
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

QNX® Neutrino® OS
Audio Developer's Guide

©2000–2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, Foundry27 are trademarks of
BlackBerry Limited that are registered and/or used in certain jurisdictions, and
used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, May 1, 2014

Table of Contents

About This Guide ...9
Typographical conventions ...11

Technical support ...13

Chapter 1: Audio Architecture ...15

QNX Sound Architecture ..16

Cards and devices ...17

Control device ..18

Mixer devices ...19

Pulse Code Modulation (PCM) devices ..20

Data formats ...20

PCM state machine ...21

Software PCM mixing ...23

PCM plugin converters ...23

Chapter 2: Playing and Capturing Audio Data ..25

Handling PCM devices ..26

Opening your PCM device ...26

Configuring the PCM device ...27

Controlling voice conversion ...28

Preparing the PCM subchannel ...30

Closing the PCM subchannel ..30

Playing audio data ..31

Playback states ...31

Sending data to the PCM subchannel ..32

If the PCM subchannel stops during playback ..33

Stopping the playback ...34

Synchronizing with the PCM subchannel ...34

Capturing audio data ...35

Selecting what to capture ...35

Capture states ...35

Receiving data from the PCM subchannel ..37

If the PCM subchannel stops during capture ..38

Stopping the capture ...38

Synchronizing with the PCM subchannel ...38

Chapter 3: Mixer Architecture ...41

Opening the mixer device ..44

Controlling a mixer group ...45

The best mixer group with respect to your PCM subchannel ..46

QNX® Neutrino® OS

Finding all mixer groups ..47

Mixer event notification ...48

Closing the mixer device ..49

Chapter 4: Optimizing Audio ...51

Chapter 5: Audio Library ...53

snd_card_get_longname() ..54

snd_card_get_name() ..56

snd_card_name() ..58

snd_cards() ..60

snd_cards_list() ..61

snd_ctl_callbacks_t ...63

snd_ctl_close() ...65

snd_ctl_file_descriptor() ..67

snd_ctl_hw_info() ...69

snd_ctl_hw_info_t ...71

snd_ctl_mixer_switch_list() ..73

snd_ctl_mixer_switch_read() ..75

snd_ctl_mixer_switch_write() ...77

snd_ctl_open() ...79

snd_ctl_pcm_channel_info() ..81

snd_ctl_pcm_info() ...83

snd_ctl_read() ..85

snd_mixer_callbacks_t ..87

snd_mixer_close() ...90

snd_mixer_eid_t ...92

snd_mixer_element_read() ...93

snd_mixer_element_t ..95

snd_mixer_element_write() ..96

snd_mixer_elements() ...98

snd_mixer_elements_t ...100

snd_mixer_file_descriptor() ..102

snd_mixer_filter_t ...104

snd_mixer_get_bit() ..106

snd_mixer_get_filter() ...108

snd_mixer_gid_t ...110

snd_mixer_group_read() ..111

snd_mixer_group_t ..113

snd_mixer_group_write() ..116

snd_mixer_groups() ...118

snd_mixer_groups_t ..120

snd_mixer_info() ...121

snd_mixer_info_t ..123

Table of Contents

snd_mixer_open() ...124

snd_mixer_open_name() ..126

snd_mixer_read() ..128

snd_mixer_routes() ...130

snd_mixer_routes_t ...132

snd_mixer_set_bit() ...134

snd_mixer_set_filter() ..136

snd_mixer_sort_eid_table() ..138

snd_mixer_sort_gid_table() ..140

snd_mixer_weight_entry_t ..142

snd_pcm_build_linear_format() ..143

snd_pcm_capture_flush() ..145

snd_pcm_capture_go() ..147

snd_pcm_capture_pause() ...149

snd_pcm_capture_prepare() ...151

snd_pcm_capture_resume() ...153

snd_pcm_channel_flush() ..155

snd_pcm_channel_go() ..157

snd_pcm_channel_info() ...159

snd_pcm_channel_info_t ...161

snd_pcm_channel_params() ..165

snd_pcm_channel_params_t ..167

snd_pcm_channel_pause() ..171

snd_pcm_channel_prepare() ..173

snd_pcm_channel_resume() ..175

snd_pcm_channel_setup() ...177

snd_pcm_channel_setup_t ..179

snd_pcm_channel_status() ..182

snd_pcm_channel_status_t ..184

snd_pcm_close() ...188

snd_pcm_file_descriptor() ...190

snd_pcm_find() ..192

snd_pcm_format_big_endian() ...194

snd_pcm_format_linear() ...196

snd_pcm_format_little_endian() ...198

snd_pcm_format_signed() ..200

snd_pcm_format_size() ...202

snd_pcm_format_t ..204

snd_pcm_format_unsigned() ..205

snd_pcm_format_width() ...207

snd_pcm_get_audioman_handle() ..209

snd_pcm_get_format_name() ...211

snd_pcm_info() ..214

snd_pcm_info_t ..216

snd_pcm_link() ...218

QNX® Neutrino® OS

snd_pcm_nonblock_mode() ...219

snd_pcm_open() ...221

snd_pcm_open_name() ...223

snd_pcm_open_preferred() ..226

snd_pcm_playback_drain() ..229

snd_pcm_playback_flush() ..231

snd_pcm_playback_go() ..233

snd_pcm_playback_pause() ...235

snd_pcm_playback_prepare() ...237

snd_pcm_playback_resume() ...239

snd_pcm_plugin_flush() ..241

snd_pcm_plugin_get_voice_conversion() ...243

snd_pcm_plugin_info() ..245

snd_pcm_plugin_params() ...247

snd_pcm_plugin_playback_drain() ..249

snd_pcm_plugin_prepare() ..251

snd_pcm_plugin_read() ...253

snd_pcm_plugin_set_disable() ...256

snd_pcm_plugin_set_enable() ..258

snd_pcm_plugin_set_src_method() ...260

snd_pcm_plugin_set_src_mode() ..262

snd_pcm_plugin_set_voice_conversion() ...264

snd_pcm_plugin_setup() ...266

snd_pcm_plugin_src_max_frag() ..268

snd_pcm_plugin_status() ...270

snd_pcm_plugin_update_src() ..272

snd_pcm_plugin_write() ..274

snd_pcm_read() ..277

snd_pcm_set_audioman_handle() ...279

snd_pcm_unlink() ...281

snd_pcm_voice_conversion_t ...282

snd_pcm_write() ...283

snd_strerror() ...285

snd_switch_t ..287

Appendix A: wave.c example ...291

Appendix B: waverec.c example ...305

Appendix C: mix_ctl.c example ..315

Appendix D: ALSA and libasound.so ..325

Table of Contents

Appendix E: What's New in This Release? ...327

What's new in QNX Neutrino 6.6 ..328

What's new in QNX Neutrino 6.5.0 Service Pack 1 ...330

What's new in QNX Neutrino 6.5.0 ...331

What's new in QNX Neutrino 6.4 ..332

What's new in QNX Neutrino 6.3 ..333

What's new in QNX Neutrino 6.2 ..334

What's new in QNX Neutrino 6.1 ..335

Glossary ..337

QNX® Neutrino® OS

Table of Contents

About This Guide

The Audio Developer's Guide is intended for developers who wish to write audio

applications using the QNX Sound Architecture (QSA) drivers and library.

This table may help you find what you need in this guide:

Go to:To find out about:

Audio Architecture (p. 15)The structure of an audio application

Playing and Capturing Audio Data (p. 25)Playing and recording sound

Mixer Architecture (p. 41)The structure of a mixer

Optimizing Audio (p. 51)Some tips for reducing audio latency

Audio Library (p. 53)Audio library functions

wave.c exampleHow to code a .wav player in C

waverec.c exampleHow to code a .wav recorder in C

mix_ctl.c exampleHow to code a mix_ctl in C

ALSA and libasound.soWhy libasound.a isn't offered

What's New in This Release?Changes made in each release

GlossaryTerms used in this guide

You should have already installed the QNX Neutrino RTOS and become familiar

with its architecture. For a detailed overview, see the System Architecture

guide.

The key components of the QNX Audio driver architecture include:

io-audio

Audio system manager.

deva-ctrl-*.so drivers

Audio drivers. For example, the audio driver for the Ensoniq Audio PCI cards

is deva-ctrl-audiopci.so. For more information, see the entries for

the deva-* audio drivers in the Utilities Reference.

libasound.so

Programmer interface library.

<asound.h>, <asoundlib.h>

Copyright © 2014, QNX Software Systems Limited 9

Header files in /usr/include/sys/.

10 Copyright © 2014, QNX Software Systems Limited

About This Guide

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Copyright © 2014, QNX Software Systems Limited 11

Typographical conventions

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

12 Copyright © 2014, QNX Software Systems Limited

About This Guide

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

Copyright © 2014, QNX Software Systems Limited 13

Technical support

http://www.qnx.com

Chapter 1
Audio Architecture

This chapter includes information about QNX Sound Architecture (QSA), sounds cards

and devices, sound card control devices, mixers, and pulse code modulation (PCM).

Copyright © 2014, QNX Software Systems Limited 15

QNX Sound Architecture

In order for an application to produce sound, the system must include several

components.

• hardware in the form of a sound card or sound chip

• a device driver for the hardware

• a well-defined way for the application to talk to the driver, in the form of an

Application Programming Interface (API).

This whole system is referred to as the QNX Sound Architecture (QSA). QSA has a rich

heritage and owes a large part of its design to version 0.5.2 of the Advanced Linux

Sound Architecture (ALSA), but as both systems continued to develop and expand,

direct compatibility between the two was lost.

This document concentrates on defining the API and providing examples of how to

use it. But before defining the API calls themselves, you need a little background on

the architecture itself. If you want to jump in right away, see the examples of a “wav”

player and a “wav” recorder in the wave.c and waverec.c appendixes.

16 Copyright © 2014, QNX Software Systems Limited

Audio Architecture

Cards and devices

The basic piece of hardware needed to produce or capture (i.e., record) sound is an

audio chip or sound card, referred to simply as a card. QSA can support more than

one card at a time, and can even mount and unmount cards “on the fly” (more about

this later). All the sound devices are attached to a card, so in order to reach a device,

you must first know what card it's attached to.

Control

PCM

Mixer

/dev/snd/controlC0

/dev/snd/pcmC0D0p

/dev/snd/mixerC0D0

Sound
cards

Figure 1: Cards and devices.

The devices include:

• Control (p. 18)

• Mixer (p. 19)

• Pulse Code Modulation (PCM) (p. 20)

You can list the devices that are on your system by typing:

ls /dev/snd

The resulting list includes one control device for every sound card, starting from card

0, as well as the PCM and mixer devices for each card.

Copyright © 2014, QNX Software Systems Limited 17

Cards and devices

Control device

There's one control device for each sound card in the system.

This device is special because it doesn't directly control any real hardware. It's a

concentration point for information about its card and the other devices attached to

its card. The primary information kept by the control device includes the type and

number of additional devices attached to the card.

18 Copyright © 2014, QNX Software Systems Limited

Audio Architecture

Mixer devices

Mixer devices are responsible for combining or mixing the various analog signals on

the sound card.

A mixer may also provide a series of controls for selecting which signals are mixed

and how they're mixed together, adjusting the gain or attenuation of signals, and/or

the muting of signals.

For more information, see the Mixer Architecture (p. 41) chapter.

Copyright © 2014, QNX Software Systems Limited 19

Mixer devices

Pulse Code Modulation (PCM) devices

PCM devices are responsible for converting digital sound sequences to analog

waveforms, or analog waveforms to digital sound sequences.

Each device operates only in one mode or the other. If it converts digital to analog,

it's a playback channel device; if it converts analog to digital, it's a capture channel

device.

The attributes of PCM devices include:

• the data formats that the device supports (16-bit signed little endian, 32-bit

unsigned big endian, etc.). For more information, see “Data formats (p. 20),”

below.

• the data rates that the device can run at (48KHz, 44.1 kHz etc.)

• the number of streams that the device can support (e.g., 2-channel stereo, mono,

and 4-channel surround)

• the number of simultaneous clients that the device can support, referred to as the

number of subchannels the device has. Most sound cards support only 1

subchannel, but some cards can support more; for example, the Soundblaster Live!

supports 32 subchannels.

The maximum number of subchannels supported is a hardware limitation. On

single-subchannel cards, this limitation is artificially surpassed through a software

solution: the software subchannel mixer. This allows 8 software subchannels to

exist on top of the single hardware subchannel.

The number of subchannels that a device advertises as supporting is defined for

the best-case scenario; in the real world, the device might support fewer. For

example, a device might support 32 simultaneous clients if they all run at 48 kHz,

but might support only 8 clients if the rate is 44.1 kHz. In this case, the device

advertises 32 subchannels.

Data formats

The QNX Sound Architecture supports a variety of data formats.

The <asound.h> header file defines two sets of constants for the data formats. The

two sets are related (and easily converted between) but serve different purposes:

SND_PCM_SFMT_*

A single selection from the set of data formats. For a list of the supported

formats, see snd_pcm_get_format_name() (p. 211) in the Audio Library

chapter.

SND_PCM_FMT_*

20 Copyright © 2014, QNX Software Systems Limited

Audio Architecture

A group of (one or more) formats within a single variable. This is useful for

specifying the format capabilities of a device, for example.

Generally, the SND_PCM_FMT_* constants are used to convey information about raw

potential, and the SND_PCM_SFMT_* constants are used to select and report a specific

configuration.

You can build a format from its width and other attributes, by calling

snd_pcm_build_linear_format() (p. 143).

You can use these functions to check the characteristics of a format:

• snd_pcm_format_big_endian() (p. 194)

• snd_pcm_format_linear() (p. 196)

• snd_pcm_format_little_endian() (p. 198)

• snd_pcm_format_signed() (p. 200)

• snd_pcm_format_unsigned() (p. 205)

PCM state machine

A PCM device is, at its simplest, a data buffer that's converted, one sample at a time,

by either a Digital Analog Converter (DAC) or an Analog Digital Converter (ADC),

depending on direction.

This simple idea becomes a little more complicated in QSA because of the concept

that the PCM subchannel is in a state at any given moment. These states are defined

as follows:

SND_PCM_STATUS_NOTREADY

The initial state of the device.

SND_PCM_STATUS_READY

The device has its parameters set for the data it will operate on.

SND_PCM_STATUS_PREPARED

The device has been prepared for operation and is able to run.

SND_PCM_STATUS_RUNNING

The device is running, transferring data to or from the buffer.

SND_PCM_STATUS_UNDERRUN

This state happens only to a playback device and is entered when the buffer

has no more data to be played.

SND_PCM_STATUS_OVERRUN

Copyright © 2014, QNX Software Systems Limited 21

Pulse Code Modulation (PCM) devices

This state happens only to a capture device and is entered when the buffer

has no room for data.

SND_PCM_STATUS_PAUSED

The device has been paused.

SND_PCM_STATUS_UNSECURE

The application marked the stream as protected, the hardware level supports

a secure transport (e.g., HDCP for HDMI), and authentication was lost.

SND_PCM_STATUS_ERROR

A hardware error has occurred, and the stream must be prepared again.

SND_PCM_STATUS_CHANGE

The stream has changed and must be prepared again.

In some cases, audio is redirected transparently between different audio

devices, with different capabilities. You can enable this by calling:

snd_pcm_plugin_set_enable(handle, PLUGIN_ROUTING);

If routing is enabled and the preferred device changes to an external device

such as HDMI, audio is automatically redirected to that device. Once routing

changes, the client receives a status of SND_PCM_STATUS_CHANGE.

When the client receives this, it may just call snd_pcm_channel_prepare()

(p. 173) to enter the SND_PCM_STATUS_PREPARED state, and be ready to

continue playback, but as the capabilities may have changed, (e.g., HDMI

may support surround sound output while a local speaker doesn't), the client

may wish to call snd_pcm_channel_info() (p. 159) to check the capabilities,

and change the audio characteristics in response before preparing.

SND_PCM_STATUS_PREEMPTED

Audio is blocked because another libasound session has initiated playback,

and the audio driver has determined that that session has higher priority,

and therefore the lower priority session is terminated with state

SND_PCM_STATUS_PREEMPTED. When it receives this state, the client

should give up on playback, and not attempt to resume until either the sound

it wishes to produce has increased in priority, or a user initiates a retry.

22 Copyright © 2014, QNX Software Systems Limited

Audio Architecture

Prepared

RunningPaused

Not ready

Ready

ErrorChangedUnsecure
Over or
Underrun

Preempted

Figure 2: General state diagram for PCM devices.

The transition between states is the result of executing an API call, or the result of

conditions that occur in the hardware. For more details, see the Playing and Capturing

Audio Data (p. 25) chapter.

Software PCM mixing

In the case where the sound card has a playback PCM device with only one subchannel,

the device driver writer can choose to include a PCM software mixing device.

This device simply appears as a new PCM playback device that supports many

subchannels, but it has a few differences from a true hardware device:

• The mixing of the PCM streams is done in software using the CPU. Even with only

one stream, the CPU is used more than if the hardware device were used.

• When the PCM software mixer is started, it opens a connection to the real hardware

device. If the real hardware device is already in use, the PCM software mixer can't

run. Likewise, if the PCM software mixer is running, the real hardware device is in

use and is unavailable.

The PCM software mixer is specifically attached to a single hardware PCM device.

This one-to-one mapping allows for an API call to identify the PCM software-mixing

device associated with its hardware device.

PCM plugin converters

In some cases, an application has data in one form, and the PCM device is capable

of accepting data only in another format. Clearly this won't work unless something is

Copyright © 2014, QNX Software Systems Limited 23

Pulse Code Modulation (PCM) devices

done. The application — like some MPG decoders — could reformat its data “on the

fly” to a format that the device accepts. Alternatively, the application can ask QSA to

do the conversion for it.

The conversation is accomplished by invoking a series of plugin converters, each

capable of doing a very specific job. As an example, the rate converter converts a

stream from one sampling frequency to another. There are plugin converters for bit

conversions (8-to-16-bit, etc.), endian conversion (little endian to big endian and vice

versa), voice conversions (stereo to mono, etc.) and so on.

The minimum number of converters is invoked to translate the input format to the

output format so as to minimize CPU usage. An application signals its willingness to

use the plugin converter interface by using the PCM plugin API functions. These API

functions all have plugin in their names. For more information, see the Audio Library

(p. 53) chapter.

The ability to convert audio to match hardware capabilities (for example, voice

conversion, rate conversion, type conversion, etc.) is enabled by default. This impacts

the functions snd_pcm_channel_params() (p. 165), snd_pcm_channel_setup() (p. 177),

and snd_pcm_channel_status() (p. 182). These behave as snd_pcm_plugin_params()

(p. 247), snd_pcm_plugin_setup() (p. 266), and snd_pcm_plugin_status() (p. 270), unless

you've disabled the conversion by calling:

snd_pcm_plugin_set_disable(handle, PLUGIN_CONVERSION);

Don't mix the plugin API functions with the nonplugin

functions.

24 Copyright © 2014, QNX Software Systems Limited

Audio Architecture

Chapter 2
Playing and Capturing Audio Data

This chapter describes the major steps required to play back and capture (i.e., record)

sound data.

Copyright © 2014, QNX Software Systems Limited 25

Handling PCM devices

The software processes for playing back and capturing audio data are similar. This

section describes the common steps.

Opening your PCM device

The first thing you need to do in order to playback or capture sound is open a

connection to a PCM playback or capture device.

The API calls for opening a PCM device are:

snd_pcm_open_name() (p. 223)

Use this call when you want to open a specific hardware device, and you

know its name.

snd_pcm_open() (p. 221)

Use this call when you want to open a specific hardware device, and you

know its card and device number.

snd_pcm_open_preferred() (p. 226)

Use this call to open the user's preferred device.

Using this function makes your application more flexible, because you don't

need to know the card and device numbers; the function can pass back to

you the card and device that it opened.

All these API calls set a PCM connection handle that you'll use as an argument to all

other PCM API calls. This handle is very analogous to a file stream handle. It's a pointer

to a snd_pcm_t structure, which is an opaque data type.

These functions, like others in the QSA API, work for both capture and playback

channels. They take as an argument a channel direction, which is one of:

• SND_PCM_OPEN_CAPTURE

• SND_PCM_OPEN_PLAYBACK

This code fragment from the wave.c example in the appendix uses these functions

to open a playback device:

if (card == -1)
{
 if ((rtn = snd_pcm_open_preferred (&pcm_handle,
 &card, &dev,
 SND_PCM_OPEN_PLAYBACK)) < 0)
 return err ("device open");
}
else
{
 if ((rtn = snd_pcm_open (&pcm_handle, card, dev,

26 Copyright © 2014, QNX Software Systems Limited

Playing and Capturing Audio Data

 SND_PCM_OPEN_PLAYBACK)) < 0)
 return err ("device open");
}

If the user specifies a card and a device number on the command line, this code opens

a connection to that specific PCM playback device. If the user doesn't specify a card,

the code creates a connection to the preferred PCM playback device, and

snd_pcm_open_preferred() stores the card and device numbers in the given variables.

Configuring the PCM device

The next step in playing back or capturing the sound stream is to inform the device

of the format of the data that you're about to send it or want to receive from it.

You can do this by filling in a snd_pcm_channel_params_t (p. 167) structure, and

then calling snd_pcm_channel_params() (p. 165) or snd_pcm_plugin_params() (p. 247).

The difference between the functions is that the second one uses the plugin converters

(see “PCM plugin converters (p. 23)” in the Audio Architecture chapter) if required.

If the device can't support the data parameters you're setting, or if all the subchannels

of the device are currently in use, both of these functions fail.

The API calls for determining the current capabilities of a PCM device are:

snd_pcm_plugin_info() (p. 245)

Use the plugin converters. If the hardware has a free subchannel, the

capabilities returned are extensive because the plugin converters make any

necessary conversion.

snd_pcm_channel_info() (p. 159)

Access the hardware directly. This function returns only what the hardware

capabilities are.

Both of these functions take as an argument a pointer to a

snd_pcm_channel_info_t (p. 161) structure. You must set the channel

member of this structure to the desired direction

(SND_PCM_CHANNEL_CAPTURE or SND_PCM_CHANNEL_PLAYBACK) before

calling the functions. The functions fill in the other members of the structure.

It's the act of configuring the channel that allocates a subchannel to the client. Stated

another way, hundreds of clients can open a handle to a PCM device with only one

subchannel, but only one can configure it. After a client allocates a subchannel, it

isn't returned to the free pool until the handle is closed. One result of this mechanism

is that, from moment to moment, the capabilities of a PCM device change as other

applications allocate and free subchannels. Additionally the act of configuring /

allocating a subchannel changes its state from SND_PCM_STATUS_NOTREADY to

SND_PCM_STATUS_READY.

Copyright © 2014, QNX Software Systems Limited 27

Handling PCM devices

If the API call succeeds, all parameters specified are accepted and are guaranteed to

be in effect, except for the frag_size parameter, which is only a suggestion to the

hardware. The hardware may adjust the fragment size, based on hardware requirements.

For example, if the hardware can't deal with fragments crossing 64-kilobyte boundaries,

and the suggested frag_size is 60 kilobytes, the driver will probably adjust it to 64

kilobytes.

Another aspect of configuration is determining how big to make the hardware buffer.

This determines how much latency that the application has when sending data to the

driver or reading data from it. The hardware buffer size is determined by multiplying

the frag_size by the max_frags parameter, so for the application to know the buffer

size, it must determine the actual frag_size that the driver is using.

You can do this by calling snd_pcm_channel_setup() (p. 177) or snd_pcm_plugin_setup()

(p. 266), depending on whether or not your application is using the plugin converters.

Both of these functions take as an argument a pointer to a

snd_pcm_channel_setup_t (p. 179) structure that they fill with information about

how the channel is configured, including the true frag_size.

Controlling voice conversion

The libasound library supports devices with up to eight voices.

Configuration of the libasound library is based on the maximum number of voices

supported in hardware. If the numbers of source and destination voices are different,

then snd_pcm_plugin_params() (p. 247) instantiates a voice converter.

The default voice conversion behavior is as follows:

ConversionToFrom

Replicate channel 1 (left) to channel 2 (right)StereoMono

Remove channel 2 (right)MonoStereo

Replicate channel 1 to all other channels4-channelMono

Replicate channel 1 (front left) to channel 3 (rear left), and

channel 2 (front right) to channel 4 (rear right)

4-channelStereo

Previous versions of libasound converted stereo to mono by averaging the

left and right channels to generate the mono stream. Now by default, the right

channel is simply dropped.

You can use the voice conversion API to configure the conversion behavior and place

any source channel in any destination channel slot:

snd_pcm_plugin_get_voice_conversion() (p. 243)

28 Copyright © 2014, QNX Software Systems Limited

Playing and Capturing Audio Data

Get the current voice conversion structure for a channel

snd_pcm_plugin_set_voice_conversion() (p. 264)

Set the current voice conversion structure for a channel

The actual conversion is controlled by the snd_pcm_voice_conversion_t structure,

which is defined as follows:

typedef struct snd_pcm_voice_conversion
{
 uint32_t app_voices;
 uint32_t hw_voices;
 uint32_t matrix[32];
} snd_pcm_voice_conversion_t

The matrix member forms a 32-by-32-bit array that specifies how to convert the voices.

The array is ranked with rows representing application voices, voice 0 first; the columns

represent hardware voices, with the low voice being LSB-aligned and increasing right

to left.

For example, consider a mono application stream directed to a 4-voice hardware device.

A bit array of:

matrix[0] = 0x1; // 00000001

causes the sound to be output on only the first hardware channel. A bit array of:

matrix[0] = 0x9; // 00001001

causes the sound to appear on the first and last hardware channel.

Another example would be a stereo application stream to a 6 channel (5.1) output

device. A bit array of:

matrix[0] = 0x1; // 00000001
matrix[1] = 0x2; // 00000010

causes the sound to appear on only the front two channels, while:

matrix[0] = 0x5; // 00000101
matrix[1] = 0x2; // 00000010

causes the stream signal to appear on the first four channels (likely the front and rear

pairs, but not on the center or LFE channels). The bitmap used to describe the hardware

(i.e., the columns) depends on the hardware, and you need to be mindful of the actual

hardware you'll be running on to properly map the channels. For example:

• If the hardware orders the channels such that the center channel is the third

channel, then bit 2 represents the center.

• If the hardware orders the channels such that the Rear Left is the third channel,

then bit 2 represents the Rear Left.

If the number of source voices matches the number of destination voices, the

converter isn't invoked, so you won't be able to reroute the channels. If you're

Copyright © 2014, QNX Software Systems Limited 29

Handling PCM devices

playing a stereo file on stereo hardware, you can't use the voice matrix to swap

the channels because the voice converter isn't used in this case.

If you call snd_pcm_plugin_get_voice_conversion() or

snd_pcm_plugin_set_voice_conversion() before the voice conversion plugin has been

instantiated, the functions fail and return -ENOENT.

Preparing the PCM subchannel

The next step in playing back or capturing the sound stream is to prepare the allocated

subchannel to run.

Call one of the following functions to prepare the allocated subchannel:

• snd_pcm_plugin_prepare() (p. 251) if you're using the plugin interface

• snd_pcm_channel_prepare() (p. 173), snd_pcm_capture_prepare() (p. 151), or

snd_pcm_playback_prepare() (p. 237) if you aren't

The snd_pcm_channel_prepare() function simply calls snd_pcm_capture_prepare()

or snd_pcm_playback_prepare(), depending on the channel direction that you

specify.

This step and the SND_PCM_STATUS_PREPARED state may seem unnecessary, but

they're required to correctly handle underrun conditions when playing back, and overrun

conditions when capturing. For more information, see “If the PCM subchannel stops

during playback (p. 33)” and “If the PCM subchannel stops during capture (p. 38),”

later in this chapter.

Closing the PCM subchannel

When you've finished playing back or capturing audio data, you can close the

subchannel by calling snd_pcm_close().

The call to snd_pcm_close() (p. 188) releases the subchannel and closes the handle.

30 Copyright © 2014, QNX Software Systems Limited

Playing and Capturing Audio Data

Playing audio data

Once you've opened and configured a PCM playback device and prepared the PCM

subchannel, you're ready to play back sound data.

There's a complete example of playback in the wave.c example in the appendix. You

may wish to compile and run the application now, and refer to the running code as

you progress through this section.

If your application has the option to produce playback data in multiple formats,

choosing a format that the hardware supports directly will reduce the CPU

requirements.

Playback states

Let's consider the state transitions for a PCM device during playback.

Prepared

RunningPaused

snd_pcm_*_params()

snd_pcm_*_prepare()

snd_pcm_write(),
snd_pcm_plugin_write()

snd_pcm_*_resume()

snd_pcm_*_pause()

snd_pcm_*_prepare()

Not ready

Ready

ErrorChangedUnsecureUnderrun

Preempted

Figure 3: State diagram for PCM devices during playback.

The transition between SND_PCM_STATUS_* states is the result of executing an API

call, or the result of conditions that occur in the hardware:

Copyright © 2014, QNX Software Systems Limited 31

Playing audio data

CauseToFrom

Calling snd_pcm_channel_params() (p. 165) or

snd_pcm_plugin_params() (p. 247)

READYNOTREADY

Calling snd_pcm_channel_prepare() (p. 173),

snd_pcm_playback_prepare() (p. 237), or

snd_pcm_plugin_prepare() (p. 251)

PREPAREDREADY

Calling snd_pcm_write() (p. 283) or snd_pcm_plugin_write()

(p. 274)

RUNNINGPREPARED

Calling snd_pcm_channel_pause() (p. 171) or

snd_pcm_playback_pause() (p. 235)

PAUSEDRUNNING

Calling snd_pcm_channel_resume() (p. 175) or

snd_pcm_playback_resume() (p. 239)

RUNNINGPAUSED

The hardware buffer became empty during playbackUNDERRUNRUNNING

The application marked the stream as protected, the

hardware level supports a secure transport (e.g., HDCP for

HDMI), and authentication was lost

UNSECURERUNNING

The stream changedCHANGERUNNING

A hardware error occurredERRORRUNNING

Calling snd_pcm_channel_prepare() (p. 173),

snd_pcm_playback_prepare() (p. 237), or

snd_pcm_plugin_prepare() (p. 251)

PREPAREDUNDERRUN,

UNSECURE,

CHANGE, or

ERROR

Audio is blocked because another libasound session has

initiated playback, and the audio driver has determined

that that session has higher priority

PREEMPTEDRUNNING

For more details on these transitions, see the description of each function in the Audio

Library (p. 53) chapter.

Sending data to the PCM subchannel

The function that you call to send data to the subchannel depends on whether or not

you're using plugin converters.

snd_pcm_write() (p. 283)

The number of bytes written must be a multiple of the fragment size, or the

write will fail.

snd_pcm_plugin_write() (p. 274)

32 Copyright © 2014, QNX Software Systems Limited

Playing and Capturing Audio Data

The plugin accumulates partial writes until a complete fragment can be sent

to the driver.

A full nonblocking write mode is supported if the application can't afford to be blocked

on the PCM subchannel. You can enable nonblocking mode when you open the handle

or by calling snd_pcm_nonblock_mode() (p. 219).

This approach results in a polled operation mode that isn't recommended.

Another method that your application can use to avoid blocking on the write is to call

select() (see the QNX Neutrino C Library Reference) to wait until the PCM subchannel

can accept more data. This is the technique that the wave.c example uses. It allows

the program to wait on user input while at the same time sending the playback data

to the PCM subchannel.

To get the file descriptor to pass to select(), call snd_pcm_file_descriptor() (p. 190).

With this technique, select() returns when there's space for frag_size bytes in

the subchannel. If your application tries to write more data than this, it may

block on the call.

If the PCM subchannel stops during playback

When playing back, the PCM subchannel stops if the hardware consumes all the data

in its buffer.

This can happen if the application can't produce data at the rate that the hardware is

consuming data. A real-world example of this is when the application is preempted

for a period of time by a higher-priority process. If this preemption continues long

enough, all data in the buffer may be played before the application can add any more.

When this happens, the subchannel changes state to SND_PCM_STATUS_UNDERRUN.

In this state, it doesn't accept any more data (i.e., snd_pcm_write() (p. 283) and

snd_pcm_plugin_write() (p. 274) fail) and the subchannel doesn't restart playing.

The only ways to move out of this state are to close the subchannel or to reprepare

the channel as you did before (see “Preparing the PCM subchannel (p. 30),” earlier

in this chapter). This forces the application to recognize and take action to get out of

the underrun state; this is primarily for applications that want to synchronize audio

with something else. Consider the difficulties involved with synchronization if the

subchannel simply were to move back to the SND_PCM_STATUS_RUNNING state from

underrun when more data became available.

Copyright © 2014, QNX Software Systems Limited 33

Playing audio data

Stopping the playback

If the application wishes to stop playback, it can simply stop sending data and let the

subchannel underrun as described above, but there are better ways.

If you want your application to stop as soon as possible, call one of the drain functions

to remove any unplayed data from the hardware buffer:

• snd_pcm_plugin_playback_drain() (p. 249) if you're using the plugins

• snd_pcm_playback_drain() (p. 229) if you aren't

If you want to play out all data in the buffers before stopping, call one of:

• snd_pcm_plugin_flush() (p. 241) if you're using the plugins

• snd_pcm_channel_flush() (p. 155) or snd_pcm_playback_flush() (p. 231) if you aren't

Synchronizing with the PCM subchannel

QSA provides some basic synchronization capabilities.

Your application can find out where in the stream the hardware play position is. The

resolution of this position is entirely a function of the hardware driver; consult the

specific device driver documentation for details if this is important to your application.

The API calls to get this information are:

• snd_pcm_plugin_status() (p. 270) if you're using the plugin interface

• snd_pcm_channel_status() (p. 182) if you aren't

Both of these functions fill in a snd_pcm_channel_status_t (p. 184) structure.

You'll need to check the following members of this structure:

scount

The hardware play position, in bytes relative to the start of the stream since

the last time the channel was prepared. The act of preparing a channel resets

this count.

count

The play position, in bytes relative to the total number of bytes written to

the device.

The count member isn't used if the mmap plugin is used. To disable the mmap

plugin, call snd_pcm_plugin_set_disable() (p. 256).

For example, consider a stream where 1,000,000 bytes have been written to the

device. If the status call sets scount to 999,000 and count to 1000, there are 1000

bytes of data in the buffer remaining to be played, and 999,000 bytes of the stream

have already been played.

34 Copyright © 2014, QNX Software Systems Limited

Playing and Capturing Audio Data

Capturing audio data

Once you've opened and configured a PCM capture device and prepared the PCM

subchannel, you're ready to capture sound data.

For more information about this preparation, see “Handling PCM devices (p. 26).”

There's a complete example of capturing audio data in the waverec.c example in

the appendix. You may wish to compile and run the application now, and refer to the

running code as you progress through this section.

This section includes:

• Selecting what to capture (p. 35)

• Capture states (p. 35)

• Receiving data from the PCM subchannel (p. 37)

• If the PCM subchannel stops during capture (p. 38)

• Stopping the capture (p. 38)

• Synchronizing with the PCM subchannel (p. 38)

Selecting what to capture

Most sound cards allow only one analog signal to be connected to the ADC. Therefore,

in order to capture audio data, the user or application must select the appropriate

input source.

Some sound cards allow multiple signals to be connected to the ADC; in this case,

make sure the appropriate signal is one of them. There's an API call,

snd_mixer_group_write() (p. 116), for controlling the mixer so that the application can

set this up directly; it's described in the Mixer Architecture (p. 41) chapter.

Capture states

Let's consider the state transitions for PCM devices during capture.

The state diagram for a PCM device during capture is shown below.

Copyright © 2014, QNX Software Systems Limited 35

Capturing audio data

Prepared

RunningPaused

snd_pcm_*_params()

snd_pcm_*_prepare()

snd_pcm_read(),
snd_pcm_plugin_read(),
select()

snd_pcm_*_resume()

snd_pcm_*_pause()

snd_pcm_*_prepare()

Not ready

Ready

ErrorChangedUnsecureOverrun

Preempted

Figure 4: State diagram for PCM devices during capture.

The transition between SND_PCM_STATUS_* states is the result of executing an API

call, or the result of conditions that occur in the hardware:

CauseToFrom

Calling snd_pcm_channel_params() (p. 165) or

snd_pcm_plugin_params() (p. 247)

READYNOTREADY

Calling snd_pcm_capture_prepare() (p. 151),

snd_pcm_channel_prepare() (p. 173), or

snd_pcm_plugin_prepare() (p. 251)

PREPAREDREADY

Calling snd_pcm_read() (p. 277) or snd_pcm_plugin_read()

(p. 253), or calling select() against the capture file

descriptors

RUNNINGPREPARED

Calling snd_pcm_capture_pause() (p. 149) or

snd_pcm_channel_pause() (p. 171)

PAUSEDRUNNING

Calling snd_pcm_capture_resume() (p. 153) or

snd_pcm_channel_resume() (p. 175)

RUNNINGPAUSED

The hardware buffer became full during capture;

snd_pcm_read() (p. 277) and snd_pcm_plugin_read() (p.

253) fail

OVERRUNRUNNING

36 Copyright © 2014, QNX Software Systems Limited

Playing and Capturing Audio Data

CauseToFrom

The application marked the stream as protected, the

hardware level supports a secure transport (e.g., HDCP for

HDMI), and authentication was lost

UNSECURERUNNING

The stream changedCHANGERUNNING

A hardware error occurredERRORRUNNING

Calling snd_pcm_capture_prepare() (p. 151),

snd_pcm_channel_prepare() (p. 173), or

snd_pcm_plugin_prepare() (p. 251)

PREPAREDOVERRUN,

UNSECURE,

CHANGE, or

ERROR

Audio is blocked because another libasound session has

initiated playback, and the audio driver has determined

that that session has higher priority

PREEMPTEDRUNNING

For more details on these transitions, see the description of each function in the Audio

Library (p. 53) chapter.

Receiving data from the PCM subchannel

The function that you call to receive data from the subchannel depends on whether

or not you're using plugin converters.

snd_pcm_read() (p. 277)

The number of bytes read must be a multiple of the fragment size, or the

read fails.

snd_pcm_plugin_read() (p. 253)

The plugin reads an entire fragment from the driver and then fulfills requests

for partial reads from that buffer until another full fragment has to be read.

A full nonblocking read mode is supported if the application can't afford to be blocked

on the PCM subchannel. You can enable nonblocking mode when you open the handle

or by using the snd_pcm_nonblock_mode() (p. 219) API call.

This approach results in a polled operation mode that isn't recommended.

Another method that your application can use to avoid blocking on the read is to use

select() (see the QNX Neutrino C Library Reference) to wait until the PCM subchannel

has more data. This is the technique that the waverec.c example uses. It allows the

program to wait on user input while at the same time receiving the capture data from

the PCM subchannel.

Copyright © 2014, QNX Software Systems Limited 37

Capturing audio data

To get the file descriptor to pass to select(), call snd_pcm_file_descriptor() (p. 190).

With this technique, select() returns when there are frag_size bytes in the

subchannel. If your application tries to read more data than this, it may block

on the call.

If the PCM subchannel stops during capture

When capturing, the PCM subchannel stops if the hardware has no room for additional

data left in its buffer.

This can happen if the application can't consume data at the rate that the hardware

is producing data. A real-world example of this is when the application is preempted

for a period of time by a higher-priority process. If this preemption continues long

enough, the data buffer may be filled before the application can remove any data.

When this happens, the subchannel changes state to SND_PCM_STATUS_OVERRUN.

In this state, it won't provide any more data (i.e., snd_pcm_read() (p. 277) and

snd_pcm_plugin_read() (p. 253) fail) and the subchannel doesn't restart capturing.

The only ways to move out of this state are to close the subchannel or to reprepare

the channel as you did before. This forces the application to recognize and take action

to get out of the overrun state; this is primarily for applications that want to synchronize

audio with something else. Consider the difficulties involved with synchronization if

the subchannel simply were to move back to the SND_PCM_STATUS_RUNNING state

from overrun when space became available; the recorded sample would be

discontinuous.

Stopping the capture

If your application wishes to stop capturing, it can simply stop reading data and let

the subchannel overrun as described above, but there's a better way.

If you want your application to stop capturing immediately and delete any unread data

from the hardware buffer, call one the flush functions:

• snd_pcm_plugin_flush() (p. 241) if you're using the plugins

• snd_pcm_channel_flush() (p. 155) or snd_pcm_capture_flush() (p. 145) if you aren't

Synchronizing with the PCM subchannel

QSA provides some basic synchronization capabilities.

An application can find out where in the stream the hardware capture position is. The

resolution of this position is entirely a function of the hardware driver; consult the

specific device driver documentation for details if this is important to your application.

The API calls to get this information are:

38 Copyright © 2014, QNX Software Systems Limited

Playing and Capturing Audio Data

• snd_pcm_plugin_status() (p. 270) if you're using the plugin interface

• snd_pcm_channel_status() (p. 182) if you aren't

Both of these functions fill in a snd_pcm_channel_status_t (p. 184) structure.

You'll need to check the following members of this structure:

scount

The hardware capture position, in bytes relative to the start of the stream

since you last prepared the channel. The act of preparing a channel resets

this count.

count

The capture position as bytes in the hardware buffer.

The count member isn't used if the mmap plugin is used. To disable the mmap

plugin, call snd_pcm_plugin_set_disable() (p. 256).

Copyright © 2014, QNX Software Systems Limited 39

Capturing audio data

Chapter 3
Mixer Architecture

This section describes the mixer architecture.

You can usually build an audio mixer from a relatively small number of components.

Each of these components performs a specific mixing function. A summary of these

components or elements follows:

Input

A connection point where an external analog signal is brought into the mixer.

Output

A connection point where an analog signal is taken from the mixer.

ADC

An element that converts analog signals to digital samples.

DAC

An element that converts digital samples to analog signals.

Switch

An element that can connect two or more points together. A simple switch

may be used as a mute control. More complicated switches can mute the

channels of a stream individually, or can even form crossbar matrices where

n input signals can be connected to n output signals.

Volume

An element that adjusts the amplitude level of a signal by applying

attenuation or gain.

Accumulator

An element the adds all signals input to it and produces an output signal.

Multiplexer

An element that selects the signal from one of its inputs and forwards it to

a single output line.

By using these elements you can build a simple sound card mixer:

Copyright © 2014, QNX Software Systems Limited 41

PCM

MIC

CD
Accumulator

Multiplexer
Input
volume

Input
mute

ADC

Volume Mute

Output
volume

Output
mute

OUTPUT

Volume Mute

Volume Mute

A

B C

D

E F G H I

J

K
L M

N O P

Q

Figure 5: A simple sound card mixer.

In the diagram, the mute figures are switches, and the MIC and CD are input elements.

This diagram is in fact a simplified representation of the Audio Codec '97 mixer, one

of the most common mixers found on sound cards.

It's possible to control these mixer elements directly using the

snd_mixer_element_read() (p. 93) and snd_mixer_element_write() (p. 96) functions,

but this method isn't recommended because:

• The arguments to these functions are very dependent on the element type.

• Controlling many elements to change mixer functionality is difficult with this

method.

• There's a better method.

The element interface is the lowest level of control for a mixer and is complicated to

control. One solution to this complexity is to arrange elements that are associated with

a function into a mixer group. To further refine this idea, groups are classified as either

playback or capture groups. To simplify creating and managing groups, a hard set of

rules was developed for how groups are built from elements:

• A playback group contains at most one volume element and one switch element

(as a mute).

• A capture group contains at most one each of a volume element, switch element

(as a mute), and capture selection element. The capture selection element may

be a multiplexer or a switch.

If you apply these rules to the simple mixer in the above diagram, you get the following:

Playback Group PCM

Elements B (volume) and C (switch).

Playback Group MIC

Elements E (volume) and F (switch).

Playback Group CD

Elements L (volume) and M (switch).

42 Copyright © 2014, QNX Software Systems Limited

Mixer Architecture

Playback Group MASTER

Elements H (volume) and I (switch).

Capture Group MIC

Element N (multiplexer); there's no volume or switch.

Capture Group CD

Element N (multiplexer); there's no volume or switch.

Capture Group INPUT

Elements O (volume) and P (switch).

In separating the elements into groups, you've reduced the complexity of control (there

are 7 groups instead of 17 elements), and each group associates well with what

applications want to control.

Copyright © 2014, QNX Software Systems Limited 43

Opening the mixer device

To open a connection to the mixer device, call snd_mixer_open().

This call has arguments for selecting the card and mixer device number to open. Most

sound cards have only one mixer, but there may be additional mixers in special cases.

The snd_mixer_open() (p. 124) call returns a mixer handle that you'll use as an argument

for additional API calls applied to this device. It's a pointer to a snd_mixer_t

structure, which is an opaque data type.

44 Copyright © 2014, QNX Software Systems Limited

Mixer Architecture

Controlling a mixer group

The best way to control a mixer group is to use the read-modify-write technique. Using

this technique, you can examine the group capabilities and ranges before adjusting

the group.

The first step in reading the properties and settings of a mixer group is to identify the

group. Every mixer group has a name, but because two groups may have the same

name, a name alone isn't enough to identify a specific mixer group. In order to make

groups unique, mixer groups are identified by the combination of name and index.

The index is an integer that represents the instance number of the name. In most

cases, the index is 0; in the case of two mixer groups with the same name, the first

has an index of 0, and the second has an index of 1.

To read a mixer group, call the snd_mixer_group_read() (p. 111) function. The arguments

to this function are the mixer handle and the group control structure. The group control

structure is of type snd_mixer_group_t (p. 113); for details about its members, see

the Audio Library chapter.

To read a particular group, you must set its name and index in the gid substructure

(see snd_mixer_gid_t (p. 110)) before making the call. If the call to

snd_mixer_group_read() succeeds, the function fills in the structure with the group's

capabilities and current settings.

Now that you have the group capabilities and current settings, you can modify them

before you write them back to the mixer group.

To write the changes to the mixer group, call snd_mixer_group_write() (p. 116), passing

as arguments the mixer handle and the group control structure.

Copyright © 2014, QNX Software Systems Limited 45

Controlling a mixer group

The best mixer group with respect to your PCM subchannel

In a typical mixer, there are many playback mixer group controls, and possibly several

that will control the volume and mute of the stream your application is playing.

For example, consider the Sound Blaster Live playing a wave file. Three playback mixer

controls adjust the volume of the playback: Master, PCM, and PCM Subchannel.

Although each of these groups can control the volume of our playback, some aren't

specific to just our stream, and thus have more side effects.

As an example, consider what happens if you increase your wave file volume by using

the Master group. If you do this, any other streams—such a CD playback—are affected

as well. So clearly, the best group to use is the PCM subchannel, as it affects only

your stream. However, on some cards, a subchannel group might not exist, so you

need a better method to find the best group.

The best way to figure out which is the best group for a PCM subchannel is to let the

driver (i.e., the driver author) do it. You can obtain the identity of the best mixer group

for a PCM subchannel by calling snd_pcm_channel_setup() (p. 177) or

snd_pcm_plugin_setup() (p. 266), as shown below:

memset (&setup, 0, sizeof (setup));
memset (&group, 0, sizeof (group));
setup.channel = SND_PCM_CHANNEL_PLAYBACK;
setup.mixer_gid = &group.gid;
if ((rtn = snd_pcm_plugin_setup (pcm_handle, &setup)) < 0)
{
 return -1;
}

You must initialize the setup structure to zero and then set the mixer_gid

pointer to a storage location for the group identifier.

One thing to note is that the best group may change, depending on the state of the

PCM subchannel. Remember that the PCM subchannels aren't allocated to a client

until the parameters of the channel are established. Similarly, the subchannel mixer

group isn't available until the subchannel is allocated. Using the example of the Sound

Blaster Live, the best mixer group before the subchannel is allocated is the PCM group

and, after allocation, the PCM Subchannel group.

46 Copyright © 2014, QNX Software Systems Limited

Mixer Architecture

Finding all mixer groups

You can get a complete list of mixer groups by calling snd_mixer_groups().

You usually call snd_mixer_groups() (p. 118) twice: once to get the total number of

mixer groups, then a second time to actually read their IDs. The arguments to the call

are the mixer handle and a snd_mixer_group_t (p. 113) structure. The structure

contains a pointer to where the groups' identifiers are to be stored (an array of

snd_mixer_gid_t (p. 110) structures), and the size of that array. The call fills in

the structure with how many identifiers were stored, and indicates if some couldn't

be stored because they would exceed the storage size.

Here's a short example (the snd_strerror() (p. 285) prints error messages for the sound

functions):

while (1)
{
 memset (&groups, 0, sizeof (groups));
 if ((ret = snd_mixer_groups (mixer_handle, &groups) < 0))
 {
 fprintf (stderr, "snd_mixer_groups API call - %s",
 snd_strerror (ret));
 }

 mixer_n_groups = groups.groups_over;
 if (mixer_n_groups > 0)
 {
 groups.groups_size = mixer_n_groups;
 groups.pgroups = (snd_mixer_gid_t *) malloc (
 sizeof (snd_mixer_gid_t) * mixer_n_groups);

 if (groups.pgroups == NULL)
 fprintf (stderr, "Unable to malloc group array - %s",
 strerror (errno));

 groups.groups_over = 0;
 groups.groups = 0;

 if (snd_mixer_groups (mixer_handle, &groups) < 0)
 fprintf (stderr, "No Mixer Groups ");

 if (groups.groups_over > 0)
 {
 free (groups.pgroups);
 continue;
 }
 else
 {
 printf ("sorting GID table \n");
 snd_mixer_sort_gid_table (groups.pgroups, mixer_n_groups,
 snd_mixer_default_weights);
 break;
 }
 }
}

Copyright © 2014, QNX Software Systems Limited 47

Finding all mixer groups

Mixer event notification

By default, all mixer applications are required to keep up-to-date with all mixer changes.

Keeping up-to-date with all mixer changes is done by enqueuing a mixer-change event

on all applications other than the application making a change. The driver enqueues

these events on all applications that have an open mixer handle, unless the application

uses the snd_mixer_set_filter() (p. 136) API call to mask out events it's not interested

in.

Applications use the snd_mixer_read() (p. 128) function to read the enqueued mixer

events. The arguments to this functions are the mixer handle and a structure of callback

functions to call based on the event type.

You can use the select() function (see the QNX Neutrino C Library Reference) to

determine when to call snd_mixer_read(). To get the file descriptor to pass to select(),

call snd_mixer_file_descriptor() (p. 102).

Here's a short example:

static void mixer_callback_group (void *private_data,
 int cmd,
 snd_mixer_gid_t * gid)
{
 switch (cmd)
 {
 case SND_MIXER_READ_GROUP_VALUE:
 printf ("Mixer group %s %d changed value \n",
 gid->name, gid->index);
 break;

 case SND_MIXER_READ_GROUP_ADD:
 break;

 case SND_MIXER_READ_GROUP_REMOVE:
 break;
 }
}

int mixer_update (int fd, void *data, unsigned mode)
{
 snd_mixer_callbacks_t callbacks = { 0, 0, 0, 0 };

 callbacks.group = mixer_callback_group;
 snd_mixer_read (mixer_handle, &callbacks);
 return (Pt_CONTINUE);
}

int main (void)
{
 snd_mixer_t *mixer_handle;
 int ret;

 if ((ret = snd_mixer_open (&mixer_handle, 0, 0) < 0))
 printf ("Unable to open/read mixer - %s",
 snd_strerror (ret));

 PtAppAddFd (NULL,
 snd_mixer_file_descriptor (mixer_handle),
 Pt_FD_READ, mixer_update, NULL);
 ...
}

48 Copyright © 2014, QNX Software Systems Limited

Mixer Architecture

Closing the mixer device

Closing the mixer device frees all the resources associated with the mixer handle and

shuts down the connection to the sound mixer interface.

To close the mixer handle, simply call snd_mixer_close() (p. 90).

Copyright © 2014, QNX Software Systems Limited 49

Closing the mixer device

Chapter 4
Optimizing Audio

Here are some tips for reducing audio latency:

• Ensure sample rates and data formats are matched between the libasound client

and the audio hardware, so that there's no need for Soft SRC or any other data

conversion in libasound.

• Make sure the libasound client's reads and writes are in the exact audio

fragments/block size, and disable the libasound sub-buffering plugin by calling

snd_pcm_plugin_set_disable() (p. 256):

snd_pcm_plugin_set_disable (pcm_handle,
PLUGIN_DISABLE_BUFFER_PARTIAL_BLOCKS);

• In the libasound client, configure the audio interface to use a smaller audio

fragment/block size (if playing to the software mixer, then the fragment size will

be locked to the software mixer's fragment size, which is 4 KB by default).

Make sure to look at the fragment size returned via the

snd_pcm_plugin_setup() (p. 266) call, because the audio interface may not

be able to exactly satisfy your fragment size request, depending on various

factors such as DMA alignment requirements, potentially required data

conversions, and so on.

• In the libasound client, set the playback start mode to be SND_PCM_START_GO,

and then issue the “go” command (by calling snd_pcm_playback_go() (p. 233))

after you've written two audio fragments/blocks into the interface. For capture, use

SND_PCM_START_DATA, which enables capture to the client as soon as one

fragment of data is available.

• If you're using the sw_mixer, then you must wait until three audio fragments/blocks

are written into the audio interface before issuing the “go” command, or else you

will risk an underrun.

Copyright © 2014, QNX Software Systems Limited 51

Chapter 5
Audio Library

This chapter describes all of the supported QNX Sound Architecture (QSA) API

functions, in alphabetical order; undocumented calls aren't supported.

The QSA has similarities to the Advanced Linux Sound Architecture (ALSA), but isn't

compatible. Though the function names may be the same, there's no guarantee that

QSA and ALSA calls behave the same; some definitely don't.

For an overview of what's in the documentation for a function, see the What's in a

Function Description? chapter of the QNX Neutrino C Library Reference.

Copyright © 2014, QNX Software Systems Limited 53

snd_card_get_longname()

Find the long name for a given card number

Synopsis:

#include <sys/asoundlib.h>

int snd_card_get_longname (int card,
 char *name,
 size_t size);

Arguments:

card

The card number.

name

A buffer in which snd_card_get_longname() stores the name.

size

The size of the buffer, in bytes.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_card_get_longname() function gets the long name associated with the given

card number, and stores as much of the name as possible in the buffer pointed to by

name.

Returns:

Zero, or a negative error code.

Errors:

-EINVAL

The card number is invalid, or name is NULL.

-EACCES

54 Copyright © 2014, QNX Software Systems Limited

Audio Library

Search permission is denied on a component of the path prefix, or the device

exists and the permissions specified are denied.

-EINTR

The open() operation was interrupted by a signal.

-EMFILE

Too many file descriptors are currently in use by this process.

-ENFILE

Too many files are currently open in the system.

-ENOENT

The named device doesn't exist.

-ENOMEM

No memory available for data structure.

-SND_ERROR_INCOMPATIBLE_VERSION

The audio driver version is incompatible with the client library that the

application is using.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 55

snd_card_get_longname()

snd_card_get_name()

Find the name for a given card number

Synopsis:

#include <sys/asoundlib.h>

int snd_card_get_name(int card,
 char *name,
 size_t size);

Arguments:

card

The card number.

name

A buffer in which snd_card_get_name() stores the name.

size

The size of the buffer, in bytes.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_card_get_name() function gets the common name that's associated with the

given card number, and stores as much of the name as possible in the buffer pointed

to by name.

Returns:

Zero, or a negative error code.

Errors:

-EINVAL

The card number is invalid, or name is NULL.

-EACCES

56 Copyright © 2014, QNX Software Systems Limited

Audio Library

Search permission is denied on a component of the path prefix, or the device

exists and the permissions specified are denied.

-EINTR

The open() operation was interrupted by a signal.

-EMFILE

Too many file descriptors are currently in use by this process.

-ENFILE

Too many files are currently open in the system.

-ENOENT

The named device doesn't exist.

-ENOMEM

No memory available for data structure.

-SND_ERROR_INCOMPATIBLE_VERSION

The audio driver version is incompatible with the client library that the

application is using.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 57

snd_card_get_name()

snd_card_name()

Find the card number for a given name

Synopsis:

#include <sys/asoundlib.h>

int snd_card_name (const char *string);

Arguments:

string

The name of the card.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_card_name() function returns the card number associated with the given card

name.

Returns:

A card number (positive integer), or a negative error code.

Errors:

-EINVAL

The string argument is NULL, an empty string, or isn't the name of a card.

-EACCES

Search permission is denied on a component of the path prefix, or the device

exists and the permissions specified are denied.

-EINTR

The open() operation was interrupted by a signal.

-EMFILE

Too many file descriptors are currently in use by this process.

58 Copyright © 2014, QNX Software Systems Limited

Audio Library

-ENFILE

Too many files are currently open in the system.

-ENOENT

The named device doesn't exist.

-ENOMEM

No memory available for data structure.

-SND_ERROR_INCOMPATIBLE_VERSION

The audio driver version is incompatible with the client library that the

application is using.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 59

snd_card_name()

snd_cards()

Count the sound cards

Synopsis:

#include <sys/asoundlib.h>

int snd_cards (void);

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_cards() function returns the instantaneous number of sound cards that have

running drivers. There's no guarantee that the sound cards have contiguous card

numbers, and cards may be unmounted at any time.

This function is mainly provided for historical reasons. You should use

snd_cards_list() (p. 61) instead.

Returns:

The number of sound cards.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

60 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_cards_list()

Count the sound cards and list their card numbers in an array

Synopsis:

#include <sys/asoundlib.h>

int snd_cards_list(int *cards,
 int card_array_size,
 int *cards_over);

Arguments:

cards

An array in which snd_cards_list() stores the card numbers.

card_array_size

The number of card numbers that the array cards can hold.

cards_over

The number of cards that wouldn't fit in the cards array.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_cards_list() function returns the instantaneous number of sound cards that

have running drivers. There's no guarantee that the sound cards have contiguous card

numbers, and cards may be unmounted at any time.

You should use this function instead of snd_cards() (p. 60) because snd_cards_list()

can fill in an array of card numbers. This overcomes the difficulties involved in hunting

a (possibly) non-contiguous list of card numbers for active cards.

Returns:

The number of sound cards.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 61

snd_cards_list()

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

62 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_ctl_callbacks_t

Control callback functions

Synopsis:

typedef struct snd_ctl_callbacks {
 void *private_data; /* should be used by an application */
 void (*rebuild) (void *private_data);
 void (*xswitch) (void *private_data, int cmd,
 int iface, snd_switch_list_item_t *item);
 void *reserved[29]; /* reserved for future use - must be NULL!!! */
} snd_ctl_callbacks_t;

Description:

Use the snd_ctl_callbacks_t structure to define the callback functions that you

need to handle control events. Pass a pointer to an instance of this structure to

snd_ctl_read() (p. 85).

The members of the snd_ctl_callbacks_t structure include:

• private_data, a pointer to arbitrary data that you want to pass to the callbacks

• pointers to the callbacks, which are described below.

Make sure that you zero-fill any members that you aren't interested in. You

can zero-fill the entire snd_ctl_callbacks_t structure if you aren't

interested in tracking any of these events.

rebuild callback

The rebuild callback is called whenever the control device is rebuilt. Its only argument

is the private_data that you specified in this structure.

xswitch callback

The xswitch callback is called whenever a switch changes. Its arguments are:

private_data

A pointer to the arbitrary data that you specified in this structure.

cmd

One of:

• SND_CTL_READ_SWITCH_VALUE

• SND_CTL_READ_SWITCH_CHANGE

• SND_CTL_READ_SWITCH_ADD

• SND_CTL_READ_SWITCH_REMOVE

Copyright © 2014, QNX Software Systems Limited 63

snd_ctl_callbacks_t

iface

The device interface the switch is natively associated with. The possible

values are (from <sys/asound.h>):

• SND_CTL_IFACE_CONTROL

• SND_CTL_IFACE_MIXER

• SND_CTL_IFACE_PCM_PLAYBACK

• SND_CTL_IFACE_PCM_CAPTURE

item

A pointer to a snd_switch_list_item_t structure that identifies the

specific switch that's been changed. This structure has only a name member.

Classification:

QNX Neutrino

64 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_ctl_close()

Close a control handle

Synopsis:

#include <sys/asoundlib.h>

int snd_ctl_close(snd_ctl_t *handle);

Arguments:

handle

The handle for the control connection to the card. This must be a handle

created by snd_ctl_open() (p. 79).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_ctl_close() function frees all the resources allocated with the control handle

and closes the connection to the control interface.

Returns:

Zero on success, or a negative value on error.

Errors:

-EBADF

Invalid file descriptor. Your handle may be corrupt.

-EINTR

The close() call was interrupted by a signal.

-EINVAL

Invalid handle argument.

-EIO

An I/O error occurred while updating the directory information.

Copyright © 2014, QNX Software Systems Limited 65

snd_ctl_close()

-ENOSPC

A previous buffered write call has failed.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

66 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_ctl_file_descriptor()

Get the control file descriptor

Synopsis:

#include <sys/asoundlib.h>

int snd_ctl_file_descriptor(snd_ctl_t *handle);

Arguments:

handle

The handle for the control connection to the card. This must be a handle

created by snd_ctl_open() (p. 79).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_ctl_file_descriptor() function returns the file descriptor of the connection to

the control interface.

You can use the file descriptor for the select() function (see the QNX Neutrino C Library

Reference) for determining if something can be read or written. Your application should

then call snd_ctl_read() (p. 85) if data is waiting to be read.

Returns:

The file descriptor of the connection to the control interface, or a negative value if an

error occurs.

Errors:

-EINVAL

Invalid handle argument.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 67

snd_ctl_file_descriptor()

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

68 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_ctl_hw_info()

Get information about a sound card's hardware

Synopsis:

#include <sys/asoundlib.h>

int snd_ctl_hw_info(snd_ctl_t *handle,
 struct snd_ctl_hw_info *info);

Arguments:

handle

The handle for the control connection to the card. This must be a handle

created by snd_ctl_open() (p. 79).

info

A pointer to a snd_ctl_hw_info_t (p. 71) structure in which

snd_ctl_hw_info() stores the information.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_ctl_hw_info() function fills the info structure with information about the sound

card hardware selected by handle.

Returns:

Zero on success, or a negative value if an error occurs.

Errors:

-EBADF

Invalid file descriptor. Your handle may be corrupt.

-EINVAL

Invalid handle argument.

Copyright © 2014, QNX Software Systems Limited 69

snd_ctl_hw_info()

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

70 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_ctl_hw_info_t

Information about a sound card's hardware

Synopsis:

typedef struct snd_ctl_hw_info
{
 uint32_t type;
 uint32_t hwdepdevs;
 uint32_t pcmdevs;
 uint32_t mixerdevs;
 uint32_t mididevs;
 uint32_t timerdevs;
 char id[16];
 char abbreviation[16];
 char name[32];
 char longname[80];
 uint8_t reserved[128]; /* must be filled with
zeroes */
} snd_ctl_hw_info_t;

Description:

The snd_ctl_hw_info_t structure describes a sound card's hardware. You can get

this information by calling snd_ctl_hw_info() (p. 69).

The members include:

type

The type of sound card. Deprecated; don't use this member.

hwdepdevs

The total number of hardware-dependent devices on this sound card.

Deprecated; don't use this member.

pcmdevs

The total number of PCM devices on this sound card.

mixerdevs

The total number of mixer devices on this sound card.

mididevs

The total number of midi devices on this sound card. Not supported at this

time; don't use this member.

timerdevs

Copyright © 2014, QNX Software Systems Limited 71

snd_ctl_hw_info_t

The total number of timer devices on this sound card. Not supported at this

time; don't use this member.

id

An ID string that identifies this sound card.

abbreviation

An abbreviated name for identifying this sound card.

name

A common name for this sound card.

longname

A unique, descriptive name for this sound card.

reserved

Reserved; this member must be filled with zeroes.

Classification:

QNX Neutrino

72 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_ctl_mixer_switch_list()

Get the number and names of control switches for the mixer

Synopsis:

#include <sys/asoundlib.h >
int snd_ctl_mixer_switch_list(snd_ctl_t *handle,
 int dev, snd_switch_list_t *list);

Arguments:

handle

The handle for the control device. This must have been created by

snd_ctl_open() (p. 79).

dev

The mixer device the switches apply to.

list

A pointer to a snd_switch_list_t structure that

snd_ctl_mixer_switch_list() fills with information about the switch.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_ctl_mixer_switch_list() function uses the control device handle to fill the

given snd_switch_list_t structure with the number of switches for the mixer

specified. It also fills in the array of switches pointed to by pswitches to a limit of

switches_size. Before calling snd_mixer_groups(), set the members of the

snd_switch_list_t as follows:

pswitches

This pointer must be NULL or point to a valid storage location for the switches

(i.e., an array of snd_switch_list_item_t structures).

switches_size

Copyright © 2014, QNX Software Systems Limited 73

snd_ctl_mixer_switch_list()

The size of the pswitches storage location in sizeof(

snd_switch_list_item_t) units (i.e., the number of entries in the

array).

On a successful return, the snd_ctl_mixer_switch_list() function will fill in these

members:

switches

The total switches in this mixer device.

switches_over

The number of switches that couldn't be copied to the storage location.

Returns:

Zero on success, or a negative value if an error occurs.

Errors:

-EINVAL

Invalid handle argument.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

The switch struct must be initialized to a known state before making the call; use

memset() to set the struct to zero, and then set the name member to specify which

switch to read.

74 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_ctl_mixer_switch_read()

Get a mixer switch setting

Synopsis:

#include <sys/asoundlib.h >

int snd_ctl_mixer_switch_read(
 snd_ctl_t *handle,
 int dev,
 snd_switch_t * sw)

Arguments:

handle

The handle for the control device. This must have been created by

snd_ctl_open() (p. 79).

dev

The mixer device the switches apply to.

sw

A pointer to a snd_switch_t structure that snd_ctl_mixer_switch_read()

fills with information about the switch.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_ctl_mixer_switch_read() function reads the snd_switch_t structure for the

switch identified by the name member of the structure.

You must initialize the name member before calling this

function.

Returns:

Zero on success, or a negative value if an error occurs.

Errors:

Copyright © 2014, QNX Software Systems Limited 75

snd_ctl_mixer_switch_read()

-EINVAL

Invalid handle argument.

-ENXIO

The group wasn't found.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

76 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_ctl_mixer_switch_write()

Adjust a mixer switch setting

Synopsis:

#include < sys/asoundlib.h >

int snd_ctl_mixer_switch_write(
 snd_ctl_t *handle,
 int dev,
 snd_switch_t * sw)

Arguments:

handle

The handle for the control device. This must have been created by

snd_ctl_open() (p. 79).

dev

The mixer device the switches apply to.

sw

A pointer to a snd_switch_t structure that snd_ctl_mixer_switch_write()

writes to the driver about the switch.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_ctl_mixer_switch_write() function writes the snd_switch_t structure for

the switch identified by the structure's name member.

Returns:

Zero on success, or a negative value if an error occurs.

Errors:

-EINVAL

Invalid handle argument.

Copyright © 2014, QNX Software Systems Limited 77

snd_ctl_mixer_switch_write()

-ENXIO

The group wasn't found.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

The switch struct must be initialized completely before making the call.

78 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_ctl_open()

Create a connection and handle to the specified control device

Synopsis:

#include <sys/asoundlib.h>

int snd_ctl_open(snd_ctl_t **handle,
 int card);

Arguments:

handle

A pointer to a location in which snd_ctl_open() stores a handle for the card,

which you need to pass to the other snd_ctl_* functions.

card

The card number.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_ctl_open() function creates a new handle and opens a connection to the

control interface for sound card number card (0-N). This handle may be used in all

of the other snd_ctl_*() calls.

Returns:

Zero on success, or a negative value if an error occurs.

Errors:

-EACCES

Search permission is denied on a component of the path prefix, or the device

exists and the permissions specified are denied.

-EINTR

The open() operation was interrupted by a signal.

Copyright © 2014, QNX Software Systems Limited 79

snd_ctl_open()

-EMFILE

Too many file descriptors are currently in use by this process.

-ENFILE

Too many files are currently open in the system.

-ENOENT

The named device doesn't exist.

-ENOMEM

No memory available for data structure.

-SND_ERROR_INCOMPATIBLE_VERSION

The audio driver version is incompatible with the client library that the

application is using.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

80 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_ctl_pcm_channel_info()

Get information about a PCM channel's capabilities from a control handle

Synopsis:

#include <sys/asoundlib.h>

int snd_ctl_pcm_channel_info(
 snd_ctl_t *handle,
 int dev,
 int chn,
 int subdev,
 snd_pcm_channel_info_t *info);

Arguments:

handle

The handle for the control connection to the card. This must be a handle

created by snd_ctl_open() (p. 79).

dev

The PCM device number.

chn

The channel direction; either SND_PCM_CHANNEL_CAPTURE or

SND_PCM_CHANNEL_PLAYBACK.

subdev

The PCM subchannel.

info

A pointer to a snd_pcm_channel_info_t (p. 161) structure in which

snd_ctl_pcm_channel_info() stores the information.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Copyright © 2014, QNX Software Systems Limited 81

snd_ctl_pcm_channel_info()

Description:

The snd_ctl_pcm_channel_info() function fills the info structure with data about the

PCM subchannel subdev in the PCM channel chn on the sound card selected by

handle.

This function gets information about the complete capabilities of the system.

It's similar to snd_pcm_channel_info() (p. 159) and snd_pcm_plugin_info() (p.

245), but these functions get a dynamic “snapshot” of the system's current

capabilities, which can shrink and grow as subchannels are allocated and freed.

Returns:

Zero on success, or a negative error code.

Errors:

-EINVAL

Invalid handle.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

82 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_ctl_pcm_info()

Get general information about a PCM device from a control handle

Synopsis:

#include <sys/asoundlib.h>

int snd_ctl_pcm_info(snd_ctl_t *handle,
 int dev,
 snd_pcm_info_t *info);

Arguments:

handle

The handle for the control connection to the card. This must be a handle

created by snd_ctl_open() (p. 79).

dev

The PCM device.

info

A pointer to a snd_pcm_info_t (p. 216) structure in which

snd_ctl_pcm_info() stores the information.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_ctl_pcm_info() function fills the info structure with information about the

capabilities of the PCM device dev on the sound card selected by handle.

Returns:

Zero on success, or a negative error code.

Errors:

-EINVAL

Invalid handle.

Copyright © 2014, QNX Software Systems Limited 83

snd_ctl_pcm_info()

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

84 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_ctl_read()

Read pending control events

Synopsis:

#include <sys/asoundlib.h>

int snd_ctl_read(snd_ctl_t *handle,
 snd_ctl_callbacks_t *callbacks);

Arguments:

handle

The handle for the control connection to the card. This must be a handle

created by snd_ctl_open() (p. 79).

callbacks

A pointer to a snd_ctl_callbacks_t (p. 63) structure that defines the

callbacks for the events.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_ctl_read() function reads pending control events from the control handle. As

each event is read, the list of callbacks is checked for a handler for this event. If a

match is found, the callback is invoked. This function is usually called on the return

of the select() library call (see the QNX Neutrino C Library Reference).

If you register to receive notification of events (e.g., by using select()), it's very

important that you clear the event queue by calling snd_ctl_read(), even if you

don't want or need the information. The event queues are open-ended and may

cause trouble if allowed to grow in an uncontrolled manner. The best practice

is to read the events in the queues as you receive notification, so that they

don't have a chance to accumulate.

Returns:

The number of events read from the handle, or a negative value on error.

Copyright © 2014, QNX Software Systems Limited 85

snd_ctl_read()

Errors:

-EBADF

Invalid file descriptor. Your handle may be corrupt.

-EINTR

The read operation was interrupted by a signal, and either no data was

transferred, or the resource manager responsible for that file doesn't report

partial transfers.

-EIO

An event I/O error occurred.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

86 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_mixer_callbacks_t

List of mixer callback functions

Synopsis:

typedef struct snd_mixer_callbacks {
 void *private_data; /* should be used with an application */
 void (*rebuild) (void *private_data);
 void (*element) (void *private_data, int cmd,
 snd_mixer_eid_t *eid);
 void (*group) (void *private_data, int cmd,
 snd_mixer_gid_t *gid);
 void *reserved[28]; /* reserved for future use - must be NULL!!! */
} snd_mixer_callbacks_t;

Description:

The snd_mixer_callbacks_t structure defines a list of callbacks that you can

provide to handle events read by snd_mixer_read() (p. 128). The members include:

• private_data, a pointer to arbitrary data that you want to pass to the callbacks

• pointers to the callbacks, which are described below.

Make sure that you zero-fill any members that you aren't interested in. You

can zero-fill the entire snd_mixer_callbacks_t structure if you aren't

interested in tracking any of these events. The wave.c example does this.

rebuild callback

The rebuild callback is called whenever the mixer is rebuilt. Its only argument is the

private_data that you specified in this structure.

element callback

The element callback is called whenever an element event occurs. The arguments to

this function are:

private_data

A pointer to the arbitrary data that you specified in this structure.

cmd

A SND_MIXER_READ_ELEMENT_* event code:

• SND_MIXER_READ_ELEMENT_VALUE — the element's value changed.

• SND_MIXER_READ_ELEMENT_CHANGE — the element changed

(something other than its value).

Copyright © 2014, QNX Software Systems Limited 87

snd_mixer_callbacks_t

• SND_MIXER_READ_ELEMENT_ADD — the element was added (i.e.,

created).

• SND_MIXER_READ_ELEMENT_REMOVE — the element was removed

(i.e., destroyed).

• SND_MIXER_READ_ELEMENT_ROUTE — the element's routing

information changed.

eid

A pointer to a snd_mixer_eid_t (p. 92) structure that holds the ID of the

element affected by the event.

group callback

The group callback is called whenever a group event occurs. The arguments are:

private_data

A pointer to the arbitrary data that you specified in this structure.

cmd

A SND_MIXER_READ_GROUP_* event code:

• SND_MIXER_READ_GROUP_VALUE — the group's value changed.

• SND_MIXER_READ_GROUP_CHANGE — the group changed (something

other than the value).

• SND_MIXER_READ_GROUP_ADD — the group was added (i.e., created).

• SND_MIXER_READ_GROUP_REMOVE — the group was removed (i.e.,

destroyed).

gid

A pointer to a snd_mixer_gid_t (p. 110) structure that holds the ID of the

group affected by the event.

Examples:

static void
mixer_callback_group (void *private_data, int cmd, snd_mixer_gid_t * gid)
{
 Control_t *control, *prev;
 PtWidget_t *above_wgt;
 int i;

 switch (cmd)
 {
 case SND_MIXER_READ_GROUP_VALUE:
 for (control = control_head; control; control = control->next)
 {
 if (strcmp (control->group.gid.name, gid->name) == 0 &&
 control->group.gid.index == gid->index)
 {

88 Copyright © 2014, QNX Software Systems Limited

Audio Library

 if (snd_mixer_group_read (mixer_handle, &control->group) == 0)
 base_update_control (control, NULL);
 }
 }
 break;

 case SND_MIXER_READ_GROUP_ADD:
 if ((control = mixer_create_control (gid, control_tail)))
 {
 if (control->group.caps & SND_MIXER_GRPCAP_PLAY_GRP)
 above_wgt = PtWidgetBrotherBehind (ABW_base_capture_pane);
 else
 above_wgt = PtWidgetBrotherBehind (ABW_base_status);
 PtContainerHold (ABW_base_controls);
 base_create_control (ABW_base_controls, &above_wgt, control);
 PtContainerRelease (ABW_base_controls);
 }
 break;

 case SND_MIXER_READ_GROUP_REMOVE:
 for (prev = NULL, control = control_head; control;
 prev = control, control = control->next)
 {
 if (strcmp (control->group.gid.name, gid->name) == 0 &&
 control->group.gid.index == gid->index)
 mixer_delete_control (control, prev);
 }
 break;
 }

}

int
mixer_update (int fd, void *data, unsigned mode)
{
 snd_mixer_callbacks_t callbacks = { 0, 0, 0, 0 };

 callbacks.group = mixer_callback_group;
 snd_mixer_read (mixer_handle, &callbacks);
 return (Pt_CONTINUE);
}

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 89

snd_mixer_callbacks_t

snd_mixer_close()

Close a mixer handle

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_close(snd_mixer_t *handle);

Arguments:

handle

The handle for the mixer device. This must have been created by

snd_mixer_open() (p. 124).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_close() function frees all the resources allocated with the mixer handle

and closes the connection to the sound mixer interface.

Returns:

Zero, or a negative value on error.

Errors:

-EINTR

The close() call was interrupted by a signal.

-EINVAL

Invalid handle argument.

-EIO

An I/O error occurred while updating the directory information.

-ENOSPC

A previous buffered write call has failed.

90 Copyright © 2014, QNX Software Systems Limited

Audio Library

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 91

snd_mixer_close()

snd_mixer_eid_t

Mixer element ID structure

Synopsis:

ypedef struct
{
 int32_t type;
 char name[36];
 int32_t index;
 uint8_t reserved[120]; /* must be filled with
zeroes */
 int32_t weight;
} snd_mixer_eid_t;

Description:

The snd_mixer_eid_t structure describes a mixer element's ID. The members

include:

type

The type of element.

name

The name of the element.

index

The index of the element.

weight

Reserved for internal sorting operations.

We recommend that you work with mixer groups instead of manipulating the

elements directly.

Classification:

QNX Neutrino

92 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_mixer_element_read()

Get a mixer element's configurable parameters

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_element_read(
 snd_mixer_t *handle,
 snd_mixer_element_t *element);

Arguments:

handle

The handle for the mixer device. This must have been created by

snd_mixer_open() (p. 124).

element

A pointer to a snd_mixer_element_t (p. 95) in which

snd_mixer_element_read() stores the element's configurable parameters.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_element_read() function fills the snd_mixer_element_t structure

with information on the current settings of the element identified by the eid

substructure.

We recommend that you work with mixer groups instead of manipulating the

elements directly.

Returns:

Zero on success, or a negative error value on error.

Errors:

-EINVAL

Copyright © 2014, QNX Software Systems Limited 93

snd_mixer_element_read()

Invalid handle or element argument.

-ENXIO

The element wasn't found.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

The element struct must be initialized to a known state before making the call: use

memset() to set the struct to zero, and then set the eid member to specify which

element to read.

94 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_mixer_element_t

Mixer element control structure

Synopsis:

typedef struct snd_mixer_element
{
 snd_mixer_eid_t eid;
 union
 {
 snd_mixer_element_switch1 switch1;
 snd_mixer_element_switch2 switch2;
 snd_mixer_element_switch3 switch3;
 snd_mixer_element_volume1 volume1;
 snd_mixer_element_volume2 volume2;
 snd_mixer_element_accu3 accu3;
 snd_mixer_element_mux1 mux1;
 snd_mixer_element_mux2 mux2;
 snd_mixer_element_tone_control1 tc1;
 snd_mixer_element_3d_effect1 teffect1;
 snd_mixer_element_pan_control1 pc1;
 snd_mixer_element_pre_effect1 peffect1;
 uint8_t reserved[128];
 /* must be filled with zeroes */
 } data;
 uint8_t reserved[128]; /* must be filled with
zeroes */
} snd_mixer_element_t;

Description:

The snd_mixer_element_t structure contains the settings associated with a mixer

element.

We recommend that you work with mixer groups instead of manipulating the

elements directly.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 95

snd_mixer_element_t

snd_mixer_element_write()

Set a mixer element's configurable parameters

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_element_write(
 snd_mixer_t *handle,
 snd_mixer_element_t *element);

Arguments:

handle

The handle for the mixer device. This must have been created by

snd_mixer_open() (p. 124).

element

A pointer to a snd_mixer_element_t (p. 95) from which

snd_mixer_element_read() sets the element's configurable parameters.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_element_write() function writes the given snd_mixer_element_t

structure to the driver.

We recommend that you work with mixer groups instead of manipulating the

elements directly.

Returns:

Zero on success, or a negative value on error.

Errors:

-EBUSY

The element has been modified by another application.

96 Copyright © 2014, QNX Software Systems Limited

Audio Library

-EINVAL

Invalid handle or element argument.

-ENXIO

The element wasn't found.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

The write may fail with -EBUSY if another application has modified the element, and

this application hasn't read that event yet using snd_mixer_read() (p. 128).

Copyright © 2014, QNX Software Systems Limited 97

snd_mixer_element_write()

snd_mixer_elements()

Get the number of elements in the mixer and their element IDs

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_elements(
 snd_mixer_t *handle,
 snd_mixer_elements_t *elements);

Arguments:

handle

The handle for the mixer device. This must have been created by

snd_mixer_open() (p. 124).

elements

A pointer to a snd_mixer_elements_t (p. 100) structure in which

snd_mixer_elements() stores the information about the elements.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_elements() function fills the given snd_mixer_elements_t structure

with the number of elements in the mixer that the handle was opened on. It also fills

in the array of element IDs pointed to by pelements to a limit of elements_size.

We recommend that you work with mixer groups instead of manipulating the

elements directly.

Before calling snd_mixer_elements(), set the snd_mixer_elements_t structure as

follows:

pelements

This pointer be NULL, or point to a valid storage location for the elements

(i.e., an array of snd_mixer_eid_t (p. 92) structures).

98 Copyright © 2014, QNX Software Systems Limited

Audio Library

elements_size

This must reflect the size of the pelements storage location, in sizeof(

snd_mixer_eid_t) units (i.e., elements_size must be the number of

entries in the pelements array).

On a successful return, snd_mixer_elements() sets these members:

elements

The total number of elements in the mixer.

pelements

If non-NULL, the mixer element IDs are filled in.

elements_over

The number of elements that couldn't be copied to the storage location.

Returns:

Zero on success, or a negative value on error.

Errors:

-EINVAL

Invalid handle.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 99

snd_mixer_elements()

snd_mixer_elements_t

Information about all elements in a mixer

Synopsis:

typedef struct snd_mixer_elements_s
{
 int32_t elements, elements_size, elements_over;
 uint8_t zero[4]; /* alignment -- zero fill
 */
 snd_mixer_eid_t *pelements;
 void *pzero; /* align pointers on
64-bits;
 point to NULL */
 uint8_t reserved[128]; /* must be filled with
zeroes */
} snd_mixer_elements_t;

Description:

The snd_mixer_elements_t structure describes all the elements in a mixer. You

can fill in this structure by calling snd_mixer_elements() (p. 98).

We recommend that you work with mixer groups instead of manipulating the

elements directly.

The members of the snd_mixer_elements_t structure include:

elements

The total number of elements in the mixer.

elements_size

The size of the pelements storage location, in sizeof(snd_mixer_eid_t)

units (i.e., the number of entries in the pelements array). Set this element

before calling snd_mixer_elements().

elements_over

The number of elements that couldn't be copied to the storage location.

pelements

NULL, or a pointer to an array of snd_mixer_eid_t (p. 92) structures.

If pelements isn't NULL, snd_mixer_elements() stores the mixer element IDs

in the array.

100 Copyright © 2014, QNX Software Systems Limited

Audio Library

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 101

snd_mixer_elements_t

snd_mixer_file_descriptor()

Return the file descriptor of the connection to the sound mixer interface

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_file_descriptor(
 snd_mixer_t *handle);

Arguments:

handle

The handle for the mixer device. This must have been created by

snd_mixer_open() (p. 124).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_file_descriptor() function returns the file descriptor of the connection

to the sound mixer interface.

You should use this file descriptor with the select() synchronous multiplexer function

(see the QNX Neutrino C Library Reference) to receive notification of mixer events. If

data is waiting to be read, you can read in the events with snd_mixer_read() (p. 128).

Returns:

The file descriptor of the connection to the mixer interface on success, or a negative

error code.

Errors:

-EINVAL

Invalid handle argument.

Classification:

QNX Neutrino

102 Copyright © 2014, QNX Software Systems Limited

Audio Library

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 103

snd_mixer_file_descriptor()

snd_mixer_filter_t

Information about a mixer's filters

Synopsis:

typedef struct snd_mixer_filter
{
 uint32_t enable; /* bitfield of 1 << SND_MIXER_READ_* */
 uint8_t reserved[124]; /* must be filled with zeroes */
} snd_mixer_filter_t;

Description:

The snd_mixer_filter_t structure describes the filters for a mixer. You can call

snd_mixer_set_filter() (p. 136) to specify the events you want to track, and

snd_mixer_get_filter() (p. 108) to determine which you're tracking.

Currently, the only member of this structure is enable, which is a mask of the mixer

events. The bits in the mask include:

SND_MIXER_READ_REBUILD

The mixer has been rebuilt.

SND_MIXER_READ_ELEMENT_VALUE

An element's value has changed.

SND_MIXER_READ_ELEMENT_CHANGE

An element has changed in some way other than its value.

SND_MIXER_READ_ELEMENT_ADD

An element was added to the mixer.

SND_MIXER_READ_ELEMENT_REMOVE

An element was removed from the mixer.

SND_MIXER_READ_ELEMENT_ROUTE

A route was added or changed.

SND_MIXER_READ_GROUP_VALUE

A group's value has changed.

SND_MIXER_READ_GROUP_CHANGE

A group has changed in some way other than its value.

SND_MIXER_READ_GROUP_ADD

104 Copyright © 2014, QNX Software Systems Limited

Audio Library

A group was added to the mixer.

SND_MIXER_READ_GROUP_REMOVE

A group was removed from the mixer.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 105

snd_mixer_filter_t

snd_mixer_get_bit()

Return the boolean value of a single bit in the specified bitmap

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_get_bit(unsigned int *bitmap,
 int bit);

Arguments:

bitmap

The bitmap to test. Note that bitmap is an array and may be longer than 32

bits.

bit

The index into bitmap of the bit to get.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_get_bit() function is a convenience function that returns the value (0

or 1) of the bit specified by bit in the bitmap.

Returns:

The value of the specified bit (0 or 1).

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

106 Copyright © 2014, QNX Software Systems Limited

Audio Library

Safety:

YesThread

Copyright © 2014, QNX Software Systems Limited 107

snd_mixer_get_bit()

snd_mixer_get_filter()

Get the current mask of mixer events that the driver is tracking

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_get_filter(
 snd_mixer_t *handle,
 snd_mixer_filter_t *filter);

Arguments:

handle

The handle for the mixer device. This must have been created by

snd_mixer_open() (p. 124).

filter

A pointer to a snd_mixer_filter_t (p. 104) structure that

snd_mixer_get_filter() fills in with the mask.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_get_filter() function fills the snd_mixer_filter_t structure with

a mask of all mixer events for the mixer that the handle was opened on that the driver

is tracking.

You can arrange to have your application receive notification when an event occurs by

calling select() on the mixer's file descriptor, which you can get by calling

snd_mixer_file_descriptor() (p. 102). You can use snd_mixer_read() (p. 128) to read the

event's data.

Returns:

Zero on success, or a negative value on error.

Errors:

-EINVAL

108 Copyright © 2014, QNX Software Systems Limited

Audio Library

Invalid handle or filter is NULL.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 109

snd_mixer_get_filter()

snd_mixer_gid_t

Mixer group ID structure

Synopsis:

typedef struct
{
 int32_t type;
 char name[32];
 int32_t index;
 uint8_t reserved[124]; /* must be filled with
zeroes */
 int32_t weight;
} snd_mixer_gid_t;

Description:

The snd_mixer_gid_t structure describes a mixer group's ID. The members include:

type

The group's type. Not currently used; set it to 0.

name

The group's name.

index

The group's index number.

weight

Reserved for internal sorting operations.

Classification:

QNX Neutrino

110 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_mixer_group_read()

Get a mixer group's configurable parameters

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_group_read(
 snd_mixer_t *handle,
 snd_mixer_group_t *group);

Arguments:

handle

The handle for the mixer device. This must have been created by

snd_mixer_open() (p. 124).

group

A pointer to a snd_mixer_group_t (p. 113) structure that

snd_mixer_group_read() fills in with information about the mixer group.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_group_read() function reads the snd_mixer_group_t (p. 113) structure

for the group identified by the gid substructure (for more information, see

snd_mixer_gid_t (p. 110)).

You must initialize the gid substructure before calling this

function.

Returns:

Zero on success, or a negative error value on error.

Errors:

-EINVAL

Copyright © 2014, QNX Software Systems Limited 111

snd_mixer_group_read()

Invalid handle argument.

-ENXIO

The group wasn't found.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

The group struct must be initialized to a known state before making the call: use

memset() to set the struct to zero, and then set the gid member to specify which

group to read.

112 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_mixer_group_t

Mixer group control structure

Synopsis:

typedef struct snd_mixer_group_s
{
 snd_mixer_gid_t gid;
 uint32_t caps;
 uint32_t channels;
 int32_t min, max;
 union
 {
 uint32_t values[32];
 struct
 {
 uint32_t front_left;
 uint32_t front_right;
 uint32_t front_center;
 uint32_t rear_left;
 uint32_t rear_right;
 uint32_t woofer;
 uint8_t reserved[128]; /* must be filled with zeroes */
 } names;
 } volume;
 uint32_t mute;
 uint32_t capture;
 int32_t capture_group;

 int32_t elements_size, elements, elements_over;
 snd_mixer_eid_t *pelements;
 uint16_t change_duration; /* milliseconds */
 uint16_t spare;
 int32_t min_dB, max_dB;
 uint8_t reserved[120]; /* must be filled with zeroes */
} snd_mixer_group_t;

Description:

The snd_mixer_group_t structure is the control structure for a mixer group. You

can get the information for a group by calling snd_mixer_group_read() (p. 111), and

set it by calling snd_mixer_group_write() (p. 116).

The members of this structure include:

gid

A snd_mixer_gid_t (p. 110) structure that identifies the group. This

structure includes the group name and index.

caps

The capabilities of the group, expressed through any combination of these

flags:

• SND_MIXER_GRPCAP_VOLUME — the group has at least one volume

control.

Copyright © 2014, QNX Software Systems Limited 113

snd_mixer_group_t

• SND_MIXER_GRPCAP_JOINTLY_VOLUME — all channel volume levels

for the group must be the same (ganged).

• SND_MIXER_GRPCAP_MUTE — the group has at least one mute control.

• SND_MIXER_GRPCAP_JOINTLY_MUTE — all channel mute settings for

the group must be the same (ganged).

• SND_MIXER_GRPCAP_CAPTURE— the group can be captured (recorded).

• SND_MIXER_GRPCAP_JOINTLY_CAPTURE — all channel capture

settings for the group must be the same (ganged).

• SND_MIXER_GRPCAP_EXCL_CAPTURE — only one group on this device

can be captured at a time.

• SND_MIXER_GRPCAP_PLAY_GRP — the group is a playback group.

• SND_MIXER_GRPCAP_CAP_GRP — the group is a capture group.

• SND_MIXER_GRPCAP_SUBCHANNEL— the group is a subchannel control.

It exists only while a PCM subchannel is allocated by an application.

channels

The mapped bits that correspond to the channels contained in this group.

For example, for stereo right and left speakers, bits 1 and 2 (00011) are

mapped; for the center speaker, bit 3 (00100) is mapped.

min, max

The minimum and maximum values that define the volume range. Note that

the minimum doesn't have to be zero.

volume

A structure that contains the volume level for each channel in the group.

You can access the values accessed directly by name or indirectly through

the array of values.

If the group is jointly volumed, all volume values must be the same;

setting different values results in undefined behavior.

mute

The mute state of the group channels. If the bit corresponding to the channel

is set, the channel is muted.

If the group is jointly muted, all mute bits must be the same; setting

the bits differently results in undefined behavior.

114 Copyright © 2014, QNX Software Systems Limited

Audio Library

capture

The capture state of the group channels. If the bit corresponding to the

channel is set, the channel is being captured. If the group is exclusively

capture, setting capture on this group means that another group is no longer

being captured.

If the group is jointly captured, all capture bits must be the same;

setting the bits differently results in undefined behavior.

capture_group

Not currently used.

elements_size

The size of the memory block pointed to by pelements in units of

snd_mixer_eid_t.

elements

The number of element IDs that are currently valid in pelements.

elements_over

The number of element IDs that were not returned in pelements because it

wasn't large enough.

pelements

A pointer to a region of memory (allocated by the calling application) that's

used to store an array of element IDs. This is an array of snd_mixer_eid_t

(p. 92) structures.

The elements that are returned are the component elements that make up

the group identified by gid.

change_duration

The number of milliseconds over which to ramp the volume.

min_dB, max_dB

The minimum and maximum sound levels, in decibels.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 115

snd_mixer_group_t

snd_mixer_group_write()

Set a mixer group's configurable parameters

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_group_write(
 snd_mixer_t *handle,
 snd_mixer_group_t *group);

Arguments:

handle

The handle for the mixer device. This must have been created by

snd_mixer_open() (p. 124).

group

A pointer to a snd_mixer_group_t (p. 113) structure that contains the

information you want to set for the mixer group.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_group_write() function writes the snd_mixer_group_t structure to

the driver. This structure contains the volume levels and mutes associated with the

group.

Returns:

Zero on success, or a negative value on error.

Errors:

-EBUSY

The group has been modified by another application.

-EINVAL

116 Copyright © 2014, QNX Software Systems Limited

Audio Library

Invalid handle argument.

-ENXIO

The group wasn't found.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

The write may fail with -EBUSY if another application has modified the group, and

this application hasn't read that event yet using snd_mixer_read() (p. 128).

Copyright © 2014, QNX Software Systems Limited 117

snd_mixer_group_write()

snd_mixer_groups()

Get the number of groups in the mixer and their group IDs

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_groups(snd_mixer_t *handle,
 snd_mixer_groups_t *groups);

Arguments:

handle

The handle for the mixer device. This must have been created by

snd_mixer_open() (p. 124).

groups

A pointer to a snd_mixer_groups_t (p. 120) structure that

snd_mixer_groups() fills in with information about the groups.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_groups() function fills the given snd_mixer_groups_t structure

with the number of groups in the mixer that the handle was opened on. It also fills in

the array of group IDs pointed to by pgroups to a limit of groups_size.

Before calling snd_mixer_groups(), set the members of the snd_mixer_groups_t

as follows:

pgroups

This pointer must be NULL or point to a valid storage location for the groups

(i.e., an array of snd_mixer_gid_t (p. 110) structures).

groups_size

The size of the pgroups storage location in sizeof(snd_mixer_gid_t)

units (i.e., the number of entries in the array).

118 Copyright © 2014, QNX Software Systems Limited

Audio Library

On a successful return, snd_mixer_groups() fills in these members:

groups

The total groups in the mixer.

groups_over

The number of groups that couldn't be copied to the storage location.

Returns:

Zero on success, or a negative value on error.

Errors:

-EINVAL

Invalid handle.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 119

snd_mixer_groups()

snd_mixer_groups_t

Information about all of the mixer groups

Synopsis:

typedef struct snd_mixer_groups_s
{
 int32_t groups, groups_size, groups_over;
 uint8_t zero[4]; /* alignment -- zero fill */
 snd_mixer_gid_t *pgroups;
 void *pzero; /* align pointers on 64-bits;
 point to NULL */
 uint8_t reserved[128]; /* must be filled with zeroes
 */
} snd_mixer_groups_t;

Description:

The snd_mixer_groups_t structure holds information about all of the mixer groups.

You can fill this structure by calling snd_mixer_groups() (p. 118).

The members of this structure include:

groups

The number of groups in the mixer.

groups_size

The size of the pgroups storage location in sizeof(snd_mixer_gid_t)

units (i.e., the number of entries in the array). Set this before calling

snd_mixer_groups().

groups_over

The number of groups that wouldn't fit in the pgroups array.

pgroups

NULL, or an array of snd_mixer_gid_t (p. 110) structures.

If pgroups isn't NULL, snd_mixer_groups() stores the group IDs in the array.

Classification:

QNX Neutrino

120 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_mixer_info()

Get general information about a mixer device

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_info(snd_mixer_t *handle,
 snd_mixer_info_t *info);

Arguments:

handle

The handle for the mixer device. This must have been created by

snd_mixer_open() (p. 124).

info

A pointer to a snd_mixer_info_t (p. 123) structure that snd_mixer_info()

fills in with the information about the mixer device.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_info() function fills the info structure with information about the mixer

device, including the:

• device name

• device type

• number of mixer groups and elements the mixer contains.

Returns:

Zero on success, or a negative value on error.

Errors:

-EINVAL

Invalid handle.

Copyright © 2014, QNX Software Systems Limited 121

snd_mixer_info()

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

122 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_mixer_info_t

Information about a mixer

Synopsis:

typedef struct snd_mixer_info_s
{
 uint32_t type;
 uint32_t attrib;
 uint32_t elements;
 uint32_t groups;
 char id[64];
 char name[64];
 uint8_t reserved[128]; /* must be filled with zeroes
 */
} snd_mixer_info_t;

Description:

The snd_mixer_info_t structure describes information about a mixer. You can fill

this structure by calling snd_mixer_info() (p. 121).

The members include:

type

The sound card type. Deprecated; don't use this member.

attrib

Not used.

elements

The total number of mixer elements in this mixer device.

groups

The total number of mixer groups in this mixer device.

id[64]

The ID of this PCM device (user selectable).

name[64]

The name of the device.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 123

snd_mixer_info_t

snd_mixer_open()

Create a connection and handle to a specified mixer device

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_open(snd_mixer_t **handle,
 int card,
 int device);

Arguments:

handle

A pointer to a location where snd_mixer_open() stores a handle for the mixer

device.

card

The card number.

device

The device number.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_open() function creates a connection and handle to the mixer device

specified by the card and device number. You'll use this handle when calling the other

snd_mixer_* functions.

Returns:

Zero on success, or a negative value on error.

Errors:

-EACCES

124 Copyright © 2014, QNX Software Systems Limited

Audio Library

Search permission is denied on a component of the path prefix, or the device

exists and the permissions specified are denied.

-EINTR

The open() operation was interrupted by a signal.

-EMFILE

Too many file descriptors are currently in use by this process.

-ENFILE

Too many files are currently open in the system.

-ENOENT

The named device doesn't exist.

-ENOMEM

No memory available for data structure.

-SND_ERROR_INCOMPATIBLE_VERSION

The audio driver version is incompatible with the client library that the

application is using.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 125

snd_mixer_open()

snd_mixer_open_name()

Create a connection and handle to a mixer device specified by name

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_open_name(snd_mixer_t **handle,
 char *name);

Arguments:

handle

A pointer to a location where snd_mixer_open_name() can store a handle

for the mixer device.

name

The full path of the mixer device to open (e.g., /dev/snd/mixerC0).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_open_name() function creates a handle and opens a connection to the

named mixer device. You'll use this handle when calling the other snd_mixer_*

functions.

Returns:

Zero on success, or a negative value on error.

Errors:

-EACCES

Search permission is denied on a component of the path prefix, or the device

exists and the permissions specified are denied.

-EINTR

The open() operation was interrupted by a signal.

126 Copyright © 2014, QNX Software Systems Limited

Audio Library

-EMFILE

Too many file descriptors are currently in use by this process.

-ENFILE

Too many files are currently open in the system.

-ENOENT

The named device doesn't exist.

-ENOMEM

Not enough memory is available for the data structure.

-SND_ERROR_INCOMPATIBLE_VERSION

The audio driver version is incompatible with the client library that the

application is using.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 127

snd_mixer_open_name()

snd_mixer_read()

Read pending mixer events

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_read(
 snd_mixer_t *handle,
 snd_mixer_callbacks_t *callbacks);

Arguments:

handle

The handle for the mixer device. This must have been created by

snd_mixer_open() (p. 124).

callbacks

A pointer to a snd_mixer_callbacks_t (p. 87) structure that defines

the list of callbacks.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_read() function reads pending mixer events from the mixer handle. As

each event is read, the list of callbacks is checked for a handler for this event. If a

match is found, the callback is invoked. This function is usually called when the

select() library call indicates that there is data to be read on the mixer's file descriptor.

Returns:

The number of events read from the handle, or a negative value on error.

Errors:

-EBADF

Invalid file descriptor. Your handle may be corrupt.

-EINTR

128 Copyright © 2014, QNX Software Systems Limited

Audio Library

The read operation was interrupted by a signal, and either no data was

transferred, or the resource manager responsible for that file doesn't report

partial transfers.

-EIO

An event I/O error occurred.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 129

snd_mixer_read()

snd_mixer_routes()

Get the number of routes in the mixer and their IDs

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_routes(snd_mixer_t *handle,
 snd_mixer_routes_t *routes);

Arguments:

handle

The handle for the mixer device. This must have been created by

snd_mixer_open() (p. 124).

routes

A pointer to a snd_mixer_routes_t (p. 132) structure that

snd_mixer_routes() fills in with information about the routes.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_routes() function fills the given snd_mixer_routes_t structure with

the number of routes in the mixer that the handle was opened on. It also fills in the

array of route IDs pointed to by proutes to a limit of routes_size.

We recommend that you work with mixer groups instead of manipulating the

elements directly.

Before calling snd_mixer_routes(), set the members of this structure as follows:

proutes

This pointer must be NULL, or point to a valid storage location for the routes

(i.e., an array of snd_mixer_eid_t (p. 92) structures).

routes_size

130 Copyright © 2014, QNX Software Systems Limited

Audio Library

The size of this storage location in sizeof(snd_mixer_eid_t) units

(i.e., the number of entries in the proutes array).

On a successful return, the function sets these members:

routes

The total number of routes in the mixer.

routes_over

The number of routes that couldn't be copied to the storage location.

proutes

The list of routes.

Returns:

Zero on success, or a negative value on error.

Errors:

-EINVAL

Invalid handle.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 131

snd_mixer_routes()

snd_mixer_routes_t

Information about mixer routes

Synopsis:

typedef struct snd_mixer_routes_s
{
 snd_mixer_eid_t eid;
 int32_t routes, routes_size, routes_over;
 uint8_t zero[4]; /* alignment -- zero fill
 */
 snd_mixer_eid_t *proutes;
 void *pzero; /* align pointers on
64-bits;
 point to NULL */
 uint8_t reserved[128]; /* must be filled with
zeroes */
} snd_mixer_routes_t;

Description:

The snd_mixer_routes_t structure describes all of the routes in a mixer. You can

fill this structure by calling snd_mixer_routes() (p. 130).

We recommend that you work with mixer groups instead of manipulating the

elements directly.

The members of the snd_mixer_routes_t structure include:

eid

A pointer to a snd_mixer_eid_t (p. 92) structure.

routes

The total number of routes in the mixer.

routes_size

The size of this storage location in sizeof(snd_mixer_eid_t) units

(i.e., the number of entries in the proutes array). Set this member before

calling snd_mixer_routes().

routes_over

The number of routes that couldn't be copied to the storage location.

proutes

132 Copyright © 2014, QNX Software Systems Limited

Audio Library

NULL, or an array of snd_mixer_eid_t (p. 92) structures.

If proutes isn't NULL, snd_mixer_routes() stores the route IDs in the array.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 133

snd_mixer_routes_t

snd_mixer_set_bit()

Set the boolean value of a single bit in the specified bitmap

Synopsis:

#include <sys/asoundlib.h>

void snd_mixer_set_bit(unsigned int *bitmap,
 int bit,
 int val);

Arguments:

bitmap

The bitmap to set. Note that bitmap is an array and may be longer than 32

bits.

bit

The index into bitmap of the bit to set.

val

The boolean value to store in the bit. Any value other than zero causes the

bit to be set; a value of zero causes it to be cleared.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_set_bit() function is a convenience function that sets the value (0 or

1) of the bit specified by bit in the bitmap.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

134 Copyright © 2014, QNX Software Systems Limited

Audio Library

Safety:

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 135

snd_mixer_set_bit()

snd_mixer_set_filter()

Set the mask of mixer events that the driver will track

Synopsis:

#include <sys/asoundlib.h>

int snd_mixer_set_filter(
 snd_mixer_t *handle,
 snd_mixer_filter_t *filter);

Arguments:

handle

The handle for the mixer device. This must have been created by

snd_mixer_open() (p. 124).

filter

A pointer to a snd_mixer_filter_t (p. 104) structure that defines a mask

of events to track.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_set_filter() function uses the snd_mixer_filter_t structure to set

the mask of all mixer events for the mixer that the handle was opened on that the

driver will track. Only those events that are specified in the mask are tracked; all others

are discarded as they occur.

You can arrange to have your application receive notification when an event occurs by

calling select() on the mixer's file descriptor, which you can get by calling

snd_mixer_file_descriptor() (p. 102). You can use snd_mixer_read() (p. 128) to read the

event's data.

Returns:

Zero on success, or a negative value on error.

Errors:

136 Copyright © 2014, QNX Software Systems Limited

Audio Library

-EINVAL

Invalid handle or filter is NULL.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 137

snd_mixer_set_filter()

snd_mixer_sort_eid_table()

Sort a list of element ID structures

Synopsis:

#include <sys/asoundlib.h>

void snd_mixer_sort_eid_table(
 snd_mixer_eid_t *list,
 int count,
 snd_mixer_weight_entry_t *table);

Arguments:

list

A pointer to the list of snd_mixer_eid_t (p. 92), structures that you want

to sort.

count

The number of entries in the list.

table

A pointer to an array of snd_mixer_weight_entry_t (p. 142) structures

that defines the relative weights for the elements.

Most applications use the default table weight structure,

snd_mixer_default_weights.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_sort_eid_table() function sorts a list of eid (element id structures)

based on the names and the relative weights specified by the weight table.

We recommend that you work with mixer groups instead of manipulating the

elements directly.

138 Copyright © 2014, QNX Software Systems Limited

Audio Library

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 139

snd_mixer_sort_eid_table()

snd_mixer_sort_gid_table()

Sort a list of group ID structures

Synopsis:

#include <sys/asoundlib.h>

void snd_mixer_sort_gid_table(
 snd_mixer_gid_t *list,
 int count,
 snd_mixer_weight_entry_t *table);

Arguments:

list

The list of snd_mixer_gid_t (p. 110) structures that you want to sort.

count

The number of entries in the list.

table

A pointer to an array of snd_mixer_weight_entry_t (p. 142) structures

that defines the relative weights for the groups.

Most applications use the default table weight structure,

snd_mixer_default_weights.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_mixer_sort_gid_table() function sorts a list of gid (group id structures) based

on the names and the relative weights specified by the weight table.

Classification:

QNX Neutrino

Safety:

NoCancellation point

140 Copyright © 2014, QNX Software Systems Limited

Audio Library

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 141

snd_mixer_sort_gid_table()

snd_mixer_weight_entry_t

Weight table for sorting mixer element and group IDs

Synopsis:

typedef struct {
 char *name;
 int weight;
} snd_mixer_weight_entry_t;

Description:

The snd_mixer_weight_entry_t structure defines the weights that

snd_mixer_sort_eid_table() (p. 138) and snd_mixer_sort_gid_table() (p. 140) use to sort

mixer element and group IDs. The members include:

name

The name of the mixer element or group.

weight

The weight to use when sorting.

Classification:

QNX Neutrino

142 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_build_linear_format()

Encode a linear format value

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_build_linear_format(int width,
 int unsigned,
 int big_endian);

Arguments:

width

The width; one of 8, 16, 24, or 32.

unsigned

0 for signed; 1 for unsigned.

big_endian

0 for little endian; 1 for big endian.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_build_linear_format() function returns the linear format value encoded

from the given components. For a list of the supported linear formats, see

snd_pcm_format_linear() (p. 196).

Returns:

A positive value (SND_PCM_SFMT_*) on success, or -1 if the arguments are invalid.

Classification:

QNX Neutrino

Safety:

NoCancellation point

Copyright © 2014, QNX Software Systems Limited 143

snd_pcm_build_linear_format()

Safety:

NoInterrupt handler

YesSignal handler

YesThread

144 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_capture_flush()

Discard all pending data in a PCM capture channel's queue and stop the channel

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_capture_flush(snd_pcm_t *handle);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_capture_flush() function throws away all unprocessed data in the driver

queue.

If the operation is successful (zero is returned), the channel's state is changed to

SND_PCM_STATUS_READY, and the channel is stopped.

This function isn't plugin-aware. It functions exactly the same way as

snd_pcm_channel_flush(.., SND_PCM_CHANNEL_CAPTURE). Make

sure that you don't mix and match plugin- and nonplugin-aware functions in

your application, or you may get undefined behavior and misleading results.

Returns:

Zero on success, or a negative error code.

Errors:

-EBADFD

The pcm device state isn't ready.

Copyright © 2014, QNX Software Systems Limited 145

snd_pcm_capture_flush()

-EINTR

The driver isn't processing the data (Internal Error).

-EINVAL

Invalid handle.

-EIO

An invalid channel was specified, or the data wasn't all flushed.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

146 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_capture_go()

Start a PCM capture channel running

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_capture_go (snd_pcm_t *handle);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Description:

The snd_pcm_capture_go() function starts the capture channel.

You should call this function only when the driver is in the SND_PCM_STATUS_READY

state. Calling this function is required if you've set your capture channel's start state

to SND_PCM_START_GO (see snd_pcm_plugin_params() (p. 247)). You can also use

this function to “kick start” early a capture channel that has a start state of

SND_PCM_START_DATA or SND_PCM_START_FULL.

If the parameters are valid (i.e., snd_pcm_capture_go() returns zero), then the driver

state is changed to SND_PCM_STATUS_RUNNING.

This function is safe to use with plugin-aware functions.

This call is used identically to snd_pcm_plugin_params() (p. 247).

Returns:

EOK

Success.

-EINVAL

Invalid handle.

Copyright © 2014, QNX Software Systems Limited 147

snd_pcm_capture_go()

-EIO

Invalid channel.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

148 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_capture_pause()

Pause a channel that's capturing

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_capture_pause (snd_pcm_t *pcm);

Arguments:

pcm

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_capture_pause() function pauses a channel that's capturing. Unlike

draining or flushing, this preserves all data that has not yet been received within the

audio driver, to be retrieved after resuming.

Returns:

EOK

Success.

-EINVAL

The handle is NULL, or the channel isn't capturing.

This function can return other negative errno values.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 149

snd_pcm_capture_pause()

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

150 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_capture_prepare()

Signal the driver to ready the capture channel

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_capture_prepare(snd_pcm_t *handle);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_capture_prepare() function prepares hardware to operate in a specified

transfer direction. This call is responsible for all parts of the hardware's startup

sequence that require additional initialization time, allowing the final “GO” (either

from writes into the buffers or snd_pcm_channel_go() (p. 157)) to execute more quickly.

You can call this function in all states except SND_PCM_STATUS_NOTREADY (returns

-EBADFD) and SND_PCM_STATUS_RUNNING state (returns -EBUSY). If the operation

is successful (zero is returned), the driver state is changed to

SND_PCM_STATUS_PREPARED.

If your channel has overrun, you have to reprepare it before continuing. For an

example, see waverec.c example in the appendix.

Returns:

Zero on success, or a negative error code.

Errors:

-EINVAL

Copyright © 2014, QNX Software Systems Limited 151

snd_pcm_capture_prepare()

Invalid handle.

-EBUSY

Channel is running.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

152 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_capture_resume()

Resume a channel that was paused while capturing

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_capture_resume (snd_pcm_t *pcm);

Arguments:

pcm

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_capture_resume() function resumes a channel that was paused while

capturing.

Returns:

EOK

Success.

-EINVAL

The handle is NULL, or the channel wasn't being used for capturing.

This function can return other negative errno values.

Classification:

QNX Neutrino

Safety:

NoCancellation point

Copyright © 2014, QNX Software Systems Limited 153

snd_pcm_capture_resume()

Safety:

NoInterrupt handler

YesSignal handler

YesThread

154 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_channel_flush()

Flush all pending data in a PCM channel's queue and stop the channel

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_channel_flush(snd_pcm_t *handle,
 int channel);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

channel

The channel; SND_PCM_CHANNEL_CAPTURE or

SND_PCM_CHANNEL_PLAYBACK.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_flush() function flushes all unprocessed data in the driver queue

by calling snd_pcm_capture_flush() (p. 145) or snd_pcm_playback_flush() (p. 231),

depending on the value of channel.

Returns:

Zero on success, or a negative error code.

Errors:

-EBADFD

The PCM device state isn't Ready.

-EINTR

Copyright © 2014, QNX Software Systems Limited 155

snd_pcm_channel_flush()

The driver isn't processing the data (Internal Error).

-EINVAL

Invalid handle.

-EIO

An invalid channel was specified, or the data wasn't all flushed.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

156 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_channel_go()

Start a PCM channel running

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_channel_go (snd_pcm_t *handle,
 int channel);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

channel

The channel; SND_PCM_CHANNEL_CAPTURE or

SND_PCM_CHANNEL_PLAYBACK.

Library:

libasound.so

Description:

The snd_pcm_channel_go() function starts the channel running by calling

snd_pcm_capture_go() (p. 147) or snd_pcm_playback_go() (p. 233), depending on the

value of channel.

The function should be called in SND_PCM_STATUS_READY state. Calling this function

is required if you've set your channel's start state to SND_PCM_START_GO (see

snd_pcm_plugin_params() (p. 247)). You can also use this function to “kick start” early

a channel that has a start state of SND_PCM_START_DATA or SND_PCM_START_FULL.

When you're using snd_pcm_channel_go() for playback, ensure that two or more audio

fragments have been written into the audio interface before issuing the go command,

to prevent the audio channel/stream from going into the UNDERRUN state.

If the parameters are valid (i.e., the function returns zero), then the driver state is

changed to SND_PCM_STATUS_RUNNING.

This function is safe to use with plugin-aware functions. This call is used identically

to snd_pcm_plugin_params() (p. 247).

Copyright © 2014, QNX Software Systems Limited 157

snd_pcm_channel_go()

Returns:

EOK

Success.

-EINVAL

Invalid handle.

-EIO

Invalid channel.

-EMORE

Insufficient audio fragments have been written to the audio interface (when

writing to the software mixer device).

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

158 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_channel_info()

Get information about a PCM channel's current capabilities

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_channel_info(
 snd_pcm_t *handle,
 snd_pcm_channel_info_t *info);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

info

A pointer to a snd_pcm_channel_info_t (p. 161) structure that

snd_pcm_channel_info() fills with information about the PCM channel.

Before calling this function, set the info structure's channel member to

specify the direction. This function sets all the other members.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_channel_info() function fills the info structure with the current

capabilities of the PCM channel selected by handle.

This function and the plugin-aware version, snd_pcm_plugin_info() (p. 245),

get a dynamic “snapshot” of the system's current capabilities, which can shrink

and grow as subchannels are allocated and freed. They're similar to

snd_ctl_pcm_channel_info() (p. 81), which gets information about the complete

capabilities of the system.

Copyright © 2014, QNX Software Systems Limited 159

snd_pcm_channel_info()

Returns:

Zero on success, or a negative error code.

Errors:

-EINVAL

Invalid handle.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

160 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_channel_info_t

Information structure for a PCM channel

Synopsis:

typedef struct snd_pcm_channel_info
{
 int32_t subdevice;
 int8_t subname[36];
 int32_t channel;
 int32_t zero1;
 int32_t zero2[4];
 uint32_t flags;
 uint32_t formats;
 uint32_t rates;
 int32_t min_rate;
 int32_t max_rate;
 int32_t min_voices;
 int32_t max_voices;
 int32_t max_buffer_size;
 int32_t min_fragment_size;
 int32_t max_fragment_size;
 int32_t fragment_align;
 int32_t fifo_size;
 int32_t transfer_block_size;
 uint8_t zero3[4];

 snd_pcm_digital_t dig_mask;
 uint32_t zero4;
 int32_t mixer_device;
 snd_mixer_eid_t mixer_eid;
 snd_mixer_gid_t mixer_gid;
 uint8_t reserved[128];
} snd_pcm_channel_info_t;

Description:

The snd_pcm_channel_info_t structure describes PCM channel information. The

members include:

subdevice

The subdevice number.

subname[32]

The subdevice name.

channel

The channel direction; either SND_PCM_CHANNEL_CAPTURE or

SND_PCM_CHANNEL_PLAYBACK.

Copyright © 2014, QNX Software Systems Limited 161

snd_pcm_channel_info_t

flags

Any combination of:

• SND_PCM_CHNINFO_BLOCK — the hardware supports block mode.

• SND_PCM_CHNINFO_BLOCK_TRANSFER — the hardware transfers

samples by chunks (for example PCI burst transfers).

• SND_PCM_CHNINFO_INTERLEAVE — the hardware accepts audio data

composed of interleaved samples.

• SND_PCM_CHNINFO_MMAP — the hardware supports mmap access.

• SND_PCM_CHNINFO_MMAP_VALID— fragment samples are valid during

transfer. This means that the fragment samples may be used when the

io member from the mmap control structure snd_pcm_mmap_control_t

is set (the fragment is being transferred).

• SND_PCM_CHNINFO_NONINTERLEAVE — the hardware accepts audio

data composed of noninterleaved samples.

• SND_PCM_CHNINFO_OVERRANGE — the hardware supports ADC

(capture) overrange detection.

• SND_PCM_CHNINFO_PAUSE — the hardware supports pausing of the

DMA engines (playback only).

Note that the absence of this flag does not preclude the synthesis

of an application-level pause. It refers only to the direct

capabilities of the hardware. Support for this flag is extremely

rare, so dependence on it is discouraged.

formats

The supported formats (SND_PCM_FMT_*).

rates

Hardware rates (SND_PCM_RATE_*).

min_rate

The minimum rate (in Hz).

max_rate

The maximum rate (in Hz).

min_voices

The minimum number of voices (probably always 1).

162 Copyright © 2014, QNX Software Systems Limited

Audio Library

max_voices

The maximum number of voices.

max_buffer_size

The maximum buffer size, in bytes.

min_fragment_size

The minimum fragment size, in bytes.

max_fragment_size

The maximum fragment size, in bytes.

fragment_align

If this value is set, the size of the buffer fragments must be a multiple of

this value, so that they are in the proper alignment.

fifo_size

The stream FIFO size, in bytes. Deprecated; don't use this member.

transfer_block_size

The bus transfer block size in bytes.

dig_mask

Not currently implemented.

mixer_device

The mixer device for this channel.

mixer_eid

A snd_mixer_eid_t (p. 92) structure that describes the mixer element

identification for this channel.

mixer_gid

The mixer group identification for this channel; see snd_mixer_gid_t (p.

110). You should use this mixer group in applications that are implementing

their own volume controls.

This mixer group is guaranteed to be the lowest-level mixer group for your

channel (or subchannel), as determined at the time that you call

snd_ctl_pcm_channel_info() (p. 81). If you call this function after the

channel has been configured, and a subchannel has been allocated (i.e.,

Copyright © 2014, QNX Software Systems Limited 163

snd_pcm_channel_info_t

after calling snd_pcm_channel_params() (p. 165)), this mixer group is the

subchannel mixer group that's specific to the application's current

subchannel.

Classification:

QNX Neutrino

164 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_channel_params()

Set a PCM channel's configurable parameters

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_channel_params(
 snd_pcm_t *handle,
 snd_pcm_channel_params_t *params);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

params

A pointer to a snd_pcm_channel_params_t (p. 167) structure in which

you've specified the PCM channel's configurable parameters. All members

are write-only.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_channel_params() function sets up the transfer parameters according

to the params structure.

You can call the function in SND_PCM_STATUS_NOTREADY (initial) and

SND_PCM_STATUS_READY states; otherwise, snd_pcm_channel_params() returns

-EBADFD.

If the parameters are valid (i.e., snd_pcm_channel_params() returns zero), the driver

state is changed to SND_PCM_STATUS_READY.

The ability to convert audio to match hardware capabilities (for example,

voice conversion, rate conversion, type conversion, etc.) is enabled by

Copyright © 2014, QNX Software Systems Limited 165

snd_pcm_channel_params()

default. As a result, this function behaves as snd_pcm_plugin_params()

(p. 247), unless you've disabled the conversion by calling:

snd_pcm_plugin_set_disable(handle, PLUGIN_CONVERSION);

Returns:

EOK

Success.

-EINVAL

Invalid handle or params.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

166 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_channel_params_t

PCM channel parameters

Synopsis:

typedef struct snd_pcm_channel_params
{
 int32_t channel;
 int32_t mode;
 snd_pcm_sync_t sync; /* hardware synchronization ID */

 snd_pcm_format_t format;
 snd_pcm_digital_t digital;
 int32_t start_mode;
 int32_t stop_mode;
 int32_t time:1, ust_time:1;
 uint32_t why_failed; /* SND_PCM_PARAMS_BAD_??? */
 union
 {
 struct
 {
 int32_t queue_size;
 int32_t fill;
 int32_t max_fill;
 uint8_t reserved[124]; /* must be filled with zeroes */
 } stream;
 struct
 {
 int32_t frag_size;
 int32_t frags_min;
 int32_t frags_max;
 uint32_t frags_buffered_max;
 uint8_t reserved[120]; /* must be filled with zeroes */
 } block;
 uint8_t reserved[128]; /* must be filled with zeroes */
 } buf;
 char sw_mixer_subchn_name[32];
 uint8_t reserved[96]; /* must be filled with zeroes */
} snd_pcm_channel_params_t;

Description:

The snd_pcm_channel_params_t structure describes the parameters of a PCM

capture or playback channel. The members include:

channel

The channel direction; one of SND_PCM_CHANNEL_PLAYBACK or

SND_PCM_CHANNEL_CAPTURE.

mode

The channel mode: SND_PCM_MODE_BLOCK. (SND_PCM_MODE_STREAM is

deprecated.)

You can OR in the following flags:

• SND_PCM_MODE_FLAG_PROTECTED_CONTENT — indicates that the

output path may not change without the client's approval. When the

Copyright © 2014, QNX Software Systems Limited 167

snd_pcm_channel_params_t

output path does change, the client will change to state

SND_PCM_STATUS_UNSECURE. The client can then check the current

output path, and call snd_pcm_channel_prepare() (p. 173) to continue

playback.

• SND_PCM_MODE_FLAG_REQUIRE_PROTECTION— indicates that digital

protection is required on the audio path. For example, for HDMI, it

indicates that HDCP must be enabled for audio to play.

format

The data format; see snd_pcm_format_t (p. 204).

digital

Not currently implemented.

start_mode

The start mode; one of:

• SND_PCM_START_DATA — start when some data is written (playback)

or requested (capture).

• SND_PCM_START_FULL— start when the whole queue is filled (playback

only).

• SND_PCM_START_GO — start on the Go command.

stop_mode

The stop mode; one of:

• SND_PCM_STOP_STOP — stop when an underrun or overrun occurs.

• SND_PCM_STOP_ERASE — stop and erase the whole buffer when an

overrun occurs (capture only).

• SND_PCM_STOP_ROLLOVER — ROLLOVER (i.e. automatically reprepare

and continue) when an underrun or overrun occurs.

time

If set, the driver offers, in the status structure, the time when the transfer

began. The time is in the format used by gettimeofday() (see the QNX

Neutrino C Library Reference).

ust_time

If set, the driver offers, in the status structure, the time when the transfer

began. The time is in UST format.

168 Copyright © 2014, QNX Software Systems Limited

Audio Library

sync

The synchronization group. Not supported; don't use this member.

queue_size

The queue size, in bytes, for the stream mode. Not supported; don't use this

member.

fill

The fill mode (SND_PCM_FILL_* constants). Not supported; don't use this

member.

max_fill

The number of bytes to be filled ahead with silence. Not supported; don't

use this member.

frag_size

The size of fragment, in bytes.

frags_min

Depends on the mode:

• Capture — the minimum filled fragments to allow wakeup (usually one).

• Playback — the minimum free fragments to allow wakeup (usually one).

frags_max

For playback, the maximum filled fragments to allow wakeup. This value

specifies the total number of fragments that could be written to by an

application. This excludes the fragment that's currently playing, so the actual

total number of fragments is frags_max + 1.

frags_buffered_max

If this is set, io-audio may block the caller after fewer than frags_max

fragments have been passed, if it chooses, but won't block the client before

frags_buffered_max fragments have been written.

sw_mixer_subchn_name

By default, the name of all sw_mixer subchannel groups is PCM Subchan

nel; you can use this field to assign a different name.

Copyright © 2014, QNX Software Systems Limited 169

snd_pcm_channel_params_t

Classification:

QNX Neutrino

170 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_channel_pause()

Pause a channel

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_channel_pause (snd_pcm_t *pcm,
 int channel);

Arguments:

pcm

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

channel

The channel; SND_PCM_CHANNEL_CAPTURE or

SND_PCM_CHANNEL_PLAYBACK.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_channel_pause() function pauses a channel by calling

snd_pcm_capture_pause() (p. 149) or snd_pcm_playback_pause() (p. 235), depending

on the value of channel.

Unlike draining or flushing, this preserves all data that has not yet been received or

played out within the audio driver, to be retrieved or played out after resuming.

Returns:

EOK

Success.

-EINVAL

The handle is NULL.

Copyright © 2014, QNX Software Systems Limited 171

snd_pcm_channel_pause()

-EIO

The channel isn't valid.

This function can return other negative errno values.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

172 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_channel_prepare()

Signal the driver to ready the specified channel

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_channel_prepare(snd_pcm_t *handle,
 int channel);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

channel

The channel; SND_PCM_CHANNEL_CAPTURE or

SND_PCM_CHANNEL_PLAYBACK.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_channel_prepare() function prepares hardware to operate in a specified

transfer direction by calling snd_pcm_capture_prepare() (p. 151) or

snd_pcm_playback_prepare() (p. 237), depending on the value of channel.

This call is responsible for all parts of the hardware's startup sequence that require

additional initialization time, allowing the final “GO” (either from writes into the buffers

or snd_pcm_channel_go() (p. 157)) to execute more quickly.

This function may be called in all states except SND_PCM_STATUS_NOTREADY (returns

-EBADFD) and SND_PCM_STATUS_RUNNING state (returns -EBUSY). If the operation

is successful (zero is returned), the driver state is changed to

SND_PCM_STATUS_PREPARED.

Copyright © 2014, QNX Software Systems Limited 173

snd_pcm_channel_prepare()

If your channel has underrun (during playback) or overrun (during capture),

you have to reprepare it before continuing. For an example, see wave.c and

waverec.c in the appendix.

Returns:

Zero on success, or a negative error code.

Errors:

-EINVAL

Invalid handle.

-EBUSY

Channel is running.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

174 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_channel_resume()

Resume a channel

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_channel_resume (snd_pcm_t *pcm,
 int channel);

Arguments:

pcm

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

channel

The channel; SND_PCM_CHANNEL_CAPTURE or

SND_PCM_CHANNEL_PLAYBACK.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_channel_resume() function resumes a channel by calling

snd_pcm_capture_resume() (p. 153) or snd_pcm_playback_resume() (p. 239), depending

on the value of channel.

Returns:

EOK

Success.

-EINVAL

The handle is NULL.

-EIO

The channel isn't valid.

Copyright © 2014, QNX Software Systems Limited 175

snd_pcm_channel_resume()

This function can return other negative errno values.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

176 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_channel_setup()

Get the current configuration for the specified PCM channel

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_channel_setup(
 snd_pcm_t *handle,
 snd_pcm_channel_setup_t *setup);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

setup

A pointer to a snd_pcm_channel_setup_t (p. 179) structure that

snd_pcm_channel_setup() fills with information about the PCM channel

setup.

Set the setup structure's channel member to specify the direction. All other

members are read-only.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_channel_setup() function fills the setup structure with data about the

PCM channel's configuration.

The ability to convert audio to match hardware capabilities (for example,

voice conversion, rate conversion, type conversion, etc.) is enabled by

default. As a result, this function behaves as snd_pcm_plugin_setup()

(p. 266), unless you've disabled the conversion by calling:

snd_pcm_plugin_set_disable(handle, PLUGIN_CONVERSION);

Copyright © 2014, QNX Software Systems Limited 177

snd_pcm_channel_setup()

Returns:

EOK

Success.

-EINVAL

Invalid handle

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

178 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_channel_setup_t

Current configuration of a PCM channel

Synopsis:

typedef struct snd_pcm_channel_setup
{
 int32_t channel;
 int32_t mode;
 snd_pcm_format_t format;
 snd_pcm_digital_t digital;
 union
 {
 struct
 {
 int32_t queue_size;
 uint8_t reserved[124]; /* must be filled with zeroes */
 } stream;
 struct
 {
 int32_t frag_size;
 int32_t frags;
 int32_t frags_min;
 int32_t frags_max;
 uint32_t max_frag_size;
 uint8_t reserved[124]; /* must be filled with zeroes */
 } block;
 uint8_t reserved[128]; /* must be filled with zeroes */
 } buf;
 int16_t msbits_per_sample;
 int16_t pad1;
 int32_t mixer_device;
 snd_mixer_eid_t *mixer_eid;
 snd_mixer_gid_t *mixer_gid;
 uint8_t mmap_valid:1;
 uint8_t mmap_active:1;
 int32_t mixer_card;
 uint8_t reserved[104]; /* must be filled with zeroes */
} snd_pcm_channel_setup_t;

Description:

The snd_pcm_channel_setup_t structure describes the current configuration of

a PCM channel. The members include:

channel

The channel direction; One of SND_PCM_CHANNEL_PLAYBACK or

SND_PCM_CHANNEL_CAPTURE.

mode

The channel mode: SND_PCM_MODE_BLOCK. (SND_PCM_MODE_STREAM is

deprecated.)

format

The data format; see snd_pcm_format_t (p. 204). Note that the rate

member may differ from the requested one.

Copyright © 2014, QNX Software Systems Limited 179

snd_pcm_channel_setup_t

digital

Not currently implemented.

queue_size

The real queue size (which may differ from requested one).

frag_size

The real fragment size (which may differ from requested one).

frags

The number of fragments.

frags_min

Capture: the minimum filled fragments to allow wakeup. Playback: the

minimum free fragments to allow wakeup.

frags_max

Playback: the maximum filled fragments to allow wakeup. The value also

specifies the maximum number of used fragments plus one.

max_frag_size

The maximum fragment size.

msbits_per_sample

How many most-significant bits are physically used.

mixer_device

Mixer device for this subchannel.

mixer_eid

A pointer to the mixer element identification for this subchannel.

mixer_gid

A pointer to the mixer group identification for this subchannel; see

snd_mixer_gid_t (p. 110).

mmap_valid

The channel can use mmapped access.

mmap_active

180 Copyright © 2014, QNX Software Systems Limited

Audio Library

The channel is using mmapped transfers.

mixer_card

The mixer card.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 181

snd_pcm_channel_setup_t

snd_pcm_channel_status()

Get the runtime status of a PCM channel

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_channel_status(
 snd_pcm_t *handle,
 snd_pcm_channel_status_t *status);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

status

A pointer to a snd_pcm_channel_status_t (p. 184) structure that

snd_pcm_channel_status() fills with information about the PCM channel's

status.

Fill in the status structure's channel member to specify the direction. All

other members are read-only.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_channel_status() function fills the status structure with data about the

PCM channel's runtime status.

The ability to convert audio to match hardware capabilities (for example,

voice conversion, rate conversion, type conversion, etc.) is enabled by

default. As a result, this function behaves as snd_pcm_plugin_status()

(p. 270), unless you've disabled the conversion by calling:

snd_pcm_plugin_set_disable(handle, PLUGIN_CONVERSION);

182 Copyright © 2014, QNX Software Systems Limited

Audio Library

Returns:

EOK

Success.

-EBADFD

The PCM device state isn't Ready.

-EFAULT

Failed to copy data.

-EINVAL

Invalid handle or data pointer is NULL.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 183

snd_pcm_channel_status()

snd_pcm_channel_status_t

PCM channel status structure

Synopsis:

typedef struct snd_pcm_channel_status
{
 int32_t channel;
 int32_t mode;
 int32_t status;
 uint32_t scount;
 struct timeval stime;
 uint64_t ust_stime;
 int32_t frag;
 int32_t count;
 int32_t free;
 int32_t underrun;
 int32_t overrun;
 int32_t overrange;
 uint32_t subbuffered;
 snd_pcm_status_data_t status_data;
 struct timeval stop_time;
 uint8_t hw_device;
 uint8_t reserved[111]; /* must be filled
 with zero */
} snd_pcm_channel_status_t;

Description:

The snd_pcm_channel_status_t structure describes the status of a PCM channel.

The members include:

channel

The channel direction; one of SND_PCM_CHANNEL_PLAYBACK or

SND_PCM_CHANNEL_CAPTURE.

mode

The transfer mode: SND_PCM_MODE_BLOCK. (SND_PCM_MODE_STREAM is

deprecated.)

status

The channel status. Valid values are:

• SND_PCM_STATUS_NOTREADY — the driver isn't prepared for any

operation. After a successful call to snd_pcm_channel_params() (p. 165),

the state is changed to SND_PCM_STATUS_READY.

184 Copyright © 2014, QNX Software Systems Limited

Audio Library

• SND_PCM_STATUS_READY — the driver is ready for operation. You can

mmap() the audio buffer only in this state, but the samples still can't be

transferred. After a successful call to snd_pcm_channel_prepare() (p.

173), snd_pcm_capture_prepare() (p. 151), snd_pcm_playback_prepare()

(p. 237), or snd_pcm_plugin_prepare() (p. 251), the state is changed to

SND_PCM_STATUS_PREPARED.

• SND_PCM_STATUS_PREPARED — the driver is prepared for operation.

The samples may be transferred in this state.

• SND_PCM_STATUS_RUNNING — the driver is actively transferring data

through the hardware. The samples may be transferred in this state.

• SND_PCM_STATUS_UNDERRUN— the playback channel is in an underrun

state. The driver completely drained the buffers before new data was

ready to be played. You must reprepare the channel before continuing,

by calling snd_pcm_channel_prepare() (p. 173),

snd_pcm_playback_prepare() (p. 237), or snd_pcm_plugin_prepare() (p.

251). See the wave.c example in the appendix.

• SND_PCM_STATUS_OVERRUN — the capture channel is in an overrun

state. The driver has processed the incoming data faster than it's coming

in; the channel is stalled. You must reprepare the channel before

continuing, by calling snd_pcm_channel_prepare() (p. 173),

snd_pcm_capture_prepare() (p. 151), or snd_pcm_plugin_prepare() (p.

251). See the waverec.c example in the appendix.

• SND_PCM_STATUS_PAUSED — the playback is paused (not supported

by QSA).

scount

The number of bytes processed since the playback/capture last started. This

value wraps around to 0 when it passes the value of SND_PCM_BOUNDARY,

and is reset when you prepare the channel.

stime

The playback/capture start time, in the format used by gettimeofday() (see

the QNX Neutrino C Library Reference).

This member is valid only when the time flags is active in the

snd_pcm_channel_params_t (p. 167) structure.

ust_stime

The playback/capture start time, in UST format. This member is valid only

when the ust_time flags is active in the snd_pcm_channel_params_t

(p. 167) structure.

Copyright © 2014, QNX Software Systems Limited 185

snd_pcm_channel_status_t

frag

The current fragment number (available only in the block mode).

count

The number of bytes in the queue/buffer; see the note below.

free

The number of bytes in the queue that are still free; see the note below.

underrun

The number of playback underruns since the last status.

overrun

The number of capture overruns since the last status.

overrange

The number of ADC capture overrange detections since the last status.

subbuffered

The number of bytes subbuffered in the plugin interface.

status_data

Additional data relevant to a particular value for status.

stop_time

The time at which the last sample was played or recorded in the most recent

case where the channel stopped for any reason.

hw_device

Which device, from the audio_manager_device_t enumerated type, is

currently being used. It might not be available, in which case, it's set to

AUDIO_DEVICE_COUNT.

• The count and free members aren't used if the mmap plugin is used. To

disable the mmap plugin, call snd_pcm_plugin_set_disable() (p. 256).

• The stop_time and stime members hold valid data only if there's data

present in the channel; they aren't necessarily valid as soon as the channel

goes to a SND_PCM_STATUS_RUNNING state, but they're guaranteed to

be valid as soon as scount indicates that some data has been processed.

186 Copyright © 2014, QNX Software Systems Limited

Audio Library

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 187

snd_pcm_channel_status_t

snd_pcm_close()

Close a PCM handle and free its resources

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_close(snd_pcm_t *handle);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_close() function frees all resources allocated with the audio handle and

closes the connection to the PCM interface.

Returns:

Zero on success, or a negative value on error.

Errors:

-EINTR

The close() call was interrupted by a signal.

-EINVAL

Invalid handle argument.

-EIO

An I/O error occurred while updating the directory information.

-ENOSPC

188 Copyright © 2014, QNX Software Systems Limited

Audio Library

A previous buffered write call has failed.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 189

snd_pcm_close()

snd_pcm_file_descriptor()

Return the file descriptor of the connection to the PCM interface

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_file_descriptor(snd_pcm_t *handle,
 int channel);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

channel

The channel; SND_PCM_CHANNEL_CAPTURE or

SND_PCM_CHANNEL_PLAYBACK.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_file_descriptor() function returns the file descriptor of the connection

to the PCM interface.

You can use this file descriptor for the select() synchronous multiplexer function (see

the QNX Neutrino C Library Reference).

Returns:

The file descriptor of the connection to the PCM interface on success, or a negative

error code.

Errors:

-EINVAL

Invalid handle argument.

190 Copyright © 2014, QNX Software Systems Limited

Audio Library

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 191

snd_pcm_file_descriptor()

snd_pcm_find()

Find all PCM devices in the system that meet the given criteria

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_find(unsigned int format,
 int *number,
 int *cards,
 int *devices,
 int mode);

Arguments:

format

Any combination of the SND_PCM_FMT_* constants. Here are the most

commonly used flags:

• SND_PCM_FMT_U8 — unsigned 8-bit PCM.

• SND_PCM_FMT_S8 — signed 8-bit PCM.

• SND_PCM_FMT_U16_LE — unsigned 16-bit PCM little endian.

• SND_PCM_FMT_U16_BE — unsigned 16-bit PCM big endian.

• SND_PCM_FMT_S16_LE — signed 16-bit PCM little endian.

• SND_PCM_FMT_S16_BE — signed 16-bit PCM big endian.

number

The size of the card and device arrays that cards and devices point to. On

return, number contains the total number of devices found.

cards

An array in which snd_pcm_find() stores the numbers of the cards it finds.

devices

An array in which snd_pcm_find() stores the numbers of the devices it finds.

mode

One of the following:

• SND_PCM_CHANNEL_PLAYBACK — the playback channel.

• SND_PCM_CHANNEL_CAPTURE — the capture channel.

192 Copyright © 2014, QNX Software Systems Limited

Audio Library

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_find() function finds all PCM devices in the system that support any

combination of the given format parameters in the given mode.

The card and device arrays are to be considered paired: the following uniquely defines

the first PCM device:

card[0] + device[0]

Returns:

A positive integer representing the total number of devices found (same as number

on return), or a negative value on error.

Errors:

-EINVAL

Invalid mode or format.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 193

snd_pcm_find()

snd_pcm_format_big_endian()

Check for a big-endian format

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_format_big_endian(int format);

Arguments:

format

The format number (one of the SND_PCM_SFMT_* constants). For a list of

the supported formats, see snd_pcm_get_format_name() (p. 211).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_format_big_endian() function checks to see if format is big-endian.

Returns:

1

The format is in big-endian byte order.

0

The format isn't in big-endian byte order.

Otherwise, it returns a negative error code.

Errors:

-EINVAL

Invalid format with respect to endianness.

Classification:

QNX Neutrino

194 Copyright © 2014, QNX Software Systems Limited

Audio Library

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 195

snd_pcm_format_big_endian()

snd_pcm_format_linear()

Check for a linear format

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_format_linear(int format);

Arguments:

format

The format number (one of the SND_PCM_SFMT_* constants). For a list of

the supported formats, see snd_pcm_get_format_name() (p. 211).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_format_linear() function checks to see if the format is linear. The

supported linear formats are:

• SND_PCM_SFMT_S8

• SND_PCM_SFMT_U8

• SND_PCM_SFMT_S16_LE

• SND_PCM_SFMT_U16_LE

• SND_PCM_SFMT_S16_BE

• SND_PCM_SFMT_U16_BE

• SND_PCM_SFMT_S24_LE

• SND_PCM_SFMT_U24_LE

• SND_PCM_SFMT_S24_BE

• SND_PCM_SFMT_U24_BE

• SND_PCM_SFMT_S32_LE

• SND_PCM_SFMT_U32_LE

• SND_PCM_SFMT_S32_BE

• SND_PCM_SFMT_U32_BE

For a list of all the supported formats, see snd_pcm_get_format_name() (p. 211).

196 Copyright © 2014, QNX Software Systems Limited

Audio Library

Returns:

1

The format is a linear format.

0

The format isn't a linear format.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 197

snd_pcm_format_linear()

snd_pcm_format_little_endian()

Check for a little-endian format

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_format_little_endian(int format);

Arguments:

format

The format number (one of the SND_PCM_SFMT_* constants). For a list of

the supported formats, see snd_pcm_get_format_name() (p. 211).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_format_little_endian() function checks to see if format is little-endian.

Returns:

1

The format is in little-endian byte order.

0

The format isn't in little-endian byte order.

Otherwise, it returns a negative error code.

Errors:

-EINVAL

Invalid format with respect to endianness.

Classification:

QNX Neutrino

198 Copyright © 2014, QNX Software Systems Limited

Audio Library

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 199

snd_pcm_format_little_endian()

snd_pcm_format_signed()

Check for a signed format

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_format_signed(int format);

Arguments:

format

The format number (one of the SND_PCM_SFMT_* constants). For a list of

the supported formats, see snd_pcm_get_format_name() (p. 211).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_format_signed() function checks for a signed format.

Returns:

1

The format is signed.

0

The format is unsigned.

Otherwise, it returns a negative error code.

Errors:

-EINVAL

Invalid format with respect to sign.

Classification:

QNX Neutrino

200 Copyright © 2014, QNX Software Systems Limited

Audio Library

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 201

snd_pcm_format_signed()

snd_pcm_format_size()

Convert the size in the given samples to bytes

Synopsis:

#include <sys/asoundlib.h>

ssize_t snd_pcm_format_size(int format,
 size_t num_samples);

Arguments:

format

The format number (one of the SND_PCM_SFMT_* constants). For a list of

the supported formats, see snd_pcm_get_format_name() (p. 211).

num_samples

The number of samples for which you want to determine the size.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_format_size() function calculates the size, in bytes, of num_samples

samples of data in the given format.

Returns:

A positive value on success, or a negative error code.

Errors:

-EINVAL

Invalid format.

Classification:

QNX Neutrino

202 Copyright © 2014, QNX Software Systems Limited

Audio Library

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 203

snd_pcm_format_size()

snd_pcm_format_t

PCM data format structure

Synopsis:

typedef struct snd_pcm_format {
 int32_t interleave: 1;
 int32_t format;
 int32_t rate;
 int32_t voices;
 int32_t special;
 uint8_t reserved[124]; /* must be filled with zeroes */
} snd_pcm_format_t;

Description:

The snd_pcm_format_t structure describes the format of the PCM data. The

members include:

interleave

If set, the sample data contains interleaved samples.

format

The format number (one of the SND_PCM_SFMT_* constants). For a list of

the supported formats, see snd_pcm_get_format_name() (p. 211).

rate

The requested rate, in Hz.

voices

The number of voices, in the range specified by the min_voices and

max_voices members of the snd_pcm_channel_info_t (p. 161) structure.

Typical values are 2 for stereo, and 1 for mono.

special

Special (custom) description of format. Use when SND_PCM_SFMT_SPECIAL

is specified.

Classification:

QNX Neutrino

204 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_format_unsigned()

Check for an unsigned format

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_format_unsigned(int format);

Arguments:

format

The format number (one of the SND_PCM_SFMT_* constants). For a list of

the supported formats, see snd_pcm_get_format_name() (p. 211).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_format_unsigned() function checks for an unsigned format.

Returns:

1

The format is unsigned.

0

The format is signed.

Otherwise, it returns a negative error code.

Errors:

-EINVAL

Invalid format with respect to sign.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 205

snd_pcm_format_unsigned()

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

206 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_format_width()

Return the sample width in bits for a format

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_format_width(int format);

Arguments:

format

The format number (one of the SND_PCM_SFMT_* constants). For a list of

the supported formats, see snd_pcm_get_format_name() (p. 211).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_format_width() function returns the sample width in bits.

Returns:

A positive sample width on success, or a negative error code.

Errors:

-EINVAL

Invalid format.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

Copyright © 2014, QNX Software Systems Limited 207

snd_pcm_format_width()

Safety:

YesThread

208 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_get_audioman_handle()

Retrieve an audioman handle that's bound to a PCM stream

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_get_audioman_handle(snd_pcm_t *handle,
 unsigned int *audioman_handle
);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

audioman_handle

A pointer to a location where the function can store the handle of the audio

manager.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_get_audioman_handle() function retrieves an audioman handle that's

bound to a PCM stream. Binding an audioman handle to a PCM stream results in the

PCM stream's conditionally ducking behind other streams, depending on the type of

other stream playing.

Returns:

EOK

Success.

-EINVAL

The PCM handle is NULL, or the value of the audio handle passed to the

function was SND_PCM_AUDIOMAN_NO_HANDLE.

Copyright © 2014, QNX Software Systems Limited 209

snd_pcm_get_audioman_handle()

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

210 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_get_format_name()

Convert a format value into a human-readable text string

Synopsis:

#include <sys/asoundlib.h>

const char *snd_pcm_get_format_name(int format);

Arguments:

format

The format number (one of the SND_PCM_SFMT_* constants).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_get_format_name() function converts a format member or manifest of

the form SND_PCM_SFMT_* to a text string suitable for displaying to a human user:

SND_PCM_SFMT_U8

Unsigned 8-bit

SND_PCM_SFMT_S8

Signed 8-bit

SND_PCM_SFMT_U16_LE

Unsigned 16-bit Little Endian

SND_PCM_SFMT_U16_BE

Unsigned 16-bit Big Endian

SND_PCM_SFMT_S16_LE

Signed 16-bit Little Endian

SND_PCM_SFMT_S16_BE

Signed 16-bit Big Endian

Copyright © 2014, QNX Software Systems Limited 211

snd_pcm_get_format_name()

SND_PCM_SFMT_U24_LE

Unsigned 24-bit Little Endian

SND_PCM_SFMT_U24_BE

Unsigned 24-bit Big Endian

SND_PCM_SFMT_S24_LE

Signed 24-bit Little Endian

SND_PCM_SFMT_S24_BE

Signed 24-bit Big Endian

SND_PCM_SFMT_U32_LE

Unsigned 32-bit Little Endian

SND_PCM_SFMT_U32_BE

Unsigned 32-bit Big Endian

SND_PCM_SFMT_S32_LE

Signed 32-bit Little Endian

SND_PCM_SFMT_S32_BE

Signed 32-bit Big Endian

SND_PCM_SFMT_A_LAW

A-Law

SND_PCM_SFMT_MU_LAW

Mu-Law

SND_PCM_SFMT_FLOAT_LE

Float Little Endian

SND_PCM_SFMT_FLOAT_BE

Float Big Endian

SND_PCM_SFMT_FLOAT64_LE

Float64 Little Endian

SND_PCM_SFMT_FLOAT64_BE

Float64 Big Endian

SND_PCM_SFMT_IEC958_SUBFRAME_LE

212 Copyright © 2014, QNX Software Systems Limited

Audio Library

IEC-958 Little Endian

SND_PCM_SFMT_IEC958_SUBFRAME_BE

IEC-958 Big Endian

SND_PCM_SFMT_IMA_ADPCM

Ima-ADPCM

SND_PCM_SFMT_GSM

GSM

SND_PCM_SFMT_MPEG

MPEG

SND_PCM_SFMT_SPECIAL

Special

Returns:

A character pointer to the text format name.

Don't modify the strings that this function

returns.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 213

snd_pcm_get_format_name()

snd_pcm_info()

Get general information about a PCM device

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_info(snd_pcm_t *handle,
 snd_pcm_info_t *info);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

info

A pointer to a snd_pcm_info_t (p. 216) structure in which

snd_ctl_pcm_info() stores the information.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_info() function fills the info structure with information about the

capabilities of the PCM device selected by handle.

Returns:

Zero on success, or a negative error code.

Errors:

-EINVAL

Invalid handle.

Classification:

QNX Neutrino

214 Copyright © 2014, QNX Software Systems Limited

Audio Library

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 215

snd_pcm_info()

snd_pcm_info_t

Capability information about a PCM device

Synopsis:

typedef struct snd_pcm_info
{
 uint32_t type;
 uint32_t flags;
 uint8_t id[64];
 char name[80];
 int32_t playback;
 int32_t capture;
 int32_t card;
 int32_t device;
 int32_t shared_card;
 int32_t shared_device;
 uint8_t reserved[128]; /* must be filled with
zeroes */
} snd_pcm_info_t;

Description:

The snd_pcm_info_t structure describes the capabilities of a PCM device. The

members include:

type

Sound card type. Deprecated. Do not use.

flags

Any combination of:

• SND_PCM_INFO_PLAYBACK — the playback channel is present.

• SND_PCM_INFO_CAPTURE — the capture channel is present.

• SND_PCM_INFO_DUPLEX— the hardware is capable of duplex operation.

• SND_PCM_INFO_DUPLEX_RATE — the playback and capture rates must

be same for the duplex operation.

• SND_PCM_INFO_DUPLEX_MONO — the playback and capture must be

monophonic for the duplex operation.

• SND_PCM_INFO_SHARED — some or all of the hardware channels are

shared using software PCM mixing.

id[64]

ID of this PCM device (user selectable).

216 Copyright © 2014, QNX Software Systems Limited

Audio Library

name[80]

Name of the device.

playback

Number of playback subdevices - 1.

capture

Number of capture subdevices - 1.

card

Card number.

device

Device number.

shared_card

Number of shared cards for this PCM device.

shared_device

Number of shared devices for this PCM device.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 217

snd_pcm_info_t

snd_pcm_link()

Link two PCM streams together

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_link(snd_pcm_t *pcm1,
 snd_pcm_t *pcm2);

Arguments:

pcm1, pcm2

The handles for the PCM devices, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_link() function links two PCM streams together such that they always

play at the same time. Starting one starts the other, and stopping one stops the other.

Returns:

EOK on success, or a positive errno value if an error occurred.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

218 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_nonblock_mode()

Set or reset the blocking behavior of reads and writes to PCM channels

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_nonblock_mode(snd_pcm_t *handle,
 int nonblock);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

nonblock

If this argument is nonzero, non-blocking mode is in effect for subsequent

calls to snd_pcm_read() (p. 277) and snd_pcm_write() (p. 283).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_nonblock_mode() function sets up blocking (default) or nonblocking

behavior for a handle.

Blocking mode suspends the execution of the client application when there's no room

left in the buffer it's writing to, or nothing left to read when reading.

In nonblocking mode, programs aren't suspended, and the read and write functions

return immediately with the number of bytes that were read or written by the driver.

When used in this way, don't try to use the entire buffer after the call; instead, process

the number of bytes returned and call the function again.

Returns:

Zero on success, or a negative error code.

Errors:

Copyright © 2014, QNX Software Systems Limited 219

snd_pcm_nonblock_mode()

-EBADF

Invalid file descriptor. Your handle may be corrupt.

-EINVAL

Invalid handle.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

If possible, it is recommended that you design your application to call select on the

PCM file descriptor, instead of using this function. Asynchronously receiving notification

from the driver is much less CPU-intensive than polling it in a non-blocking loop.

220 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_open()

Create a handle and open a connection to a specified audio interface

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_open(snd_pcm_t **handle,
 int card,
 int device,
 int mode);

Arguments:

handle

A pointer to a location where snd_pcm_open() stores a handle for the audio

interface. You'll need this handle when you call the other snd_pcm_*

functions.

card

The card number.

device

The audio device number.

mode

One of:

• SND_PCM_OPEN_PLAYBACK — open the playback channel (direction).

• SND_PCM_OPEN_CAPTURE — open the capture channel (direction).

You can OR this flag with any of the above:

• SND_PCM_OPEN_NONBLOCK — force the mode to be nonblocking. This

affects any reading from or writing to the device that you do later; you

can query the device any time without blocking.

You can change the blocking setup later by calling

snd_pcm_nonblock_mode() (p. 219)

Library:

libasound.so

Copyright © 2014, QNX Software Systems Limited 221

snd_pcm_open()

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_open() function creates a handle and opens a connection to the audio

interface for sound card number card and audio device number device. It also checks

if the protocol is compatible to prevent the use of programs written to an older API

with newer drivers.

There are no defaults; your application must specify all the arguments to this function.

Using names for audio devices (snd_pcm_open_name() (p. 223)) is preferred to using

numbers (snd_pcm_open()), although snd_pcm_open_preferred() (p. 226). remains a

good alternative to both.

Returns:

Zero on success, or a negative error code.

Errors:

-ENOMEM

Not enough memory to allocate control structures.

Examples:

See the example in “Opening your PCM device (p. 26)” in the Playing and Capturing

Audio Data chapter.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

Successfully opening a PCM channel doesn't guarantee that there are enough audio

resources free to handle your application. Audio resources (e.g., subchannels) are

allocated when you configure the channel by calling snd_pcm_channel_params() (p.

165) or snd_pcm_plugin_params() (p. 247).

222 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_open_name()

Create a handle and open a connection to an audio interface specified by name

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_open_name(snd_pcm_t **handle,
 char *name,
 int mode);

Arguments:

handle

A pointer to a location where snd_pcm_open_name() can store a handle for

the audio interface. You'll need this handle when you call the other

snd_pcm_* functions.

name

The name of the PCM device to open; one of the following:

For:Use this device:

The default to use under most

circumstances

pcmPreferred

The default to use for system sounds.

Sounds played through this device

tones

aren't attenuated by the global

volume setting.

Accessing a Bluetooth headsetbluetooth

Acoustic echo cancellation and noise

suppression, as well as lower latency

voice

Playback through a receiver

connected over HDMI

hdmi_mix

Playback through a receiver

connected over USB

usb_mix

Capture over a microphone

connected over USB

usb

Copyright © 2014, QNX Software Systems Limited 223

snd_pcm_open_name()

mode

One of:

• SND_PCM_OPEN_PLAYBACK — open the playback channel (direction).

• SND_PCM_OPEN_CAPTURE — open the capture channel (direction).

You can OR the following flag with any of the above:

• SND_PCM_OPEN_NONBLOCK — force the mode to be nonblocking. This

affects any reading from or writing to the device that you do later; you

can query the device any time without blocking.

You can change the blocking setup later by calling

snd_pcm_nonblock_mode() (p. 219).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_open_name() function creates a handle and opens a connection to the

named PCM audio interface.

Using names for audio devices (snd_pcm_open_name()) is preferred to using numbers

(snd_pcm_open() (p. 221)), although snd_pcm_open_preferred() (p. 226). remains a

good alternative to both.

Returns:

EOK

Success.

-EINVAL

The mode is invalid.

-ENOENT

The named device doesn't exist.

-ENOMEM

Not enough memory is available to allocate the control structures.

-SND_ERROR_INCOMPATIBLE_VERSION

224 Copyright © 2014, QNX Software Systems Limited

Audio Library

The audio driver version is incompatible with the client library that the

application is using.

Examples:

snd_pcm_open_name(&pcm_handle, "voice", SND_PCM_OPEN_CAPTURE);

See also the example of snd_pcm_open() in “Opening your PCM device (p. 26)” in

the Playing and Capturing Audio Data chapter.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

Successfully opening a PCM channel doesn't guarantee that there are enough audio

resources free to handle your application. Audio resources (e.g., subchannels) are

allocated when you configure the channel by calling snd_pcm_channel_params() (p.

165) or snd_pcm_plugin_params() (p. 247).

Copyright © 2014, QNX Software Systems Limited 225

snd_pcm_open_name()

snd_pcm_open_preferred()

Create a handle and open a connection to the preferred audio interface

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_open_preferred(snd_pcm_t **handle,
 int *rcard,
 int *rdevice,
 int mode);

Arguments:

handle

A pointer to a location where snd_pcm_open_preferred() can store a handle

for the audio interface. You'll need this handle when you call the other

snd_pcm_* functions.

rcard

If non-NULL, this must be a pointer to a location where

snd_pcm_open_preferred() can store the number of the card that it opened.

rdevice

If non-NULL, this must be a pointer to a location where

snd_pcm_open_preferred() can store the number of the audio device that it

opened.

mode

One of:

• SND_PCM_OPEN_PLAYBACK — open the playback channel (direction).

• SND_PCM_OPEN_CAPTURE — open the capture channel (direction).

You can OR this flag with any of the above:

• SND_PCM_OPEN_NONBLOCK — force the mode to be nonblocking. This

affects any reading from or writing to the device that you do later; you

can query the device any time without blocking.

You can change the blocking setup later by calling

snd_pcm_nonblock_mode() (p. 219).

226 Copyright © 2014, QNX Software Systems Limited

Audio Library

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_open_preferred() function is an extension to the snd_pcm_open() (p.

221) function that attempts to open the user-selected default (or preferred) device for

the system.

If you use this function, your application will be more flexible than if you use

snd_pcm_open().

In a system where more than one PCM device exists, the user may set a preference

for one of these devices. This function attempts to open that device and return a PCM

handle to it. The function returns the card and device numbers if the rcard and rdevice

arguments aren't NULL.

Here's the search order to find the preferred device:

1. Read /etc/system/config/audio/preferences. The format of this file is

as follows, with a tab character between the fields:

pcmPreferredp card_number device_number
pcmPreferredc card_number device_number

2. If this file doesn't exist or has no entry, check PCM device 0 of card 0 for a software

mixing overlay device. If this overlay device is found, it's opened.

3. Open the default device 0 of card 0.

If all of the above fail, you don't have an audio system running.

Returns:

Zero on success, or a negative value on error.

Errors:

-EINVAL

Invalid mode.

-EACCES

Search permission is denied on a component of the path prefix, or the device

exists and the permissions specified are denied.

-EINTR

Copyright © 2014, QNX Software Systems Limited 227

snd_pcm_open_preferred()

The open() operation was interrupted by a signal.

-EMFILE

Too many file descriptors are currently in use by this process.

-ENFILE

Too many files are currently open in the system.

-ENOENT

The named device doesn't exist.

-SND_ERROR_INCOMPATIBLE_VERSION

The audio driver version is incompatible with the client library that the

application uses.

-ENOMEM

No memory available for data structures.

Examples:

See the example in “Opening your PCM device (p. 26)” in the Playing and Capturing

Audio Data chapter.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

Successfully opening a PCM channel doesn't guarantee that there are enough audio

resources free to handle your application. Audio resources (e.g., subchannels) are

allocated when you configure the channel by calling snd_pcm_channel_params() (p.

165) or snd_pcm_plugin_params() (p. 247).

228 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_playback_drain()

Stop the PCM playback channel and discard the contents of its queue

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_playback_drain(snd_pcm_t *handle);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_playback_drain() function stops the PCM playback channel associated

with handle and causes it to discard all audio data in its buffers. This all happens

immediately.

If the operation is successful (zero is returned), the channel's state is changed to

SND_PCM_STATUS_READY.

Returns:

Zero on success, or a negative error code.

Errors:

-EINVAL

Invalid handle, or the PCM device state isn't ready.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 229

snd_pcm_playback_drain()

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

230 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_playback_flush()

Play out all pending data in a PCM playback channel's queue and stop the channel

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_playback_flush(snd_pcm_t *handle);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_playback_flush() function blocks until all unprocessed data in the driver

queue has been played.

If the operation is successful (zero is returned), the channel's state is changed to

SND_PCM_STATUS_READY and the channel is stopped.

This function isn't plugin-aware. It functions exactly the same way as

snd_pcm_channel_flush(.., SND_PCM_CHANNEL_PLAYBACK).

Make sure that you don't mix and match plugin- and nonplugin-aware functions

in your application, or you may get undefined behavior and misleading results.

Returns:

Zero on success, or a negative error code.

Errors:

-EBADFD

The PCM device state isn't ready.

Copyright © 2014, QNX Software Systems Limited 231

snd_pcm_playback_flush()

-EINTR

The driver isn't processing the data (Internal Error).

-EINVAL

Invalid handle.

-EIO

An invalid channel was specified, or the data wasn't all flushed.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

232 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_playback_go()

Start a PCM playback channel running

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_playback_go (snd_pcm_t *handle);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Description:

The snd_pcm_playback_go() function starts the playback channel running.

You should call this function only when the channel is in the

SND_PCM_STATUS_READY state, and you should ensure that two or more audio

fragments have been written into the audio interface before issuing the go command,

to prevent the audio channel/stream from going into the UNDERRUN state.

Calling this function is required if you've set your channel's start state to

SND_PCM_START_GO (see snd_pcm_plugin_params() (p. 247)). You can use this

function to “kick start” early a playback channel that has a start state of

SND_PCM_START_DATA or SND_PCM_START_FULL.

If the parameters are valid (i.e, the function returns zero), then the driver state is

changed to SND_PCM_STATUS_RUNNING.

This function is safe to use with plugin-aware functions. This call is used identically

to snd_pcm_plugin_params() (p. 247).

Returns:

EOK

Success.

Copyright © 2014, QNX Software Systems Limited 233

snd_pcm_playback_go()

-EINVAL

Invalid handle.

-EIO

Invalid channel.

-EMORE

Insufficient audio fragments have been written to the audio interface (when

writing to the software mixer device).

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

234 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_playback_pause()

Pause a channel that's playing back

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_playback_pause (snd_pcm_t *pcm);

Arguments:

pcm

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_playback_pause() function pauses a channel that's playing back. Unlike

draining or flushing, this preserves all data that has not yet played out within the audio

driver, to be played out after resuming.

Returns:

EOK

Success.

-EINVAL

The handle is NULL, or the channel isn't playing back.

This function can return other negative errno values.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 235

snd_pcm_playback_pause()

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

236 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_playback_prepare()

Signal the driver to ready the playback channel

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_playback_prepare(snd_pcm_t *handle);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_playback_prepare() function prepares hardware to operate in a specified

transfer direction. This call is responsible for all parts of the hardware's startup

sequence that require additional initialization time, allowing the final “GO” (either

from writes into the buffers or snd_pcm_channel_go() (p. 157)) to execute more quickly.

You can call this function in all states except SND_PCM_STATUS_NOTREADY (returns

-EBADFD) and SND_PCM_STATUS_RUNNING (returns -EBUSY). If the operation is

successful (zero is returned), the driver state is changed to

SND_PCM_STATUS_PREPARED.

If your channel has underrun, you have to reprepare it before continuing. For

an example, see wave.c in the appendix.

Returns:

Zero on success, or a negative error code.

Errors:

-EINVAL

Copyright © 2014, QNX Software Systems Limited 237

snd_pcm_playback_prepare()

Invalid handle.

-EBUSY

Channel is already running.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

238 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_playback_resume()

Resume a channel that was paused while playing back

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_playback_resume (snd_pcm_t *pcm);

Arguments:

pcm

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_playback_resume() function resumes a channel that was paused while

playing back.

Returns:

EOK

Success.

-EINVAL

The handle is NULL, or the channel wasn't being used for playback.

This function can return other negative errno values.

Classification:

QNX Neutrino

Safety:

NoCancellation point

Copyright © 2014, QNX Software Systems Limited 239

snd_pcm_playback_resume()

Safety:

NoInterrupt handler

YesSignal handler

YesThread

240 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_plugin_flush()

Finish processing all pending data in a PCM channel's queue and stop the channel

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_plugin_flush(snd_pcm_t *handle,
 int channel);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

channel

The channel; SND_PCM_CHANNEL_CAPTURE or

SND_PCM_CHANNEL_PLAYBACK.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_flush() function flushes all unprocessed data in the driver queue:

• If the plugin is processing playback data, the call blocks until all data in the driver

queue is played out the channel.

• If the plugin is processing capture data, any unread data in the driver queue is

discarded.

If the operation is successful (zero is returned), the channel's state is changed to

SND_PCM_STATUS_READY.

Returns:

A positive number on success, or a negative value on error.

Errors:

Copyright © 2014, QNX Software Systems Limited 241

snd_pcm_plugin_flush()

-EINVAL

Invalid handle.

Examples:

See the wave.c example in the appendix.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

Because the plugin interface may be subbuffering the written data until a complete

driver block can be assembled, the flush call may have to inject up to (blocksize-1)

samples into the channel so that the last block can be sent to the driver for playing.

For this reason, the flush call may return a positive value indicating that this silence

had to be inserted.

This function is the plugin-aware version of snd_pcm_channel_flush() (p. 155). It

functions exactly the same way, with the above caveat. However, make sure that you

don't mix and match plugin- and nonplugin-aware functions in your application, or

you may get undefined behavior and misleading results.

242 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_plugin_get_voice_conversion()

Get the current voice conversion structure for a channel

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_plugin_get_voice_conversion (
 snd_pcm_t *handle,
 int channel,
 snd_pcm_voice_conversion_t *voice_conversion);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

channel

The channel direction; either SND_PCM_CHANNEL_CAPTURE or

SND_PCM_CHANNEL_PLAYBACK.

voice_conversion

A pointer to a snd_pcm_voice_conversion_t (p. 282) structure that the

function fills in.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_get_voice_conversion() function gets the current voice conversion

structure for the specified channel.

Returns:

EOK

Success.

-EINVAL

Copyright © 2014, QNX Software Systems Limited 243

snd_pcm_plugin_get_voice_conversion()

One or more of the arguments were invalid.

-ENOENT

The voice converter plugin doesn't exist.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

244 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_plugin_info()

Get information about a PCM channel's capabilities (plugin-aware)

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_plugin_info(
 snd_pcm_t *handle,
 snd_pcm_channel_info_t *info);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

info

A pointer to a snd_pcm_channel_info_t (p. 161) structure that

snd_pcm_plugin_info() fills in with information about the PCM channel.

Before calling this function, set the info structure's channel member to

specify the direction. This function sets all the other members.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_info() function fills the info structure with data about the PCM

channel selected by handle.

This function and the nonplugin version, snd_pcm_channel_info() (p. 159), get

a dynamic “snapshot” of the system's current capabilities, which can shrink

and grow as subchannels are allocated and freed. They're similar to

snd_ctl_pcm_channel_info() (p. 81), which gets information about the complete

capabilities of the system.

Copyright © 2014, QNX Software Systems Limited 245

snd_pcm_plugin_info()

Returns:

Zero on success, or a negative error code.

Errors:

-EINVAL

Invalid handle.

Examples:

See the wave.c example in the appendix.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

This function is the plugin-aware version of snd_pcm_channel_info() (p. 159). It

functions exactly the same way. However, make sure that you don't mix and match

plugin- and nonplugin-aware functions in your application, or you may get undefined

behavior and misleading results.

246 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_plugin_params()

Set the configurable parameters for a PCM channel (plugin-aware)

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_plugin_params(
 snd_pcm_t *handle,
 snd_pcm_channel_params_t *params);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

params

A pointer to a snd_pcm_channel_params_t (p. 167) structure in which

you've specified the PCM channel's configurable parameters. All members

are write-only.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_params() function sets up the transfer parameters according to

params.

You can call the function in SND_PCM_STATUS_NOTREADY (initial) and

SND_PCM_STATUS_READY states; otherwise, snd_pcm_plugin_params() returns

-EBADFD.

If the parameters are valid (i.e., snd_pcm_plugin_params() returns zero), the driver

state is changed to SND_PCM_STATUS_READY.

You can confirm the channel's configuration by reading it back with

snd_pcm_plugin_setup() (p. 266).

Copyright © 2014, QNX Software Systems Limited 247

snd_pcm_plugin_params()

Returns:

Zero, or a negative error code.

Errors:

-EINVAL

Invalid handle; the data pointer is NULL, or the format is unsupported.

Examples:

See the wave.c example in the appendix.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

This function is the plugin-aware version of snd_pcm_channel_params() (p. 165). It

functions exactly the same way. However, make sure that you don't mix and match

plugin- and nonplugin-aware functions in your application, or you may get undefined

behavior and misleading results.

248 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_plugin_playback_drain()

Stop the PCM playback channel and discard the contents of its queue (plugin-aware)

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_plugin_playback_drain(
 snd_pcm_t *handle);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_playback_drain() function stops the PCM playback channel

associated with handle and causes it to discard all audio data in its buffers. This

happens immediately.

If the operation is successful (zero is returned), the channel's state is changed to

SND_PCM_STATUS_READY.

Returns:

Zero on success, or a negative error code (errno is set).

Errors:

-EINVAL

Invalid handle, or the PCM device state isn't ready.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 249

snd_pcm_plugin_playback_drain()

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

This function is the plugin-aware version of snd_pcm_playback_drain() (p. 229). It

functions exactly the same way. However, make sure that you don't mix and match

plugin- and nonplugin-aware functions in your application, or you may get undefined

behavior and misleading results.

250 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_plugin_prepare()

Signal the driver to ready the specified channel (plugin-aware)

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_plugin_prepare(snd_pcm_t *handle,
 int channel);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

channel

The channel; SND_PCM_CHANNEL_CAPTURE or

SND_PCM_CHANNEL_PLAYBACK.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_prepare() function prepares hardware to operate in a specified

transfer direction. This call is responsible for all parts of the hardware's startup

sequence that require additional initialization time, allowing the final “GO” (either

from writes into the buffers or snd_pcm_channel_go() (p. 157)) to execute more quickly.

This function may be called in all states except SND_PCM_STATUS_NOTREADY (returns

-EBADFD) and SND_PCM_STATUS_RUNNING (returns -EBUSY). If the operation is

successful (zero is returned), the driver state is changed to

SND_PCM_STATUS_PREPARED.

If your channel has underrun (during playback) or overrun (during capture),

you have to reprepare it before continuing. For an example, see wave.c and

waverec.c in the appendix.

Copyright © 2014, QNX Software Systems Limited 251

snd_pcm_plugin_prepare()

Returns:

Zero, or a negative error code.

Errors:

-EBUSY

The subchannel is in the running state.

-EINVAL

Invalid handle.

Examples:

See the wave.c example in the appendix.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

This function is the plugin-aware version of snd_pcm_channel_prepare() (p. 173). It

functions exactly the same way. However, make sure that you don't mix and match

plugin- and nonplugin-aware functions in your application, or you may get undefined

behavior and misleading results.

252 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_plugin_read()

Transfer PCM data from the capture channel (plugin-aware)

Synopsis:

#include <sys/asoundlib.h>

ssize_t snd_pcm_plugin_read(snd_pcm_t *handle,
 void *buffer,
 size_t size);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

buffer

A pointer to a buffer in which snd_pcm_plugin_read() can store the data

that it reads.

size

The size of the buffer, in bytes.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_read() function reads samples from the device which must be

in the proper format specified by snd_pcm_plugin_params() (p. 247).

The handle and the buffer must be

valid.

This function may suspend the client application if block behavior is active (see

snd_pcm_nonblock_mode() (p. 219)) and no data is available for reading.

Copyright © 2014, QNX Software Systems Limited 253

snd_pcm_plugin_read()

Returns:

A positive value that represents the number of bytes that were successfully read from

the device if the capture was successful, or a negative value if an error occurred.

Errors:

-EFAULT

Failed to copy data.

-EINVAL

Partial block buffering is disabled, but the size isn't the full block size.

-EIO

The channel isn't in the prepared or running state.

-ENOMEM

Unable to allocate memory for plugin buffers.

If you're reading less than a fragment-sized block, you won't get an -EFAULT

or -EIO error until enough read operations have been completed to read the

fragment size. The sub-buffering plugin buffers all operations until there is a

fragment's worth of data, at which point the message to io-audio occurs

(you can't get an error until the request goes to io-audio).

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

This function is the plugin-aware version of snd_pcm_read() (p. 277). It functions

exactly the same way, with only one caveat (see below). However, make sure that you

don't mix and match plugin- and nonplugin-aware functions in your application, or

you may get undefined behavior and misleading results.

254 Copyright © 2014, QNX Software Systems Limited

Audio Library

The plugin-aware versions of the PCM read and write calls don't require that you work

with multiples of fragment-size blocks (the nonplugin-aware versions do). This is

because one of the plugins in the lib sub-buffers the data for you. You can disable

this plugin by setting the PLUGIN_DISABLE_BUFFER_PARTIAL_BLOCKS bit with

snd_pcm_plugin_set_disable() (p. 256), in which case, the plugin-aware versions also

fail on reads and writes that aren't multiples of the fragment size.

Either way, interleaved stereo data has to be aligned by the sample size times the

number of channels (i.e., each write must have the same number of samples for the

left and right channels).

Copyright © 2014, QNX Software Systems Limited 255

snd_pcm_plugin_read()

snd_pcm_plugin_set_disable()

Disable PCM plugins

Synopsis:

#include <sys/asoundlib.h>

unsigned int snd_pcm_plugin_set_disable(
 snd_pcm_t *pcm,
 unsigned int mask);

Arguments:

pcm

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

mask

Currently, only the following mask bits are supported:

• PLUGIN_DISABLE_MMAP — disable the mmap plugins.

If mmap plugins are used, some of the members of the

snd_pcm_channel_status_t (p. 184) structure aren't used.

• PLUGIN_DISABLE_BUFFER_PARTIAL_BLOCKS — prevent the read

and write routines from using partial blocks of data.

The plugin-aware versions of the PCM read and write calls don't require

that you work with multiples of fragment-size blocks (the nonplugin-aware

versions do). This is because one of the plugins in the lib sub-buffers

the data for you. You can disable this plugin by setting the

PLUGIN_DISABLE_BUFFER_PARTIAL_BLOCKS bit with this function,

in which case the plugin-aware versions also fail on reads and writes that

aren't multiples of the fragment size.

Either way, interleaved stereo data has to be aligned by the sample size

times the number of channels (i.e., each write must have the same

number of samples for the left and right channels).

• PLUGIN_CONVERSION — disable the automatic conversion of audio to

match hardware capabilities (for example, voice conversion, rate

conversion, type conversion, etc.). This conversion impacts the functions

256 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_channel_params() (p. 165), snd_pcm_channel_setup() (p. 177),

and snd_pcm_channel_status() (p. 182). These now behave as

snd_pcm_plugin_params() (p. 247), snd_pcm_plugin_setup() (p. 266), and

snd_pcm_plugin_status() (p. 270), unless you've disabled the conversion

by calling:

 snd_pcm_plugin_set_disable(handle,
PLUGIN_CONVERSION);

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_set_disable() function is used to disable various plugins that

would ordinarily be used in the plugin chain.

Returns:

The value of the plugin mask before this change was made.

Examples:

See the wave.c example in the appendix.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

You need to set the plugin disable mask before calling snd_pcm_plugin_params() for

it to take effect.

Copyright © 2014, QNX Software Systems Limited 257

snd_pcm_plugin_set_disable()

snd_pcm_plugin_set_enable()

Enable plugins that have been disabled

Synopsis:

#include <sys/asoundlib.h>

unsigned int snd_pcm_plugin_set_enable(snd_pcm_t *pcm,
 unsigned int mask);

Arguments:

pcm

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

mask

A bitset of the sets you want to disable.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_set_enable() function enables plugins that have been disabled.

Currently there is one disabled plugin: PLUGIN_ROUTING. Enabling this will cause

automatic routing to external devices for a client that connects to the

"pcmPreferred" device.

Returns:

The value of the plugin mask before this change was made.

Classification:

QNX Neutrino

Safety:

NoCancellation point

258 Copyright © 2014, QNX Software Systems Limited

Audio Library

Safety:

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 259

snd_pcm_plugin_set_enable()

snd_pcm_plugin_set_src_method()

Set the system's source filter method (plugin-aware)

Synopsis:

#include <sys/asoundlib.h>

unsigned int snd_pcm_plugin_set_src_method (
 snd_pcm_t *handle,
 unsigned int method);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

method

The filter that you want to use:

• 0 — basic linear interpolated SRC (the default)

• 1 — basic anti-aliased SRC filter (7-point Kaiser windowed)

Library:

libasound.so

Description:

The snd_pcm_plugin_set_src_method() function sets the source filter method. If you

want to set this method, do so before you call snd_pcm_plugin_params() (p. 247), so

that the plugin can be properly initialized (including the filters).

Returns:

The current method.

Classification:

QNX Neutrino

Safety:

NoCancellation point

260 Copyright © 2014, QNX Software Systems Limited

Audio Library

Safety:

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

Make sure that you don't mix and match plugin- and nonplugin-aware functions in

your application, or you may get undefined behavior and misleading results.

Copyright © 2014, QNX Software Systems Limited 261

snd_pcm_plugin_set_src_method()

snd_pcm_plugin_set_src_mode()

Set the system's source mode (plugin-aware)

Synopsis:

#include <sys/asoundlib.h>

unsigned int snd_pcm_plugin_set_src_mode(
 snd_pcm_t *handle,
 unsigned int src_mode,
 int target);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

src_mode

The sample rate conversion mode; one of the following:

• SND_SRC_MODE_NORMAL — (default mode; all previous version of SRC

work this way) SRC ratio based on input/output block size rounded towards

zero. Floor(input size/output size).

• SND_SRC_MODE_ACTUAL — fixed SRC which adjusts the input fragment

size dynamically to prevent roundoff error from adjusting the playback

speed.

• SND_SRC_MODE_ASYNC — asynchronous SRC which adjusts the input

fragment size to maintain a specified buffer fullness.

target

The level in percent for the buffer fullness measurement used in the

asynchronous sample rate conversion.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

262 Copyright © 2014, QNX Software Systems Limited

Audio Library

Description:

The snd_pcm_plugin_set_src_mode() function sets the type of sample rate conversion

to use. Only playback modes are supported.

Returns:

The source mode (also in handle->plugin_src_mode) that the system is set to.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

Make sure that you don't mix and match plugin- and nonplugin-aware functions in

your application, or you may get undefined behavior and misleading results.

Copyright © 2014, QNX Software Systems Limited 263

snd_pcm_plugin_set_src_mode()

snd_pcm_plugin_set_voice_conversion()

Set the current voice conversion structure for a channel

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_plugin_set_voice_conversion (
 snd_pcm_t *handle,
 int channel,
 snd_pcm_voice_conversion_t *voice_conversion);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

channel

The channel direction; either SND_PCM_CHANNEL_CAPTURE or

SND_PCM_CHANNEL_PLAYBACK.

voice_conversion

A pointer to a snd_pcm_voice_conversion_t (p. 282) structure that

specifies how to convert the voices.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_set_voice_conversion() function sets the current voice conversion

structure for the specified channel.

Returns:

EOK

Success.

-EINVAL

264 Copyright © 2014, QNX Software Systems Limited

Audio Library

One or more of the arguments were invalid.

-ENOENT

The voice converter plugin doesn't exist.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 265

snd_pcm_plugin_set_voice_conversion()

snd_pcm_plugin_setup()

Get the current configuration for the specified PCM channel (plugin aware)

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_plugin_setup(
 snd_pcm_t *handle,
 snd_pcm_channel_setup_t *setup);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

setup

A pointer to a snd_pcm_channel_setup_t (p. 179) structure that

snd_pcm_plugin_setup() fills with information about the current configuration

of the PCM channel.

Set the setup structure's channel member to specify the direction. All other

members are read-only.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_setup() function fills the setup structure with information about

the current configuration of the PCM channel selected by handle.

Returns:

Zero on success, or a negative error code.

Errors:

-EINVAL

266 Copyright © 2014, QNX Software Systems Limited

Audio Library

Invalid handle; data pointer is NULL; setup->mode isn't

SND_PCM_MODE_BLOCK.

Examples:

See the wave.c example in the appendix.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

This function is the plugin-aware version of snd_pcm_channel_setup() (p. 177). It

functions exactly the same way. However, make sure that you don't mix and match

plugin- and nonplugin-aware functions in your application, or you may get undefined

behavior and misleading results.

Copyright © 2014, QNX Software Systems Limited 267

snd_pcm_plugin_setup()

snd_pcm_plugin_src_max_frag()

Get the maximum possible fragment size (plugin-aware)

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_plugin_src_max_frag (snd_pcm_t *handle,
 unsigned int fragsize);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

fragsize

The fragment size.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_src_max_frag() function returns the maximum possible fragment

size when the system is using the SND_SRC_MODE_ACTUAL or SND_SRC_MODE_ASYNC

mode. The fragment size is adjusted during playback, so this lets you preallocate the

maximum buffer size.

Returns:

The maximum fragment size, or -EINVAL if any of the arguments were invalid.

Classification:

QNX Neutrino

Safety:

NoCancellation point

268 Copyright © 2014, QNX Software Systems Limited

Audio Library

Safety:

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

Make sure that you don't mix and match plugin- and nonplugin-aware functions in

your application, or you may get undefined behavior and misleading results.

Copyright © 2014, QNX Software Systems Limited 269

snd_pcm_plugin_src_max_frag()

snd_pcm_plugin_status()

Get the runtime status of a PCM channel (plugin aware)

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_plugin_status(
 snd_pcm_t *handle,
 snd_pcm_channel_status_t *status);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

status

A pointer to a snd_pcm_channel_status_t (p. 184) structure that

snd_pcm_plugin_status() fills with information about the PCM channel's

status.

Fill in the status structure's channel member to specify the direction. All

other members are read-only.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_status() function fills the status structure with runtime status

information about the PCM channel selected by handle.

Returns:

Zero on success, or a negative error code.

Errors:

-EBADFD

270 Copyright © 2014, QNX Software Systems Limited

Audio Library

The PCM device state isn't ready.

-EFAULT

Failed to copy data.

-EINVAL

Invalid handle or the data pointer is NULL.

Examples:

See the wave.c example in the appendix.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

This function is the plugin-aware version of snd_pcm_channel_status() (p. 182). It

functions exactly the same way. However, make sure that you don't mix and match

plugin- and nonplugin-aware functions in your application, or you may get undefined

behavior and misleading results.

Copyright © 2014, QNX Software Systems Limited 271

snd_pcm_plugin_status()

snd_pcm_plugin_update_src()

Get the size of the next fragment to write (plugin-aware)

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_plugin_update_src(
 snd_pcm_t *handle,
 snd_pcm_channel_setup_t *setup,
 int currlevel);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

setup

A pointer to a snd_pcm_channel_setup_t (p. 179) structure that

snd_pcm_plugin_setup() fills with information about the current configuration

of the PCM channel.

currlevel

The current level of client size buffering, in percent.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_update_src() function returns the size of the next fragment

required for snd_pcm_plugin_write() (p. 274).

If you're using SND_SRC_MODE_ACTUAL or SND_SRC_MODE_ASYNC mode (see

snd_pcm_plugin_set_src_mode() (p. 262)), you need to call

snd_pcm_plugin_update_src() after each call to snd_pcm_plugin_write().

The client is responsible for buffering an appropriate amount of data in order to not

underflow the write calls. The client must determine the buffer fullness in percent

272 Copyright © 2014, QNX Software Systems Limited

Audio Library

(number of PCM samples the client is holding divided by the total buffer space

available). The sample rate converter in libasound adjusts the sample rate converter

to maintain a close tracking of the target (in percent) set in

snd_pcm_plugin_update_src().

Returns:

The number of samples to write in the next snd_pcm_plugin_write() call, or -EINVAL

if any of the arguments are invalid.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

Make sure that you don't mix and match plugin- and nonplugin-aware functions in

your application, or you may get undefined behavior and misleading results.

Copyright © 2014, QNX Software Systems Limited 273

snd_pcm_plugin_update_src()

snd_pcm_plugin_write()

Transfer PCM data to playback channel (plugin-aware)

Synopsis:

#include <sys/asoundlib.h>

ssize_t snd_pcm_plugin_write(snd_pcm_t *handle,
 const void *buffer,
 size_t size);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

buffer

A pointer to a buffer that contains the data to be written.

size

The size of the data, in bytes.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_plugin_write() function writes samples that are in the proper format

specified by snd_pcm_plugin_params() (p. 247) to the device specified by handle.

The handle and the buffer must be

valid.

If you're using SND_SRC_MODE_ACTUAL or SND_SRC_MODE_ASYNC mode (see

snd_pcm_plugin_set_src_mode() (p. 262)), you need to call

snd_pcm_plugin_update_src() (p. 272) after each call to snd_pcm_plugin_write().

274 Copyright © 2014, QNX Software Systems Limited

Audio Library

Returns:

A positive value that represents the number of bytes that were successfully written to

the device if the playback was successful. A value less than the write request size is

an indication of an error; for more information, check the errno value and call

snd_pcm_plugin_status() (p. 270).

Errors:

EAGAIN

Try again later. The subchannel is opened nonblock.

EINVAL

Partial block buffering is disabled, but the size isn't the full block size.

EIO

One of:

• The channel isn't in the prepared or running state.

If you're writing less than a fragment-sized block, you won't get

this error until enough write operations have been completed to

write the fragment size. The sub-buffering plugin buffers all

operations until there's a fragment's worth of data, at which point

the message to io-audio occurs (you can't get an error until

the request goes to io-audio).

• In SND_PCM_MODE_BLOCK mode, the size isn't an even multiple of the

frag_sizemember of the snd_pcm_channel_setup_t (p. 179) structure

and PCM subbuffering has been disabled with

snd_pcm_plugin_set_disable() (p. 256).

EWOULDBLOCK

The write would have blocked (nonblocking write).

Examples:

See the wave.c example in the appendix.

Classification:

QNX Neutrino

Safety:

NoCancellation point

Copyright © 2014, QNX Software Systems Limited 275

snd_pcm_plugin_write()

Safety:

NoInterrupt handler

YesSignal handler

YesThread

Caveats:

This function is the plugin-aware version of snd_pcm_write() (p. 283). It functions

exactly the same way, with one caveat (see below). However, make sure that you don't

mix and match plugin- and nonplugin-aware functions in your application, or you may

get undefined behavior and misleading results.

The plugin-aware versions of the PCM read and write calls don't require that you work

with multiples of fragment-size blocks (the nonplugin-aware versions do). This is

because one of the plugins in the lib sub-buffers the data for you. You can disable

this plugin by setting the PLUGIN_DISABLE_BUFFER_PARTIAL_BLOCKS bit with

snd_pcm_plugin_set_disable() (p. 256), in which case, the plugin-aware versions also

fail on reads and writes that aren't multiples of the fragment size.

Either way, interleaved stereo data has to be aligned by the sample size times the

number of channels (i.e., each write must have the same number of samples for the

left and right channels).

276 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_read()

Transfer PCM data from the capture channel

Synopsis:

#include <sys/asoundlib.h>

ssize_t snd_pcm_read(snd_pcm_t *handle,
 void *buffer,
 size_t size);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

buffer

A pointer to a buffer in which snd_pcm_read() can store the data that it

reads.

size

The size of the buffer, in bytes.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_read() function reads samples from the device, which must be in the

proper format specified by snd_pcm_channel_prepare() (p. 173) or

snd_pcm_capture_prepare() (p. 151).

This function may suspend the client application if the blocking behavior is active

(see snd_pcm_nonblock_mode() (p. 219)) and no data is available to be read.

When the subdevice is in block mode (SND_PCM_MODE_BLOCK), then the number of

read bytes must fulfill the N × fragment-size expression, where N > 0.

If the stream format is noninterleaved (i.e., the interleave member of the

snd_pcm_format_t (p. 204) structure isn't set), then the driver returns data that's

Copyright © 2014, QNX Software Systems Limited 277

snd_pcm_read()

separated to single voice blocks encapsulated to fragments. For example, imagine you

have two voices, and the fragment size is 512 bytes. The number of bytes per one

voice is 256. The driver returns the first 256 bytes that contain samples for the first

voice, and the second 256 bytes from the fragment size that contains samples for the

second voice.

Returns:

A positive value that represents the number of bytes that were successfully read from

the device if the capture was successful, or a negative value if an error occurred.

Errors:

-EAGAIN

The subdevice has no data available.

-EFAULT

Failed to copy data.

-EINVAL

Invalid handle; data pointer is NULL but size isn't zero or is negative.

-EIO

The channel isn't in the prepared or running state.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

278 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_set_audioman_handle()

Bind an audioman handle to a PCM stream

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_set_audioman_handle(snd_pcm_t *handle,
 unsigned int audioman_handle
);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

audioman_handle

The handle for the audio manager that you want to bind to the PCM stream.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_set_audioman_handle() function binds an audioman handle to a PCM

stream. Binding an audioman handle to a PCM stream results in the PCM stream's

conditionally ducking behind other streams, depending on the type of other stream

playing. Rebinding a PCM stream to a new handle is permitted; doing so automatically

unbinds the old handle. Binding the same audioman handle to two PCM streams isn't

permitted.

Returns:

EOK

Success.

-EINVAL

Copyright © 2014, QNX Software Systems Limited 279

snd_pcm_set_audioman_handle()

The PCM handle is NULL, or the audioman handle couldn't be bound to the

stream.

-EPERM

The thread doesn't have permission to bind the audioman handle to the

stream

This function can also return the negative of other errno values.

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

280 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_unlink()

Detach a PCM stream from a link group

Synopsis:

#include <sys/asoundlib.h>

int snd_pcm_unlink(snd_pcm_t *pcm);

Arguments:

pcm

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_unlink() function detaches a PCM stream from a link group. After this

point, starting and stopping this PCM stream affects the stream only, not any other

streams.

Returns:

0 on success, or -1 if an error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

Copyright © 2014, QNX Software Systems Limited 281

snd_pcm_unlink()

snd_pcm_voice_conversion_t

Data structure that controls voice conversion

Synopsis:

typedef struct snd_pcm_voice_conversion
{
 uint32_t app_voices;
 uint32_t hw_voices;
 uint32_t matrix[32];
} snd_pcm_voice_conversion_t;

Description:

The snd_pcm_voice_conversion_t structure controls how the voice-converter

plugin replicates or reduces the voices and channels.

The members include:

app_voices

The number of application voices.

hw_voices

The number of hardware voices.

matrix

A 32-by-32-bit array that specifies how to convert the voices. The array is

ranked with rows representing application voices, voice 0 first; the columns

represent hardware voices, with the low voice being LSB-aligned and

increasing right to left. A 1 in an entry directs the given source to the given

destination.

Classification:

QNX Neutrino

282 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_pcm_write()

Transfer PCM data to playback channel

Synopsis:

#include <sys/asoundlib.h>

ssize_t snd_pcm_write(snd_pcm_t *handle,
 const void *buffer,
 size_t size);

Arguments:

handle

The handle for the PCM device, which you must have opened by calling

snd_pcm_open_name() (p. 223), snd_pcm_open() (p. 221), or

snd_pcm_open_preferred() (p. 226).

buffer

A pointer to a buffer that holds the data to be written.

size

The amount of data to write, in bytes.

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_pcm_write() function writes samples to the device, which must be in the

proper format specified by snd_pcm_channel_prepare() (p. 173) or

snd_pcm_playback_prepare() (p. 237).

This function may suspend a process if blocking behavior is active (see

snd_pcm_nonblock_mode() (p. 219)) and no space is available in the device's buffers.

When the subdevice is in block mode (SND_PCM_MODE_BLOCK), then the number of

written bytes must fulfill the N × fragment-size expression, where N > 0.

If the stream format is noninterleaved (the interleave member of the

snd_pcm_format_t (p. 204) structure isn't set), then the driver expects that data in

one fragment is separated to single voice blocks. For example, imagine that you have

Copyright © 2014, QNX Software Systems Limited 283

snd_pcm_write()

two voices, and the fragment size is 512 bytes. The number of bytes per one voice is

256. The driver expects that the first 256 bytes contain samples for the first voice

and the second 256 bytes from fragment contain samples for the second voice.

Returns:

A positive value that represents the number of bytes that were successfully written to

the device if the playback was successful, or an error value if an error occurred.

Errors:

-EAGAIN

Try again later. The subchannel is opened nonblock.

-EINVAL

One of the following:

• The handle is invalid.

• The buffer argument is NULL, but the size is greater than zero.

• The size is negative.

-EIO

One of:

• The channel isn't in the prepared or running state.

• In SND_PCM_MODE_BLOCK mode, the size isn't an even multiple of the

frag_sizemember of the snd_pcm_channel_setup_t (p. 179) structure.

-EWOULDBLOCK

The write would have blocked (nonblocking write).

Classification:

QNX Neutrino

Safety:

NoCancellation point

NoInterrupt handler

YesSignal handler

YesThread

284 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_strerror()

Convert an error code to a string

Synopsis:

#include <sys/asoundlib.h>

const char *snd_strerror(int errnum);

Arguments:

errnum

An error number, which can be positive (i.e., the value of errno) or negative

(i.e., a return code from a snd_* function).

Library:

libasound.so

Use the -l asound option to qcc to link against this library.

Description:

The snd_strerror() function converts an error code to a string. Its functionality is similar

to that of strerror() (see the QNX Neutrino C Library Reference), except that it returns

the correct strings for sound error codes.

Returns:

A pointer to the error message. Don't modify the string that it points to.

If snd_strerror() doesn't recognize the value for errnum, it returns a pointer to the

string “Unknown error.”

Examples:

See the wave.c example in the appendix.

Classification:

QNX Neutrino

Safety:

NoCancellation point

Copyright © 2014, QNX Software Systems Limited 285

snd_strerror()

Safety:

NoInterrupt handler

YesSignal handler

YesThread

286 Copyright © 2014, QNX Software Systems Limited

Audio Library

snd_switch_t

Information about a mixer's switch

Synopsis:

typedef struct snd_switch
{
 int32_t iface;
 int32_t device;
 int32_t channel;
 char name[36];
 uint32_t type;
 uint32_t subtype;
 uint32_t zero[2];
 union
 {
 uint32_t enable:1;

 struct
 {
 uint8_t data;
 uint8_t low;
 uint8_t high;
 }
 byte;

 struct
 {
 uint16_t data;
 uint16_t low;
 uint16_t high;
 }
 word;

 struct
 {
 uint32_t data;
 uint32_t low;
 uint32_t high;
 }
 dword;

 struct
 {
 uint32_t data;
 uint32_t items[30];
 uint32_t items_cnt;
 }
 list;

 struct
 {
 uint8_t selection;
 char strings[11][11];
 uint8_t strings_cnt;
 }
 string_11;

Copyright © 2014, QNX Software Systems Limited 287

snd_switch_t

 uint8_t raw[32];
 uint8_t reserved[128]; /* must be filled with
zeroes */
 }
 value;
 uint8_t reserved[128]; /* must be filled with zeroes
 */
}
snd_switch_t;

Description:

The snd_switch_t structure describes the switches for a mixer. You can fill this

structure by calling snd_ctl_mixer_switch_read() (p. 75).

The members include:

iface

The audio interface associated with the switch.

device

The device number associated with the switch.

channel

Currently only set to “0”.

name

The text name of the switch.

type

The kind of switch. The following types are supported:

SND_SW_TYPE_BOOLEAN

A simple on and off switch. See the enable union member.

SND_TYPE_BYTE

An 8-bit value constrained between a minimum and maximum

setting. See the byte union member.

SND_TYPE_WORD

A 16-bit value constrained between a minimum and maximum

setting. See the word union member.

SND_TYPE_DWORD

288 Copyright © 2014, QNX Software Systems Limited

Audio Library

A 32-bit value constrained between a minimum and maximum

setting. See the dword union member.

SND_TYPE_LIST

A 32-bit value selected from a list of values. See the list union

member. The items_cnt argument is the number of valid items in

the array.

SND_TYPE_STRING_11

An array of string selections with a maximum length of 11 bytes.

The strings_cnt argument is the number of valid strings in the

array. The selection argument is the index of the selected string.

subtype

The switch's subtype. The following types are supported:

SND_SW_SUBTYPE_DEC

Display the value in decimal notation.

SND_SW_SUBTYPE_HEXA

Display the value in hexadecimal notation.

Classification:

QNX Neutrino

Copyright © 2014, QNX Software Systems Limited 289

snd_switch_t

Appendix A
wave.c example

This is a sample application that plays back audio data.

/*
 * $QNXLicenseC:
 * Copyright 2007, QNX Software Systems. All Rights Reserved.
 *
 * You must obtain a written license from and pay applicable license fees to QNX
 * Software Systems before you may reproduce, modify or distribute this software,
 * or any work that includes all or part of this software. Free development
 * licenses are available for evaluation and non-commercial purposes. For more
 * information visit http://licensing.qnx.com or email licensing@qnx.com.
 *
 * This file may contain contributions from others. Please review this entire
 * file for other proprietary rights or license notices, as well as the QNX
 * Development Suite License Guide at http://licensing.qnx.com/license-guide/
 * for other information.
 * $
 */

#include <errno.h>
#include <fcntl.h>
#include <gulliver.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/stat.h>
#include <sys/termio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/slogcodes.h>
#include <time.h>
#include <ctype.h>
#include <limits.h>
#include <signal.h>
#include <pthread.h>
#include <sys/pps.h>

#include <sys/asoundlib.h>

#include <audio/audio_manager_volume.h>
#include <audio/audio_manager_routing.h>
#include <audio/audio_manager_event.h>

const char *kRiffId = "RIFF";
const char *kRifxId = "RIFX";
const char *kWaveId = "WAVE";
bool running = true;
int n;
int N=0;
int verbose = 0;
int print_timing = 0;
int bsize;
snd_mixer_group_t group;
snd_mixer_t *mixer_handle = NULL;
snd_pcm_t *pcm_handle;
char *mSampleBfr1;
unsigned int mSamples;
bool mBigEndian = false;

typedef struct
{
 char tag[4];
 long length;
}
RiffTag;

typedef struct

Copyright © 2014, QNX Software Systems Limited 291

{
 char Riff[4];
 long Size;
 char Wave[4];
}
RiffHdr;

typedef struct
{
 short FormatTag;
 short Channels;
 long SamplesPerSec;
 long AvgBytesPerSec;
 short BlockAlign;
 short BitsPerSample;
}
WaveHdr;

typedef struct
{
 FILE *file1;
 struct timespec start_time;
}
WriterData;

int
err (char *msg)
{
 perror (msg);
 return -1;
}

int
FindTag (FILE * fp, const char *tag)
{
 int retVal;
 RiffTag tagBfr = { "", 0 };

 retVal = 0;

 // Keep reading until we find the tag or hit the EOF.
 while (fread ((unsigned char *) &tagBfr, sizeof (tagBfr), 1, fp))
 {

 if(mBigEndian) {
 tagBfr.length = ENDIAN_BE32 (tagBfr.length);
 } else {
 tagBfr.length = ENDIAN_LE32 (tagBfr.length);
 }
 // If this is our tag, set the length and break.
 if (strncmp (tag, tagBfr.tag, sizeof tagBfr.tag) == 0)
 {
 retVal = tagBfr.length;
 break;
 }

 // Skip ahead the specified number of bytes in the stream
 fseek (fp, tagBfr.length, SEEK_CUR);
 }

 // Return the result of our operation
 return (retVal);
}

int
CheckHdr (FILE * fp)
{
 RiffHdr riffHdr = { "", 0 };

 // Read the header and, if successful, play the file
 // file or WAVE file.
 if (fread ((unsigned char *) &riffHdr, sizeof (RiffHdr), 1, fp) == 0)
 return 0;

 if (!strncmp (riffHdr.Riff, kRiffId, strlen (kRiffId)))
 mBigEndian = false;
 else if (!strncmp (riffHdr.Riff, kRifxId, strlen (kRifxId)))

292 Copyright © 2014, QNX Software Systems Limited

wave.c example

 mBigEndian = true;
 else
 return -1;
 if (strncmp (riffHdr.Wave, kWaveId, strlen (kWaveId)))
 return -1;

 return 0;
}

int
dev_raw (int fd)
{
 struct termios termios_p;

 if (tcgetattr (fd, &termios_p))
 return (-1);

 termios_p.c_cc[VMIN] = 1;
 termios_p.c_cc[VTIME] = 0;
 termios_p.c_lflag &= ~(ICANON | ECHO | ISIG);
 return (tcsetattr (fd, TCSANOW, &termios_p));
}

int
dev_unraw (int fd)
{
 struct termios termios_p;

 if (tcgetattr (fd, &termios_p))
 return (-1);

 termios_p.c_lflag |= (ICANON | ECHO | ISIG);
 return (tcsetattr (fd, TCSAFLUSH, &termios_p));
}

void
handle_keypress()
{
 int c;
 int rtn;

 c = getc (stdin);

 if (c == EOF)
 {
 running = false;
 return;
 }

 /* Handle non-mixer keypresses */
 switch (c)
 {
 case 'p':
 snd_pcm_playback_pause(pcm_handle);
 break;
 case 'r':
 snd_pcm_playback_resume(pcm_handle);
 break;
 // Exit the program
 case 3: // Ctrl-C
 case 27: // Escape
 running = false;
 break;
 default:
 break;
 }

 /* Handle mixer keypresses */
 if (mixer_handle == NULL)
 return;

 if ((rtn = snd_mixer_group_read (mixer_handle, &group)) < 0)
 {
 fprintf (stderr, "snd_mixer_group_read failed: %s\n", snd_strerror (rtn));
 return;
 }

 switch (c)
 {

Copyright © 2014, QNX Software Systems Limited 293

 case 'q':
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_LEFT)
 group.volume.names.front_left += 10;
 if (group.channels & SND_MIXER_CHN_MASK_REAR_LEFT)
 group.volume.names.rear_left += 10;
 if (group.channels & SND_MIXER_CHN_MASK_WOOFER)
 group.volume.names.woofer += 10;
 break;
 case 'a':
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_LEFT)
 group.volume.names.front_left -= 10;
 if (group.channels & SND_MIXER_CHN_MASK_REAR_LEFT)
 group.volume.names.rear_left -= 10;
 if (group.channels & SND_MIXER_CHN_MASK_WOOFER)
 group.volume.names.woofer -= 10;
 break;
 case 'w':
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_LEFT)
 group.volume.names.front_left += 10;
 if (group.channels & SND_MIXER_CHN_MASK_REAR_LEFT)
 group.volume.names.rear_left += 10;
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_CENTER)
 group.volume.names.front_center += 10;
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_RIGHT)
 group.volume.names.front_right += 10;
 if (group.channels & SND_MIXER_CHN_MASK_REAR_RIGHT)
 group.volume.names.rear_right += 10;
 if (group.channels & SND_MIXER_CHN_MASK_WOOFER)
 group.volume.names.woofer += 10;
 break;
 case 's':
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_LEFT)
 group.volume.names.front_left -= 10;
 if (group.channels & SND_MIXER_CHN_MASK_REAR_LEFT)
 group.volume.names.rear_left -= 10;
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_CENTER)
 group.volume.names.front_center -= 10;
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_RIGHT)
 group.volume.names.front_right -= 10;
 if (group.channels & SND_MIXER_CHN_MASK_REAR_RIGHT)
 group.volume.names.rear_right -= 10;
 if (group.channels & SND_MIXER_CHN_MASK_WOOFER)
 group.volume.names.woofer -= 10;
 break;
 case 'e':
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_RIGHT)
 group.volume.names.front_right += 10;
 if (group.channels & SND_MIXER_CHN_MASK_REAR_RIGHT)
 group.volume.names.rear_right += 10;
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_CENTER)
 group.volume.names.front_center += 10;
 break;
 case 'd':
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_RIGHT)
 group.volume.names.front_right -= 10;
 if (group.channels & SND_MIXER_CHN_MASK_REAR_RIGHT)
 group.volume.names.rear_right -= 10;
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_CENTER)
 group.volume.names.front_center -= 10;
 break;
 }

 if (group.channels & SND_MIXER_CHN_MASK_FRONT_LEFT)
 {
 if (group.volume.names.front_left > group.max)
 group.volume.names.front_left = group.max;
 if (group.volume.names.front_left < group.min)
 group.volume.names.front_left = group.min;
 }
 if (group.channels & SND_MIXER_CHN_MASK_REAR_LEFT)
 {
 if (group.volume.names.rear_left > group.max)
 group.volume.names.rear_left = group.max;
 if (group.volume.names.rear_left < group.min)
 group.volume.names.rear_left = group.min;
 }
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_CENTER)
 {
 if (group.volume.names.front_center > group.max)
 group.volume.names.front_center = group.max;

294 Copyright © 2014, QNX Software Systems Limited

wave.c example

 if (group.volume.names.front_center < group.min)
 group.volume.names.front_center = group.min;
 }
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_RIGHT)
 {
 if (group.volume.names.front_right > group.max)
 group.volume.names.front_right = group.max;
 if (group.volume.names.front_right < group.min)
 group.volume.names.front_right = group.min;
 }
 if (group.channels & SND_MIXER_CHN_MASK_REAR_RIGHT)
 {
 if (group.volume.names.rear_right > group.max)
 group.volume.names.rear_right = group.max;
 if (group.volume.names.rear_right < group.min)
 group.volume.names.rear_right = group.min;
 }
 if (group.channels & SND_MIXER_CHN_MASK_WOOFER)
 {
 if (group.volume.names.woofer > group.max)
 group.volume.names.woofer = group.max;
 if (group.volume.names.woofer < group.min)
 group.volume.names.woofer = group.min;
 }
 if ((rtn = snd_mixer_group_write (mixer_handle, &group)) < 0)
 fprintf (stderr, "snd_mixer_group_write failed: %s\n", snd_strerror (rtn));

 if (group.channels & SND_MIXER_CHN_MASK_FRONT_LEFT)
 {
 printf ("Volume Now at %d:%d \n",
 (group.max - group.min) ? 100 * (group.volume.names.front_left - group.min) /
 (group.max - group.min) : 0,
 (group.max - group.min) ? 100 * (group.volume.names.front_right - group.min) /
 (group.max - group.min): 0);
 }
 else if (group.channels & SND_MIXER_CHN_MASK_REAR_LEFT)
 {
 printf ("Volume Now at %d:%d \n",
 (group.max - group.min) ? 100 * (group.volume.names.rear_left - group.min) /
 (group.max - group.min) : 0,
 (group.max - group.min) ? 100 * (group.volume.names.rear_right - group.min) /
 (group.max - group.min): 0);
 }
 else if (group.channels & SND_MIXER_CHN_MASK_WOOFER)
 {
 printf ("Volume Now at %d:%d \n",
 (group.max - group.min) ? 100 * (group.volume.names.woofer - group.min) /
 (group.max - group.min) : 0,
 (group.max - group.min) ? 100 * (group.volume.names.front_center - group.min) /
 (group.max - group.min): 0);
 }
 else
 {
 printf ("Volume Now at %d:%d \n",
 (group.max - group.min) ? 100 * (group.volume.names.front_left - group.min) /
 (group.max - group.min) : 0,
 (group.max - group.min) ? 100 * (group.volume.names.front_right - group.min) /
 (group.max - group.min): 0);
 }
}

void handle_mixer()
{
 fd_set rfds;
 FD_ZERO(&rfds);
 FD_SET (snd_mixer_file_descriptor (mixer_handle), &rfds);

 if (select (snd_mixer_file_descriptor (mixer_handle) + 1, &rfds, NULL, NULL, NULL) == -1)
 err ("select");

 snd_mixer_callbacks_t callbacks = { 0, 0, 0, 0 };

 snd_mixer_read (mixer_handle, &callbacks);
}

void write_audio_data(WriterData *wd)
{
 struct timespec current_time;
 snd_pcm_channel_status_t status;
 int written = 0;

Copyright © 2014, QNX Software Systems Limited 295

 if ((n = fread (mSampleBfr1, 1, min (mSamples - N, bsize), wd->file1)) <= 0)
 return;
 written = snd_pcm_plugin_write (pcm_handle, mSampleBfr1, n);

 if (verbose)
 printf ("bytes written = %d \n", written);
 if(print_timing) {
 clock_gettime(CLOCK_REALTIME, ¤t_time);
 printf ("Sent frag at %llu\n", (current_time.tv_sec - wd->start_time.tv_sec) *
 1000000000LL + (current_time.tv_nsec - wd->start_time.tv_nsec));
 }
 if (written < n)
 {
 memset (&status, 0, sizeof (status));
 status.channel = SND_PCM_CHANNEL_PLAYBACK;
 if (snd_pcm_plugin_status (pcm_handle, &status) < 0)
 {
 fprintf (stderr, "underrun: playback channel status error\n");
 exit (1);
 }

 if (status.status == SND_PCM_STATUS_READY ||
 status.status == SND_PCM_STATUS_UNDERRUN ||
 status.status == SND_PCM_STATUS_CHANGE)
 {
 if(status.status == SND_PCM_STATUS_UNDERRUN) {
 printf ("Audio underrun occurred\n");
 } else if(status.status == SND_PCM_STATUS_CHANGE) {
 printf ("Audio device change occurred from %s to %s\n",
 audio_manager_get_device_name(status.status_data.change_data.old_device),
 audio_manager_get_device_name(status.status_data.change_data.new_device));
 }
 if (snd_pcm_plugin_prepare (pcm_handle, SND_PCM_CHANNEL_PLAYBACK) < 0)
 {
 fprintf (stderr, "underrun: playback channel prepare error\n");
 exit (1);
 }
 }
 else if (status.status == SND_PCM_STATUS_UNSECURE)
 {
 fprintf (stderr, "Channel unsecure\n");
 if (snd_pcm_plugin_prepare (pcm_handle, SND_PCM_CHANNEL_PLAYBACK) < 0)
 {
 fprintf (stderr, "unsecure: playback channel prepare error\n");
 exit (1);
 }
 }
 else if (status.status == SND_PCM_STATUS_ERROR)
 {
 fprintf(stderr, "error: playback channel failure\n");
 exit(1);
 }
 else if (status.status == SND_PCM_STATUS_PREEMPTED)
 {
 fprintf(stderr, "error: playback channel preempted\n");
 exit(1);
 }

 if (written < 0)
 written = 0;
 written += snd_pcm_plugin_write (pcm_handle, mSampleBfr1 + written, n - written);
 }
 N += written;
}

void *writer_thread_handler(void *data)
{
 WriterData *wd = (WriterData *)data;
 sigset_t signals;

 sigfillset (&signals);
 pthread_sigmask (SIG_BLOCK, &signals, NULL);

 while (running && N < mSamples && n > 0)
 {
 write_audio_data(wd);
 }

 return NULL;

296 Copyright © 2014, QNX Software Systems Limited

wave.c example

}

void *generic_thread_handler(void *data)
{
 sigset_t signals;

 sigfillset (&signals);
 pthread_sigmask (SIG_BLOCK, &signals, NULL);

 while(1) {
 ((void (*)(void))data)();
 }

 return NULL;
}

//***
/* *INDENT-OFF* */
#ifdef __USAGE
%C[Options] *

Options:
 -a[card#:]<dev#> the card & device number to play out on
 -f<frag_size> requested fragment size
 -v verbose
 -s content is protected
 -e content would like to be played on a secure channel
 -r content can only be played on a secure channel
 -t print timing information of when data is sent in ns
 -w use separate threads to control and write audio data
 -c<args>[,args ..] voice matrix configuration
 -n<num_frags> requested number of fragments
 -b<num_frags> requested number of fragments while buffering
 -p<volume in %> volume in percent
 -m<mixer name> string name for mixer input
 -o<audio type> name of the audio type registers with audioman
 -x use mmap interface
 -R<value> SRC rate method
 (1 = 7-pt kaiser windowed, 2 = 20-pt remez, 3 = linear interpolation)

Args:
 1=<hw_channel_bitmask> hardware channel bitmask for application voice 1
 2=<hw_channel_bitmask> hardware channel bitmask for application voice 2
 3=<hw_channel_bitmask> hardware channel bitmask for application voice 3
 4=<hw_channel_bitmask> hardware channel bitmask for application voice 4
 5=<hw_channel_bitmask> hardware channel bitmask for application voice 5
 6=<hw_channel_bitmask> hardware channel bitmask for application voice 6
 7=<hw_channel_bitmask> hardware channel bitmask for application voice 7
 8=<hw_channel_bitmask> hardware channel bitmask for application voice 8
#endif
/* *INDENT-ON* */
//***

void sig_handler(int sig_no)
{
 running = false;
 return;
}

int
main (int argc, char **argv)
{
 int card = -1;
 int dev = 0;
 WriterData wd;
 WaveHdr wavHdr1;
 int mSampleRate;
 int mSampleChannels;
 int mSampleBits;
 int fragsize = -1;

 int rtn;
 snd_pcm_channel_info_t pi;
 snd_pcm_channel_params_t pp;
 snd_pcm_channel_setup_t setup;
 int c;
 fd_set rfds, wfds;
 uint32_t voice_mask[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
 snd_pcm_voice_conversion_t voice_conversion;

Copyright © 2014, QNX Software Systems Limited 297

 int voice_override = 0;
 int num_frags = -1;
 int num_buffered_frags = 0;
 char *sub_opts, *sub_opts_copy, *value;
 char *dev_opts[] = {
#define CHN1 0
 "1",
#define CHN2 1
 "2",
#define CHN3 2
 "3",
#define CHN4 3
 "4",
#define CHN5 4
 "5",
#define CHN6 5
 "6",
#define CHN7 6
 "7",
#define CHN8 7
 "8",
 NULL
 };
 char name[_POSIX_PATH_MAX] = { 0 };
 float vol_percent = -1;
 float volume;
 char mixer_name[32];
 int mix_name_enable = -1;
 int protected_content = 0;
 int enable_protection = 0;
 int require_protection = 0;
 int use_writer_thread = 0;
 int uses_audioman_handle = 1;
 unsigned int audioman_handle;
 void *retval;
 pthread_t writer_thread;
 pthread_t mixer_thread;
 pthread_t keypress_thread;
 char *type = "multimedia";
 int rate_method = 0;
 int use_mmap = 0;

 while ((c = getopt (argc, argv, "a:ef:vc:n:b:p:m:qrstwo:xR:")) != EOF)
 {
 switch (c)
 {
 case 'a':
 if (strchr (optarg, ':'))
 {
 card = atoi (optarg);
 dev = atoi (strchr (optarg, ':') + 1);
 }
 else if (isalpha (optarg[0]) || optarg[0] == '/')
 strcpy (name, optarg);
 else
 dev = atoi (optarg);
 if (name[0] != '\0')
 printf ("Using device %s\n", name);
 else
 printf ("Using card %d device %d \n", card, dev);
 break;
 case 'f':
 fragsize = atoi (optarg);
 break;
 case 'v':
 verbose = 1;
 break;
 case 'c':
 sub_opts = sub_opts_copy = strdup (optarg);
 if (sub_opts == NULL) {
 printf("Cannot allocate sub_opts\n");
 exit(1);
 }
 while (*sub_opts != '\0')
 {
 int channel = getsubopt (&sub_opts, dev_opts, &value);
 if(channel >= 0 && channel < sizeof(voice_mask)/sizeof(voice_mask[0]) && value) {
 voice_mask[channel] = strtoul (value, NULL, 0);
 } else {
 fprintf (stderr, "Invalid channel map specified\n");

298 Copyright © 2014, QNX Software Systems Limited

wave.c example

 exit(1);
 }
 }
 free(sub_opts_copy);
 voice_override = 1;
 break;
 case 'n':
 num_frags = atoi (optarg) - 1;
 break;
 case 'b':
 num_buffered_frags = atoi (optarg);
 break;
 case 'p':
 vol_percent = atof (optarg);
 break;
 case 'm':
 strncpy (mixer_name, optarg, 32);
 mix_name_enable = 1;
 break;
 case 's':
 protected_content = 1;
 break;
 case 'e':
 enable_protection = 1;
 break;
 case 'r':
 require_protection = 1;
 break;
 case 't':
 print_timing = 1;
 break;
 case 'w':
 use_writer_thread = 1;
 break;
 case 'o':
 type = optarg;
 break;
 case 'x':
 use_mmap = 1;
 break;
 case 'R':
 rate_method = atoi(optarg);
 if (rate_method < 0 || rate_method > 3)
 {
 rate_method = 0;
 printf("Invalid rate method, using method 0\n");
 }
 break;
 default:
 return 1;
 }
 }

 setvbuf (stdin, NULL, _IONBF, 0);

 if (audio_manager_get_handle (audio_manager_get_type_from_name(type), 0, true, &audioman_handle)) {
 uses_audioman_handle = 0;
 }
 if (name[0] != '\0')
 {
 snd_pcm_info_t info;

 if ((rtn = snd_pcm_open_name (&pcm_handle, name, SND_PCM_OPEN_PLAYBACK)) < 0)
 {
 return err ("open_name");
 }
 rtn = snd_pcm_info (pcm_handle, &info);
 card = info.card;
 }
 else
 {
 if (card == -1)
 {
 if ((rtn =
 snd_pcm_open_preferred (&pcm_handle, &card, &dev, SND_PCM_OPEN_PLAYBACK)) < 0)
 return err ("device open");
 }
 else
 {
 if ((rtn = snd_pcm_open (&pcm_handle, card, dev, SND_PCM_OPEN_PLAYBACK)) < 0)

Copyright © 2014, QNX Software Systems Limited 299

 return err ("device open");
 }
 }

 if(uses_audioman_handle) {
 if ((rtn = snd_pcm_set_audioman_handle (pcm_handle, audioman_handle)) < 0)
 return err ("set audioman handle");
 }

 if (argc < 2)
 return err ("no file specified");

 if ((wd.file1 = fopen (argv[optind], "r")) == 0)
 return err ("file open #1");

 if (CheckHdr (wd.file1) == -1)
 return err ("CheckHdr #1");

 mSamples = FindTag (wd.file1, "fmt ");
 fread (&wavHdr1, sizeof (wavHdr1), 1, wd.file1);
 fseek (wd.file1, (mSamples - sizeof (WaveHdr)), SEEK_CUR);

 if(mBigEndian) {
 mSampleRate = ENDIAN_BE32 (wavHdr1.SamplesPerSec);
 mSampleChannels = ENDIAN_BE16 (wavHdr1.Channels);
 mSampleBits = ENDIAN_BE16 (wavHdr1.BitsPerSample);
 wavHdr1.FormatTag = ENDIAN_BE16 (wavHdr1.FormatTag);
 } else {
 mSampleRate = ENDIAN_LE32 (wavHdr1.SamplesPerSec);
 mSampleChannels = ENDIAN_LE16 (wavHdr1.Channels);
 mSampleBits = ENDIAN_LE16 (wavHdr1.BitsPerSample);
 wavHdr1.FormatTag = ENDIAN_LE16 (wavHdr1.FormatTag);
 }

 printf ("SampleRate = %d, Channels = %d, SampleBits = %d\n", mSampleRate, mSampleChannels,
 mSampleBits);

 if (!use_mmap)
 {
 /* disabling mmap is not actually required in this example but it is included to
 * demonstrate how it is used when it is required.
 */
 if ((rtn = snd_pcm_plugin_set_disable (pcm_handle, PLUGIN_DISABLE_MMAP)) < 0)
 {
 fprintf (stderr, "snd_pcm_plugin_set_disable failed: %s\n", snd_strerror (rtn));
 return -1;
 }
 }

 if ((rtn = snd_pcm_plugin_set_enable (pcm_handle, PLUGIN_ROUTING)) < 0)
 {
 fprintf (stderr, "snd_pcm_plugin_set_enable failed for PLUGIN_ROUTING: %s\n", snd_strerror (rtn));
 return -1;
 }

 memset (&pi, 0, sizeof (pi));
 pi.channel = SND_PCM_CHANNEL_PLAYBACK;
 if ((rtn = snd_pcm_plugin_info (pcm_handle, &pi)) < 0)
 {
 fprintf (stderr, "snd_pcm_plugin_info failed: %s\n", snd_strerror (rtn));
 return -1;
 }

 memset (&pp, 0, sizeof (pp));

 pp.mode = SND_PCM_MODE_BLOCK
 | (protected_content ? SND_PCM_MODE_FLAG_PROTECTED_CONTENT : 0)
 | (enable_protection ? SND_PCM_MODE_FLAG_ENABLE_PROTECTION : 0)
 | (require_protection ? SND_PCM_MODE_FLAG_REQUIRE_PROTECTION : 0);

 pp.channel = SND_PCM_CHANNEL_PLAYBACK;
 pp.start_mode = SND_PCM_START_FULL;
 pp.stop_mode = SND_PCM_STOP_STOP;

 pp.buf.block.frag_size = pi.max_fragment_size;
 if (fragsize != -1)
 {
 pp.buf.block.frag_size = fragsize;
 }
 pp.buf.block.frags_max = num_frags;

300 Copyright © 2014, QNX Software Systems Limited

wave.c example

 pp.buf.block.frags_buffered_max = num_buffered_frags;
 pp.buf.block.frags_min = 1;

 pp.format.interleave = 1;
 pp.format.rate = mSampleRate;
 pp.format.voices = mSampleChannels;

 if (wavHdr1.FormatTag == 6) {
 pp.format.format = SND_PCM_SFMT_A_LAW;
 } else if (wavHdr1.FormatTag == 7) {
 pp.format.format = SND_PCM_SFMT_MU_LAW;
 } else if (mSampleBits == 8) {
 pp.format.format = SND_PCM_SFMT_U8;
 } else if (mSampleBits == 16) {
 if (mBigEndian) {
 pp.format.format = SND_PCM_SFMT_S16_BE;
 } else {
 pp.format.format = SND_PCM_SFMT_S16_LE;
 }
 } else if (mSampleBits == 24) {
 if (mBigEndian) {
 pp.format.format = SND_PCM_SFMT_S24_BE;
 } else {
 pp.format.format = SND_PCM_SFMT_S24_LE;
 }
 } else if (mSampleBits == 32) {
 if (mBigEndian) {
 pp.format.format = SND_PCM_SFMT_S32_BE;
 } else {
 pp.format.format = SND_PCM_SFMT_S32_LE;
 }
 } else {
 fprintf(stderr, "Unsupported number of bits per sample %d", mSampleBits);
 return -1;
 }

 if (mix_name_enable == 1)
 {
 strncpy (pp.sw_mixer_subchn_name, mixer_name, 32);
 }
 else
 {
 strcpy (pp.sw_mixer_subchn_name, "Wave playback channel");
 }

 if ((rtn = snd_pcm_plugin_set_src_method(pcm_handle, rate_method)) != rate_method)
 {
 fprintf(stderr, "Failed to apply rate_method %d, using %d\n", rate_method, rtn);
 }

 if ((rtn = snd_pcm_plugin_params (pcm_handle, &pp)) < 0)
 {
 fprintf (stderr, "snd_pcm_plugin_params failed: %s, why_failed = %d\n", snd_strerror (rtn),
 pp.why_failed);
 return -1;
 }

 if ((rtn = snd_pcm_plugin_prepare (pcm_handle, SND_PCM_CHANNEL_PLAYBACK)) < 0)
 fprintf (stderr, "snd_pcm_plugin_prepare failed: %s\n", snd_strerror (rtn));

 if (voice_override)
 {
 snd_pcm_plugin_get_voice_conversion (pcm_handle, SND_PCM_CHANNEL_PLAYBACK,
 &voice_conversion);
 voice_conversion.matrix[0] = voice_mask[0];
 voice_conversion.matrix[1] = voice_mask[1];
 voice_conversion.matrix[2] = voice_mask[2];
 voice_conversion.matrix[3] = voice_mask[3];
 voice_conversion.matrix[4] = voice_mask[4];
 voice_conversion.matrix[5] = voice_mask[5];
 voice_conversion.matrix[6] = voice_mask[6];
 voice_conversion.matrix[7] = voice_mask[7];
 snd_pcm_plugin_set_voice_conversion (pcm_handle, SND_PCM_CHANNEL_PLAYBACK,
 &voice_conversion);
 }

 memset (&setup, 0, sizeof (setup));
 memset (&group, 0, sizeof (group));
 setup.channel = SND_PCM_CHANNEL_PLAYBACK;
 setup.mixer_gid = &group.gid;

Copyright © 2014, QNX Software Systems Limited 301

 if ((rtn = snd_pcm_plugin_setup (pcm_handle, &setup)) < 0)
 {
 fprintf (stderr, "snd_pcm_plugin_setup failed: %s\n", snd_strerror (rtn));
 return -1;
 }
 printf ("Format %s \n", snd_pcm_get_format_name (setup.format.format));
 printf ("Frag Size %d \n", setup.buf.block.frag_size);
 printf ("Total Frags %d \n", setup.buf.block.frags);
 printf ("Rate %d \n", setup.format.rate);
 printf ("Voices %d \n", setup.format.voices);
 bsize = setup.buf.block.frag_size;

 if (group.gid.name[0] == 0)
 {
 printf ("Mixer Pcm Group [%s] Not Set \n", group.gid.name);
 }
 else
 {
 printf ("Mixer Pcm Group [%s]\n", group.gid.name);
 if ((rtn = snd_mixer_open_pcm (&mixer_handle, pcm_handle)) < 0)
 {
 fprintf (stderr, "snd_mixer_open failed: %s\n", snd_strerror (rtn));
 return -1;
 }
 }
 if (tcgetpgrp (0) == getpid ())
 dev_raw (fileno (stdin));
 mSamples = FindTag (wd.file1, "data");

 if(print_timing) {
 clock_gettime(CLOCK_REALTIME, &wd.start_time);
 }

 mSampleBfr1 = malloc (bsize);
 FD_ZERO (&rfds);
 FD_ZERO (&wfds);
 n = 1;

 if (mixer_handle)
 {
 if (vol_percent >=0)
 {
 if ((rtn = snd_mixer_group_read (mixer_handle, &group)) < 0)
 fprintf (stderr, "snd_mixer_group_read failed: %s\n", snd_strerror (rtn));

 volume = (float)(group.max - group.min) * (vol_percent / 100);

 if (group.channels & SND_MIXER_CHN_MASK_FRONT_LEFT)
 group.volume.names.front_left = (int)volume;
 if (group.channels & SND_MIXER_CHN_MASK_REAR_LEFT)
 group.volume.names.rear_left = (int)volume;
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_CENTER)
 group.volume.names.front_center = (int)volume;
 if (group.channels & SND_MIXER_CHN_MASK_FRONT_RIGHT)
 group.volume.names.front_right = (int)volume;
 if (group.channels & SND_MIXER_CHN_MASK_REAR_RIGHT)
 group.volume.names.rear_right = (int)volume;
 if (group.channels & SND_MIXER_CHN_MASK_WOOFER)
 group.volume.names.woofer = (int)volume;

 if ((rtn = snd_mixer_group_write (mixer_handle, &group)) < 0)
 fprintf (stderr, "snd_mixer_group_write failed: %s\n", snd_strerror (rtn));

 vol_percent = -1;
 }
 }

 signal(SIGINT, sig_handler);
 signal(SIGTERM, sig_handler);

 if(use_writer_thread) {
 pthread_create(&writer_thread, NULL, writer_thread_handler, &wd);
 pthread_create(&keypress_thread, NULL, generic_thread_handler, handle_keypress);
 if (mixer_handle)
 pthread_create(&mixer_thread, NULL, generic_thread_handler, handle_mixer);
 // First wait for feeder to complete. Any other thread will cause it to stop.
 // Then just kill the other threads
 pthread_join(writer_thread, &retval);
 pthread_cancel(keypress_thread);
 if (mixer_handle)

302 Copyright © 2014, QNX Software Systems Limited

wave.c example

 pthread_cancel(mixer_thread);
 } else {
 while (running && N < mSamples && n > 0)
 {
 FD_ZERO(&rfds);
 FD_ZERO(&wfds);
 if (tcgetpgrp (0) == getpid ())
 FD_SET (STDIN_FILENO, &rfds);
 if (mixer_handle) {
 FD_SET (snd_mixer_file_descriptor (mixer_handle), &rfds);
 }
 FD_SET (snd_pcm_file_descriptor (pcm_handle, SND_PCM_CHANNEL_PLAYBACK), &wfds);

 rtn = max (snd_mixer_file_descriptor (mixer_handle),
 snd_pcm_file_descriptor (pcm_handle, SND_PCM_CHANNEL_PLAYBACK));

 if (select (rtn + 1, &rfds, &wfds, NULL, NULL) == -1)
 {
 err ("select");
 break; /* break loop to exit cleanly */
 }

 if (FD_ISSET (STDIN_FILENO, &rfds))
 {
 handle_keypress();
 }

 if (FD_ISSET (snd_mixer_file_descriptor (mixer_handle), &rfds))
 {
 handle_mixer();
 }

 if (FD_ISSET (snd_pcm_file_descriptor (pcm_handle, SND_PCM_CHANNEL_PLAYBACK), &wfds))
 {
 write_audio_data(&wd);
 }
 }
 }

 if (tcgetpgrp (0) == getpid ())
 dev_unraw (fileno (stdin));
 printf("Exiting...\n");
 if (running) {
 snd_pcm_plugin_flush (pcm_handle, SND_PCM_CHANNEL_PLAYBACK);
 }
 if (mixer_handle)
 snd_mixer_close (mixer_handle);
 snd_pcm_close (pcm_handle);

 if (uses_audioman_handle) {
 audio_manager_free_handle (audioman_handle);
 }
 fclose(wd.file1);

 return (0);
}

Copyright © 2014, QNX Software Systems Limited 303

Appendix B
waverec.c example

This is a sample application that captures (i.e., records) audio data.

/*
 * $QNXLicenseC:
 * Copyright 2007, QNX Software Systems. All Rights Reserved.
 *
 * You must obtain a written license from and pay applicable license fees to QNX
 * Software Systems before you may reproduce, modify or distribute this software,
 * or any work that includes all or part of this software. Free development
 * licenses are available for evaluation and non-commercial purposes. For more
 * information visit http://licensing.qnx.com or email licensing@qnx.com.
 *
 * This file may contain contributions from others. Please review this entire
 * file for other proprietary rights or license notices, as well as the QNX
 * Development Suite License Guide at http://licensing.qnx.com/license-guide/
 * for other information.
 * $
 */

#include <errno.h>
#include <fcntl.h>
#include <gulliver.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/stat.h>
#include <sys/termio.h>
#include <sys/types.h>
#include <unistd.h>
#include <limits.h>
#include <ctype.h>

#include <sys/asoundlib.h>

#include <audio/audio_manager_routing.h>

/* *INDENT-OFF* */
struct
{
 char riff_id[4];
 uint32_t wave_len;
 struct
 {
 char fmt_id[8];
 uint32_t fmt_len;
 struct
 {
 uint16_t format_tag;
 uint16_t voices;
 uint32_t rate;
 uint32_t char_per_sec;
 uint16_t block_align;
 uint16_t bits_per_sample;
 }
 fmt;
 struct
 {
 char data_id[4];
 uint32_t data_len;
 }
 data;
 }
 wave;
}

Copyright © 2014, QNX Software Systems Limited 305

riff_hdr =
{
 {'R', 'I', 'F', 'F' },
 sizeof (riff_hdr.wave),
 {
 {'W', 'A', 'V', 'E', 'f', 'm', 't', ' ' },
 sizeof (riff_hdr.wave.fmt),
 {
 1, 0, 0, 0, 0, 0
 },
 {
 {'d', 'a', 't', 'a' },
 0,
 }
 }
};
/* *INDENT-ON* */

int
err (char *msg)
{
 perror (msg);
 return -1;
}

int
dev_raw (int fd)
{
 struct termios termios_p;

 if (tcgetattr (fd, &termios_p))
 return (-1);

 termios_p.c_cc[VMIN] = 1;
 termios_p.c_cc[VTIME] = 0;
 termios_p.c_lflag &= ~(ICANON | ECHO | ISIG);
 return (tcsetattr (fd, TCSANOW, &termios_p));
}

int
dev_unraw (int fd)
{
 struct termios termios_p;

 if (tcgetattr (fd, &termios_p))
 return (-1);

 termios_p.c_lflag |= (ICANON | ECHO | ISIG);
 return (tcsetattr (fd, TCSAFLUSH, &termios_p));
}

//***
/* *INDENT-OFF* */
#ifdef __USAGE
%C[Options] *

Options:
 -8 use 8 bit mode (16 bit default)
 -b <size> Sample size (8, 16, 32)
 -a[card#:]<dev#> the card & device number to record from
 -m record in mono (stereo default)
 -n <voices> the number of voices to record (2 voices default, stereo)
 -r <rate> record at rate (44100 default | 48000 44100 22050 11025)
 -t <sec> seconds to record (5 seconds default)
 -f <frag_size> requested fragment size
 -v verbosity
 -c <args>[,args ...] voice matrix configuration
 -o <audioman type> Specifies an audioman type for the capture stream.
 -x use mmap interface
 -i <0|1> Interleave samples (default: 1)
 -R <value> SRC rate method
 (0 = linear interpolation, 1 = 7-pt kaiser windowed, 2 = 20-pt remez)
 -z<num_frags> requested number of fragments

Note:
 If both 'm' and 'n' are specified in commandline, the one specified later will be used

306 Copyright © 2014, QNX Software Systems Limited

waverec.c example

Args:
 1=<hw_channel_bitmask> hardware channel bitmask for application voice 1
 2=<hw_channel_bitmask> hardware channel bitmask for application voice 2
 3=<hw_channel_bitmask> hardware channel bitmask for application voice 3
 4=<hw_channel_bitmask> hardware channel bitmask for application voice 4
#endif
/* *INDENT-ON* */
//***

volatile int end = 0;

void sig_handler(int sig_no)
{
 end = 1;
 return;
}

const char *
why_failed (int why_failed)
{
 switch (why_failed)
 {
 case SND_PCM_PARAMS_BAD_MODE:
 return ("Bad Mode Parameter");
 case SND_PCM_PARAMS_BAD_START:
 return ("Bad Start Parameter");
 case SND_PCM_PARAMS_BAD_STOP:
 return ("Bad Stop Parameter");
 case SND_PCM_PARAMS_BAD_FORMAT:
 return ("Bad Format Parameter");
 case SND_PCM_PARAMS_BAD_RATE:
 return ("Bad Rate Parameter");
 case SND_PCM_PARAMS_BAD_VOICES:
 return ("Bad Vocies Parameter");
 case SND_PCM_PARAMS_NO_CHANNEL:
 return ("No Channel Available");
 default:
 return ("Unknown Error");
 }

 return ("No Error");
}

int
main (int argc, char **argv)
{
 int card = -1;
 int dev = 0;
 int ret;

 snd_pcm_t *pcm_handle;
 FILE *file1;
 unsigned int mSamples;
 int mSampleRate;
 int mSampleChannels;
 int mSampleBits;
 int mSampleTime;
 char *mSampleBfr1;
 int fragsize = -1;
 int num_frags = -1;
 int verbose = 0;

 int rtn;

 snd_pcm_channel_info_t pi;
 snd_mixer_t *mixer_handle = NULL;
 snd_mixer_group_t group;
 snd_pcm_channel_params_t pp;
 snd_pcm_channel_setup_t setup;
 int bsize, N = 0, c;
 uint32_t voice_mask[] = { 0, 0, 0, 0 };
 snd_pcm_voice_conversion_t voice_conversion;
 int voice_override = 0;
 char *sub_opts, *value;
 char *dev_opts[] = {
#define CHN1 0
 "1",
#define CHN2 1
 "2",
#define CHN3 2

Copyright © 2014, QNX Software Systems Limited 307

 "3",
#define CHN4 3
 "4",
 NULL
 };
 char name[_POSIX_PATH_MAX] = { 0 };
 char *type = NULL;
 audio_manager_audio_type_t audioman_type;
 unsigned int audioman_handle;
 int uses_audioman_handle = 0;
 int interleave = 1;
 fd_set rfds;
 int use_mmap = 0;
 int rate_method = 0;

 mSampleRate = 44100;
 mSampleChannels = 2;
 mSampleBits = 16;
 mSampleTime = 5;
 while ((c = getopt (argc, argv, "8b:a:f:mn:r:t:vc:o:xi:R:z:")) != EOF)
 {
 switch (c)
 {
 case '8':
 mSampleBits = 8;
 break;
 case 'b':
 mSampleBits = atoi (optarg);
 if (mSampleBits != 8 && mSampleBits != 16 && mSampleBits != 24 && mSampleBits != 32)
 {
 printf("Invalid sample size, must be one of 8, 16, 24, 32\n");
 exit(1);
 }
 break;
 case 'a':
 if (strchr (optarg, ':'))
 {
 card = atoi (optarg);
 dev = atoi (strchr (optarg, ':') + 1);
 }
 else if (isalpha (optarg[0]) || optarg[0] == '/')
 strcpy (name, optarg);
 else
 dev = atoi (optarg);

 if (name[0] != '\0')
 printf ("Using device /dev/snd/%s\n", name);
 else
 printf ("Using card %d device %d \n", card, dev);
 break;
 case 'f':
 fragsize = atoi (optarg);
 break;
 case 'i':
 interleave = atoi(optarg);
 if (interleave <= 0)
 interleave = 0;
 else
 interleave = 1;
 break;
 case 'm':
 mSampleChannels = 1;
 break;
 case 'n':
 mSampleChannels = atoi (optarg);
 break;
 case 'r':
 mSampleRate = atoi (optarg);
 break;
 case 't':
 mSampleTime = atoi (optarg);
 break;
 case 'v':
 verbose = 1;
 break;
 case 'c':
 sub_opts = strdup (optarg);
 while (*sub_opts != '\0')
 {
 switch (getsubopt (&sub_opts, dev_opts, &value))

308 Copyright © 2014, QNX Software Systems Limited

waverec.c example

 {
 case CHN1:
 voice_mask[0] = strtoul (value, NULL, 0);
 break;
 case CHN2:
 voice_mask[1] = strtoul (value, NULL, 0);
 break;
 case CHN3:
 voice_mask[2] = strtoul (value, NULL, 0);
 break;
 case CHN4:
 voice_mask[3] = strtoul (value, NULL, 0);
 break;
 default:
 break;
 }
 }
 voice_override = 1;
 break;
 case 'o':
 type = optarg;
 uses_audioman_handle = 1;
 break;
 case 'x':
 use_mmap = 1;
 break;
 case 'R':
 rate_method = atoi(optarg);
 if (rate_method < 0 || rate_method > 2)
 {
 rate_method = 0;
 printf("Invalid rate method, using method 0\n");
 }
 break;
 case 'z':
 num_frags = atoi (optarg) - 1;
 break;
 default:
 return 1;
 }
 }

 // Setup audioman handle if it is available
 if (uses_audioman_handle) {
 audioman_type = audio_manager_get_type_from_name(type);
 if (audio_manager_get_handle(audioman_type,
 getpid(),
 false,
 &audioman_handle) >= 0) {
 uses_audioman_handle = 1;
 } else {
 // Return an error because the user wanted to use audioman.
 return err("Audio Manager is not available");
 }
 }

 if (name[0] != '\0')
 {
 snd_pcm_info_t info;

 if ((rtn = snd_pcm_open_name (&pcm_handle, name, SND_PCM_OPEN_CAPTURE)) < 0)
 {
 return err ("open_name");
 }
 rtn = snd_pcm_info (pcm_handle, &info);
 card = info.card;
 }
 else
 {
 if (card == -1)
 {
 if ((rtn = snd_pcm_open_preferred (&pcm_handle, &card, &dev, SND_PCM_OPEN_CAPTURE)) < 0)
 return err ("device open");
 }
 else
 {
 if ((rtn = snd_pcm_open (&pcm_handle, card, dev, SND_PCM_OPEN_CAPTURE)) < 0)
 return err ("device open");
 }
 }

Copyright © 2014, QNX Software Systems Limited 309

 if (optind >= argc)
 return err ("no file specified");

 if ((file1 = fopen (argv[optind], "w")) == 0)
 return err ("file open #1");

 if(mSampleTime == 0) {
 mSamples = 0xFFFFFFFF - sizeof(riff_hdr) + 8;
 } else {
 mSamples = mSampleRate * mSampleChannels * mSampleBits / 8 * mSampleTime;
 }

 if (uses_audioman_handle) {
 snd_pcm_set_audioman_handle(pcm_handle, audioman_handle);
 if(type) {
 printf("Audio Manager Type: %s\n", type);
 }
 }

 riff_hdr.wave.fmt.voices = ENDIAN_LE16 (mSampleChannels);
 riff_hdr.wave.fmt.rate = ENDIAN_LE32 (mSampleRate);
 riff_hdr.wave.fmt.char_per_sec =
 ENDIAN_LE32 (mSampleRate * mSampleChannels * mSampleBits / 8);
 riff_hdr.wave.fmt.block_align = ENDIAN_LE16 (mSampleChannels * mSampleBits / 8);
 riff_hdr.wave.fmt.bits_per_sample = ENDIAN_LE16 (mSampleBits);
 riff_hdr.wave.data.data_len = ENDIAN_LE32 (mSamples);
 riff_hdr.wave_len = ENDIAN_LE32 (mSamples + sizeof (riff_hdr) - 8);
 fwrite (&riff_hdr, 1, sizeof (riff_hdr), file1);

 printf ("SampleRate = %d, Channels = %d, SampleBits = %d\n", mSampleRate, mSampleChannels,
 mSampleBits);

 if (!use_mmap)
 {
 /* disabling mmap is not actually required in this example but it is included to
 * demonstrate how it is used when it is required.
 */
 if ((rtn = snd_pcm_plugin_set_disable (pcm_handle, PLUGIN_DISABLE_MMAP)) < 0)
 {
 fprintf (stderr, "snd_pcm_plugin_set_disable failed: %s\n", snd_strerror (rtn));
 return -1;
 }
 }

 memset (&pi, 0, sizeof (pi));
 pi.channel = SND_PCM_CHANNEL_CAPTURE;
 if ((rtn = snd_pcm_plugin_info (pcm_handle, &pi)) < 0)
 {
 fprintf (stderr, "snd_pcm_plugin_info failed: %s\n", snd_strerror (rtn));
 return -1;
 }

 memset (&pp, 0, sizeof (pp));

 pp.mode = SND_PCM_MODE_BLOCK;
 pp.channel = SND_PCM_CHANNEL_CAPTURE;
 pp.start_mode = SND_PCM_START_DATA;
 pp.stop_mode = SND_PCM_STOP_STOP;
 pp.time = 1;

 pp.buf.block.frag_size = pi.max_fragment_size;
 if (fragsize != -1)
 pp.buf.block.frag_size = fragsize;
 pp.buf.block.frags_max = num_frags;
 pp.buf.block.frags_min = 1;

 pp.format.interleave = interleave;
 pp.format.rate = mSampleRate;
 pp.format.voices = mSampleChannels;

 switch (mSampleBits)
 {
 case 8:
 pp.format.format = SND_PCM_SFMT_U8;
 break;
 case 16:
 default:
 pp.format.format = SND_PCM_SFMT_S16_LE;
 break;

310 Copyright © 2014, QNX Software Systems Limited

waverec.c example

 case 24:
 pp.format.format = SND_PCM_SFMT_S24_LE;
 break;
 case 32:
 pp.format.format = SND_PCM_SFMT_S32_LE;
 break;
 }

 if ((rtn = snd_pcm_plugin_set_src_method(pcm_handle, rate_method)) != rate_method)
 {
 fprintf(stderr, "Failed to apply rate_method %d, using %d\n", rate_method, rtn);
 }

 if ((rtn = snd_pcm_plugin_params (pcm_handle, &pp)) < 0)
 {
 fprintf (stderr, "snd_pcm_plugin_params failed: %s - %s\n", snd_strerror (rtn), why_failed(pp.why_failed));
 return -1;
 }

 if ((rtn = snd_pcm_plugin_prepare (pcm_handle, SND_PCM_CHANNEL_CAPTURE)) < 0)
 fprintf (stderr, "snd_pcm_plugin_prepare failed: %s\n", snd_strerror (rtn));

 if (voice_override)
 {
 snd_pcm_plugin_get_voice_conversion (pcm_handle, SND_PCM_CHANNEL_CAPTURE,
 &voice_conversion);
 voice_conversion.matrix[0] = voice_mask[0];
 voice_conversion.matrix[1] = voice_mask[1];
 voice_conversion.matrix[2] = voice_mask[2];
 voice_conversion.matrix[3] = voice_mask[3];
 snd_pcm_plugin_set_voice_conversion (pcm_handle, SND_PCM_CHANNEL_CAPTURE,
 &voice_conversion);
 }

 memset (&setup, 0, sizeof (setup));
 memset (&group, 0, sizeof (group));
 setup.channel = SND_PCM_CHANNEL_CAPTURE;
 setup.mixer_gid = &group.gid;
 if ((rtn = snd_pcm_plugin_setup (pcm_handle, &setup)) < 0)
 {
 fprintf (stderr, "snd_pcm_plugin_setup failed: %s\n", snd_strerror (rtn));
 return -1;
 }
 printf ("Format %s \n", snd_pcm_get_format_name (setup.format.format));
 printf ("Frag Size %d \n", setup.buf.block.frag_size);
 printf ("Total Frags %d \n", setup.buf.block.frags);
 printf ("Rate %d \n", setup.format.rate);
 bsize = setup.buf.block.frag_size;

 if (group.gid.name[0] == 0)
 {
 printf ("Mixer Pcm Group [%s] Not Set \n", group.gid.name);
 printf ("***>>>> Input Gain Controls Disabled <<<<*** \n");
 }
 else
 {
 printf ("Mixer Pcm Group [%s]\n", group.gid.name);
 if ((rtn = snd_mixer_open (&mixer_handle, card, setup.mixer_device)) < 0)
 {
 fprintf (stderr, "snd_mixer_open failed: %s\n", snd_strerror (rtn));
 return -1;
 }
 }

 if (tcgetpgrp (0) == getpid ())
 dev_raw (fileno (stdin));

 mSampleBfr1 = malloc (bsize);
 FD_ZERO (&rfds);
 signal(SIGINT, sig_handler);
 signal(SIGTERM, sig_handler);
 while (!end && N < mSamples)
 {
 if (mixer_handle)
 {
 /* If we are the foreground process group associated with STDIN then include
 * STDIN in the fdset to handle user volume adjustments.
 */
 if (tcgetpgrp (0) == getpid ())

Copyright © 2014, QNX Software Systems Limited 311

 FD_SET (STDIN_FILENO, &rfds);
 /* Include the mixer_handle descriptor in the fdset to handle
 * mixer events.
 */
 FD_SET (snd_mixer_file_descriptor (mixer_handle), &rfds);
 }
 FD_SET (snd_pcm_file_descriptor (pcm_handle, SND_PCM_CHANNEL_CAPTURE), &rfds);

 rtn = max (snd_mixer_file_descriptor (mixer_handle),
 snd_pcm_file_descriptor (pcm_handle, SND_PCM_CHANNEL_CAPTURE));

 if (select (rtn + 1, &rfds, NULL, NULL, NULL) == -1)
 {
 err ("select");
 break; /* break loop to exit cleanly */
 }

 if (FD_ISSET (STDIN_FILENO, &rfds))
 {
 c = getc (stdin);
 if (c != EOF)
 {
 if (group.gid.name[0] != 0)
 {
 if ((rtn = snd_mixer_group_read (mixer_handle, &group)) < 0)
 fprintf (stderr, "snd_mixer_group_read failed: %s\n", snd_strerror (rtn));
 switch (c)
 {
 case 'q':
 group.volume.names.front_left += 1;
 break;
 case 'a':
 group.volume.names.front_left -= 1;
 break;
 case 'w':
 group.volume.names.front_left += 1;
 group.volume.names.front_right += 1;
 break;
 case 's':
 group.volume.names.front_left -= 1;
 group.volume.names.front_right -= 1;
 break;
 case 'e':
 group.volume.names.front_right += 1;
 break;
 case 'd':
 group.volume.names.front_right -= 1;
 break;
 case 'o':
 sleep(5);
 break;
 case 'f':
 if((ret = snd_pcm_plugin_flush(pcm_handle, SND_PCM_CHANNEL_CAPTURE)) == 0) {
 printf("Flushing\n");
 } else {
 fprintf(stderr, "Flush failed: %d\n", ret);
 }
 break;
 case 'g':
 if((ret = snd_pcm_plugin_prepare(pcm_handle, SND_PCM_CHANNEL_CAPTURE)) == 0) {
 printf("Preparing\n");
 } else {
 fprintf(stderr, "Preparing failed: %d\n", ret);
 }
 break;
 case 'p':
 if((ret = snd_pcm_capture_pause(pcm_handle)) == 0) {
 printf("Pausing\n");
 } else {
 fprintf(stderr, "Pause failed: %d\n", ret);
 }
 break;
 case 'r':
 if((ret = snd_pcm_capture_resume(pcm_handle)) == 0) {
 printf("Resuming\n");
 } else {
 fprintf(stderr, "Resume failed: %d\n", ret);
 }
 break;
 case 3: //Ctrl-C

312 Copyright © 2014, QNX Software Systems Limited

waverec.c example

 case 27: // Escape
 end = 1;
 break;
 case 'z':
 printf("delaying 500ms\n");
 delay(500);
 break;
 }
 if (group.volume.names.front_left > group.max)
 group.volume.names.front_left = group.max;
 if (group.volume.names.front_left < group.min)
 group.volume.names.front_left = group.min;
 if (group.volume.names.front_right > group.max)
 group.volume.names.front_right = group.max;
 if (group.volume.names.front_right < group.min)
 group.volume.names.front_right = group.min;
 if ((rtn = snd_mixer_group_write (mixer_handle, &group)) < 0)
 fprintf (stderr, "snd_mixer_group_write failed: %s\n", snd_strerror (rtn));

 if (group.max==group.min)
 printf ("Volume Now at %d:%d\n", group.max, group.max);
 else
 printf ("Volume Now at %d:%d \n",
 100 * (group.volume.names.front_left - group.min) / (group.max - group.min),
 100 * (group.volume.names.front_right - group.min) / (group.max -
 group.min));
 }
 }
 else {
 if (tcgetpgrp (0) == getpid ())
 dev_unraw (fileno (stdin));
 exit (0);
 }
 }

 if (FD_ISSET (snd_mixer_file_descriptor (mixer_handle), &rfds))
 {
 snd_mixer_callbacks_t callbacks = {
 0, 0, 0, 0
 };

 snd_mixer_read (mixer_handle, &callbacks);
 }

 if (FD_ISSET (snd_pcm_file_descriptor (pcm_handle, SND_PCM_CHANNEL_CAPTURE), &rfds))
 {
 snd_pcm_channel_status_t status;
 int read = 0;

 read = snd_pcm_plugin_read (pcm_handle, mSampleBfr1, bsize);
 if (verbose)
 printf ("bytes read = %d, bsize = %d \n", read, bsize);
 if (read < bsize)
 {
 memset (&status, 0, sizeof (status));
 status.channel = SND_PCM_CHANNEL_CAPTURE;
 if (snd_pcm_plugin_status (pcm_handle, &status) < 0)
 {
 fprintf (stderr, "Capture channel status error\n");
 exit (1);
 }

 if (status.status == SND_PCM_STATUS_READY ||
 status.status == SND_PCM_STATUS_OVERRUN)
 {
 if (status.status == SND_PCM_STATUS_OVERRUN)
 fprintf(stderr, "overrun: capture channel\n");

 if (snd_pcm_plugin_prepare (pcm_handle, SND_PCM_CHANNEL_CAPTURE) < 0)
 {
 fprintf (stderr, "Capture channel prepare error\n");
 exit (1);
 }
 }
 else if (status.status == SND_PCM_STATUS_ERROR)
 {
 fprintf(stderr, "error: capture channel failure\n");
 exit(1);
 }
 else if (status.status == SND_PCM_STATUS_CHANGE)

Copyright © 2014, QNX Software Systems Limited 313

 {
 fprintf(stderr, "change: capture channel capability change\n");
 exit(1);
 }
 else if (status.status == SND_PCM_STATUS_PREEMPTED)
 {
 fprintf(stderr, "error: capture channel preempted\n");
 exit(1);
 }
 } else {
 fwrite (mSampleBfr1, 1, read, file1);
 N += read;
 }
 }
 }

 if (tcgetpgrp (0) == getpid ())
 dev_unraw (fileno (stdin));

 printf("Exiting...\n");
 snd_pcm_plugin_flush (pcm_handle, SND_PCM_CHANNEL_CAPTURE);

 rtn = snd_mixer_close (mixer_handle);
 rtn = snd_pcm_close (pcm_handle);
 fclose (file1);

 if (uses_audioman_handle) {
 audio_manager_free_handle(audioman_handle);
 }
 return (0);
}

314 Copyright © 2014, QNX Software Systems Limited

waverec.c example

Appendix C
mix_ctl.c example

This is a sample application that captures the groups and switches in the mixer.

/*
 * $QNXLicenseC:
 * Copyright 2007, QNX Software Systems. All Rights Reserved.
 *
 * You must obtain a written license from and pay applicable license fees to QNX
 * Software Systems before you may reproduce, modify or distribute this software,
 * or any work that includes all or part of this software. Free development
 * licenses are available for evaluation and non-commercial purposes. For more
 * information visit http://licensing.qnx.com or email licensing@qnx.com.
 *
 * This file may contain contributions from others. Please review this entire
 * file for other proprietary rights or license notices, as well as the QNX
 * Development Suite License Guide at http://licensing.qnx.com/license-guide/
 * for other information.
 * $
 */

#include <errno.h>
#include <fcntl.h>
#include <fnmatch.h>
#include <gulliver.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/stat.h>
#include <sys/termio.h>
#include <sys/types.h>
#include <unistd.h>

#include <sys/asoundlib.h>

//***
/* *INDENT-OFF* */
#ifdef __USAGE
%C [Options] Cmds

Options:
 -a[card#:]<dev#> the card & mixer device number to access

Cmds:

 groups [-d] [-c] [-p] [pattern]
 -d will print the group details
 -c will show only groups effecting capture
 -p will show only groups effecting playback

 group name [mute[Y]=off|on] [capture[Y]=off|on] [volume[Y]=x|x%] ...
 - name is the group name quoted if it contains white space
 - the Y is a option the restricts the change to only one voice (if possible)

 switches [pattern]

 switch name [value]
 - name is the switch name quoted if it contains white space

#endif
/* *INDENT-ON* */
//***

void

Copyright © 2014, QNX Software Systems Limited 315

display_group (snd_mixer_t * mixer_handle, snd_mixer_gid_t * gid, snd_mixer_group_t * group)
{
 int j;

 printf ("\"%s\",%d - %s \n", gid->name, gid->index,
 group->caps & SND_MIXER_GRPCAP_PLAY_GRP ? "Playback Group" : "Capture Group");

 printf ("\tCapabilities - ");
 if (group->caps & SND_MIXER_GRPCAP_VOLUME)
 printf (" Volume");
 if (group->caps & SND_MIXER_GRPCAP_JOINTLY_MUTE)
 printf (" Jointly-Mute");
 else if (group->caps & SND_MIXER_GRPCAP_MUTE)
 printf (" Mute");
 if (group->caps & SND_MIXER_GRPCAP_JOINTLY_CAPTURE)
 printf (" Jointly-Capture");
 if (group->caps & SND_MIXER_GRPCAP_EXCL_CAPTURE)
 printf (" Exclusive-Capture");
 else if (group->caps & SND_MIXER_GRPCAP_CAPTURE)
 printf (" Capture");
 printf ("\n");

 printf ("\tChannels - ");
 for (j = 0; j <= SND_MIXER_CHN_LAST; j++)
 {
 if (!(group->channels & (1 << j)))
 continue;
 printf ("%s ", snd_mixer_channel_name (j));
 }
 printf ("\n");

 printf ("\tVolume Range - minimum=%i, maximum=%i\n", group->min, group->max);

 for (j = 0; j <= SND_MIXER_CHN_LAST; j++)
 {
 if (!(group->channels & (1 << j)))
 continue;
 printf ("\tChannel %d %-12.12s - %3d (%3d%%) %s %s\n", j,
 snd_mixer_channel_name (j), group->volume.values[j],
 (group->max - group->min) <= 0 ? 0 : 100 * (group->volume.values[j] - group->min)
 / (group->max - group->min),
 group->mute & (1 << j) ? "Muted" : "", group->capture & (1 << j) ? "Capture" : "");
 }
}

void
display_groups (snd_mixer_t * mixer_handle, int argc, char *argv[])
{
 char details = 0;
 char playback_only = 0, capture_only = 0;
 char *pattern;
 snd_mixer_groups_t groups;
 int i;
 int rtn;
 snd_mixer_group_t group;

 optind = 1;
 while ((i = getopt (argc, argv, "cdp")) != EOF)
 {
 switch (i)
 {
 case 'c':
 capture_only = 1;
 playback_only = 0;
 break;
 case 'd':
 details = 1;
 break;
 case 'p':
 capture_only = 0;
 playback_only = 1;
 break;
 }
 }
 pattern = (optind >= argc) ? "*" : argv[optind];

 while (1)
 {
 memset (&groups, 0, sizeof (groups));

316 Copyright © 2014, QNX Software Systems Limited

mix_ctl.c example

 if (snd_mixer_groups (mixer_handle, &groups) < 0)
 {
 fprintf (stderr, "snd_mixer_groups API call - %s", strerror (errno));
 }
 else if (groups.groups == 0)
 {
 fprintf (stderr, "--> No mixer groups to list <-- \n");
 break;
 }

 if (groups.groups_over > 0)
 {
 groups.groups_size = groups.groups_over;
 groups.pgroups =
 (snd_mixer_gid_t *) malloc (sizeof (snd_mixer_gid_t) * groups.groups_size);
 if (groups.pgroups == NULL) {
 fprintf (stderr, "Unable to malloc group array - %s", strerror (errno));
 break;
 }
 groups.groups_over = 0;
 groups.groups = 0;
 if (snd_mixer_groups (mixer_handle, &groups) < 0)
 fprintf (stderr, "No Mixer Groups ");
 if (groups.groups_over > 0)
 {
 free (groups.pgroups);
 continue;
 }
 else
 {
 snd_mixer_sort_gid_table (groups.pgroups, groups.groups_size,
 snd_mixer_default_weights);
 break;
 }
 }
 }

 for (i = 0; i < groups.groups; i++)
 {
 if (fnmatch (pattern, groups.pgroups[i].name, 0) == 0)
 {
 memset (&group, 0, sizeof (group));
 memcpy (&group.gid, &groups.pgroups[i], sizeof (snd_mixer_gid_t));
 if ((rtn = snd_mixer_group_read (mixer_handle, &group)) < 0)
 fprintf (stderr, "snd_mixer_group_read failed: %s\n", snd_strerror (rtn));

 if (playback_only && group.caps & SND_MIXER_GRPCAP_CAP_GRP)
 continue;
 if (capture_only && group.caps & SND_MIXER_GRPCAP_PLAY_GRP)
 continue;

 if (details)
 display_group (mixer_handle, &groups.pgroups[i], &group);
 else
 {
 printf ("\"%s\",%d%*c - %s \n",
 groups.pgroups[i].name, groups.pgroups[i].index,
 2 + sizeof (groups.pgroups[i].name) - strlen (groups.pgroups[i].name), ' ',
 group.caps & SND_MIXER_GRPCAP_PLAY_GRP ? "Playback Group" : "Capture Group");
 }
 }
 }
}

int
find_group_best_match (snd_mixer_t * mixer_handle, snd_mixer_gid_t * gid, snd_mixer_group_t * group)
{
 snd_mixer_groups_t groups;
 int i;

 while (1)
 {
 memset (&groups, 0, sizeof (groups));
 if (snd_mixer_groups (mixer_handle, &groups) < 0)
 {
 fprintf (stderr, "snd_mixer_groups API call - %s", strerror (errno));
 }
 if (groups.groups_over > 0)
 {

Copyright © 2014, QNX Software Systems Limited 317

 groups.groups_size = groups.groups_over;
 groups.pgroups =
 (snd_mixer_gid_t *) malloc (sizeof (snd_mixer_gid_t) * groups.groups_size);
 if (groups.pgroups == NULL)
 fprintf (stderr, "Unable to malloc group array - %s", strerror (errno));
 groups.groups_over = 0;
 groups.groups = 0;
 if (snd_mixer_groups (mixer_handle, &groups) < 0)
 fprintf (stderr, "No Mixer Groups ");
 if (groups.groups_over > 0)
 {
 free (groups.pgroups);
 continue;
 }
 else
 break;
 }
 }

 for (i = 0; i < groups.groups; i++)
 {
 if (stricmp (gid->name, groups.pgroups[i].name) == 0 &&
 gid->index == groups.pgroups[i].index)
 {
 memset (group, 0, sizeof (group));
 memcpy (gid, &groups.pgroups[i], sizeof (snd_mixer_gid_t));
 memcpy (&group->gid, &groups.pgroups[i], sizeof (snd_mixer_gid_t));
 if ((snd_mixer_group_read (mixer_handle, group)) < 0)
 return ENOENT;
 else
 return EOK;
 }
 }

 return ENOENT;
}

int
group_option_value (char *option)
{
 char *ptr;
 int value;

 if ((ptr = strrchr (option, '=')) != NULL)
 {
 if (*(ptr + 1) == 0)
 value = -2;
 else if (stricmp (ptr + 1, "off") == 0)
 value = 0;
 else if (stricmp (ptr + 1, "on") == 0)
 value = 1;
 else
 value = atoi (ptr + 1);
 }
 else
 value = -1;
 return (value);
}

void
modify_group (snd_mixer_t * mixer_handle, int argc, char *argv[])
{
 int optind = 1;
 snd_mixer_gid_t gid;
 char *ptr;
 int rtn;
 snd_mixer_group_t group;
 uint32_t channel = 0, j;
 int32_t value;
 char modified = 0;

 if (optind >= argc)
 {
 fprintf (stderr, "No Group secified \n");
 return;
 }

 memset (&gid, 0, sizeof (gid));
 ptr = strtok (argv[optind++], ",");

318 Copyright © 2014, QNX Software Systems Limited

mix_ctl.c example

 if (ptr != NULL) {
 strncpy (gid.name, ptr, sizeof (gid.name));
 ptr = strtok (NULL, " ");
 }
 if (ptr != NULL)
 gid.index = atoi (ptr);

 memset (&group, 0, sizeof (group));
 memcpy (&group.gid, &gid, sizeof (snd_mixer_gid_t));
 if ((rtn = snd_mixer_group_read (mixer_handle, &group)) < 0)
 {
 if (rtn == -ENXIO)
 rtn = find_group_best_match (mixer_handle, &gid, &group);

 if (rtn != EOK)
 {
 fprintf (stderr, "snd_mixer_group_read failed: %s\n", snd_strerror (rtn));
 return;
 }
 }

 /* if we have a value option set the group, write and reread it (to get true driver state) */
 /* some things like capture (MUX) can't be turned off but can only be set on another group */
 while (optind < argc)
 {
 modified = 1;
 if ((value = group_option_value (argv[optind])) < 0)
 printf ("\n\t>>>> Unrecognized option [%s] <<<<\n\n", argv[optind]);
 else if (strnicmp (argv[optind], "mute", 4) == 0)
 {
 if (argv[optind][4] == '=')
 channel = LONG_MAX;
 else
 channel = atoi (&argv[optind][4]);
 if (channel == LONG_MAX)
 group.mute = value ? LONG_MAX : 0;
 else
 {
 group.mute = value ? group.mute | (1 << channel) : group.mute & ~(1 << channel);
 }
 }
 else if (strnicmp (argv[optind], "capture", 7) == 0)
 {
 if (argv[optind][7] == '=')
 channel = LONG_MAX;
 else
 channel = atoi (&argv[optind][7]);
 if (channel == LONG_MAX)
 group.capture = value ? LONG_MAX : 0;
 else
 group.capture =
 value ? group.capture | (1 << channel) : group.capture & ~(1 << channel);
 }
 else if (strnicmp (argv[optind], "volume", 6) == 0)
 {
 if (argv[optind][6] == '=')
 channel = LONG_MAX;
 else
 channel = atoi (&argv[optind][6]);
 if (argv[optind][strlen (argv[optind]) - 1] == '%' && (group.max - group.min) >= 0)
 value = (value * (group.max - group.min)) / 100 + group.min;
 if (value > group.max)
 value = group.max;
 if (value < group.min)
 value = group.min;
 for (j = 0; j <= SND_MIXER_CHN_LAST; j++)
 {
 if (!(group.channels & (1 << j)))
 continue;
 if (channel == LONG_MAX || channel == j)
 group.volume.values[j] = value;
 }
 }
 else if (strnicmp (argv[optind], "delay", 5) == 0)
 {
 if (argv[optind][5] == '=')
 group.change_duration = value;
 else
 group.change_duration = 50000;
 }

Copyright © 2014, QNX Software Systems Limited 319

 else
 printf ("\n\t>>>> Unrecognized option [%s] <<<<\n\n", argv[optind]);

 if (channel != LONG_MAX && !(group.channels & (1 << channel)))
 printf ("\n\t>>>> Channel specified [%d] Not in group <<<<\n\n", channel);
 optind++;
 }

 if (modified)
 if ((rtn = snd_mixer_group_write (mixer_handle, &group)) < 0)
 fprintf (stderr, "snd_mixer_group_write failed: %s\n", snd_strerror (rtn));
 if ((rtn = snd_mixer_group_read (mixer_handle, &group)) < 0)
 fprintf (stderr, "snd_mixer_group_read failed: %s\n", snd_strerror (rtn));

 /* display the current group state */
 display_group (mixer_handle, &gid, &group);
}

void
display_switch (snd_switch_t * sw, char table_formated)
{
 printf ("\"%s\"%*c ", sw->name,
 table_formated ? sizeof (sw->name) - strlen (sw->name) : 1, ' ');
 switch (sw->type)
 {
 case SND_SW_TYPE_BOOLEAN:
 printf ("%s %s \n", "BOOLEAN", sw->value.enable ? "on" : "off");
 break;
 case SND_SW_TYPE_BYTE:
 printf ("%s %d \n", "BYTE ", sw->value.byte.data);
 break;
 case SND_SW_TYPE_WORD:
 printf ("%s %d \n", "WORD ", sw->value.word.data);
 break;
 case SND_SW_TYPE_DWORD:
 printf ("%s %d \n", "DWORD ", sw->value.dword.data);
 break;
 case SND_SW_TYPE_LIST:
 if (sw->subtype == SND_SW_SUBTYPE_HEXA)
 printf ("%s 0x%x \n", "LIST ", sw->value.list.data);
 else
 printf ("%s %d \n", "LIST ", sw->value.list.data);
 break;
 case SND_SW_TYPE_STRING_11:
 printf ("%s \"%s\" \n", "STRING ",
 sw->value.string_11.strings[sw->value.string_11.selection]);
 break;
 default:
 printf ("%s %d \n", "? ", 0);
 }
}

void
display_switches (snd_ctl_t * ctl_handle, int mixer_dev, int argc, char *argv[])
{
 int i;
 char *pattern;
 snd_switch_list_t list;
 snd_switch_t sw;
 int rtn;

 optind = 1;
 while ((i = getopt (argc, argv, "d")) != EOF)
 {
 switch (i)
 {
 }
 }
 pattern = (optind >= argc) ? "*" : argv[optind];
 while (1)
 {
 memset (&list, 0, sizeof (list));
 if (snd_ctl_mixer_switch_list (ctl_handle, mixer_dev, &list) < 0)
 {
 fprintf (stderr, "snd_ctl_mixer_switch_list API call - %s", strerror (errno));
 }
 else if (list.switches == 0)
 {

320 Copyright © 2014, QNX Software Systems Limited

mix_ctl.c example

 fprintf (stderr, "--> No mixer switches to list <-- \n");
 break;
 }

 if (list.switches_over > 0)
 {
 list.switches_size = list.switches_over;
 list.pswitches = malloc (sizeof (snd_switch_list_item_t) * list.switches_size);
 if (list.pswitches == NULL)
 fprintf (stderr, "Unable to malloc switch array - %s", strerror (errno));
 list.switches_over = 0;
 list.switches = 0;
 if (snd_ctl_mixer_switch_list (ctl_handle, mixer_dev, &list) < 0)
 fprintf (stderr, "No Switches ");
 if (list.switches_over > 0)
 {
 free (list.pswitches);
 continue;
 }
 else
 break;
 }
 }

 for (i = 0; i < list.switches_size; i++)
 {
 memset (&sw, 0, sizeof (sw));
 strncpy (sw.name, (&list.pswitches[i])->name, sizeof (sw.name));
 if ((rtn = snd_ctl_mixer_switch_read (ctl_handle, mixer_dev, &sw)) < 0)
 fprintf (stderr, "snd_ctl_mixer_switch_read failed: %s\n", snd_strerror (rtn));
 display_switch (&sw, 1);
 }
}

void
modify_switch (snd_ctl_t * ctl_handle, int mixer_dev, int argc, char *argv[])
{
 int optind = 1;
 snd_switch_t sw;
 int rtn;
 int value = 0;
 char *string = NULL;

 if (optind >= argc)
 {
 fprintf (stderr, "No Switch secified \n");
 return;
 }

 memset (&sw, 0, sizeof (sw));
 strncpy (sw.name, argv[optind++], sizeof (sw.name));
 if ((rtn = snd_ctl_mixer_switch_read (ctl_handle, mixer_dev, &sw)) < 0)
 {
 fprintf (stderr, "snd_ctl_mixer_switch_read failed: %s\n", snd_strerror (rtn));
 return;
 }

 /* if we have a value option set the sw, write and reread it (to get true driver state) */
 if (optind < argc)
 {
 if (stricmp (argv[optind], "off") == 0)
 value = 0;
 else if (stricmp (argv[optind], "on") == 0)
 value = 1;
 else if (strnicmp (argv[optind], "0x", 2) == 0)
 value = strtol (argv[optind], NULL, 16);
 else
 {
 value = atoi (argv[optind]);
 string = argv[optind];
 }
 optind++;
 if (sw.type == SND_SW_TYPE_BOOLEAN)
 sw.value.enable = value;
 else if (sw.type == SND_SW_TYPE_BYTE)
 sw.value.byte.data = value;
 else if (sw.type == SND_SW_TYPE_WORD)
 sw.value.word.data = value;
 else if (sw.type == SND_SW_TYPE_DWORD)

Copyright © 2014, QNX Software Systems Limited 321

 sw.value.dword.data = value;
 else if (sw.type == SND_SW_TYPE_LIST)
 sw.value.list.data = value;
 else if (sw.type == SND_SW_TYPE_STRING_11)
 {
 for (rtn = 0; rtn < sw.value.string_11.strings_cnt; rtn++)
 {
 if (stricmp (string, sw.value.string_11.strings[rtn]) == 0)
 {
 sw.value.string_11.selection = rtn;
 break;
 }
 }
 if (rtn == sw.value.string_11.strings_cnt)
 {
 fprintf (stderr, "ERROR string \"%s\" NOT IN LIST \n", string);
 snd_ctl_mixer_switch_read (ctl_handle, mixer_dev, &sw);
 }
 }
 if ((rtn = snd_ctl_mixer_switch_write (ctl_handle, mixer_dev, &sw)) < 0)
 fprintf (stderr, "snd_ctl_mixer_switch_write failed: %s\n", snd_strerror (rtn));
 if ((rtn = snd_ctl_mixer_switch_read (ctl_handle, mixer_dev, &sw)) < 0)
 fprintf (stderr, "snd_ctl_mixer_switch_read failed: %s\n", snd_strerror (rtn));
 }

 /* display the current switch state */
 display_switch (&sw, 0);
}

int
main (int argc, char *argv[])
{
 int c;
 int card = 0;
 int dev = 0;
 int rtn;
 snd_ctl_t *ctl_handle;
 snd_mixer_t *mixer_handle;

 optind = 1;
 while ((c = getopt (argc, argv, "a:")) != EOF)
 {
 switch (c)
 {
 case 'a':
 if (strchr (optarg, ':'))
 {
 card = atoi (optarg);
 dev = atoi (strchr (optarg, ':') + 1);
 }
 else
 dev = atoi (optarg);
 printf ("Using card %d device %d \n", card, dev);
 break;
 default:
 return 1;
 }
 }

 if ((rtn = snd_ctl_open (&ctl_handle, card)) < 0)
 {
 fprintf (stderr, "snd_ctlr_open failed: %s\n", snd_strerror (rtn));
 return -1;
 }

 if ((rtn = snd_mixer_open (&mixer_handle, card, dev)) < 0)
 {
 fprintf (stderr, "snd_mixer_open failed: %s\n", snd_strerror (rtn));
 snd_ctl_close (ctl_handle);
 return -1;
 }

 if (optind >= argc)
 display_groups (mixer_handle, argc - optind, argv + optind);
 else if (stricmp (argv[optind], "groups") == 0)
 display_groups (mixer_handle, argc - optind, argv + optind);
 else if (stricmp (argv[optind], "group") == 0)

322 Copyright © 2014, QNX Software Systems Limited

mix_ctl.c example

 modify_group (mixer_handle, argc - optind, argv + optind);
 else if (stricmp (argv[optind], "switches") == 0)
 display_switches (ctl_handle, dev, argc - optind, argv + optind);
 else if (stricmp (argv[optind], "switch") == 0)
 modify_switch (ctl_handle, dev, argc - optind, argv + optind);
 else
 fprintf (stderr, "Unknown command specified \n");
 snd_mixer_close (mixer_handle);
 snd_ctl_close (ctl_handle);
 return (0);
}

Copyright © 2014, QNX Software Systems Limited 323

Appendix D
ALSA and libasound.so

The only supported interface to the ALSA 5 drivers is through libasound.so. Direct

use of ioctl() commands isn't supported because of the requirements of the ALSA API.

It uses ioctl() commands in ways that are illegal in the QNX Neutrino RTOS (e.g.,

passing a structure that contains a pointer through an ioctl()).

The asound library is licensed under the Library GNU Public License (LGPL).

We include the asound library only as a shared library (libasound.so), and not as

a static library. We intend to gradually improve the quality and number of services

that this library provides; by linking against shared libraries, you'll receive the benefits

of improvements without recompiling.

Copyright © 2014, QNX Software Systems Limited 325

Appendix E
What's New in This Release?

This appendix describes the changes made in each release.

Copyright © 2014, QNX Software Systems Limited 327

What's new in QNX Neutrino 6.6

snd_pcm_capture_go() (p. 147)

Start a PCM capture channel running

snd_pcm_capture_pause() (p. 149)

Pause a channel that's capturing

snd_pcm_capture_resume() (p. 153)

Resume a channel that was paused while capturing

snd_pcm_channel_go() (p. 157)

Start a PCM channel running

snd_pcm_channel_params_t (p. 167)

This structure now includes a frags_buffered_max member. If this is set,

io-audio may block the caller after fewer than frags_max fragments have

been passed, if it chooses, but won't block the client before

frags_buffered_max fragments have been written.

snd_pcm_channel_pause() (p. 171)

Pause a channel

snd_pcm_channel_resume() (p. 175)

Resume a channel that was paused

snd_pcm_channel_status_t (p. 184)

The following members have been added to the structure:

• status_data

• stop_time

• hw_device

snd_pcm_find() (p. 192)

We've corrected the values of the mode argument.

snd_pcm_get_audioman_handle() (p. 209)

Retrieve an audioman handle that's bound to a PCM stream

328 Copyright © 2014, QNX Software Systems Limited

What's New in This Release?

snd_pcm_link() (p. 218)

Link two PCM streams together

snd_pcm_open_name() (p. 223)

To enable echo cancellation and noise reduction, specify a name of voice.

snd_pcm_open_preferred() (p. 226)

We've described the format of the preferences file.

snd_pcm_playback_drain() (p. 229)

This function actually returns -EINVAL if the PCM device state isn't ready.

snd_pcm_playback_go() (p. 233)

Start a PCM playback channel running

snd_pcm_playback_pause() (p. 235)

Pause a channel that's playing back

snd_pcm_playback_resume() (p. 239)

Resume a channel that was paused while playing back

snd_pcm_plugin_playback_drain() (p. 249)

This function actually returns -EINVAL if the PCM device state isn't ready.

snd_pcm_plugin_set_enable() (p. 258)

Enable plugins that have been disabled

snd_pcm_set_audioman_handle() (p. 279)

Bind an audioman handle to a PCM stream

snd_pcm_unlink() (p. 281)

Detach a PCM stream from a link group

Copyright © 2014, QNX Software Systems Limited 329

What's new in QNX Neutrino 6.6

What's new in QNX Neutrino 6.5.0 Service Pack 1

snd_pcm_plugin_set_src_method() (p. 260)

Set the system's source filter method (plugin-aware)

330 Copyright © 2014, QNX Software Systems Limited

What's New in This Release?

What's new in QNX Neutrino 6.5.0

Voice conversion

The libasound library now supports devices that have more than two

channels, and it provides a mechanism that lets you configure how the voice

converter plugin replicates or reduces the voices or channels. For more

information, see “Controlling voice conversion (p. 28)” in the Playing and

Capturing Audio Data chapter.

snd_pcm_channel_params_t (p. 167)

This structure now includes a sw_mixer_subchn_name member that you can

use to assign a name to the software mixer subchannel.

snd_pcm_plugin_get_voice_conversion() (p. 243)

Get the current voice conversion structure for a channel

snd_pcm_plugin_read() (p. 253), snd_pcm_plugin_write() (p. 274), snd_pcm_read() (p. 277)

These functions indicate an error of EIO if the channel isn't in the prepared

or running state.

snd_pcm_plugin_set_voice_conversion() (p. 264)

Set the current voice conversion structure for a channel

snd_pcm_voice_conversion_t (p. 282)

Data structure that controls voice conversion

wave.c, waverec.c, mix_ctl.c

We've updated these examples.

snd_pcm_plugin_update_src() (p. 272)

Get the size of the next fragment to write

snd_pcm_plugin_src_max_frag() (p. 268)

Get the maximum possible fragment size

snd_pcm_plugin_set_src_mode() (p. 262)

Set the system's source mode

Copyright © 2014, QNX Software Systems Limited 331

What's new in QNX Neutrino 6.5.0

What's new in QNX Neutrino 6.4

snd_mixer_open_name() (p. 126)

Create a connection and handle to a mixer device specified by name

snd_pcm_open_name() (p. 223)

Create a handle and open a connection to an audio interface specified by

name

332 Copyright © 2014, QNX Software Systems Limited

What's New in This Release?

What's new in QNX Neutrino 6.3

snd_ctl_mixer_switch_list() (p. 73)

Get the number and names of control switches for the mixer

snd_ctl_mixer_switch_read() (p. 75)

Get a mixer switch setting

snd_ctl_mixer_switch_write() (p. 77)

Adjust a mixer switch setting

snd_switch_t (p. 287)

Information about a mixer's switch

mix_ctl.c

A sample application that captures the groups and switches in the mixer

Copyright © 2014, QNX Software Systems Limited 333

What's new in QNX Neutrino 6.3

What's new in QNX Neutrino 6.2

The QNX Sound Architecture has evolved away from ALSA. You should reread this

entire guide.

334 Copyright © 2014, QNX Software Systems Limited

What's New in This Release?

What's new in QNX Neutrino 6.1

snd_pcm_channel_info() (p. 159)

Removed the SND_PCM_CHNINFO_BATCH flag because it was deprecated

in the source code.

Copyright © 2014, QNX Software Systems Limited 335

What's new in QNX Neutrino 6.1

Glossary

ADC

Analog Digital Converter. This converts an analog audio signal into a digital

stream of samples.

ALSA

Advanced Linux Sound Architecture.

capture group

A mixer group that contains up to one volume, one mute, and one input

selection element.

codec

Compression-Decompression module or Coder-Decoder.

DAC

Digital Analog Converter. This converts a digital stream of samples into an

analog signal.

element

See mixer element.

group

See mixer group.

MIC

Microphone.

mixer element

A component of an audio mixer, with a single, discrete function.

mixer group

A collection or group of elements and associated control capabilities.

PCI

Peripheral Component Interconnect (personal computer bus).

PCM

Pulse Code Modulation. A technique for converting analog signals to a digital

representation.

playback group

Copyright © 2014, QNX Software Systems Limited 337

A mixer group that contains up to one volume element and one mute element.

QSA

QNX Sound Architecture.

SRC

Sample Rate Conversion.

subchannel

The collection of resources that a single connection to a client uses within

a PCM device (playback or capture).

338 Copyright © 2014, QNX Software Systems Limited

Glossary

Index

/dev/snd 17
/etc/system/config/audio/preferences 227

4-channel 28
converting to and from 28

A

Advanced Linux Sound Architecture (ALSA) 16, 53, 325
LGPL license agreement 325

Analog Digital Converter (ADC) 21, 35, 41
mixer element 41

asound library 9, 325
audio chips, See cards
audio device 26, 188, 209, 222, 224, 227, 279

audioman handle 209, 279
getting 209
setting 279

closing 188
opening 26, 222, 224
opening preferred 26, 227

B

blocking mode 33, 37, 219, 221, 224, 226
boolean value 106, 134

getting 106
setting 134

C

capture 20, 22, 26, 27, 28, 30, 35, 36, 37, 38, 39, 42,
82, 145, 147, 149, 151, 153, 155, 157, 159,
161, 165, 167, 168, 171, 173, 175, 177, 179,
182, 184, 185, 216, 221, 224, 226, 241, 245,
247, 251, 253, 266, 270, 277, 305

about 20, 35
capabilities 27, 159, 161, 245

getting 27, 159, 245
structure 27, 161

channel direction 26
data, selecting 35
device 26, 27, 216

configuring 27
duplex mode 216
opening 26

example 305
flushing 38, 145, 155, 241
information 82
mixer groups 42
opening channel for 221, 224, 226
overrun 22, 30, 36, 38, 168, 185

rollover 168
parameters 27, 165, 167, 247

setting 27, 165, 247

capture (continued)
parameters (continued)

structure 27, 167
pausing 149, 153, 171, 175
preparing 30, 151, 173, 251
reading data 37, 253, 277
setup 28, 177, 179, 266

getting 28, 177, 266
structure 28, 179

starting 147, 157
states 35
status 38, 39, 182, 184, 270

getting 38, 182, 270
structure 39, 184

stopping 38
subchannel 30

closing 30
synchronizing 38

cards 17, 54, 56, 58, 60, 61, 69, 71
about 17
counting 60
hardware information 69, 71

getting 69
structure 71

listing 61
name, getting 54, 56

common 56
long 54

number, getting from name 58
Change state 22, 32, 37
control device 18, 63, 65, 67, 79, 85

about 18
callbacks 63
closing 65
connection handle 79
file descriptor, getting 67
opening 79
reading from 85

D

data formats, See formats
devices 17, 18, 19, 20

control 18
listing 17
mixers 19
PCM 20

Digital Analog Converter (DAC) 21, 41
mixer element 41

duplex mode 216

E

error codes, converting to strings 47, 285
Error state 22, 32, 37

Copyright © 2014, QNX Software Systems Limited 339

QNX® Neutrino® OS

F

file descriptors, getting 33, 38, 48, 67, 102, 190
control 67
mixer 48, 102
PCM 33, 38, 190

formats 20, 21, 143, 194, 196, 198, 200, 202, 205, 207,
211

checking for 21, 194, 196, 198, 200, 205
big endian 21, 194
linear 21, 196
little endian 21, 198
signed 21, 200
unsigned 21, 205

linear, building 21, 143
name, getting 20, 211
size, converting to bytes 202
width, calculating 207

H

handles 26, 44, 79
control device 79
mixer 44
PCM 26

I

io-audio 9
ioctl() 325

L

LGPL license agreement 325
libasound.so 9, 325

M

mixers 19, 35, 42, 44, 45, 47, 48, 49, 73, 87, 90, 92, 93,
95, 96, 98, 100, 102, 104, 108, 110, 111, 113,
116, 118, 120, 121, 123, 124, 126, 128, 130,
132, 136, 138, 140, 142, 288

about 19
callbacks 87
capture groups 42
closing 49, 90
connection handle 44
elements 92, 93, 95, 96, 98, 100, 138, 142

capabilities 93, 95, 96
getting all 98
ID 92
information about all 100
sorting by ID 138
weights 142

events 48, 87, 104, 108, 128, 136
handlers 87
mask 48, 104, 108, 136
reading 48, 128

file descriptor, getting 48, 102

mixers (continued)
groups 35, 42, 45, 47, 73, 110, 111, 113, 116, 118,

120, 140, 142
capture 42
control structure 47, 113
ID structure 45, 47, 110
IDs, getting 47, 118
information about all 120
number of, getting 47, 118
playback 42
reading 45, 73, 111
sorting by ID 140
weights 142
writing 35, 45, 116

information about 121, 123
getting 121
structure 123

opening 44, 124, 126
playback groups 42
routes 130, 132

IDs, getting 130
information about all 132
number of, getting 130

switches 288
mask 288

mono 28
converting to and from 28

N

nonblocking mode 33, 37, 219, 221, 224, 226
Not Ready state 21, 27, 32, 36, 151, 165, 173, 184, 237,
247, 251

O

Overrun state 22, 30, 36, 38, 168, 185
rollover 168

P

Pause state 32, 36
Paused state 22, 185
PCM 20, 21, 22, 23, 26, 27, 28, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 46, 82, 83, 145, 147, 149, 151,
153, 155, 157, 159, 161, 165, 167, 168, 171,
173, 175, 177, 179, 182, 184, 185, 188, 190,
193, 204, 209, 214, 216, 218, 222, 224, 227,
229, 231, 233, 235, 237, 239, 241, 245, 247,
249, 251, 253, 266, 270, 274, 277, 279, 281,
283, 291, 305, 315

about 20
audioman handle 209, 279

getting 209
setting 279

capture 20, 22, 26, 27, 28, 30, 35, 36, 37, 38, 39,
82, 145, 147, 149, 151, 153, 155, 157, 159,
161, 165, 167, 168, 171, 173, 175, 177,
179, 182, 184, 185, 216, 241, 245, 247,
251, 253, 266, 270, 277, 305

about 20, 35

340 Copyright © 2014, QNX Software Systems Limited

Index

PCM (continued)
capture (continued)

capabilities 27, 159, 161, 245
channel direction 26
data, selecting 35
device, configuring 27
device, opening 26
duplex mode 216
example 305
flushing 38, 145, 155, 241
information 82
overrun 22, 30, 36, 38, 185
parameters 27, 165, 167, 247
pausing 149, 153, 171, 175
preparing 30, 151, 173, 251
reading data 37, 253, 277
rollover 168
setup 28, 177, 179, 266
starting 147, 157
states 35
status 38, 39, 182, 184, 270
stopping 38
subchannel, closing 30
synchronizing 38

closing 188
connection handle 26
data format 204
devices 26, 83, 193, 214, 216

capabilities 83, 216
finding 193
information about, getting 214

file descriptor, getting 33, 38, 190
linking 218
mixer 315

example 315
opening 26, 222, 224
opening preferred 26, 227
playback 20, 21, 23, 26, 27, 28, 30, 31, 32, 33, 34,

46, 82, 155, 157, 159, 161, 165, 167, 168,
171, 173, 175, 177, 179, 182, 184, 185,
216, 229, 231, 233, 235, 237, 239, 241,
245, 247, 249, 251, 266, 270, 274, 283, 291

about 20, 31
capabilities 27, 159, 161, 245
channel direction 26
device, configuring 27
device, opening 26
duplex mode 216
example 291
flushing 34, 155, 231, 241
information 82
parameters 27, 165, 167, 247
pausing 171, 175, 235, 239
preparing 30, 173, 251
preparing for 237
rollover 168
setup 28, 46, 177, 179, 266
software mixing 23
starting 157, 233
states 31
status 34, 182, 184, 270
stopping 34, 229, 249

PCM (continued)
playback (continued)

subchannel, closing 30
synchronizing 33, 34
underrun 21, 30, 32, 33, 185
writing data 32, 274, 283

states 21
subchannels 20
unlinking 281

PCMenabling 258
plugins 258

playback 20, 21, 23, 26, 27, 28, 30, 31, 32, 33, 34, 42,
46, 82, 155, 157, 159, 161, 165, 167, 168, 171,
173, 175, 177, 179, 182, 184, 185, 216, 221,
224, 226, 229, 231, 233, 235, 237, 239, 241,
245, 247, 249, 251, 266, 270, 274, 283, 291,
315

about 20, 31
capabilities 27, 159, 161, 245

getting 27, 159, 245
structure 27, 161

channel direction 26
device 26, 27, 216

configuring 27
duplex mode 216
opening 26

example 291, 315
flushing 34, 155, 231, 241
information 82
mixer groups 42
opening channel for 221, 224, 226
parameters 27, 165, 167, 247

setting 27, 165, 247
structure 27, 167

pausing 171, 175, 235, 239
preparing 30, 173, 251
preparing for 237
setup 28, 46, 177, 179, 266

getting 28, 46, 177, 266
structure 28, 179

software PCM mixing 23
starting 157, 233
states 31
status 34, 182, 184, 270

getting 34, 182, 270
structure 34, 184

stopping 34, 229, 249
subchannel 30

closing 30
synchronizing 33, 34
underrun 21, 30, 32, 33, 168, 185

rollover 168
writing data 32, 274, 283

plugin functions 24, 27, 28, 30, 33, 34, 37, 38, 39, 46,
241, 245, 247, 249, 251, 253, 257, 260, 262,
266, 268, 270, 272, 274

about 24
disabling 257
PCM channels 27, 28, 30, 33, 34, 37, 38, 39, 46, 241,

245, 247, 249, 251, 253, 260, 262, 266,
268, 270, 272, 274

capabilities 27, 245

Copyright © 2014, QNX Software Systems Limited 341

QNX® Neutrino® OS

plugin functions (continued)
PCM channels (continued)

capture data, reading 37, 253
data, writing 33, 274
flushing 34, 38, 241
fragment size, getting maximum 268
fragment size, next to write 272
parameters, setting 27, 247
playback, stopping 34, 249
preparing 30, 251
setup 28, 46, 266
source filter method, setting 260
source mode, setting 262
status 34, 39, 270

PLUGIN_CONVERSION 257
PLUGIN_DISABLE_BUFFER_PARTIAL_BLOCKS 255, 256,
276
PLUGIN_DISABLE_MMAP 256
Preempted state 22, 32, 37
Prepared state 21, 30, 32, 36, 151, 173, 185, 237, 251

Q

QNX Sound Architecture (QSA) 16, 53

R

Ready state 21, 27, 32, 36, 145, 147, 157, 165, 185, 229,
231, 233, 241, 247, 249
recording, See capture
rollover 168
Running state 21, 32, 36, 147, 151, 157, 173, 185, 233,
237, 251

S

select() 33, 36, 37, 48
snd_card_get_longname() 54
snd_card_get_name() 56
snd_card_name() 58
snd_cards_list() 61
snd_cards() 60
snd_ctl_callbacks_t 63
snd_ctl_close() 65
snd_ctl_file_descriptor() 67
snd_ctl_hw_info_t 71
snd_ctl_hw_info() 69
SND_CTL_IFACE_* 64
snd_ctl_mixer_switch_list() 73
snd_ctl_mixer_switch_read() 75
snd_ctl_mixer_switch_write() 77
snd_ctl_open() 73, 79
snd_ctl_pcm_channel_info() 82
snd_ctl_pcm_info() 83
SND_CTL_READ_SWITCH_* 63
snd_ctl_read() 85
snd_ctl_t 79
snd_mixer_callbacks_t 87
snd_mixer_close() 49, 90
snd_mixer_default_weights 138, 140
snd_mixer_eid_t 92, 98, 100, 133

snd_mixer_element_read() 42, 93
snd_mixer_element_t 95
snd_mixer_element_write() 42, 96
snd_mixer_elements_t 100
snd_mixer_elements() 98
snd_mixer_file_descriptor() 48, 102
snd_mixer_filter_t 104
snd_mixer_get_bit() 106
snd_mixer_get_filter() 108
snd_mixer_gid_t 45, 47, 110, 111, 113, 118, 120, 140, 163
snd_mixer_group_read() 45, 111
snd_mixer_group_t 45, 47, 111, 113, 116
snd_mixer_group_write() 35, 45, 116
snd_mixer_groups_t 118, 120
snd_mixer_groups() 47, 118
SND_MIXER_GRPCAP_CAP_GRP 114
SND_MIXER_GRPCAP_CAPTURE 114
SND_MIXER_GRPCAP_EXCL_CAPTURE 114
SND_MIXER_GRPCAP_JOINTLY_CAPTURE 114
SND_MIXER_GRPCAP_JOINTLY_MUTE 114
SND_MIXER_GRPCAP_JOINTLY_VOLUME 114
SND_MIXER_GRPCAP_MUTE 114
SND_MIXER_GRPCAP_PLAY_GRP 114
SND_MIXER_GRPCAP_SUBCHANNEL 114
SND_MIXER_GRPCAP_VOLUME 113
snd_mixer_info_t 123
snd_mixer_info() 121
snd_mixer_open_name() 126
snd_mixer_open() 44, 124
SND_MIXER_READ_* 104
SND_MIXER_READ_ELEMENT_* 87
SND_MIXER_READ_GROUP_* 88
snd_mixer_read() 48, 128
snd_mixer_routes_t 132
snd_mixer_routes() 130
snd_mixer_set_bit() 134
snd_mixer_set_filter() 48, 136
snd_mixer_sort_eid_table() 138
snd_mixer_sort_gid_table() 140
snd_mixer_t 44, 124, 126
snd_mixer_weight_entry_t 142
SND_PCM_BOUNDARY 185
snd_pcm_build_linear_format() 21, 143
snd_pcm_capture_flush() 38, 145
snd_pcm_capture_go() 147
snd_pcm_capture_pause() 36, 149
snd_pcm_capture_prepare() 30, 36, 151
snd_pcm_capture_resume() 36, 153
SND_PCM_CHANNEL_CAPTURE 81, 155, 157, 161, 167,
171, 173, 175, 179, 184, 190, 241, 243, 251, 264
snd_pcm_channel_flush() 34, 38, 155
snd_pcm_channel_go() 157
snd_pcm_channel_info_t 27, 161
snd_pcm_channel_info() 27, 159
snd_pcm_channel_params_t 27, 167
snd_pcm_channel_params() 24, 27, 32, 36, 165
snd_pcm_channel_pause() 32, 36, 171
SND_PCM_CHANNEL_PLAYBACK 81, 155, 157, 161, 167,
171, 173, 175, 179, 184, 190, 241, 243, 251, 264
snd_pcm_channel_prepare() 30, 32, 36, 173
snd_pcm_channel_resume() 32, 36, 175
snd_pcm_channel_setup_t 28, 179

342 Copyright © 2014, QNX Software Systems Limited

Index

snd_pcm_channel_setup() 24, 28, 46, 177
snd_pcm_channel_status_t 34, 39, 184
snd_pcm_channel_status() 24, 34, 39, 182
SND_PCM_CHNINFO_BLOCK 162
SND_PCM_CHNINFO_BLOCK_TRANSFER 162
SND_PCM_CHNINFO_INTERLEAVE 162
SND_PCM_CHNINFO_MMAP 162
SND_PCM_CHNINFO_MMAP_VALID 162
SND_PCM_CHNINFO_NONINTERLEAVE 162
SND_PCM_CHNINFO_OVERRANGE 162
SND_PCM_CHNINFO_PAUSE 162
snd_pcm_close() 30, 188
snd_pcm_file_descriptor() 33, 38, 190
SND_PCM_FILL_* 169
snd_pcm_find() 193
SND_PCM_FMT_* 21, 192
snd_pcm_format_big_endian() 21, 194
snd_pcm_format_linear() 21, 196
snd_pcm_format_little_endian() 21, 198
snd_pcm_format_signed() 21, 200
snd_pcm_format_size() 202
snd_pcm_format_t 204
snd_pcm_format_unsigned() 21, 205
snd_pcm_format_width() 207
snd_pcm_get_audioman_handle() 209
snd_pcm_get_format_name() 20, 211
SND_PCM_INFO_CAPTURE 216
SND_PCM_INFO_DUPLEX 216
SND_PCM_INFO_DUPLEX_MONO 216
SND_PCM_INFO_DUPLEX_RATE 216
SND_PCM_INFO_PLAYBACK 216
SND_PCM_INFO_SHARED 216
snd_pcm_info_t 216
snd_pcm_info() 214
snd_pcm_link() 218
SND_PCM_MODE_BLOCK 179, 184, 277, 283
SND_PCM_MODE_FLAG_PROTECTED_CONTENT 168
SND_PCM_MODE_FLAG_REQUIRE_PROTECTION 168
snd_pcm_nonblock_mode() 33, 37, 219, 221, 224, 226
SND_PCM_OPEN_CAPTURE 26, 221, 224, 226
snd_pcm_open_name() 26, 224
SND_PCM_OPEN_PLAYBACK 26, 221, 224, 226
snd_pcm_open_preferred() 26
snd_pcm_open() 26, 222, 227
snd_pcm_playback_drain() 34, 229
snd_pcm_playback_flush() 34, 231
snd_pcm_playback_go() 51, 233
snd_pcm_playback_pause() 32, 235
snd_pcm_playback_prepare() 30, 32, 237
snd_pcm_playback_resume() 32, 239
snd_pcm_plugin_flush() 34, 38, 241
snd_pcm_plugin_get_voice_conversion() 29, 243
snd_pcm_plugin_info() 27, 245
snd_pcm_plugin_params() 24, 27, 28, 32, 36, 247
snd_pcm_plugin_playback_drain() 34, 249
snd_pcm_plugin_prepare() 30, 32, 36, 251
snd_pcm_plugin_read() 36, 37, 38, 253
snd_pcm_plugin_set_disable() 51, 257
snd_pcm_plugin_set_enable() 258
snd_pcm_plugin_set_src_method() 260
snd_pcm_plugin_set_src_mode() 262
snd_pcm_plugin_set_voice_conversion() 29, 264

snd_pcm_plugin_setup() 24, 28, 46, 51, 266
snd_pcm_plugin_src_max_frag() 268
snd_pcm_plugin_status() 24, 34, 39, 270
snd_pcm_plugin_update_src() 272, 274
snd_pcm_plugin_write() 32, 33, 272, 274
snd_pcm_read() 36, 37, 38, 277
snd_pcm_set_audioman_handle() 279
SND_PCM_SFMT_* 20, 194, 196, 198, 200, 202, 204, 205,
207, 211
SND_PCM_START_* 168
SND_PCM_START_DATA 51, 147, 157, 233
SND_PCM_START_FULL 147, 157, 233
SND_PCM_START_GO 51, 147, 157, 233
SND_PCM_STATUS_CHANGE 22, 32, 37
SND_PCM_STATUS_ERROR 22, 32, 37
SND_PCM_STATUS_NOTREADY 21, 27, 32, 36, 151, 165,
173, 184, 237, 247, 251
SND_PCM_STATUS_OVERRUN 22, 36, 38, 185
SND_PCM_STATUS_PAUSED 22, 32, 36, 185
SND_PCM_STATUS_PREEMPTED 22, 32, 37
SND_PCM_STATUS_PREPARED 21, 30, 32, 36, 151, 173,
185, 237, 251
SND_PCM_STATUS_READY 21, 27, 32, 36, 145, 147, 157,
165, 185, 229, 231, 233, 241, 247, 249
SND_PCM_STATUS_RUNNING 21, 32, 36, 147, 151, 157,
173, 185, 233, 237, 251
SND_PCM_STATUS_UNDERRUN 21, 32, 33, 185
SND_PCM_STATUS_UNSECURE 22, 32, 37, 168
SND_PCM_STOP_* 168
snd_pcm_t 26, 221, 223, 226
snd_pcm_unlink() 281
snd_pcm_voice_conversion_t 29, 282
snd_pcm_write() 32, 33, 283
SND_SRC_MODE_ACTUAL 262, 272, 274
SND_SRC_MODE_ASYNC 262, 272, 274
SND_SRC_MODE_NORMAL 262
snd_strerror() 47, 285
snd_switch_list_item_t 64
snd_switch_mixer_list_t 73
snd_switch_t 288
sound cards, See cards
states 21, 22, 27, 30, 31, 32, 33, 35, 36, 37, 38, 145,

147, 151, 157, 165, 168, 173, 184, 185, 229,
231, 233, 237, 241, 247, 249, 251

about 21
capture 35
Change 22, 32, 37
Error 22, 32, 37
Not Ready 21, 27, 32, 36, 151, 165, 173, 184, 237,
247, 251
Overrun 22, 30, 36, 38, 168, 185

rollover 168
Paused 22, 32, 36, 185
playback 31
Preempted 22, 32, 37
Prepared 21, 30, 32, 36, 151, 173, 185, 237, 251
Ready 21, 27, 32, 36, 145, 147, 157, 165, 185, 229,
231, 233, 241, 247, 249
Running 21, 32, 36, 147, 151, 157, 173, 185, 233,
237, 251
Underrun 21, 30, 32, 33, 168, 185

rollover 168

Copyright © 2014, QNX Software Systems Limited 343

QNX® Neutrino® OS

states (continued)
Unsecure 22, 32, 37

stereo 28
converting to and from 28

strerror() 285
strings for 20, 47, 211, 285

data formats 20, 211
error codes 47, 285

subchannels 20
synchronizing 33, 34, 38

capture 38
playback 33, 34

T

Technical support 13

Typographical conventions 11

U

Underrun state 21, 30, 32, 33, 168, 185
rollover 168

Unsecure state 22, 32, 37

V

voice conversion 28, 243, 264, 282
getting 243
setting 264
snd_pcm_voice_conversion_t 282

344 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Audio Architecture
	QNX Sound Architecture
	Cards and devices
	Control device
	Mixer devices
	Pulse Code Modulation (PCM) devices
	Data formats
	PCM state machine
	Software PCM mixing
	PCM plugin converters

	Playing and Capturing Audio Data
	Handling PCM devices
	Opening your PCM device
	Configuring the PCM device
	Controlling voice conversion
	Preparing the PCM subchannel
	Closing the PCM subchannel

	Playing audio data
	Playback states
	Sending data to the PCM subchannel
	If the PCM subchannel stops during playback
	Stopping the playback
	Synchronizing with the PCM subchannel

	Capturing audio data
	Selecting what to capture
	Capture states
	Receiving data from the PCM subchannel
	If the PCM subchannel stops during capture
	Stopping the capture
	Synchronizing with the PCM subchannel

	Mixer Architecture
	Opening the mixer device
	Controlling a mixer group
	The best mixer group with respect to your PCM subchannel
	Finding all mixer groups
	Mixer event notification
	Closing the mixer device

	Optimizing Audio
	Audio Library
	snd_card_get_longname()
	snd_card_get_name()
	snd_card_name()
	snd_cards()
	snd_cards_list()
	snd_ctl_callbacks_t
	snd_ctl_close()
	snd_ctl_file_descriptor()
	snd_ctl_hw_info()
	snd_ctl_hw_info_t
	snd_ctl_mixer_switch_list()
	snd_ctl_mixer_switch_read()
	snd_ctl_mixer_switch_write()
	snd_ctl_open()
	snd_ctl_pcm_channel_info()
	snd_ctl_pcm_info()
	snd_ctl_read()
	snd_mixer_callbacks_t
	snd_mixer_close()
	snd_mixer_eid_t
	snd_mixer_element_read()
	snd_mixer_element_t
	snd_mixer_element_write()
	snd_mixer_elements()
	snd_mixer_elements_t
	snd_mixer_file_descriptor()
	snd_mixer_filter_t
	snd_mixer_get_bit()
	snd_mixer_get_filter()
	snd_mixer_gid_t
	snd_mixer_group_read()
	snd_mixer_group_t
	snd_mixer_group_write()
	snd_mixer_groups()
	snd_mixer_groups_t
	snd_mixer_info()
	snd_mixer_info_t
	snd_mixer_open()
	snd_mixer_open_name()
	snd_mixer_read()
	snd_mixer_routes()
	snd_mixer_routes_t
	snd_mixer_set_bit()
	snd_mixer_set_filter()
	snd_mixer_sort_eid_table()
	snd_mixer_sort_gid_table()
	snd_mixer_weight_entry_t
	snd_pcm_build_linear_format()
	snd_pcm_capture_flush()
	snd_pcm_capture_go()
	snd_pcm_capture_pause()
	snd_pcm_capture_prepare()
	snd_pcm_capture_resume()
	snd_pcm_channel_flush()
	snd_pcm_channel_go()
	snd_pcm_channel_info()
	snd_pcm_channel_info_t
	snd_pcm_channel_params()
	snd_pcm_channel_params_t
	snd_pcm_channel_pause()
	snd_pcm_channel_prepare()
	snd_pcm_channel_resume()
	snd_pcm_channel_setup()
	snd_pcm_channel_setup_t
	snd_pcm_channel_status()
	snd_pcm_channel_status_t
	snd_pcm_close()
	snd_pcm_file_descriptor()
	snd_pcm_find()
	snd_pcm_format_big_endian()
	snd_pcm_format_linear()
	snd_pcm_format_little_endian()
	snd_pcm_format_signed()
	snd_pcm_format_size()
	snd_pcm_format_t
	snd_pcm_format_unsigned()
	snd_pcm_format_width()
	snd_pcm_get_audioman_handle()
	snd_pcm_get_format_name()
	snd_pcm_info()
	snd_pcm_info_t
	snd_pcm_link()
	snd_pcm_nonblock_mode()
	snd_pcm_open()
	snd_pcm_open_name()
	snd_pcm_open_preferred()
	snd_pcm_playback_drain()
	snd_pcm_playback_flush()
	snd_pcm_playback_go()
	snd_pcm_playback_pause()
	snd_pcm_playback_prepare()
	snd_pcm_playback_resume()
	snd_pcm_plugin_flush()
	snd_pcm_plugin_get_voice_conversion()
	snd_pcm_plugin_info()
	snd_pcm_plugin_params()
	snd_pcm_plugin_playback_drain()
	snd_pcm_plugin_prepare()
	snd_pcm_plugin_read()
	snd_pcm_plugin_set_disable()
	snd_pcm_plugin_set_enable()
	snd_pcm_plugin_set_src_method()
	snd_pcm_plugin_set_src_mode()
	snd_pcm_plugin_set_voice_conversion()
	snd_pcm_plugin_setup()
	snd_pcm_plugin_src_max_frag()
	snd_pcm_plugin_status()
	snd_pcm_plugin_update_src()
	snd_pcm_plugin_write()
	snd_pcm_read()
	snd_pcm_set_audioman_handle()
	snd_pcm_unlink()
	snd_pcm_voice_conversion_t
	snd_pcm_write()
	snd_strerror()
	snd_switch_t

	wave.c example
	waverec.c example
	mix_ctl.c example
	ALSA and libasound.so
	What's New in This Release?
	What's new in QNX Neutrino 6.6
	What's new in QNX Neutrino 6.5.0 Service Pack 1
	What's new in QNX Neutrino 6.5.0
	What's new in QNX Neutrino 6.4
	What's new in QNX Neutrino 6.3
	What's new in QNX Neutrino 6.2
	What's new in QNX Neutrino 6.1

	Glossary
	Index

