

single keyword REPLACE (p. 227) as an alias for INSERT OR REPLACE.

ON CONFLICT

Deal with a conflict

Synopsis:

ON CONFLICT { ROLLBACK | ABORT | FAIL | IGNORE | REPLACE }

218 © 2015, QNX Software Systems Limited

QDB SQL Reference

Description:

The ON CONFLICT clause is not a separate SQL command. It is a non-standard clause

that can appear in many other SQL commands. It is given its own section in this

document because it is not part of standard SQL and therefore might not be familiar.

The syntax for the ON CONFLICT clause is as shown above for the CREATE TABLE

command. For the INSERT and UPDATE commands, the keywords ON CONFLICT are

replaced by OR, to make the syntax seem more natural. For example, instead of INSERT

ON CONFLICT IGNORE we have INSERT OR IGNORE. The keywords change, but

the meaning of the clause is the same either way.

The ON CONFLICT clause specifies an algorithm used to resolve constraint conflicts:

ROLLBACK

When a constraint violation occurs, an immediate ROLLBACK occurs, thus

ending the current transaction, and the command aborts with a return code

of SQLITE_CONSTRAINT. If no transaction is active (other than the implied

transaction that is created on every command) then this algorithm works the

same as ABORT.

ABORT

When a constraint violation occurs, the command backs out any prior changes

it might have made and aborts with a return code of SQLITE_CONSTRAINT.

But no ROLLBACK is executed, so changes from prior commands within the

same transaction are preserved. This is the default behavior.

FAIL

When a constraint violation occurs, the command aborts with a return code

of SQLITE_CONSTRAINT. Any changes to the database that the command

made prior to encountering the constraint violation are preserved and are

not backed out. For example, if an UPDATE statement encountered a

constraint violation on the 100th row that it attempts to update, then the

first 99 row changes are preserved but changes to rows 100 and beyond

never occur.

IGNORE

When a constraint violation occurs, the one row that contains the constraint

violation is not inserted or changed. But the command continues executing

normally. Other rows before and after the row that contained the constraint

violation continue to be inserted or updated normally. No error is returned.

REPLACE

When a UNIQUE constraint violation occurs, the pre-existing rows that are

causing the constraint violation are removed prior to inserting or updating

© 2015, QNX Software Systems Limited 219

Statements

the current row. Thus, the insertion or update always occurs. The command

continues executing normally. No error is returned. If a NOT NULL constraint

violation occurs, the NULL value is replaced by the default value for that

column. If the column has no default value, then the ABORT algorithm is

used. If a CHECK constraint violation occurs, then the IGNORE algorithm is

used.

When this conflict resolution strategy deletes rows in order to satisfy a

constraint, it doesn't invoke delete triggers on those rows. This may change

in a future release.

The algorithm specified in the OR clause of a INSERT or UPDATE overrides any

algorithm specified in a CREATE TABLE. If no algorithm is specified anywhere, the

ABORT algorithm is used.

PRAGMA

Modify or query the library

Synopsis:

PRAGMA name [= value] | function(arg)

Description:

The PRAGMA command is a special command used to modify the operation of the QDB

process or to query the library for internal (non-table) data. The PRAGMA command is

issued using the same interface as other QDB commands (e.g., SELECT or INSERT),

but is different in the following important respects:

• Specific pragma statements may be removed and others added in future releases

of QDB. Use with caution!

• No error messages are generated if an unknown pragma is issued. Unknown pragmas

are simply ignored. This means if there is a typo in a pragma statement, the library

doesn't inform the user of the fact.

• Some pragmas take effect during the SQL compilation stage, not the execution

stage. This means if using the C-language sqlite3_prepare(), sqlite3_step(),

sqlite3_finalize() API (or similar in a wrapper interface), the pragma may be applied

to the library during the sqlite3_prepare() call.

• The pragma command is unlikely to be compatible with any other SQL engine.

The pragmas that take an integer value also accept symbolic names. The strings on,

true, and yes are equivalent to 1. The strings off, false, and no are equivalent to

0. These strings are case-insensitive, and do not require quotes. An unrecognized

220 © 2015, QNX Software Systems Limited

QDB SQL Reference

string will be treated as 1, and will not generate an error. When the value is returned,

it is as an integer.

The available pragmas fall into the following basic categories:

1. Pragmas used to modify the operation of the QDB process in some manner, or to

query for the current mode of operation:

• Auto-vacuum (p. 221)

• Cache Size (p. 222)

• Case Sensitivity (p. 222)

• Count Changes (p. 222)

• Default Cache Size (p. 223)

• Full Column Names (p. 223)

• Full Column Names (p. 223)

• Legacy File Format (p. 223)

• Page Size (p. 223)

• Short Column Names (p. 224)

• Synchronous (p. 224)

• Temp Store (p. 224)

2. Pragmas used to query the schema of the current database:

• Foreign Key List (p. 225)

• Index Info (p. 225)

• Index List (p. 225)

• Table Info (p. 226)

3. Pragmas used to query or modify the databases' two version values, the

schema-version and the user-version:

• Schema and User Version (p. 226)

4. Pragmas used to debug the library and verify that database files are not corrupted:

• Integrity Check (p. 226)

Auto-vacuum

PRAGMA auto_vacuum;

PRAGMA auto_vacuum = 0 | 1;

Query or set the auto-vacuum flag in the database.

Normally, when a transaction that deletes data from a database is committed, the

database file remains the same size. Unused database file pages are marked as such

© 2015, QNX Software Systems Limited 221

Statements

and reused later on, when data is inserted into the database. In this mode the VACUUM

(p. 232) command or qdb_vacuum() (p. 183) is used to reclaim unused space.

When the auto-vacuum flag is set, the database file shrinks when a transaction that

deletes data is committed (the VACUUM command is not useful in a database with the

auto-vacuum flag set). To support this functionality, the database stores extra

information internally, resulting in slightly larger database files than would otherwise

be possible.

It is possible to modify the value of the auto-vacuum flag only before any tables have

been created in the database. No error message is returned if an attempt to modify

the auto-vacuum flag is made after one or more tables have been created.

Auto-vacuum mode is off by default. Frequent vacuum operations can be costly on

storage media with slow write-access times (such as NOR flash memory); when

databases are stored on such media, you should consider using qdb_vacuum (p. 183)

(or the VACUUM (p. 232) SQL statement) rather than turning on auto-vacuum mode.

Cache size

PRAGMA cache_size;

PRAGMA cache_size = Number-of-pages;

Query or change the maximum number of database disk pages that QDB will hold in

memory at once. Each page uses about 1.5 KB of memory. The default cache size is

2000 pages. If you are doing UPDATEs or DELETEs that change many rows of a

database and you do not mind if QDB uses more memory, you can increase the cache

size for a possible speed improvement.

When you change the cache size using the cache_size pragma, the change endures

only for the current session. The cache size reverts to the default value when the

database is closed and reopened. Use the default_cache_size pragma to

permanently change the cache size.

Case sensitivity

PRAGMA case_sensitive_like;

PRAGMA case_sensitive_like = 0 | 1;

The default behavior of the LIKE operator is to ignore case for Latin1 characters.

Hence, by default 'a' LIKE 'A' is true. The case_sensitive_like pragma can

be turned on to change this behavior. When case_sensitive_like is enabled,

'a' LIKE 'A' is false, but 'a' LIKE 'a' is still true.

Count changes

PRAGMA count_changes;

PRAGMA count_changes = 0 | 1;

Query or change the count-changes flag. Normally, when the count-changes flag is

not set, INSERT, UPDATE, and DELETE statements return no data. When

count-changes is set, each of these commands returns a single row of data consisting

222 © 2015, QNX Software Systems Limited

QDB SQL Reference

of one integer value: the number of rows inserted, modified, or deleted by the

command. The returned change count doesn't include any insertions, modifications,

or deletions performed by triggers.

Default cache size

PRAGMA default_cache_size;

PRAGMA default_cache_size = Number-of-pages;

Query or change the maximum number of database disk pages that QDB will hold in

memory at once. Each page uses 1 KB on disk and about 1.5 KB in memory. This

pragma works like the cache_size pragma with the additional feature that it changes

the cache size persistently. With this pragma, you can set the cache size once and

that setting is retained and reused every time you reopen the database.

Full column names

PRAGMA full_column_names;

PRAGMA full_column_names = 0 | 1;

Query or change the full-column-names flag. This flag affects the way QDB names

columns of data returned by SELECT statements when the expression for the column

is a table-column name or the wildcard *. Normally, such result columns are named

table-name|alias column-name if the SELECT statement joins two or more tables

together, or simply column-name if the SELECT statement queries a single table.

When the full-column-names flag is set, such columns are always named

table-name|alias column-name regardless of whether or not a join is performed.

If both the short-column-names and full-column-names are set, then the behavior

associated with the full-column-names flag is exhibited.

Legacy file format

PRAGMA legacy_file_format;

PRAGMA legacy_file_format = ON | OFF

This pragma sets or queries the value of the legacy_file_format flag. When this flag is

on, new SQLite databases are created in a file format that is readable and writable by

all versions of SQLite going back to 3.0.0. When the flag is off, new databases are

created using the latest file format which might not be readable or writable by older

versions of SQLite.

This flag affects only newly created databases. It has no effect on databases that

already exist.

Page size

PRAGMA page_size;

PRAGMA page_size = bytes;

Query or set the page size of the database. The page size may be set only if the

database has not yet been created. The page size must be a power of two greater than

or equal to 512 and less than or equal to 8192.

© 2015, QNX Software Systems Limited 223

Statements

Short column names

PRAGMA short_column_names;

PRAGMA short_column_names = 0 | 1;

Query or change the short-column-names flag. This flag affects the way QDB names

columns of data returned by SELECT statements when the expression for the column

is a table-column name or the wildcard *. Normally, such result columns are named

table-name|alias column-name if the SELECT statement joins two or more tables

together, or simply column-name if the SELECT statement queries a single table.

When the short-column-names flag is set, such columns are always named

column-name regardless of whether or not a join is performed.

If both the short-column-names and full-column-names are set, then the behavior

associated with the full-column-names flag is exhibited.

Synchronous

PRAGMA synchronous;

PRAGMA synchronous = FULL; (2)

PRAGMA synchronous = NORMAL; (1)

PRAGMA synchronous = OFF; (0)

Query or change the setting of the synchronous flag. The first query form will return

the setting as an integer.

When synchronous is FULL (2), the QDB database engine will pause at critical moments

to make sure that data has actually been written to the disk surface before continuing.

This ensures that if the operating system crashes or if there is a power failure, the

database will be uncorrupted after rebooting. FULL synchronous is very safe, but it is

also slow.

When synchronous is NORMAL, the QDB database engine will still pause at the most

critical moments, but less often than in FULL mode. There is a very small (though

non-zero) chance that a power failure at just the wrong time could corrupt the database

in NORMAL mode. But in practice, you're more likely to suffer a catastrophic disk

failure or some other unrecoverable hardware fault.

With synchronous OFF (0), QDB continues without pausing as soon as it has handed

data off to the operating system. If the application running QDB crashes, the data will

be safe but the database might become corrupted if the operating system crashes or

the computer loses power before that data has been written to the disk surface.

However, some operations are as much as 50 or more times faster with synchronous

OFF.

The default seting is FULL.

Temp store

PRAGMA temp_store;

PRAGMA temp_store = DEFAULT; (0)

224 © 2015, QNX Software Systems Limited

QDB SQL Reference

PRAGMA temp_store = FILE; (1)

PRAGMA temp_store = MEMORY; (2)

Query or change the setting of the temp_store parameter. When temp_store is DEFAULT

(0), the compile-time C preprocessor macro TEMP_STORE is used to determine where

temporary tables and indexes are stored.

When temp_store is MEMORY (2), temporary tables and indexes are kept in memory.

When temp_store is FILE (1), temporary tables and indexes are stored in a file. The

temp_store_directory pragma can be used to specify the directory containing

this file. When the temp_store setting is changed, all existing temporary tables, indexes,

triggers, and views are immediately deleted.

It is possible for the library compile-time C preprocessor symbol TEMP_STORE to

override this pragma setting. The following table summarizes the interaction of the

TEMP_STORE preprocessor macro and the temp_store pragma. It shows the storage

used for TEMP tables and indexes:

StoragePRAGMA temp_storeTEMP_STORE

FileAny0

File01

File11

Memory21

Memory02

File12

Memory22

MemoryAny3

Foreign key list

PRAGMA foreign_key_list(table-name);

For each foreign key that references a column in the argument table, invoke the

callback function with information about that foreign key. The callback function will

be invoked once for each column in each foreign key.

Index info

PRAGMA index_info(index-name);

For each column that the named index references, invoke the callback function once

with information about that column, including the column name and the column

number.

Index list

PRAGMA index_list(table-name);

© 2015, QNX Software Systems Limited 225

Statements

For each index on the named table, invoke the callback function once with information

about that index. Arguments include the index name and a flag to indicate whether

or not the index must be unique.

Table info

PRAGMA table_info(table-name);

For each column in the named table, invoke the callback function once with information

about that column, including the column name, data type, whether or not the column

can be NULL, and the default value for the column.

Schema and user version

PRAGMA [database.]schema_version;

PRAGMA [database.]schema_version = integer ;

PRAGMA [database.]user_version;

PRAGMA [database.]user_version = integer ;

The pragmas schema_version and user_version are used to set or get the value

of the schema-version and user-version, respectively. Both the schema-version and

the user-version are 32-bit signed integers stored in the database header.

The schema-version is usually manipulated only internally by QDB. It is incremented

by QDB whenever the database schema is modified (by creating or dropping a table

or index). The schema version is used by QDB each time a query is executed to ensure

that the internal cache of the schema used when compiling the SQL query matches

the schema of the database against which the compiled query is actually executed.

Subverting this version check mechanism by using PRAGMA

schema_version to modify the schema version is potentially dangerous

and may lead to program crashes or database corruption. Use with caution!

The user-version is not used internally by QDB. It may be used by applications for any

purpose.

Integrity check

PRAGMA integrity_check;

PRAGMA integrity_check(integer)

The command does an integrity check of the entire database. It looks for out-of-order

records, missing pages, malformed records, and corrupt indexes. If any problems are

found, then strings are returned (as multiple rows with a single column per row) that

describe the problems. At most integer errors will be reported before the analysis quits.

The default value for integer is 100. If no errors are found, a single row with the value

ok is returned.

226 © 2015, QNX Software Systems Limited

QDB SQL Reference

REINDEX

Recreate indexes from scratch

Synopsis:

REINDEX collation name |
 ([database-name .] table | index-name)

Description:

The REINDEX command is used to delete and recreate indexes from scratch. This is

useful when the definition of a collation sequence has changed.

The scope of the affected database indexes depends on the type of database object

given to the command, as summarized in the following behavioral rules:

• If you specify a collation_name, all the indexes in any attached databases that use

the specified collation sequence are recreated.

• If you specify a [database-name .] table-name combination, all indexes associated

with the table are rebuilt.

• If you specify a [database-name .] index-name combination, only this specified

index is deleted and recreated.

• If don't specify a database-name but there exists both a collation sequence and

either a table or index with the specified name, the indexes associated with the

collation sequence are only reconstructed. You can avoid this ambiguity by always

specifying a database-name when reindexing a table or index.

REPLACE

Alias for INSERT OR REPLACE

Synopsis:

REPLACE INTO [database-name .] table-name [(column-list)]
 VALUES (value-list) |
REPLACE INTO [database-name .] table-name [(column-list)]
 select-statement

Description:

The REPLACE command is an alias for the INSERT OR REPLACE variant of the

INSERT (p. 218) command. This alias is provided for compatibility with MySQL.

© 2015, QNX Software Systems Limited 227

Statements

SELECT

Query a database

Synopsis:

SELECT [ALL | DISTINCT] result [FROM table-list]
[WHERE expr]
[GROUP BY expr-list]
[HAVING expr]
[compound-op select]*
[ORDER BY sort-expr-list]
[LIMIT integer [(OFFSET | ,) integer]]

result =
result-column [, result-column]*

result-column =
* | table-name . * | expr [[AS] string]

table-list =
table [join-op table join-args]*

table =
table-name [AS alias] |
(select) [AS alias]

join-op =
, | [NATURAL] [LEFT | RIGHT | FULL]
 [OUTER | INNER | CROSS] JOIN

join-args =
[ON expr] [USING (id-list)]

sort-expr-list =
expr [sort-order] [, expr [sort-order]]*

sort-order =
[COLLATE collation-name] [ASC | DESC]

compound_op =
UNION | UNION ALL | INTERSECT | EXCEPT

Description:

The SELECT statement is used to query the database. The result of a SELECT is zero

or more rows of data where each row has a fixed number of columns. The number of

columns in the result is specified by the expression list in between the SELECT and

FROM keywords. Any arbitrary expression can be used as a result. If a result expression

is *, then all columns of all tables are substituted for that one expression. If the

expression is the name of a table followed by .*, then the result is all columns in that

one table.

228 © 2015, QNX Software Systems Limited

QDB SQL Reference

DISTINCT keyword

The DISTINCT keyword causes a subset of result rows to be returned, in which each

result row is different. NULL values are not treated as distinct from each other. The

default behavior is that all result rows be returned, which can be made explicit with

the keyword ALL.

The query is executed against one or more tables specified after the FROM keyword.

If multiple tables names are separated by commas, then the query is against the cross

join of the various tables. The full SQL-92 join syntax can also be used to specify

joins. A sub-query in parentheses may be substituted for any table name in the FROM

clause. The entire FROM clause may be omitted, in which case the result is a single

row consisting of the values of the expression list.

WHERE clause

The WHERE clause can be used to limit the number of rows over which the query

operates.

GROUP BY clauses

The GROUP BY clause causes one or more rows of the result to be combined into a

single row of output. This is especially useful when the result contains aggregate

functions. The expressions in the GROUP BY clause do not have to be expressions

that appear in the result. The HAVING clause is similar to WHERE except that HAVING

applies after grouping has occurred. The HAVING expression may refer to values, even

aggregate functions, that are not in the result.

ORDER BY clauses

The ORDER BY clause causes the output rows to be sorted. The argument to ORDER

BY is a list of expressions that are used as the key for the sort. The expressions do not

have to be part of the result for a simple SELECT, but in a compound SELECT each

sorting expression must exactly match one of the result columns. Each sorting

expression may be optionally followed by a COLLATE keyword and the name of a

collating function used for ordering text and/or keywords ASC or DESC to specify the

sort order.

LIMIT clauses

The LIMIT clause places an upper bound on the number of rows returned in the result.

A negative LIMIT indicates no upper bound. The optional OFFSET following LIMIT

specifies how many rows to skip at the beginning of the result set. In a compound

query, the LIMIT clause may appear only on the final SELECT statement. The limit

is applied to the entire query, not to the individual SELECT statement to which it is

attached. Note that if the OFFSET keyword is used in the LIMIT clause, then the

limit is the first number and the offset is the second number. If a comma is used

instead of the OFFSET keyword, then the offset is the first number and the limit is

© 2015, QNX Software Systems Limited 229

Statements

the second number. This seeming contradiction is intentional because it maximizes

compatibility with legacy SQL database systems.

Compound SELECT statements

A compound SELECT is formed from two or more simple SELECTs connected by one

of the operators UNION, UNION ALL, INTERSECT, or EXCEPT. In a compound

SELECT, all the constituent SELECTs must specify the same number of result columns.

There may be only a single ORDER BY clause at the end of the compound SELECT.

The UNION and UNION ALL operators combine the results of the SELECTs to the

right and left into a single big table. The difference is that in UNION all result rows

are distinct, whereas in UNION ALL there may be duplicates. The INTERSECT operator

takes the intersection of the results of the left and right SELECTs. EXCEPT takes the

result of left SELECT after removing the results of the right SELECT. When three or

more SELECTs are connected into a compound, they group from left to right.

TRANSACTION

Manually start, end, commit, or rollback a transaction

Synopsis:

BEGIN [DEFERRED | IMMEDIATE | EXCLUSIVE] [TRANSACTION [name]]

END [TRANSACTION [name]]

COMMIT [TRANSACTION [name]]

ROLLBACK [TRANSACTION [name]]

Description:

QDB supports transactions with rollback and atomic commit. The optional transaction

name is ignored. QDB currently doesn't allow nested transactions.

No changes can be made to the database except within a transaction. Any command

that changes the database (basically, any SQL command other than SELECT) will

automatically start a transaction if one is not already in effect. Automatically started

transactions are committed at the conclusion of the command.

Transactions can be started manually using the BEGIN command. Such transactions

usually persist until the next COMMIT or ROLLBACK command. But a transaction will

also ROLLBACK if the database is closed or if an error occurs and the ROLLBACK

conflict-resolution algorithm is specified. See the documentation on the ON CONFLICT

(p. 218) clause for additional information about the ROLLBACK conflict-resolution

algorithm.

In QDB, transactions can be deferred, immediate, or exclusive. Deferred means that

no locks are acquired on the database until the database is first accessed. Thus with

230 © 2015, QNX Software Systems Limited

QDB SQL Reference

a deferred transaction, the BEGIN statement itself doesn'thing. Locks are not acquired

until the first read or write operation. The first read operation against a database

creates a SHARED lock and the first write operation creates a RESERVED lock. Because

the acquisition of locks is deferred until they are needed, it is possible that another

thread or process could create a separate transaction and write to the database after

the BEGIN on the current thread has executed. If the transaction is immediate, then

RESERVED locks are acquired on all databases as soon as the BEGIN command is

executed, without waiting for the database to be used.

After a BEGIN IMMEDIATE, you are guaranteed that no other thread or process will

be able to write to the database or do a BEGIN IMMEDIATE or BEGIN EXCLUSIVE.

Other processes can continue to read from the database, however. An exclusive

transaction causes EXCLUSIVE locks to be acquired on all databases. After a BEGIN

EXCLUSIVE, you are guaranteed that no other thread or process will be able to read

or write the database until the transaction is complete.

Locks

This is a description of the meaning of SHARED, RESERVED, and EXCLUSIVE locks:

SHARED

The database may be read but not written. Any number of processes can

hold SHARED locks at the same time, hence there can be many simultaneous

readers. But no other thread or process is allowed to write to the database

file while one or more SHARED locks are active.

RESERVED

A RESERVED lock means that the process is planning on writing to the

database file at some point in the future but that it is currently just reading

from the file. Only a single RESERVED lock may be active at one time, though

multiple SHARED locks can coexist with a single RESERVED lock.

EXCLUSIVE

An EXCLUSIVE lock is needed in order to write to the database file. Only

one EXCLUSIVE lock is allowed on the file and no other locks of any kind

are allowed to coexist with an EXCLUSIVE lock. In order to maximize

concurrency, QDB works to minimize the amount of time that EXCLUSIVE

locks are held.

The default behavior for QDB is a deferred transaction.

The COMMIT command doesn't actually perform a commit until all pending SQL

commands finish. Thus if two or more SELECT statements are in the middle of

processing and a COMMIT is executed, the commit will not actually occur until all

SELECT statements finish.

© 2015, QNX Software Systems Limited 231

Statements

Returns:

An attempt to execute COMMIT might result in an SQLITE_BUSY return code. This

indicates that another thread or process has a read lock on the database that prevented

the database from being updated. When COMMIT fails in this way, the transaction

remains active and the COMMIT can be retried later after the reader has had a chance

to clear.

UPDATE

Change the value of columns

Synopsis:

UPDATE [OR conflict-algorithm] [database-name.] table-name
SET column-name = expr [, column-name = expr]*
[WHERE expr]

Description:

The UPDATE statement is used to change the value of columns in selected rows of a

table. Each assignment in an UPDATE specifies a column name to the left of the

equals sign and an arbitrary expression to the right. The expressions may use the

values of other columns. All expressions are evaluated before any assignments are

made. A WHERE clause can be used to restrict which rows are updated.

The optional conflict-clause allows the specification of an alternative constraint conflict

resolution algorithm to use during this one command. See ON CONFLICT (p. 218) for

additional information.

VACUUM

Clean up a table or index

Synopsis:

VACUUM [index-or-table-name]

Description:

The VACUUM command is a QDB extension modeled after a similar command found

in PostgreSQL. If VACUUM is invoked with the name of a table or index, then it is

232 © 2015, QNX Software Systems Limited

QDB SQL Reference

supposed to clean up the named table or index. The index or table name argument is

ignored.

When an object (table, index, or trigger) is dropped from the database, it leaves behind

empty space. This makes the database file larger than it needs to be, but can speed

up insertions. In time, insertions and deletions can leave the database file structure

fragmented, which slows down disk access to the database contents.

The VACUUM command cleans the main database by copying its contents to a temporary

database file and reloading the original database file from the copy. This eliminates

free pages, aligns table data to be contiguous, and otherwise cleans up the database

file structure. It is not possible to perform the same process on an attached database

file.

This command will fail if there is an active transaction. This command has no effect

on an in-memory database.

An alternative to using the VACUUM command is the auto-vacuum mode (p. 221). You

can set the auto-vacuum mode using the PRAGMA SQL extension:

qdb_statement(&db, "PRAGMA auto_vacuum = 1;"); // on

qdb_statement(&db, "PRAGMA auto_vacuum = 0;"); // off

© 2015, QNX Software Systems Limited 233

Statements

Chapter 10
fileset Reference

Copy a file set

Synopsis:

fileset [-6] [-b backupdir] [-c fname] [-m] [-P perms] [-p pattern]

 [-t savetime] [-v] [-x] [load | save | test] prmdir tmpdir

Options:

-6

Limit DMA so it doesn't cross a 64K boundary.

-b backupdir

(load command)

Use this directory instead of prmdir as a backup if the check file is missing

or bad.

-c fname

Create a check file called fname; the default name is _FILESET_.

-m

Create any necessary directories.

-P perms

Assign access permissions to backup files. For more information, see “Access

permissions” in the QNX Neutrino C Library Reference.

-p pattern

Define a set of files to copy based on a filename pattern. You can specify

multiple file sets by using up to 16 -p options.

By default, only the "*" (all files) pattern is defined. When you define a

pattern for a file set, the default pattern is overridden.

-t savetime

(save command)

Use the provided time value for the access and modification times.

© 2015, QNX Software Systems Limited 235

../../com.qnx.doc.neutrino.lib_ref/topic/s/stat.html#stat__AccessPermissions
../../com.qnx.doc.neutrino.lib_ref/topic/s/stat.html#stat__AccessPermissions

-v

Increase output verbosity. Messages are written to stdout. This option is

cumulative, allowing you to specify up to three -v options for maximum

verbosity.

This option is handy when you're trying to understand the operation of QDB,

but when many -v arguments are used, the logging becomes quite significant

and can change timing noticeably. The verbosity setting is good for systems

under development but should probably not be used in production systems

or when performance testing.

-x

Don't copy files that haven't changed. By default, all files are copied.

load

Load the set of files listed in the check file into the temporary directory.

QDB issues the load command at startup, causing fileset to look for a

check file in the path defined by prmdir. On success, each file listed in the

check file is copied from prmdir to tmpdir and fileset returns an exit

status of 0 (EOK).

Any of following conditions cause fileset to exit with an error:

• The check file doesn't exist.

• The CRC (checksum) for the check file is wrong.

• A file has a size or modification time that doesn't match the information

in the check file.

• A file listed in the check file is missing from the database.

• An error occurs during a file copy.

When it encounters an erroneous condition, fileset sets errno and removes

the links to any files it copied before the error occurred.

save

Save the files during shutdown or at any other time as needed. When given

the save command, fileset looks for a valid check file in the path defined

by prmdir, then performs one of these actions based on the check file status:

236 © 2015, QNX Software Systems Limited

fileset Reference

Missing or invalid check file

If the check file doesn't exist or the CRC (checksum) for its data

is wrong, fileset creates a new check file, based on the patterns

defined with -p.

Valid check file

If the check file exists and has a valid CRC (checksum), fileset:

1. Loads the check file (which has the list of files to copy) into

memory.

2. Deletes any existing check file in the permanent directory

(prmdir), because it's about to modify files in that directory.

3. Copies some or all files listed in the check file to the permanent

directory, depending on the -x setting. When this last option

is specified, fileset compares the size and modification

time for each listed file with the information of the actual file

in the temporary directory (tmpdir). If the values match,

fileset assumes that the file is unchanged and doesn't copy

it. If they don't match, fileset copies the file to the

permanent directory. When -x isn't specified, all files are

copied, whether they've changed or not.

4. Creates a new check file in the permanent directory to mark

the directory as valid.

test

Test the information in the check file against the contents of the permanent

directory. When given this command, fileset returns an exit status as

follows:

0

The size and modification time for each file listed in the check

file matches the information of the actual file in prmdir.

<>0

There's a mismatch in the size or modification time for a file listed

in the check file, or there's a problem with the prmdir directory.

Description:

The fileset utility is used by QDB to copy files during database backups when the

diocopy compression option (p. 20) is set in the database's configuration object.

© 2015, QNX Software Systems Limited 237

QDB launches fileset when you call qdb_backup() (p. 108) and when the database

is restored on startup.

The fileset binary must be in a path specified in QDB's PATH environment

variable.

While fileset can copy a set of files between any directories on any filesystem (disk,

flash, or tmpfs), the utility optimizes the copy path between disk and tmpfs by using

DMA transfer to move files between these filesystem types. It requires about one-tenth

of the CPU used to move data by a traditional read/write transfer from a program, and

it can achieve better platter/interface transfer rates.

In this release, fileset can copy files to multiple backup directories specified in

the BackupDir:: (p. 19) parameter in the database configuration object.

Limitations

The efficiency of fileset imposes some limitations. This utility:

• Doesn't read or copy subdirectory contents.

• Doesn't create a source directory.

• Creates a destination directory only if you use -m.

• Either completely succeeds or completely fails. There are no partial results. If it

encounters an error while copying any file, it unlinks from the destination directory

any files already copied and then exits with an error.

Examples

The following is a typical sequence of events:

1. At startup:

fileset load /fs/hd0/myMediaDB /tmpfs/myMediaDB

If this sequence fails, the system must take action; typically, this entails creating

a new set of database files.

2. At shutdown:

fileset -p "*.dat" save /fs/hd0/myTunes /tmpfs/myTunes

If there's no check file (because it's the command is being run for the first time

or a serious error occurred), the system creates a check file, using the -p option

to define the file set.

238 © 2015, QNX Software Systems Limited

fileset Reference

Index

ROWID 188

A

ABORT 218
abs() 195
affinity 55

column 55
aggregate 95, 197

functions 95, 197
ALTER TABLE 204
analyze 205

database 205
ANALYZE 205
asynchronous mode 46
ATTACH DATABASE 206
attached database 205

analyze 205
auto 221

vacuum 221
auto-vacuum mode 233
AUTOINCREMENT 188

keyword 188
avg() 197

B

backing up 44
databases 44

backup 108, 114
database 108, 114

canceling 114
busy 38

timeout 38
busy timeout 165

setting 165

C

C++ API 102
cache 35, 222, 223

default 223
size 223

shared 35
size 222, 223

default 223
case sesitivity 222
CAST 194
cell 49, 116

data 49, 116
getting 116

changes 222
count 222

check 226
integrity 226

CIFS 22
filesystems 22

classes 54
storage 54

clause 229
GROUP BY 229
LIMIT 229
ORDER BY 229
WHERE 229

client schema file 23
clients 34

sharing connections 34
coalesce() 195
collation 95, 122

functions 95
user-defined 122

collation routines 98
user 98

collation sequences 62
assigning from SQL 62
user-defined 62

column 55, 124, 126, 128, 194, 223, 224
affinity 55
determining affinity 55
full names 223
name 124, 126, 128
names 194
short names 224

column affinity 53
command syntax 27, 41

QDB 27
QDB client 41

comments 190
SQL 190

comparison 57
expressions 57

compound 230
SELECT statements 230

compound SELECT statements 60
grouping 60
sorting 60

config subdirectory 15
configuration objects location 15
configuring QDB databases 27
connecting to a database 46

example 46
connections 34

sharing between clients 34
corrupt database 39

recovering from 39
count changes 222
count() 197
CREATE INDEX 207
CREATE TABLE 208
CREATE TRIGGER 211
CREATE VIEW 214

© 2015, QNX Software Systems Limited 239

QDB Developer's Guide

D

data 49, 112, 116
cell 49, 116

getting 116
maximum that can be sent with qdb_stmt_exec() 112

data schema file 23
data source 133

extracting 133
database 22, 36, 38, 39, 44, 131, 135, 205, 206, 215

analyse 205
attach 206
backing up 44
busy timeout 38
connecting 131
detach from 215
disconnecting 135
recovering from corrupt 39
recovery 36
recovery script 39
restoring up 44
storage file 22

database configuration 17, 21
objects 17
parameters 17
sample object 21

database size 137
getting 137

database status 15
datatypes 54
DELETE 214
description 30, 42

QDB client 42
QDB command line 30

DETACH DATABASE 215
disconnecting 50

server (example) 50
DISTINCT 229

keyword 229
DROP INDEX 215
DROP TABLE 216
DROP TRIGGER 216
DROP VIEW 217

E

error code 139
getting 139

error message 141
getting 141

example 49
using a result 49

examples 45, 46, 47, 48, 50, 51
connecting to the database 46, 51
disconnecting the server 50
executing a statement 47
getting result of a query 48
inserting 51
program 51
QDB 45

EXCEPT 230
operator 230

EXCLUSIVE 231
lock 231

executing a statement 47
example 47

executing SQL statements on QDB databases 41
EXPLAIN 217
expressions 57, 191, 217

comparison 57
non-standard 217
SQL 191

F

FAIL 218
features 11

QDB 11
file 223

legacy format 223
fileset utility 235
filesystem 32

temporary storage 32
filesystems 22

CIFS 22
NFS 22
supported 22

flag 224
synchronous 224

foreign 225
key list 225

format 223
legacy file 223

full 223
column names 223

functions 95, 195, 197
aggregate 95, 197
collation 95
default 195
scalar 95
writing user-defined 95

G

generated 68
programs (viewing) 68

GLOB operator 193
glob() 195
GROUP BY 229

clause 229

H

hex() 195

I

ifnull() 195
IGNORE 218
index 207, 215

create 207
drop 215

index info 225

240 © 2015, QNX Software Systems Limited

Index

index list 226
indexes 227

recreate 227
indices 232

cleaning up 232
INSERT 218
INTEGER PRIMARY KEY AUTOINCREMENT 188
integrity 226

check 226
INTERSECT 230

operator 230

K

key list 225
foreign 225

keyword 229
DISTINCT 229

keywords 199
QDB 199

L

last_insert_rowid() 195
legacy format 223

file 223
length() 195
LIKE operator 193
like() 195
LIMIT 229

clause 229
list 225

foreign key 225
literal values 192
loading databases 13
lock 231

EXCLUSIVE 231
RESERVED 231
SHARED 231

lower() 195
ltrim() 195

M

maintaining QDB databases 27
max() 195, 197
min 197
min() 195
modes 233

auto-vacuum 233

N

names 194, 223, 224
column 194, 223, 224

NFS 22
filesystems 22

non-attached database 205
analyze 205

non-standard 217
expressions 217

nullif() 195

O

objects 203
system 203

OID 188
ON CONFLICT 218
opcodes 65

QDB virtual machine 65
operator 193

GLOB 193
LIKE 193

operators 59, 230
EXCEPT 230
INTERSECT 230
UNION 230
UNION ALL 230

options 27, 41, 143, 167
getting 143
QDB client 41
QDB command line 27
setting 167

ORDER BY 229
clause 229

P

page 223
size 223

parameters 156, 192
getting 156
SQL 192

PPS configuration path 15
overriding 15

PRAGMA 220
precompiled statements 178

freeing 178
prepared statements 173, 176, 180

declared types 173
executing 176
initializing 180

programs 68
viewing QDB-generated 68

Q

QDB 45
examples 45

QDB client utility 41
QDB command line 27
QDB datatypes 53
QDB_ATTACH_ALWAYS 108
QDB_ATTACH_DEFAULT 108
QDB_ATTACH_NEVER 108
qdb_backup() 108
qdb_binding_t 110
qdb_bkcancel() 114
qdb_cell_length() 49, 118
qdb_cell_type() 49, 120
qdb_cell() 49, 116

© 2015, QNX Software Systems Limited 241

QDB Developer's Guide

qdb_collation structure 98
qdb_collation() 122
qdb_column_index() 49, 126
qdb_column_name() 49, 124, 128
qdb_columns() 49
QDB_CONN_DFLT_SHARE 131
QDB_CONN_NONBLOCKING 131
QDB_CONN_STMT_ASYNC 131
qdb_connect() 131
qdb_data_source() 133
qdb_disconnect() 135
QDB_FORMAT_COLUMN 158
QDB_FORMAT_HTML 158
QDB_FORMAT_SIMPLE 158
qdb_freeresult() 136
qdb_getdbsize() 137
qdb_geterrcode() 139
qdb_geterrmsg() 141
qdb_getoption() 143
qdb_getresult() 145
qdb_gettransstate() 147
qdb_interrupt() 149
qdb_last_insert_rowid() 151
qdb_mprintf() 153
QDB_OPTION_COLUMN_DECLTYPES 168
QDB_OPTION_COLUMN_NAMES 167
QDB_OPTION_LAST_INSERT_ROWID 151, 167
QDB_OPTION_ROW_CHANGES 162, 167
qdb_parameters() 156
qdb_printmsg() 49, 158
qdb_query() 160
qdb_result_t 130, 136, 164
qdb_rowchanges() 162
qdb_rows() 49
qdb_setbusytimeout() 165
qdb_setoption() 167
qdb_snprintf() 169
qdb_statement() 171
qdb_stmt_decltypes() 173
qdb_stmt_exec() 112, 176

maximum data 112
qdb_stmt_free() 178
qdb_stmt_init() 180
QDB_TIMEOUT_BLOCK 165
QDB_TIMEOUT_NONBLOCK 165
qdb_vacuum() 183
qdb_vmprintf() 185
query 48, 136, 149, 160

convenience function 160
example of how to get result 48
freeing result 136
getting result 48
interrupting 149

quote() 195

R

random() 195
randomblob() 195
raw 22

storage file 22

records 214
delete from tables 214

recovery 36
database 36

recreate 227
indexes 227

REINDEX 227
REPLACE 218, 227
replace() 195
RESERVED 231

lock 231
restoring up 44

databases 44
result (using) 49

example 49
results 118, 120, 130, 158, 164

columns in 130
datatype 120
length 118
printing 158
rows in 164

ROLLBACK 218
round() 195
row ID 151, 188

last 151
ROWID 188
rows 162

affected by statement 162
rtrim() 195

S

scalar 95
functions 95

schema 226
version 226

schema file 23
creation 23

SELECT 145, 194, 228, 230
column 194
compound statements 230
query result 145
SQL statement 228

sequences 62
collation 62

server 50
example of how to disconnect 50

setup function for dynamic sort order 99
shared 35

cache 35
SHARED 231

lock 231
sharing 34

connections between clients 34
short 224

column names 224
size 223

page 223
soundex() 195
SQL 141, 158, 190, 191, 227

comments 190
errors 141

242 © 2015, QNX Software Systems Limited

Index

SQL (continued)
expressions 191
REPLACE 227
results, printing 158

SQL statements 171
executing 171

SQLite C 102
SQLite file 22
sqlite_version() 195
sqlite3_result_* 102
sqlite3_user_data 105
sqlite3_value_* 103
sqlite3_value_type() 104
starting QDB 12
starting the QDB server 12
statement (executing) 47

example 47
statements 194

SELECT 194
status subdirectory 15
storage 54

classes 54
storage classes 53
store 225

temp 225
strings 153, 169, 185

formatting 153, 169, 185
substr() 195
sum() 197
synchronous 224

flag 224
system 203

objects 203

T

table 208, 216
create 208
drop 216

table info 226
tables 232

cleaning up 232
Technical support 10
temp 225

store 225
temp_store parameter 225
temporary storage 32

filesystem 32
timeout 38, 165

busy 38
setting for busy 165

total() 197
TRANSACTION 230

transaction state 147
getting 147

trigger 211, 216
create 211
drop 216

trim() 195
type affinity 53
typeof() 195
Typographical conventions 8

U

UNION 230
operator 230

UNION ALL 230
operator 230

unloading databases 14
UPDATE 232
upper(X)() 195
user 98, 226

collation routines 98
version 226

user-defined functions 95
writing 95

V

vacuum 221
auto 221

VACUUM 232
vacuuming 183
values 192

literal 192
variable-binding macros 111, 112

defining a single data-binding structure 111
defining an entry in an array of data-binding structures
112

version 226
schema 226
user 226

view 214, 217
create 214
drop 217

viewing 68
QDB-generated 68

virutal machine 65
opcodes 65

W

WHERE 229
clause 229

© 2015, QNX Software Systems Limited 243

QDB Developer's Guide

244 © 2015, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Getting Started with QDB
	Starting the QDB server
	Loading QDB databases
	Unloading QDB databases
	PPS configuration path
	Database configuration objects
	Database storage
	Schema files
	Summary of database files

	QDB Command Line
	Temporary storage filesystem
	Database integrity testing
	Sharing connections between clients
	Shared caching
	Advantages of shared caching

	Database recovery
	Busy timeout
	Handling corrupt databases

	QDB Client
	Backing up and restoring databases

	QDB Example
	Connecting to a database
	Using asynchronous mode

	Executing a statement
	Getting the result of a query
	Using a result
	Disconnecting from the server
	Sample program

	Datatypes in QDB
	Storage classes
	Column affinity
	Determination of column affinity
	Column affinity example

	Comparison expressions
	Comparison example

	Operators
	Sorting, grouping and compound SELECT statements
	Other affinity modes
	User-defined collation sequences
	Assigning collation sequences from SQL
	Collation sequences example

	QDB Virtual Machine Opcodes
	Instruction format and execution
	Virtual machine features
	Viewing programs generated by QDB
	The opcodes

	Writing User-Defined Functions
	User scalar/aggregate functions
	User collation routines
	Collation algorithm example
	SQLite C/C++ API
	sqlite3_result_*
	sqlite3_value_*
	sqlite3_user_data

	QDB API Reference
	qdb_backup()
	qdb_binding_t
	qdb_bkcancel()
	qdb_cell()
	qdb_cell_length()
	qdb_cell_type()
	qdb_collation()
	qdb_column_decltype()
	qdb_column_index()
	qdb_column_name()
	qdb_columns()
	qdb_connect()
	qdb_data_source()
	qdb_disconnect()
	qdb_freeresult()
	qdb_getdbsize()
	qdb_geterrcode()
	qdb_geterrmsg()
	qdb_getoption()
	qdb_getresult()
	qdb_gettransstate()
	qdb_interrupt()
	qdb_last_insert_rowid()
	qdb_mprintf()
	qdb_parameters()
	qdb_printmsg()
	qdb_query()
	qdb_rowchanges()
	qdb_rows()
	qdb_setbusytimeout()
	qdb_setoption()
	qdb_snprintf()
	qdb_statement()
	qdb_stmt_decltypes()
	qdb_stmt_exec()
	qdb_stmt_free()
	qdb_stmt_init()
	qdb_vacuum()
	qdb_vmprintf()

	QDB SQL Reference
	Row ID and Autoincrement
	Comments
	Expressions
	Keywords
	Statements
	ALTER TABLE
	ANALYZE
	ATTACH DATABASE
	CREATE INDEX
	CREATE TABLE
	CREATE TRIGGER
	CREATE VIEW
	DELETE
	DETACH DATABASE
	DROP INDEX
	DROP TABLE
	DROP TRIGGER
	DROP VIEW
	EXPLAIN
	INSERT
	ON CONFLICT
	PRAGMA
	REINDEX
	REPLACE
	SELECT
	TRANSACTION
	UPDATE
	VACUUM

	fileset Reference
	Index

