
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

Building Embedded Systems

©1996–2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, February 20, 2014

Table of Contents

About This Book ..11
Typographical conventions ...12

Technical support ...14

Chapter 1: Overview of Building Embedded Systems ...15

Introduction ...16

The role of the IPL ..16

The role of the startup program ...17

Startup's responsibilities ..18

The role of the QNX Neutrino RTOS ...20

Hardware aspects ...21

Choice of processor ...21

Source of initialization and configuration ...21

Choice of filesystems ...22

I/O devices ...25

Getting started ...26

Hardware design ...26

Customizing the software ...26

Chapter 2: Working with a BSP ..29

Using BSPs in the IDE ..30

Using BSPs on the command line ..31

Structure of a BSP ..31

Building source from the command line ..34

Supporting additional devices ...35

Transferring an OS image onto your board ...36

Transferring an OS image ...36

Working with a flash filesystem ...37

Testing QNX Neutrino on your board ...40

Where do I go from here? ...41

Filename conventions ..42

Chapter 3: Making an OS Image ..43

Images, images, images ..44

What is an OS image? ...45

The OS image as a filesystem ..46

Configuring an OS image ...47

A simple buildfile ..47

The bootstrap file ..48

The script file ...49

Building Embedded Systems

Plain ordinary lists of files ..51

Generating the image ...55

Listing the contents of an image ...55

Building a flash filesystem image ...57

Using mkefs ...57

Compressing files ..59

Compression rules ...61

Embedding an image ..62

Combining image files using mkimage ...63

Converting images using mkrec ...63

Transferring an image to flash ...64

System configuration ..66

Establishing an output device ...66

Running drivers/filesystems ..67

Running applications ...70

Debugging an embedded system ..71

pdebug software debugging agent ...71

Hardware debuggers and QNX Neutrino ...71

Producing debug symbol information for IPL and startup ...72

Chapter 4: Writing an IPL Program ..77

Initial program loader (IPL) ..78

Responsibilities of the IPL ...78

Booting from a bank-switched device ..79

Booting from a linear device ...81

“Warm” vs “cold” start ..81

Loading the image ...82

Transferring control to the startup program ...86

Customizing IPLs ..87

Initialize hardware ...87

Loading the image into RAM ..87

Structure of the boot header ...88

Relationship of struct startup_header fields ...94

IPL structure ...97

Creating a new IPL ..99

The IPL library ...100

enable_cache ..101

image_download_8250() ..101

image_scan() ..102

image_scan_ext() ..102

image_setup() ...102

image_setup_ext() ...102

image_start() ..102

image_start_ext() ...103

Table of Contents

int15_copy() ...103

print_byte() ...103

print_char() ..103

print_long() ...103

print_sl() ..103

print_string() ...103

print_var() ..104

print_word() ..104

protected_mode() ..104

uart_hex8 ...104

uart_hex16 ...105

uart_hex32 ...105

uart_init ...105

uart_put ...106

uart_string ..106

uart32_hex8 ...106

uart32_hex16 ...107

uart32_hex32 ...107

uart32_init ...107

uart32_put ...108

uart32_string ..108

Chapter 5: Customizing Image Startup Programs ...109

Anatomy of a startup program ..110

Structure of a startup program ..110

Creating a new startup program ..111

Structure of the system page ...112

size ..112

total_size ..113

type ...113

num_cpu ..113

system_private ..113

asinfo ...113

hwinfo ..116

cpuinfo ..122

syspage_entry cacheattr ...124

syspage_entry qtime ..127

callout ..129

callin ...129

typed_strings ..129

strings ..130

intrinfo ...130

syspage_entry union un ..136

un.x86 ...136

Building Embedded Systems

un.x86.smpinfo (deprecated) ..136

un.arm ...137

smp ...137

pminfo ...138

Callout information ...139

Debug interface ...139

Clock/timer interface ...139

Interrupt controller interface ...140

Cache controller interface ..140

System reset callout ..141

Power management callout ...141

The startup library ..143

add_cache() ..145

add_callout() ..145

add_callout_array() ..146

add_interrupt() ..146

add_interrupt_array() ...146

add_ram() ...146

add_string() ..146

add_typed_string() ...146

alloc_qtime() ..147

alloc_ram() ...147

armv_cache ..147

armv_chip ..148

armv_chip_detect() ..150

armv_pte ..151

armv_setup_v7() ..152

as_add() ...152

as_add_containing() ..152

as_default() ..153

as_find() ...153

as_find_containing() ..153

as_info2off() ...153

as_off2info() ...154

as_set_checker() ...154

as_set_priority() ..154

avoid_ram() ..154

calc_time_t() ..154

calloc_ram() ..155

callout_io_map(), callout_io_map_indirect() ...155

callout_memory_map(), callout_memory_map_indirect() ...155

callout_register_data() ...155

chip_access() ..156

chip_done() ..156

chip_read8() ...156

Table of Contents

chip_read16() ...157

chip_read32() ...157

chip_write8() ..157

chip_write16() ..157

chip_write32() ..157

copy_memory() ..157

del_typed_string() ..157

falcon_init_l2_cache() ...158

falcon_init_raminfo() ...158

falcon_system_clock() ..158

find_startup_info() ...158

find_typed_string() ..158

handle_common_option() ...158

hwi_add_device() ..160

hwi_add_inputclk() ..160

hwi_add_irq() ..160

hwi_add_location() ..160

hwi_add_nicaddr() ...161

hwi_add_rtc() ..161

hwi_alloc_item() ..161

hwi_alloc_tag() ..161

hwi_find_as() ..161

hwi_find_item() ...162

hwi_find_tag() ...162

hwi_off2tag() ..162

hwi_tag2off() ..163

init_asinfo() ..163

init_cacheattr() ...163

init_cpuinfo() ..163

init_hwinfo() ...163

init_intrinfo() ..164

init_mmu() ...164

init_pminfo() ...164

init_qtime() ..164

init_qtime_sa1100() ..165

init_raminfo() ..165

init_smp() ...165

init_syspage_memory() (deprecated) ..165

init_system_private() ..166

jtag_reserve_memory() ...166

kprintf() ..166

openbios_init_raminfo() ...166

pcnet_reset() ..166

print_syspage() ..167

rtc_time() ...168

Building Embedded Systems

startup_io_map() ...169

startup_io_unmap() ...169

startup_memory_map() ..169

startup_memory_unmap() ...169

tulip_reset() ..169

uncompress() ..170

x86_cpuid_string() ..170

x86_cputype() ...170

x86_enable_a20() ...170

x86_fputype() ...171

x86_init_pcbios() ..171

x86_pcbios_shadow_rom() ...171

x86_scanmem() ..172

Writing your own kernel callout ..173

Find out who's gone before ...173

Why are they in assembly language? ..174

Starting off ...175

“Patching” the callout code ...175

Getting some R/W storage ..177

The exception that proves the rule ...178

Chapter 6: Customizing the Flash Filesystem ..179

Introduction ...180

Driver structure ..181

resmgr and iofunc layers ..181

Flash filesystem component ...182

Socket services component ..182

Flash services component ..182

Probe routine component ...182

Building your flash filesystem driver ...183

The source tree ...183

The Makefile ...184

Making the driver ..184

The main() function ...184

Socket services interface ..186

Options parsing ...189

Flash services interface ..190

Choosing the right routines ...199

Example: The devf-ram driver ...200

main() ..200

f3s_ram_open() ...201

f3s_ram_page() ...202

Appendix A: System Design Considerations ...203

Table of Contents

Before you design your system ...204

Other design considerations ...207

EPROM/Flash filesystem considerations ...207

IPL location ..207

Graphics cards ..208

A20 gate ..208

External ISA bus slots ..208

PCI bus slots ..208

External clocks ..208

Interrupts & controllers ..209

Serial and parallel ports ...209

Parallel port considerations ..210

Avoid Non-Maskable Interrupts (NMIs) ..211

Design do's and don'ts ..212

Appendix B: Sample Buildfiles ..215

Generic examples ...216

Shared libraries ...216

Running executables more than once ..217

Multiple consoles ..217

Complete example — minimal configuration ..218

Complete example — flash filesystem ...219

Complete example — disk filesystem ..220

Complete example — TCP/IP with network filesystem ...222

Processor-specific notes ..224

Glossary ..225

Building Embedded Systems

Table of Contents

About This Book

The Building Embedded Systems guide is intended for developers who are building

embedded systems that will run under the QNX Neutrino RTOS.

QNX Neutrino runs on several processor families (e.g., ARM, x86). For

information on getting started with QNX Neutrino on a particular board, refer

to the appropriate BSP (Board Support Package) documentation for your board.

This guide is organized around these main topics:

Chapter(s)Topic

Overview of Building Embedded Systems

(p. 15)

Getting the big picture

Working with a BSP (p. 29)Getting started with your board support

package

Making an OS Image (p. 43)Making an image

Preparing your target
• Writing an IPL Program (p. 77)

• Customizing Image Startup Programs

(p. 109)

• Customizing the Flash Filesystem (p.

179)

• Sample Buildfiles

System Design ConsiderationsDealing with hardware issues

GlossaryTerms used in QNX docs

We assume that you've already installed QNX Neutrino and that you're familiar

with its architecture. For a detailed overview, see the System Architecture

manual.

For information about programming in QNX Neutrino, see Get Programming with the

QNX Neutrino RTOS and the QNX Neutrino Programmer's Guide.

Copyright © 2014, QNX Software Systems Limited 11

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

12 Copyright © 2014, QNX Software Systems Limited

About This Book

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 13

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

14 Copyright © 2014, QNX Software Systems Limited

About This Book

http://www.qnx.com

Chapter 1
Overview of Building Embedded Systems

In this chapter, we'll take a “high-level” look at the steps necessary to build a complete

QNX Neutrino-based embedded system, with pointers to the appropriate chapters for

the lower-level details.

First we'll see what a QNX Neutrino system needs to do in order to run. Then we'll

look at the components and how they operate. Finally, we'll do an overview of the steps

you may need to follow when customizing certain portions.

Copyright © 2014, QNX Software Systems Limited 15

Introduction

From the software perspective, the following steps occur when the system starts up:

1. Processor begins executing at the reset vector. The Initial Program Loader (IPL)

locates the OS image and transfers control to the startup program in the image.

2. Startup program configures the system and transfers control to the microkernel

and process manager (procnto).

3. The procnto module loads additional drivers and application programs.

After we look at the software aspects in some more detail, we'll consider the impact

that the hardware has on this startup process.

The role of the IPL

The first step performed by the software is to load the OS image. This is done by a

program called the Initial Program Loader (IPL).

The IPL's initial task is to minimally configure the hardware to create an environment

that will allow the startup program, and consequently the microkernel, to run.

Specifically, this task includes at least the following steps:

1. Start execution from the reset vector.

2. Configure the memory controller, which may include configuring chip selects and/or

PCI controller.

3. Configure clocks.

4. Set up a stack to allow the IPL lib to perform OS verification and setup (image

download, scan, setup, and jump).

The IPL is described in detail in the chapter on Writing an IPL Program (p. 77).

Other
files
...

procnto

Startup

Figure 1: An OS image loaded by the IPL.

Warm-start and cold-start IPL

There are two general types of IPL: warm-start and cold-start. Warm-start IPL is typically

invoked by a ROM-monitor or BIOS; some aspects of the hardware and processor

configuration will have already been set up.

16 Copyright © 2014, QNX Software Systems Limited

Overview of Building Embedded Systems

With cold-start IPL, on the other hand, nothing has been configured or initialized —

the CPU and hardware have just been reset. Naturally, the work that needs to be done

within a warm-start IPL will be a subset of the work required in a cold-start IPL.

We'll approach the discussion of the IPL's responsibilities starting at the end, describing

the goal or final state that everything should be in just before the first component of

the image is started. Then we'll take a look at the steps necessary to get us to that

final state.

Depending on the design of your target, you may have to take a number of steps,

ranging from none (e.g. you're running on a standard platform with a ROM monitor or

BIOS, and have performed a warm-start IPL via disk or network boot; the boot ROM

has done all the work described below for you) to many (e.g. you have a custom

embedded system without firmware and the image is stored on a specialized piece of

hardware).

The final state (just before the first component of the image is started) is characterized

by the following:

• The memory controller has been configured to give access to the memory present

on the system.

• Minimal hardware configuration has been performed (e.g. chip selects to map

EPROMs have been programmed).

• The entire image is now located in linearly addressable memory.

• The first part of the image, the startup code, is now in RAM. (Note that the startup

code is relatively small and that the RAM area is reclaimed when the startup code

is finished.)

Either the IPL or the BIOS/ROM monitor code is responsible for transferring the image

to linearly addressable memory. The OS image must have been built in a format that

the IPL or ROM monitor code understands so that it can know where to place the

image in memory and to what address to pass control after the image has been loaded.

For example, an IBM PC BIOS system typically loads a raw binary and then jumps to

the first address. Other systems may accept an image in ELF format, using the ELF

header information to determine the location to place the image as well as the starting

address. Refer to the documentation that came with your hardware to find out what

image formats the IPL code can accept.

Once the IPL has located the image, and the entire image is now in linearly addressable

memory, control is transferred to the startup program. At that point, the IPL is done

and is out of the picture.

The role of the startup program

The second step performed by the software is to configure the processor and hardware,

detect system resources, and start the OS. This is done by the startup program. (For

details, see the chapter on Customizing Image Startup Programs (p. 109).)

Copyright © 2014, QNX Software Systems Limited 17

Introduction

While the IPL did the bare minimum configuration necessary to get the system to a

state where the startup program can run, the startup program's job is to “finish up”

the configuration. If the IPL detected various resources, it would communicate this

information to the startup program (so it wouldn't have to redetect the same resources.)

To keep QNX Neutrino as configurable as possible, we've given the startup program

the ability to program such things as the base timers, interrupt controllers, cache

controllers, and so on. It can also provide kernel callouts, which are code fragments

that the kernel can call to perform hardware-specific functions. For example, when a

hardware interrupt is triggered, some piece of code must determine the source of the

interrupt, while another piece of code must be able to clear the source of the interrupt.

Note that the startup program does not configure such things as the baud rate of serial

ports. Nor does it initialize standard peripheral devices like an Ethernet controller or

EIDE hard disk controller — these are left for the drivers to do themselves when they

start up later.

Once the startup code has initialized the system and has placed the information about

the system in the system page area (a dedicated piece of memory that the kernel will

look at later), the startup code is responsible for transferring control to the QNX

Neutrino kernel and process manager (procnto), which perform the final loading

step.

Startup's responsibilities

Let's take a look at the overall responsibilities and flow of the startup code:

1. Copy and decompress the image, if necessary.

2. Configure hardware.

3. Determine system configuration.

4. Start the kernel.

Copying and decompressing the image

If the image isn't in its final destination in RAM, the startup code copies it there. If

the image is compressed, the startup code automatically decompresses the image.

Compression is optional; you can create an image file that isn't compressed, in which

case the startup code won't bother trying to decompress it.

Configuring the hardware

The main task here is to set up the minimum required to be able to determine the

system configuration (and then perform the system configuration).

The details of what needs to be configured during the hardware configuration phase

depend on your particular hardware.

18 Copyright © 2014, QNX Software Systems Limited

Overview of Building Embedded Systems

Determining system configuration

Depending on the nature of the embedded system, you may wish to dynamically

determine the configuration on startup or (in the case of a deeply embedded system)

simply “hardcode” the configuration information.

Regardless of the source of the information, the configuration part of the startup code

needs to store this information into a set of well-defined data structures that the OS

will then look at when it starts. Collectively known as the system page area, these data

structures contain information about:

• memory configuration

• hardware device configuration

• processor type

• time of day

Establishing callouts

To keep the QNX Neutrino kernel as portable as possible (not only to different

processors, but also to different hardware configurations of those processors), a number

of callouts must be supplied by the startup code. Not all of the callouts require that

you write code — we have a library that provides many of these.

The following classes of callout functions can be provided for QNX Neutrino:

• debug interface

• clock/timer interface

• interrupt controller interface

• cache controller interface

• power management

• miscellaneous

The callouts are described in detail in the chapter on Customizing Image Startup

Programs (p. 109).

Starting the OS

The final step that the startup code performs is to start the operating system.

The startup library

If all of the above sounds like a lot of work, well, it is! Note, however, that we've

provided source code for some common startup programs and have created a library

that performs most of the above functions for you.

If you have one of the many platforms that we support, then you don't have to do any

of this work — we've already done it for you.

Copyright © 2014, QNX Software Systems Limited 19

Introduction

To find out what processors and boards we currently support, please refer to the

following sources:

• the boards directory under bsp_working_dir/src/hardware/startup/boards.

• QNX Neutrino docs (BSP docs as well as startup-* entries in the Utilities

Reference).

If you have a nonstandard embedded system, you can look at the source for the system

that most closely resembles yours and “clone” the appropriate functionality from the

examples provided.

This issue is discussed in detail in the chapter on Customizing Image Startup Programs

(p. 109).

The role of the QNX Neutrino RTOS

The third step performed by the software is to start any executables that you want to

be running. The OS does this by reading and processing information stored in the

startup script — a sequence of commands stored within the image. The format of the

startup script, as well as the buildfile that it's part of, is documented in detail in a

variety of places in this guide:

• Making an OS Image (p. 43) chapter — describes the steps required to build a

QNX Neutrino-based system, including discussions of the script file and buildfile.

• Sample Buildfiles appendix in this guide — describes common “tricks” used within

the buildfile and also contains complete examples of sample configurations.

• mkifs doc — describes the mkifs utility, which is used to create the image from

the description passed to it in the buildfile. See the Utilities Reference for details.

• Building OS and Flash Images chapter in the IDE User's Guide — describes the

how the OS and flash images are created in the IDE.

Basically, the OS processes the startup script file, which looks like a shell script. In

the startup script file, you'd specify which executables should be started up (and their

order), the command-line options that they should run with, and so on.

20 Copyright © 2014, QNX Software Systems Limited

Overview of Building Embedded Systems

Hardware aspects

From the hardware point of view, the following components form the system:

• processor

• source of initialization and configuration info

• storage media

• I/O devices

Choice of processor

We support the following processor families:

• ARM (including XScale)

• x86

At the “altitude” of this high-level discussion, the choice of processor is irrelevant —

the same basic steps need to be performed regardless of the particular CPU.

Source of initialization and configuration

When the processor (re)starts, it must be able to execute instructions. This is

accomplished by having some kind of nonvolatile storage media placed at the

processor's reset vector. There is, of course, a choice as to who supplies this particular

piece of software:

• QNX Software Systems — you've chosen a standard, supported hardware platform;

• 3rd party — a BIOS or ROM monitor; or

• you — a custom IPL program.

Generally, the simplest development system is one in which you have to do the least

amount of work. If we've already done the work, meaning that the board that you're

using is a standard, supported hardware platform, there's very little work required from

you in this regard; you can instead focus on your software that's going to run on that

board.

If a 3rd party supplies just the BIOS or ROM monitor, then your responsibilities are

increased by having to write the software that starts the operating system. As mentioned

earlier, we call this a “warm-start,” (p. 16) because the system is already “warmed-up”

— various devices are configured and initialized.

If you're supplying a custom IPL, then your responsibilities are further increased by

also having to deal with configuration issues for the hardware. This we call a

“cold-start,” (p. 16) because you are responsible for everything to do with initialization

and configuration.

Copyright © 2014, QNX Software Systems Limited 21

Hardware aspects

Choice of filesystems

Once you've sorted out how the system is going to boot, you may still have additional

decisions to make regarding the system's storage capabilities:

• none

• read-only

• read/write nonpersistent

• read/write persistent

No

No

Yes

Yes

Yes

No

Yes

Flash
filesystem

QNX
filesystem

No

Yes

Network
filesystem

Done

No

Is a
filesystem
needed?

Is
write access
required?

Is
persistent
storage
required?

Will
a rotating
medium
be used?

Is a
network
filesystem
used?

procnto memory
objects

procnto image
filesystem

Figure 2: You may select as many storage options as you need.

No additional storage required

If you don't require any additional storage (i.e. your system is entirely self-contained

and doesn't need to access any other files once it's running), then your work in this

regard is done.

22 Copyright © 2014, QNX Software Systems Limited

Overview of Building Embedded Systems

Additional read-only storage required

The simplest filesystem scenario is one where read-only access is required. There's

no work for you to do—QNX Neutrino provides this functionality as part of the OS

itself. Simply place the files that you wish to access/execute directly into the image

(see the chapter on Making an OS Image (p. 43)), and the OS will be able to access

them.

Additional read/write nonpersistent storage required

If you require write access (perhaps for temporary files, logs, etc.), and the storage

doesn't have to be persistent in nature (meaning that it doesn't need to survive a reset),

then once again the work is done for you.

The QNX Neutrino RTOS allows the RAM in your system to be used as a RAM-disk,

without any additional coding or device drivers. The RAM-disk is implemented via the

Process Manager — you simply set up a Process Manager link (using the ln command).

For example, to mount the /tmp directory as a RAM-disk, execute the following

command:

ln -Ps /dev/shmem /tmp

Or place the following line in your buildfile (we'll talk about buildfiles over the next

few chapters):

[type=link] /tmp=/dev/shmem

This instructs the Process Manager to take requests for any files under /tmp and

resolve them to the shared memory subsystem. For example, /tmp/AAA4533.tmp

becomes a request for /dev/shmem/AAA4533.tmp.

In order to minimize the size of the RAM filesystem code inside the Process

Manager, the shared memory filesystem specifically doesn't include “big

filesystem” features such as file locking and directory creation.

If you need a relatively full-featured, POSIX-style filesystem on a RAM disk,

use devf-ram or the builtin RAM disk via io-blk instead.

Additional read/write persistent storage required

If you do require storage that must survive a power failure or processor reset, then

you'll need to run an additional driver. We supply these classes of filesystems:

• flash filesystems

• rotating disk filesystems

• network filesystems

Copyright © 2014, QNX Software Systems Limited 23

Hardware aspects

All of these filesystems require additional drivers. The Sample Buildfiles appendix in

this guide gives detailed examples showing how to set up these filesystem drivers.

Flash filesystems and media

The flash driver can interface to the flash memory devices (boot block and regular) in

all combinations of bus widths (8, 16, and 32 bits) and interleave factors (1, 2, and

4).

To find out what flash devices we currently support, please refer to the following

sources:

• the boards and mtd-flash directories under

bsp_working_dir/src/hardware/flash.

• QNX Neutrino docs (devf-* entries in the Utilities Reference).

• the QNX Software Systems website (www.qnx.com).

Using the source code provided, you may be able to tailor one of our filesystems (e.g.

devf-generic) to operate on your particular embedded system (if it isn't currently

supported).

Rotating media and filesystems

The QNX Neutrino RTOS currently supports several filesystems, including DOS, Linux,

Macintosh HFS and HFS Plus, Windows NT, QNX 4, Power-Safe, Universal Disk Format

(UDF), and more. For details, see the fs-* entries in the Utilities Reference.

Drivers are available for many block-oriented devices. For up-to-date information, see

the devb-* entries in the Utilities Reference as well as the Community area of our

website, www.qnx.com.

Network media and filesystems

During development, or perhaps in a distributed data-gathering application, you may

wish to have a filesystem located on one machine and to be able to access that

filesystem from other machines. A network filesystem lets you do this.

In addition to its own transparent distributed processing system (Qnet), The QNX

Neutrino RTOS also supports network filesystems such as CIFS (SMB), NFS 2, and

NFS 3.

If possible, you should use fs-nfs3 instead of

fs-nfs2.

Drivers are available for the several Ethernet controllers. For details, see the devn-*

and devnp-* entries in the Utilities Reference as well as the Community area of our

website, www.qnx.com.

24 Copyright © 2014, QNX Software Systems Limited

Overview of Building Embedded Systems

http://www.qnx.com/
http://www.qnx.com
http://www.qnx.com

I/O devices

Ultimately, your QNX Neutrino-based system will need to communicate with the outside

world. Here are some of the more common ways to do this:

• serial/parallel port

• network (described above)

• data acquisition/generation

• multimedia

Character I/O devices

For standard serial ports, QNX Neutrino supports several devices (8250 family,

Signetics, etc.) For details, see the devc-* entries in the Utilities Reference, as well

as the Community area of our website, www.qnx.com.

Special/custom devices

One design issue you face is whether you can get off-the-shelf drivers for the hardware

or whether you'll have to write your own. If it turns out that you need to write your

own, then the Writing a Resource Manager guide can help you do that.

Copyright © 2014, QNX Software Systems Limited 25

Hardware aspects

http://www.qnx.com

Getting started

Depending on the ultimate system you'll be creating, you may have a ton of work to

do or you may have very little. In any case, we recommend that you start with a

supported evaluation board. This approach minimizes the amount of low-level work

that you have to do initially, thereby allowing you to focus on your system rather than

on implementation details.

Start with an evaluation platform that most closely resembles your target platform —

there are many supported evaluation platforms from various vendors.

Once you're comfortable with the development environment and have done a very

rudimentary “proof of concept,” you can move on to such development efforts as

creating your own hardware, writing your own IPL and startup code, writing drivers for

your hardware, and so on.

Your proof of concept should address such issues as:

• How much memory will be required?

• How fast a CPU will be required?

• Can standard off-the-shelf hardware do the job?

Once these are addressed, you can then decide on your plan of attack.

Hardware design

There are a number of ways of designing your hardware. We've seen many boards come

in from the field and have documented some of our experiences with them in the

System Design Considerations appendix in this book. You may be able to realize certain

savings (in both cost and time) by reading that appendix first.

Customizing the software

Ideally, the system you're designing will look identical to a supported evaluation

platform. In reality, this isn't always the case, so you'll need to customize some of the

components in that system.

We've provided the source code to a large number of the “customizable” pieces of the

OS. This diagram gives you the high-level view of the directory structure for the source

tree we ship:

26 Copyright © 2014, QNX Software Systems Limited

Overview of Building Embedded Systems

flashstartupipl

bsp_working_dir/src/hardware

Figure 3: The three main branches of the QNX Neutrino source tree.

As you can see, we've divided the source tree into three major branches: ipl,

startup, and flash. Each branch consists of further subdirectories:

bsp_working_dir/src/hardware

startup

boards bootfile

flash

boards mtd-flash

ipl

boards

Figure 4: The complete QNX Neutrino source tree.

Customizing the source

The following table relates the source tree branches to the individual chapters in this

book:

Relevant chapterSource tree branch

Customizing IPL Programs (p. 77)ipl

Customizing Image Startup Programs (p.

109)

startup

Customizing the Flash Filesystem (p. 179)flash

For detailed information on the format of the Makefile present in these directories,

see Conventions for Recursive Makefiles and Directories in the QNX Neutrino

Programmer's Guide.

Copyright © 2014, QNX Software Systems Limited 27

Getting started

Chapter 2
Working with a BSP

Once you've installed the QNX Neutrino RTOS, you can download processor-specific

Board Support Packages (BSPs) from our website, http://www.qnx.com/. These

BSPs are designed to help you get the QNX Neutrino RTOS running on certain

platforms.

A BSP typically includes the following:

• IPL

• startup

• default buildfile

• networking support

• board-specific device drivers, system managers, utilities, etc.

The BSP is contained in an archive named after the industry-recognized name of the

board and/or reference platform that the BSP supports. BSP packages are available

for QNX Neutrino, Windows, or Linux hosts.

The BSP components are provided in source (p. 34) code form, unless there are

restrictions on the source code, in which case the component is provided only in binary

form. BSPs are provided in a zip archive. The same archive applies to all hosts.

The QNX community website, Foundry27, has more information about BSPs; see

http://community.qnx.com/sf/sfmain/do/viewProject/projects.bsp.

You can also check out BSPs from a Subversion repository on Foundry27.

To use a BSP, you must either unzip the archive and build it on the command line,

or import it into the IDE.

Copyright © 2014, QNX Software Systems Limited 29

http://www.qnx.com/
http://community.qnx.com/sf/sfmain/do/viewProject/projects.bsp

Using BSPs in the IDE

Before working with a BSP in the IDE, you must first import it. When you import the

BSP source, the IDE creates a System Builder project.

To import the BSP source code:

1. Select File ➝ Import .

2. Expand the QNX folder.

3. Select QNX Source Package and BSP (archive) from the list. Click Next.

4. In the Select the package to import dialog, click Select Package, and then choose

the BSP archive using the file browser.

5. Choose the BSP you want. You'll see a description of it.

6. Click Next.

7. Uncheck the entries you don't want imported. (By default all the entries are

selected.)

8. Click Next.

9. Select a working set. Default names are provided for the Working Set Name and

the Project Name Prefix that you can override if you choose.

10. Click Finish. All the projects will be created and the source brought from the

archive. You'll then be asked if you want to build all the projects you've imported.

If you answer Yes, the IDE will start the build process. If you decide to build at a

later time, you can do a Rebuild All from the main Project menu when you're ready

to build.

When you import a QNX BSP, the IDE opens the QNX BSP Perspective. This

perspective combines the minimum elements from the C\C++ Development

Perspective and the System Builder Perspective.

For more information, see the IDE User's Guide in your documentation

set.

30 Copyright © 2014, QNX Software Systems Limited

Working with a BSP

Using BSPs on the command line

If you aren't using the IDE and you want to manually install a BSP archive, we

recommend that you create a default directory with the same name as your BSP and

unzip the archive from there:

1. Change the directory to where you want to extract the BSP (e.g. /home/joe). The

archive will extract to the current directory, so you should create a directory

specifically for your BSP.

For example:

mkdir /home/joe/bspname

2. In the directory you've just created, extract the BSP:

cd /home/joe/bspname
unzip bspname.zip

See Foundry27 for instructions on how to get a BSP from

Subversion.

Each BSP is rooted in whatever directory you copy it to. If you type make within this

directory, you'll generate all of the buildable entities within that BSP no matter where

you move the directory.

When you build a BSP, everything it needs, aside from standard system headers, is

pulled in from within its own directory. Nothing that's built is installed outside of the

BSP's directory. The makefiles shipped with the BSPs copy the contents of the

prebuilt directory into the install directory. The binaries are built from the source

using include files and link libraries in the install directory.

Structure of a BSP

After you unzip a BSP archive, the resulting directory structure looks something like

this:

Copyright © 2014, QNX Software Systems Limited 31

Using BSPs on the command line

bsp_working_dir

imagesprebuiltinstallsrc

devc
devn
flash
ipl

startup

hardware lib utilstargetusrbin
lib
sbin

bin
include
lib
sbin

Figure 5: BSP directory structure.

In our documentation, we refer to the directory where you've installed a BSP (e.g.

/home/myID/my_BSPs/integrator) as the bsp_working_dir. This directory includes

the following subdirectories:

• src

• prebuilt

• install

• images

The images subdirectory is where the resultant boot images are placed. It contains

(as a minimum) the Makefile needed to build the image(s). Other files that could

reside in this directory include:

• custom buildfiles (for flash, etc.)

• EFS buildfiles

• IPL build scripts

prebuilt subdirectory

The prebuilt subdirectory contains prebuilt binaries, and header files that are

shipped with the BSP.

Before the BSP is built, all of the files from the prebuilt directory are copied into

the install directory, maintaining the path structure.

In order to handle dependencies, the libraries, headers, and other files found in the

./prebuilt directory need to be copied correctly to your ./install directory. To

do this, you'll need to run make at the bsp_working_dir directory level.

The “root” of the prebuilt directory requires the same structure as the system root.

The target-specific and usr directories mirror the structure of /.

32 Copyright © 2014, QNX Software Systems Limited

Working with a BSP

All processor-specific binaries are located under the directory named for that

processor type.

For example, the prebuilt directory might look like this:

prebuilt

usr

includesbin

ppcbe

ppcdrvrsys

lib

libdrvrS.a
libstartup.a

devb-eide

eth.h
mdi.h

support.h

util.ahnic.h
platform.h
types.h

...

sys

boot

build

ipl-board
startup-board

board.build

sbin

devc-ser*
devc-tser*

pci-*

Figure 6: A sample prebuilt directory.

install subdirectory

The install directory gets populated at the beginning of the BSP build process. All

the files in the prebuilt directory are copied, then all generated binaries are installed

here as they're compiled. The files stored in the install directory are taken first

when mkifs executes.

Before you make any components for your particular board, you must first make the

BSP sources at the top level:

cd bsp_working_dir
make

This builds everything under ./src and sets up the ./install and ./images

subdirectories correctly.

After this initial build is complete, you can build any of the source files individually.

If you change a library or header, be sure to run make install to rebuild

the source and copy the changes to your ./install directory.

src subdirectory

The BSP-specific source code is stored in this directory. Refer to the BSP release

notes to find the location of the source code for a specific driver.

Copyright © 2014, QNX Software Systems Limited 33

Using BSPs on the command line

The hardware directory contains separate directories for character, flash, and network

drivers, IPL, startup code, and so on, depending on the BSP.

The src directory contains one or more master buildfiles, typically

src/hardware/startup/boards/board/build. During make install

the build files are copied to install/target/boot/build/board.build.

After the root Makefile will make a link to, or make a copy of these files in the

images subdirectory. Care is required to modify the correct buildfile and to

avoid losing changes to a buildfile.

The lib directory contains separate directories for libraries that are required by driver

and other utilities that are included with the BSP.

Some drivers, such as the network drivers or USB host controller drivers, are

implemented as shared objects, but the source code for them is located under

the hardware directory.

The utils directory contains separate directories for minor utilities that are required

on the board. Some hardware-specific utilities can also be found in

hardware/support.

The services directory contains separate directories for additional services that

aren't included in the base installation.

Building source from the command line

In order to build a BSP from the command line, you must go to the root directory for

the BSP.

Use the make command to build the source code. The Makefile defines the following

targets:

all

Invokes the install, links, and images targets.

prebuilt

This recursively copies the prebuilt directory's contents to the install

directory.

install

Invokes the prebuilt target, and then performs the following in the src

directory:

• make hinstall to copy all public headers from src into the install

directory.

34 Copyright © 2014, QNX Software Systems Limited

Working with a BSP

• make install to build all binaries in src and copy the results into

the install directory. This target also copies the buildfile from

src/hardware/startup/boards/board/build and renames it

board.build.

links

Creates a symbolic link (a copy on Windows) from

install/cpu/boot/build/board.build to images/board.build.

images

Changes to the images directory and runs the Makefile there. This

Makefile creates an IFS file based on the buildfile linked in during the

make links target. Any extra work required (e.g. IPL padding, conversion

to an alternate format) is also handled from within this Makefile.

If you don't specify a target, make invokes the all target.

We recommend that you use make to build the OS image. If you use mkifs

directly, you need to use the -r option to specify where to find the binaries.

For more information, see the entry for mkifs in the Utilities Reference.

Supporting additional devices

All boards have some devices, whether they're input, serial, flash, or PCI. Every BSP

includes a buildfile that you can use to generate an OS image that will run on the

board it was written for. The buildfile is in the

bsp_working_dir/src/hardware/startup/boards/board directory.

A BSP's buildfile contains the commands — possibly commented out — for starting

the drivers associated with the devices. You will need to edit the buildfile to modify

or uncomment these commands. If you uncomment a command, make sure you

uncomment the lines that add any required binaries to the image.

For more information, see the documentation for each BSP, as well as the buildfile

itself; for general information about buildfiles, see the entry for mkifs in the Utilities

Reference.

Once you've modified the buildfile, follow the instructions given earlier in this chapter

for building an OS image.

Copyright © 2014, QNX Software Systems Limited 35

Using BSPs on the command line

Transferring an OS image onto your board

Once you've built an OS image, you'll need to transfer it to your board.

The IDE lets you communicate with your target and download your OS image using

either a serial connection, or a network connection using the Trivial File Transfer

Protocol (TFTP). If your board doesn't have a ROM monitor, you probably can't use

the download services in the IDE; you'll have to get the image onto the board some

other way (e.g. JTAG).

Transferring an OS image

There are several ways to transfer an OS image:

Use the:To:

NetworkLoad an image from your network (e.g.

TFTP)

ROM monitorLoad an image serially (e.g. COM1,

COM2)

IPL and OSBurn both the IPL and the OS image into

the flash boot ROM, then boot entirely

from flash

IPL and boot ROMBurn an IPL (Initial Program Loader) into

the flash boot ROM, then load the OS

image serially

Flash filesystemGenerate a flash filesystem, and then

place various files and utilities within it

The method you use to transfer an OS image depends on what comes with the board.

The BSP contains information describing the method that you can use for each

particular board. Each board will have all or some of these options for you to use.

To load an image serially:

1. Connect your target and host machine with a serial cable. Ensure that both machines

properly recognize the connection.

2. Specify the device (e.g.COM1) and the communications settings (e.g. the baud

rate, parity, data bits, stop bits, and flow control) to match your target machine's

capabilities. You can now interact with your target by typing in the view.

To transfer a file using the Serial Terminal view:

36 Copyright © 2014, QNX Software Systems Limited

Working with a BSP

1. Using either the serial terminal view or another method (outside the IDE), configure

your target so that it's ready to receive an image.

2. In the serial terminal view, click Send File.

3. In the Select File to Send dialog, enter the name or your file (or click Browse).

4. Select a protocol (e.g. sendnto).

5. Click OK. The Builder transmits your file over the serial connection.

Working with a flash filesystem

The flash filesystem drivers implement a POSIX-like filesystem on NOR flash memory

devices. The flash filesystem drivers are standalone executables that contain both the

flash filesystem code and the flash device code. There are versions of the flash

filesystem driver for different embedded systems hardware as well as PCMCIA memory

cards.

The naming convention for the drivers is devf-system, where system describes the

embedded system.

To find out what flash devices we currently support, please refer to the following

sources:

• the boards and mtd-flash directories under

bsp_working_dir/src/hardware/flash

• QNX Neutrino RTOS docs (devf-* entries in Utilities Reference

• the QNX Software Systems website (www.qnx.com)

The flash filesystem drivers support one or more logical flash drives. Each logical drive

is called a socket, which consists of a contiguous and homogeneous region of flash

memory. For example, in a system containing two different types of flash device at

different addresses, where one flash device is used for the boot image and the other

for the flash filesystem, each flash device would appear in a different socket.

Each socket may be divided into one or more partitions. Two types of partitions are

supported:

• raw partitions

• flash filesystem partitions

Raw partitions

A raw partition in the socket is any partition that doesn't contain a flash filesystem.

The flash filesystem driver doesn't recognize any filesystem types other than the flash

filesystem. A raw partition may contain an image filesystem or some application-specific

data.

Copyright © 2014, QNX Software Systems Limited 37

Transferring an OS image onto your board

http://www.qnx.com/

The flash filesystem uses a raw mountpoint to provide access to any partitions on the

flash that aren't flash filesystem partitions. Note that the flash filesystem partitions

are available as raw partitions as well.

Flash filesystem partitions

A flash filesystem partition contains the POSIX-like flash filesystem, which uses a

QNX-proprietary format to store the filesystem data on the flash devices. This format

isn't compatible with either the Microsoft FFS2 or PCMCIA FTL specification.

The flash filesystem allows files and directories to be freely created and deleted. It

recovers space from deleted files using a reclaim mechanism similar to garbage

collection.

The flash filesystem supports all the standard POSIX utilities such as ls, mkdir, rm,

ln, mv, and cp. There are also some QNX Neutrino utilities for managing the flash

filesystem:

flashctl

Erase, format, and mount flash partitions.

deflate

Compress files for flash filesystems.

mkefs

Create flash filesystem image files.

The flash filesystem supports all the standard POSIX I/O functions such as open(),

close(), read(), and write(). Special functions such as erasing are supported using the

devctl() function.

Flash filesystem source

Each BSP contains the binary and the source code for the appropriate flash filesystem

driver, but the QNX Neutrino RTOS contains the associated header files and libraries.

Typing make in the bsp_working_dir generates the flash filesystem binary. Normally,

you won't need to remake the flash filesystem driver unless you've changed the size

or configuration of the flash on the board — this can include the number of parts,

size of parts, type of parts, interleave, etc.

When an IPL/IFS (image filesystem) image is combined, you'll need to offset

the beginning of the flash filesystem by at least the size of the IPL and IFS.

For example, if the combined IPL/IFS image is loaded at offset 0 on the

flash, to avoid overwriting the IPL and IFS, the flash filesystem must begin

38 Copyright © 2014, QNX Software Systems Limited

Working with a BSP

at an offset of the IPL/IFS image size +1. If it doesn't begin at an offset of

the IPL/IFS image size +1, you'll need to create a partition.

How do I create a partition?

Regardless of which BSP you're working with, the procedure requires that you:

1. Start the flash filesystem driver.

2. Erase the entire flash.

3. Format the partition.

4. Slay the flash filesystem driver.

5. Restart the flash filesystem driver.

For example, this is what you might have to do for a board than can be booted from

DMON or flash:

1. To boot from DMON, enter the following command to start the flash filesystem

driver:

devf-generic -s0xe8000000,32M &

2. To boot from flash, enter the following command to start the flash system driver:

devf-generic -s0x0,32M

You should now see an fs0p0 entry under /dev.

3. To prepare the area for the partition, you must erase the entire flash. Enter the

following command:

flashctl -p/dev/fs0 -ev

4. To format the partition, enter the following command:

flashctl -p/dev/fs0p0 -f

5. Now slay the flash filesystem driver:

slay devf-generic

6. Finally, restart the driver:

devf-generic &

You should now see the following entries:

DescriptionEntry

OS image (32 MB)/dev/fs0p0

Flash filesystem partition (32 MB)/dev/fs0p1

Copyright © 2014, QNX Software Systems Limited 39

Transferring an OS image onto your board

Testing QNX Neutrino on your board

You can test QNX Neutrino simply by executing any shell builtin command or any

command residing within the OS image. For example, type:

ls

You'll see a directory listing, since the ls command has been provided in the default

system image.

40 Copyright © 2014, QNX Software Systems Limited

Working with a BSP

Where do I go from here?

Now that you have a better understanding of how BSPs work in an embedded system,

you'll want to start working on your applications. The following table contains references

to the QNX Neutrino documentation that may help you find the information you'll need

to get going.

Go to:For information on:

The section “A simple example” in the

chapter Compiling and Debugging in the

Writing “hello world”

QNX Neutrino Programmer's Guide, or the

IDE User's Guide.

The section “Debugging” in the chapter

Compiling and Debugging in the QNX

Neutrino Programmer's Guide.

Debugging your programs

The section “Complete example — TCP/IP

with network filesystem” in the appendix

Setting up NFS

Sample Buildfiles in this manual. See also

the fs-nfs3 utility page in the Utilities

Reference.

The section “Complete example — TCP/IP

with network filesystem” in the appendix

Setting up an Ethernet driver

Sample Buildfiles in this manual. See also

the various network drivers (devn*,

devnp-*) in the Utilities Reference.

Writing a Resource ManagerWriting device drivers and/or resource

managers

If you need more information, see these chapters in this guide:

Go to:For more information on:

Customizing the Flash Filesystem (p. 179)Building flash filesystems

Writing an IPL program (p. 77)IPL

Customizing Image Startup Programs (p.

109)

Startup

Copyright © 2014, QNX Software Systems Limited 41

Where do I go from here?

Filename conventions

In QNX Neutrino BSPs, we use the following conventions for naming files:

ExampleDescriptionPart of filename

ifs-board_name.binSuffix for binary format file.bin

board_name.buildSuffix for buildfile.build

efs-board_name.srecPrefix for QNX Neutrino

Embedded Filesystem file;

generated by mkefs

efs-

ipl-ifs-board_name.elfSuffix for ELF (Executable

and Linking Format) file

.elf

ifs-board_name.elfPrefix for QNX Neutrino

Image Filesystem file;

generated by mkifs

ifs-

ipl-board_name.srecPrefix for IPL (Initial

Program Loader) file

ipl-

ifs-board_name.openbiosSuffix for OpenBIOS format

file

.openbios

ifs-board_name.srecSuffix for S-record format

file

.srec

42 Copyright © 2014, QNX Software Systems Limited

Working with a BSP

Chapter 3
Making an OS Image

Making an OS image involves a number of steps, depending on the hardware and

configuration of your target system.

In this chapter, we'll take a look at the steps necessary to build an OS image. Then

we'll examine the steps required to get that image to the target, whether it involves

creating a boot disk/floppy, a network boot, or burning the image into an EPROM or

flash device. We'll also discuss how to put together some sample systems to show you

how to use the various drivers and resource managers that we supply.

For more information on using the various utilities described in this chapter, see the

Utilities Reference.

Copyright © 2014, QNX Software Systems Limited 43

Images, images, images

In the embedded QNX Neutrino world, an “image” can mean any of the following:

Created by:DescriptionImage type

mkifsA bootable or nonbootable

structure that contains files

OS image

mkefsA structure that can be

used in a read-only,

Flash filesystem image

read/write, or

read/write/reclaim flash

filesystem

mketfsA binary image file

containing the ETFS as a

sequence of transactions

Embedded transaction

filesystem image

44 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

What is an OS image?

When you've created your executables (programs) that you want your embedded system

to run, you need to place them somewhere where they can be loaded from. An OS

image is simply a file that contains the OS, your executables, and any data files that

might be related to your programs. Actually, you can think of the image as a small

“filesystem” — it has a directory structure and some files in it.

An image can be bootable or nonbootable. A bootable image is one that contains the

startup code that the IPL can transfer control to (see the chapter on customizing IPL

programs (p. 77) in this book). Generally, a small embedded system will have only the

one (bootable) OS image.

A nonbootable image is usually provided for systems where a separate,

configuration-dependent setup may be required. Think of it as a second “filesystem”

that has some additional files in it (we'll discuss this in more depth later). Since it's

nonbootable, this image will typically not contain the OS, startup file, etc.

Copyright © 2014, QNX Software Systems Limited 45

What is an OS image?

The OS image as a filesystem

As previously mentioned, the OS image can be thought of as a filesystem. In fact, the

image contains a small directory structure that tells procnto the names and positions

of the files contained within it; the image also contains the files themselves. When

the embedded system is running, the image can be accessed just like any other

read-only filesystem:

cd /proc/boot
ls
.script ping cat data1 pidin

ksh ls ftp procnto devc-ser8250-abc123
cat data1
This is a data file, called data1, contained in the image.
Note that this is a convenient way of associating data
files with your programs.

The above example actually demonstrates two aspects of having the OS image function

as a filesystem. When we issued the ls command, the OS loaded ls from the image

filesystem (pathname /proc/boot/ls). Then, when we issued the cat command,

the OS loaded cat from the image filesystem as well, and opened the file data1.

Let's now take a look at how we configure the image to contain files.

46 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

Configuring an OS image

The OS image is created by a program called mkifs (make image filesystem), which

accepts information from two main sources: its command line and a buildfile.

For more information, see mkifs in the Utilities

Reference.

A simple buildfile

Let's look at a very simple buildfile, the one that generated the OS image used in the

example above:

A simple "ls", "ping", and shell.
This file is "shell.bld"

[virtual=armle-v7,srec] .bootstrap = {
 startup-abc123
 PATH=/proc/boot procnto -vv
}
[+script] .script = {
 procmgr_symlink ../../proc/boot/libc.so.3 /usr/lib/ldqnx.so.2

 devc-ser8250-abc123 -F -e -c14745600 -b115200 0xc8000000 ^2,15 &
 reopen

 display_msg Serial Driver Started
}

[type=link] /dev/console=/dev/ser1
[type=link] /tmp=/dev/shmem
libc.so.2
libc.so

[data=copy]
devc-ser8250-abc123
ksh
ls
cat
data1
ping
ftp
pidin

In a buildfile, a pound sign (#) indicates a comment; anything between it and

the end of the line is ignored. Make sure there's a space between a buildfile

command and the pound sign.

This buildfile consists of these sections:

• a bootfile — starting with [virtual=armle-v7,srec]

• a script — starting with [+script]

• a list of links and files to include in the image — starting with [type=link]

/dev/console=/dev/ser1

Inline files

Although the three sections in the buildfile above seem to be distinct, in reality all

three are similar in that they're lists of files.

Copyright © 2014, QNX Software Systems Limited 47

Configuring an OS image

Notice also how the buildfile itself is structured:

optional_attributes filename optional_contents

For example, the line:

[virtual=armle-v7,srec] .bootstrap = {

has an attribute of [virtual=armle-v7,srec] and a filename of .bootstrap.

The optional_contents part of the line is what we call an inline file; instead of getting

the contents of this file from the host machine, mkifs gets them from the buildfile

itself, enclosed by braces. The contents of the inline file can't be on the same line as

the opening or closing brace.

Let's examine these elements in some detail.

The bootstrap file

The first section of the bootfile (starting with [virtual=armle-v7,srec]) specifies

that a virtual address system is being built. The CPU type appears next; “armle-v7”

indicates a little-endian ARM processor. Then after the comma comes the name of

the bootfile (srec).

The rest of the line specifies an inline file (as indicated by the open brace) named

“.bootstrap”, which consists of the following:

startup-abc123
PATH=/proc/boot procnto -vv

If you set the value of PATH in the bootstrap file, procnto sets the _CS_PATH

configuration string. Similarily, if you set LD_LIBRARY_PATH, procnto sets

the _CS_LIBPATH configuration string. It doesn't pass these environment

variables on to the script, but you can set environment variables in the script

itself.

You can bind in optional modules to procnto by using the [module=...] attribute.

For example, to bind in the adaptive partitioning scheduler, change the procnto line

to this:

[module=aps] PATH=/proc/boot procnto -vv

• Optional modules to procnto were introduced in the QNX Neutrino Core

OS 6.3.2.

• For more information about the adaptive partitioning scheduler, see the

Adaptive Partitioning User's Guide.

48 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

The actual name of the bootstrap file is irrelevant. However, nowhere else in the

buildfile did we specify the bootstrap or script files—they're included automatically

when specified by a [virtual] or [physical] attribute.

The “virtual” attribute (and its sibling the “physical” attribute) specifies the

target processor (in our example, the armle-v7 part) and the bootfile (the srec

part), a very small amount of code between the IPL and startup programs. The target

processor is put into the environment variable $PROCESSOR and is used during

pathname expansion. You can omit the target processor specification, in which case

it defaults to the same as the host processor. For example:

[virtual=bios] .bootstrap = {
...

would assume an ARM target if you're on an ARM host system.

Both examples find a file called $PROCESSOR/sys/bios.boot (the .boot part is

added automatically by mkifs), and process it for configuration information.

Compressing the image

While we're looking at the bootstrap specification, it's worth mentioning that you can

apply the +compress attribute to compress the entire image. The image is

automatically uncompressed before being started. Here's what the first line would look

like:

[virtual=armle-v7,srec +compress] .bootstrap = {

The script file

The second section of the buildfile starts with the [+script] attribute — this tells

mkifs that the specified file is a script file, a sequence of commands that you want

procnto to execute when it's completed its own startup.

Script files look just like regular shell scripts, except that:

• special modifiers can be placed before the actual commands to run

• some commands are builtin

• the script file's contents are parsed by mkifs before being placed into the

image

In order to run a command, its executable must be available when the script

is executed. You can add the executable to the image or get it from a filesystem

that's started before the executable is required. The latter approach results in

a smaller image.

Copyright © 2014, QNX Software Systems Limited 49

Configuring an OS image

In this case, the script file is an inline file (again indicated by the open brace). The

file (which happens to be called “.script”) contains the following:

procmgr_symlink ../../proc/boot/libc.so.3 /usr/lib/ldqnx.so.2

devc-ser8250-abc123 -F -e -c14745600 -b115200 0xc8000000 ^2,15 &
reopen

display_msg Serial Driver Started

This script file begins by creating a symbolic link to ../../proc/boot/libc.so.3

called /usr/lib/ldqnx.so.2.

Next the script starts a serial driver (the fictional devc-ser8250-abc123) in edited

mode with hardware flow control disabled at a baud rate of 115200 bps at a particular

physical memory address. The script then does a reopen to redirect standard input,

output, and error. The last line simply displays a message.

As mentioned above, the bootstrap file can set the _CS_PATH and _CS_LIBPATH

configuration strings. You can set PATH, LD_LIBRARY_PATH, and other environment

variables if the programs in your script need them.

Startup scripts support foreground and background processes. Just as in the

shell, specify an ampersand (&) on the command line to make the program

run in the background. If you run a program in the foreground, and it doesn't

exit, then the rest of the script is never executed, and the system might not

become fully operational.

Bound multiprocessing attributes

You can specify which CPU to bind processes to when launching processes from the

startup script through the [CPU=] modifier.

The [CPU=] is used as any other modifier, and specifies the CPU on which to launch

the following process (or, if the attribute is used alone on a line without a command,

sets the default CPU for all following processes). Specify the CPU as a zero-based

processor number:

[cpu=0] my_program

A value of * allows the processes to run on all processors:

[cpu=*] my_program

At boot time, if there isn't a processor with the given index, a warning message is

displayed, and the command is launched without any runmask restriction.

Due to a limitation in the boot image records, this syntax allows only the

specification of a single CPU and not a more generic runmask. Use the on

utility to spawn a process within a fully specified runmask.

50 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

The script file on the target

The script file stored on the target isn't the same as the original specification of the

script file within the buildfile. That's because a script file is “special” — mkifs parses

the text commands in the script file and stores only the parsed output on the target,

not the original ASCII text. The reason we did this was to minimize the work that the

process manager has to do at runtime when it starts up and processes the script file

— we didn't want to have to include a complete shell interpreter within the process

manager!

Plain ordinary lists of files

Let's return to our example. Notice the “list of files” (i.e. from “[type=link]

/dev/console=/dev/ser1” to “pidin”).

As mentioned earlier, this list specifies the files and libraries that you want to include

in the image. What you include in the image depends on what you want your embedded

system to do; for some tips on choosing these files, see the Sample Buildfiles appendix.

Including files from different places

In the example above, we specified that the files at the end were to be part of the

image, and mkifs somehow magically found them. Actually, it's not magic — mkifs

simply looked for the environment variable MKIFS_PATH. This environment variable

contains a list of places to look for the files specified in the buildfile. If the environment

variable doesn't exist, then the following are searched in this order:

1. current working directory if the filename contains a slash (but doesn't start with

one).

2. ${QNX_TARGET}/${PROCESSOR}/sbin

3. ${QNX_TARGET}/${PROCESSOR}/usr/sbin

4. ${QNX_TARGET}/${PROCESSOR}/boot/sys

5. ${QNX_TARGET}/${PROCESSOR}/bin

6. ${QNX_TARGET}/${PROCESSOR}/usr/bin

7. ${QNX_TARGET}/${PROCESSOR}/lib

8. ${QNX_TARGET}/${PROCESSOR}/lib/dll

9. ${QNX_TARGET}/${PROCESSOR}/usr/lib

(The ${PROCESSOR} component is replaced with the name of the CPU, e.g. arm.)

Since none of the filenames that we used in our example starts with the “/” character,

we're telling mkifs that it should search for files (on the host) within the path list

specified by the MKIFS_PATH environment variable as described above. Regardless

of where the files came from on the host, in our example they'll all be placed on the

Copyright © 2014, QNX Software Systems Limited 51

Configuring an OS image

target under the /proc/boot directory (there are a few subtleties with this, which

we'll come back to).

For our example, devc-con will appear on the target as the file

/proc/boot/devc-con, even though it may have come from the host as

${QNX_TARGET}/armle-v7/sbin/devc-con.

To include files from locations other than those specified in the MKIFS_PATH

environment variable, you have a number of options:

• Change the MKIFS_PATH environment variable (use the shell command export

MKIFS_PATH=newpath on the host).

• Modify the search path with the [search=] attribute.

• Specify the pathname explicitly (i.e. with a leading “/” character).

• Create the contents of the file in line.

Modifying the search path

By specifying the [search=newpath] attribute, we can cause mkifs to look in places

other than what the environment variable MKIFS_PATH specifies. The newpath

component is a colon-separated list of pathnames and can include environment variable

expansion. For example, to augment the existing MKIFS_PATH pathname to also

include the directory /mystuff, you would specify:

[search=${MKIFS_PATH}:/mystuff]

Specifying the pathname explicitly

Let's assume that one of the files used in the example is actually stored on your

development system as /release/data1. If you simply put /release/data1 in

the buildfile, mkifs would include the file in the image, but would call it

/proc/boot/data1 on the target system, instead of /release/data1.

Sometimes this is exactly what you want. But at other times you may want to specify

the exact pathname on the target (i.e. you may wish to override the prefix of

/proc/boot). For example, specifying /etc/passwd would place the host

filesystem's /etc/passwd file in the target's pathname space as

/proc/boot/passwd — most likely not what you intended. To get around this, you

could specify:

/etc/passwd = /etc/passwd

This tells mkifs that the file /etc/passwd on the host should be stored as

/etc/passwd on the target.

52 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

On the other hand, you may in fact want a different source file (let's say

/home/joe/embedded/passwd) to be the password file for the embedded system.

In that case, you would specify:

/etc/passwd = /home/joe/embedded/passwd

Creating the contents of the file in line

For our tiny data1 file, we could just as easily have included it in line — that is to

say, we could have specified its contents directly in the buildfile itself, without the

need to have a real data1 file reside somewhere on the host's filesystem. To include

the contents in line, we would have specified:

data1 = {
This is a data file, called data1, contained in the image.
Note that this is a convenient way of associating data
files with your programs.
}

A few notes. If your inline file contains the closing brace (“}”), then you must escape

that closing brace with a backslash (“\”). This also means that all backslashes must

be escaped as well. To have an inline file that contains the following:

This includes a {, a }, and a \ character.

you would have to specify this file (let's call it data2) as follows:

data2 = {
This includes a {, a \}, and a \\ character.
}

Note that since we didn't want the data2 file to contain leading spaces, we didn't

supply any in the inline definition. The following, while perhaps “better looking,”

would be incorrect:

This is wrong, because it includes leading spaces!
data2 = {
 This includes a {, a \}, and a \\ character.
}

If the filename that you're specifying has “weird” characters in it, then you must quote

the name with double quote characters ("). For example, to create a file called I

"think" so (note the spaces and quotation marks), you would have to specify it as

follows:

"I \"think\" so" = ...

But naming files like this is discouraged, since the filenames are somewhat awkward

to type from a command line (not to mention that they look goofy).

Specifying file ownership and permissions

The files that we included (in the example above) had the owner, group ID, and

permissions fields set to whatever they were set to on the host filesystem they came

from. The inline files (data1 and data2) got the user ID and group ID fields from

Copyright © 2014, QNX Software Systems Limited 53

Configuring an OS image

the user who ran the mkifs program. The permissions are set according to the user's

umask.

If we wanted to explicitly set these fields on particular files within the buildfile, we

would prefix the filenames with an attribute:

[uid=0 gid=0 perms=0666] file1
[uid=5 gid=1 perms=a+xr] file2

This marks the first file (file1) as being owned by root (the user ID 0), group zero,

and readable and writable by all (the mode of octal 666). The second file (file2) is

marked as being owned by user ID 5, group ID 1, and executable and readable by all

(the a+xr permissions).

When running on a Windows host, mkifs can't get the execute (x), setuid

(“set user ID”), or setgid (“set group ID”) permissions from the file. Use the

perms attribute to specify these permissions explicitly. You might also have

to use the uid and gid attributes to set the ownership correctly. To determine

whether or not a utility needs to have the setuid or setgid permission set, see

its entry in the Utilities Reference.

Notice how when we combine attributes, we place all of the attributes within one

open-square/close-square set. The following is incorrect:

Wrong way to do it!
[uid=0] [gid=0] [perms=0666] file1

If we wanted to set these fields for a bunch of files, the easiest way to do that would

be to specify the uid, gid, and perms attributes on a single line, followed by the

list of files:

[uid=5 gid=1 perms=0666]
file1
file2
file3
file4

which is equivalent to:

[uid=5 gid=1 perms=0666] file1
[uid=5 gid=1 perms=0666] file2
[uid=5 gid=1 perms=0666] file3
[uid=5 gid=1 perms=0666] file4

Including a whole whack of files

If we wanted to include a large number of files, perhaps from a preconfigured directory,

we would simply specify the name of the directory instead of the individual filenames.

For example, if we had a directory called /release_1.0, and we wanted all the files

under that directory to be included in the image, our buildfile would have the line:

/release_1.0

54 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

This would put all the files that reside under /release_1.0 into /proc/boot on

the target. If there were subdirectories under /release_1.0, then they too would

be created under /proc/boot, and all the files in those subdirectories would also

be included in the target.

Again, this may or may not be what you intend. If you really want the /release_1.0

files to be placed under /, you would specify:

/=/release_1.0

This tells mkifs that it should grab everything from the /release_1.0 directory

and put it into a directory called /. As another example, if we wanted everything in

the host's /release_1.0 directory to live under /product on the target, we would

specify:

/product=/release_1.0

Generating the image

To generate the image file from our sample buildfile, you could execute the command:

mkifs shell.bld shell.ifs

This tells mkifs to use the buildfile shell.bld to create the image file shell.ifs.

You can also specify command-line options to mkifs. Since these command-line

options are interpreted before the actual buildfile, you can add lines before the buildfile.

You would do this if you wanted to use a makefile to change the defaults of a generic

buildfile.

The following sample changes the address at which the image starts to 64 KB (hex

0x10000):

mkifs -l "[image=0x10000]" buildfile image

For more information, see mkifs in the Utilities Reference.

Listing the contents of an image

If you'd like to see the contents of an image, you can use the dumpifs utility. The

output from dumpifs might look something like this:

 Offset Size Name
 0 100 Startup-header flags1=0x1 flags2=0 paddr_bias=0x80000000
 100 a008 startup.*
 a108 5c Image-header mountpoint=/
 a164 264 Image-directory
 ---- ---- Root-dirent
 ---- 12 usr/lib/ldqnx.so.2 -> /proc/boot/libc.so
 ---- 9 dev/console -> /dev/ser1
 a3c8 80 proc/boot/.script
 b000 4a000 proc/boot/procnto
 55000 59000 proc/boot/libc.so.3
 ---- 9 proc/boot/libc.so -> libc.so.3
 ae000 7340 proc/boot/devc-ser8250
 b6000 4050 proc/boot/esh
 bb000 4a80 proc/boot/ls
 c0000 14fe0 proc/boot/data1
 d5000 22a0 proc/boot/data2
Checksums: image=0x94b0d37b startup=0xa3aeaf2

Copyright © 2014, QNX Software Systems Limited 55

Configuring an OS image

The more -v (“verbose”) options you specify to dumpifs, the more data you'll see.

For more information on dumpifs, see its entry in the Utilities Reference.

56 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

Building a flash filesystem image

If your application requires a writable filesystem and you have flash memory devices

in your embedded system, then you can use a QNX Neutrino flash filesystem driver

to provide a POSIX-compatible filesystem. The flash filesystem drivers are described

in the Filesystems chapter of the System Architecture guide. The chapter on

customizing the flash filesystem (p. 179) in this book describes how you can build a

flash filesystem driver for your embedded system.

You have two options when creating a flash filesystem:

• Create a flash filesystem image file on the host system and then write the image

into the flash on the target.

• Run the flash filesystem driver for your target system, and then copy files into the

flash filesystem on the target.

In this section we describe how to create a flash filesystem image file using the mkefs

(for make embedded filesystem) utility and a buildfile. How to transfer the flash

filesystem image onto your target system is described in the “Embedding an image”

(p. 62) section. For details on how to use the flash filesystem drivers, see the Utilities

Reference.

Using mkefs

The mkefs utility takes a buildfile and produces a flash filesystem image file. The

buildfile is a list of attributes and files to include in the filesystem.

mkefs buildfile

The syntax of the buildfile is similar to that for mkifs, but mkefs supports a different

set of attributes, including the following:

block_size=bsize

Specifies the block size of the flash device being used; defaults to 64 KB.

We'll talk about interleave considerations for flash devices below.

max_size=msize

Specifies the maximum size of the flash device; is used to check for

overflows. The default is 4 Gbytes.

spare_blocks=sblocks

Specifies the number of spare blocks to set aside for the flash filesystem;

see “Spare blocks (p. 59),” below.

Copyright © 2014, QNX Software Systems Limited 57

Building a flash filesystem image

min_size=tsize

Specifies the minimum size of the filesystem. If the resultant image is

smaller than tsize, the image is padded out to tsize bytes. The default is

unspecified, meaning that the image won't be padded.

Refer to the Utilities Reference for a complete description of the buildfile syntax and

attributes supported by mkefs.

Here's a very simple example of a buildfile:

[block_size=128k spare_blocks=1 filter=deflate]
/home/ejm/products/sp1/callp/imagedir

In this example, the attributes specify that the flash devices have a block size of 128

KB, that there should be one spare block, and that all the files should be processed

using the deflate utility, which compresses the files. A single directory is given.

Just as with mkifs, when we specify a directory, all files and subdirectories beneath

it are included in the resulting image. Most of the other filename tricks shown above

for mkifs also apply to mkefs.

Block size

The value you should specify for the block_size attribute depends on the physical

block size of the flash device given in the manufacturer's data sheet and on how the

flash device is configured in your hardware (specifically the interleave).

Here are some examples:

Set block_size to:If you have:

64 KBAn 8-bit flash interface and are using an

8-bit device with a 64 KB block size

128 KBA 16-bit flash interface and are using two

interleaved 8-bit flash devices with a 64

KB block size

64 KBA 16-bit flash interface and are using a

16-bit flash device with a 64 KB block

size

256 KBA 32-bit flash interface and are using four

interleaved 8-bit flash devices with a 64

KB block size

Notice that you don't have to specify any details (other than the block size) about the

actual flash devices used in your system.

58 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

Spare blocks

The spare_blocks attribute indicates how many blocks should be left as spare. A

value of 0 implies a “read/write” (or “write-once”) flash filesystem, whereas a value

greater than 0 implies a “read/write/reclaim” filesystem.

The default is 1, but the number of spare blocks you'll need depends on the amount

of writing you'll do. You should specify an odd number of spare blocks, usually 1 or

3.

The filesystem doesn't use a spare block until it's time to perform a reclaim operation.

A nonspare block is then selected for “reclamation”, and the data contained in that

block is coalesced into one contiguous region in the spare block. The nonspare block

is then erased and becomes the new spare block. The former spare block takes the

place of the reclaimed block.

If you don't set aside at least one spare block (i.e. the spare_blocks attribute

is 0), then the flash filesystem driver won't be able to reclaim space — it won't

have any place to put the new copy of the data. The filesystem will eventually

fill up since there's no way to reclaim space.

Compressing files

The file compression mechanism provided with our flash filesystem is a convenient

way to cut flash memory costs for customers. The flash filesystem uses popular

deflate/inflate algorithms for fast and efficient compression/decompression.

You can use the deflate utility to compress files in the flash filesystem, either from

a shell or as the filter attribute to mkefs. The deflate algorithm provides excellent

lossless compression of data and executable files.

The flash filesystem drivers use the inflator utility to transparently decompress

files that have been compressed with deflate, which means that you can access

compressed files in the flash filesystem without having to decompress them first.

Compressing files can result in significant space savings. But there's a trade-off:

it takes longer to access compressed files. Always consider the slowdown of

compressed data access and increased CPU usage when designing a system.

We've seen systems with restricted flash budget increase their boot time by

large factors when using compression.

You can compress files:

• before or as you're using mkefs to create the flash filesystem

• to add files to a running flash filesystem

Copyright © 2014, QNX Software Systems Limited 59

Building a flash filesystem image

The first method is the high-runner case. You can use the deflate utility as a filter

for mkefs to compress the files that get built into the flash filesystem. For example,

you could use this buildfile to create a 16-megabyte filesystem with compression:

[block_size=128K spare_blocks=1 min_size=16m filter=deflate]
/bin/

You can also precompress the files by using deflate directly. If mkefs detects a

compression signature in a file that it's putting into the filesystem, it knows that the

file is precompressed, and so it doesn't compress the file again. In either case, mkefs

puts the data on the flash filesystem and sets a simple bit in the metadata that tells

the flash filesystem that the file needs to be decompressed.

The second method is to use deflate to compress files and store them directly in

the flash filesystem. For example, here's how to use deflate at the command line

to compress the ls file from the image filesystem into a flash filesystem:

$ deflate /proc/boot/ls -o /fs0p0/ls

Abstraction layer

The flash filesystem never compresses any files. It detects compressed files on the

media and uses inflator to decompress them as they're accessed. An abstraction

layer in inflator achieves efficiency and preserves POSIX compliance. Special

compressed data headers on top of the flash files provide fast seek times.

This layering is quite straightforward. Specific I/O functions include handling the three

basic access calls for compressed files:

• read()

• lseek()

• lstat()

Two sizes

This is where compression gets tricky. A compressed file has two sizes:

Virtual size

This is, for the end user, the real size of the decompressed data, such as

stat() would report.

Media size

The size that the file actually occupies on the media.

For instance, running the disk usage utility du would be practically meaningless under

a flash directory with data that is decompressed on the fly. It wouldn't reflect flash

media usage at all.

60 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

As a convenience, inflator supports a naming convention that lets you access the

compressed file: simply add .~~~ (a period and three tildes) to the file name. If you

use this extension, the file isn't decompressed, so read operations yield raw compressed

data instead of the decompressed data. For example, to get the virtual size of a

compressed file, type:

ls -l my_file

but to get the media size, type:

ls -l my_file.~~~

Compression rules

If you read a file with the .~~~ extension, the file isn't decompressed for you, as it

would be normally. Now this is where we start talking about rules. All this reading and

getting the size of files is fairly simple; things get ugly when it's time to write those

files.

• You can't write all over the place! Although the flash filesystem supports random

writes in uncompressed files, the same isn't true for compressed files.

• Compressed files are read-only; you can replace a compressed file, but you can't

modify it in place.

• The flash filesystem never transparently compresses any data.

• If compressed data needs to be put on the flash during the life of a product, this

data has to be precompressed.

The exception

So those are the rules, and here is the exception: truncation. If a compressed file is

opened with O_TRUNC from the regular virtual namespace, the file status will become

just as if it were created from this namespace. This gives you full POSIX capabilities

and no compression with accompanying restrictions.

By the way, the ftruncate() functionality isn't provided with compressed files, but is

supported with regular files.

Copyright © 2014, QNX Software Systems Limited 61

Building a flash filesystem image

Embedding an image

After you've created your bootable OS image on the host system, you'll want to transfer

it to the target system so that you can boot the QNX Neutrino RTOS on the target. The

various ways of booting the OS on a target system are described in the chapter on

customizing IPL programs (p. 77) in this guide.

If you're booting the OS from flash, then you'll want to write the image into the flash

devices on the target. The same applies if you have a flash filesystem image — you'll

want to write the image into flash on the target.

Use mkifs
to create Neutrino

image

No

Yes
Is flash

filesystem
required?

Use mkefs to
create flash

filesystem image

No

Yes

Are
flash

filesystem image
and Neutrino image
to go in the same

flash
device?

Done

Use mkimage
to combine images

Figure 7: Flash configuration options for your QNX Neutrino-based embedded systems.

Depending on your requirements and the configuration of your target system, you may

want to embed:

• the IPL

• the boot image

• the boot image and other image filesystem

• the boot image and flash filesystem

• some other combination of the above.

Also, you may wish to write the boot image and the flash filesystem on the same flash

device or different devices. If you want to write the boot image and the flash filesystem

on the same device, then you can use the mkimage utility to combine the image files

into a single image file.

62 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

During the initial development stages, you'll probably need to write the image into

flash using a programmer or a download utility. Later on if you have a flash filesystem

running on your target, you can then write the image file into a raw flash partition.

If your programmer requires the image file to be in some format other than binary,

then you can use the mkrec utility to convert the image file format.

Combining image files using mkimage

The mkimage utility combines multiple input image files into a single output image

file. It recognizes which of the image files contains the boot image and will place this

image at the start. Note that instead of using mkimage, some developers rely on a

flash programmer to burn the separate images with appropriate alignment.

For example:

mkimage nto.ifs fs.ifs > flash.ifs

will take the nto.ifs and fs.ifs image files and output them to the flash.ifs

file.

If you want more control over how the image files are combined, you can use other

utilities, such as:

• cat

• dd

• mkrec

• objcopy

Combining image files using the IDE

You'll use the System Builder to generate OS images for your target board's RAM or

flash. You can create:

• an OS image

• a Flash image

• a combined image.

For more information about this process, please see the documentation that comes

with the QNX Momentics IDE.

Converting images using mkrec

The mkrec utility takes a binary image file and converts it to either Motorola S records

or Intel hex records, suitable for a flash or EPROM programmer.

For example:

mkrec -s 256k flash.ifs > flash.srec

Copyright © 2014, QNX Software Systems Limited 63

Embedding an image

will convert the image file flash.ifs to an S-record format file called flash.srec.

The -s 256k option specifies that the EPROM device is 256 KB in size.

If you have multiple image files that you wish to download, then you can first use

mkimage to combine the image files into a single file before downloading. Or, your

flash/EPROM programmer may allow you to download multiple image files at different

offsets.

Transferring an image to flash

There are many ways to transfer your image into your flash:

• Use an EPROM burner that supports your socketed flash.

• Use a flash burner that supports onboard flash via a special bus, such as JTAG.

• Use a low-level monitor or a BIOS page with a flash burn command.

• Use the flash filesystem raw mountpoints.

The details on how to transfer the image with anything other than the last method is

beyond the scope of this document. Using the raw mountpoint is a convenient way

that comes bundled with your flash filesystem library. You can actually read and write

raw partitions just like regular files, except that when the raw mountpoint is involved,

remember to:

• go down one level in the abstraction ladder

• perform the erase commands yourself.

For the sake of this discussion, we can use the devf-ram driver. This driver simulates

flash using regular memory. To start it, log in as root and type:

devf-ram &

You can use the flashctl command to erase a partition. You don't need to be root

to do this. For instance:

$ flashctl -p /dev/fs0 -e

Be careful when you use this command. Make sure you aren't erasing

something important on your flash — like your BIOS!

On normal flash, the flashctl command on a raw partition should take a while

(about one second for each erase block). This command erases the /dev/fs0 raw

flash array. Try the hd command on this newly erased flash array; everything should

be 0xFF:

$ hd /dev/fs0
0000000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
*

For more information on flashctl, see the Utilities

Reference.

64 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

Let's make a dummy IPL for the purpose of this example:

$ echo Hello, World! > ipl
$ mkrec -s 128k -f full ipl > ipl_image
Reset jmps to 0x1FFE0 (jmp 0xFFED)
ROM offset is 0x1FFE0

Of course, this IPL won't work for real — it's just for trying out the flash filesystem.

In any event, an IPL wouldn't be very useful in RAM. Let's make a dummy flash

filesystem for the purpose of this example (the ^D means Ctrl–D):

$ mkefs -v - flash_image
[block_size=128k spare_blocks=1 min_size=384k]
/bin/ls
/bin/cat
^D
writing directory entry ->
writing file entry -> ls **
writing file entry -> cat *
Filesystem size = 384K
block size = 128K
1 spare block(s)

This flash filesystem actually works (unlike the IPL). Now, the flash partition images

can be transferred to the flash using any file-transfer utility (such as cp or ftp). We

have an IPL image created with mkrec (and properly padded to an erase block

boundary) and a flash image created with mkefs, so we can use cat to combine and

transfer both images to the flash:

$ cat ipl_image flash_image > /dev/fs0

If you use the hd utility on the raw mountpoint again, you'll see that your flash that

had initially all bits set to ones (0xFF) now contains your partition images. To use the

flash filesystem partition, you need to slay the driver and start it again so it can

recognize the partitions and mount them. For instance, with devf-ram:

$ slay devf-ram
$ devf-ram &

From this point, you have a /fs0p1 mountpoint that's in fact a directory and contains

the files you specified with mkefs to create your flash image. There's no /fs0p0,

because the boot image isn't recognized by the flash filesystem. It's still accessible

as a raw mountpoint via /dev/fs0p0. You can do the same operations on

/dev/fs0p0 that you could do with /dev/fs0. Even /dev/fs0p1 is accessible,

but be careful not to write to this partition while applications are using the flash

filesystem at /fs0p1. Try:

$ /fs0p1/ls /fs0p1

You've just executed ls from your flash filesystem and you've listed its contents. To

conclude, let's say that what we did in this example is a good starting point for when

you customize the flash filesystem to your own platforms. These baby steps should be

the first steps to using a full-blown filesystem on your target.

Copyright © 2014, QNX Software Systems Limited 65

Embedding an image

System configuration

In this section, we'll look at some of the ways you can configure QNX Neutrino systems.

Refer to the Sample Buildfiles appendix in this guide for more detailed examples.

What you want to do will, of course, depend on the type of system you're building. Our

purpose in this section is to offer some general guidelines and to help clarify which

executables should be used in which circumstances, as well as which shared libraries

are required for their respective executables.

The general procedure to set up a system is as follows:

1. Establish an output device.

2. Run drivers.

3. Run applications.

Establishing an output device

One of the very first things to do in a buildfile is to start a driver that you then redirect

standard input, output, and error to. This allows all subsequent drivers and applications

to output their startup messages and any diagnostics messages they may emit to a

known place where you can examine the output.

Generally, you'd start either the console driver or a serial port driver. The console driver

is used when you're developing on a fairly complete “desktop” type of environment;

the serial driver is suitable for most “embedded” environments.

But you may not even have any such devices in your deeply embedded system, in

which case you would omit this step. Or you may have other types of devices that you

can use as your output device, in which case you may require a specialized driver (that

you supply). If you don't specify a driver, output will go to the debug output driver

provided by the startup code.

A simple desktop example

This example starts the standard console driver in edited mode (the -e option, which

is the default). To set up the output device, you would include the driver in your startup

script (the [+script] file). For example:

devc-con -e &
reopen /dev/con1

The following starts the 8250 serial port driver in edited mode (the -e option), with

an initial baud rate of 115200 baud (the -b option):

devc-ser8250 -e -b115200 &
reopen /dev/ser1

66 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

In both cases, the reopen command causes standard input, output, and error to be

redirected to the specified pathname (either /dev/con1 or /dev/ser1 in the above

examples). This redirection holds until otherwise specified with another reopen

command.

The reopen used above is a mkifs internal command, not the shell builtin

command of the same name.

Running drivers/filesystems

The next thing you'll want to run are the drivers and/or filesystems that will give you

access to the hardware. Note that the console or serial port that we installed in the

previous section is actually an example of such a driver, but it was a special case in

that it should generally be the first one.

We support several types of drivers/filesystems, including:

• disk drivers (devb-*)

• flash filesystems (devf-*)

• network drivers (devn-*, devnp-*)

• input drivers (devi-*)

• USB drivers (devu-*)

• filesystems (fs-*)

Which one you install first is generally driven by where your executables reside. One

of the goals for the image is to keep it small. This means that you generally don't put

all the executables and shared libraries you plan to load directly into the image —

instead, you place those files into some other medium (whether a flash filesystem,

rotating disk, or a network filesystem). In that case, you should start the appropriate

driver to get access to your executables. Once you have access to your executables on

some medium, you would then start other drivers from that medium.

The alternative, which is often found in deeply embedded systems, is to put all the

executables and shared libraries directly into the image. You might want to do this if

there's no secondary storage medium or if you wanted to have everything available

immediately, without the need to start a driver.

Let's examine the steps required to start the disk, flash, and network drivers. All these

drivers share a common feature: they rely on one process that loads one or more .so

files, with the particular .so files selected either via the command line of the process

or via automatic configuration detection.

Since the various drivers we're discussing here use .so files (not just their

own driver-specific ones, but also standard ones like the C library), these .so

files must be present before the driver starts. Obviously, this means that the

Copyright © 2014, QNX Software Systems Limited 67

System configuration

.so file cannot be on the same medium as the one you're trying to start the

driver for! We recommend that you put these .so files into the image

filesystem.

Disk drivers

The first thing you need to determine is which hardware you have controlling the disk

interface. We support a number of interfaces, including various flavors of SCSI

controllers and the EIDE controller. For details on the supported interface controllers,

see the various devb-* entries in the Utilities Reference.

The only action required in your buildfile is to start the driver (e.g. devb-aha7). The

driver will then dynamically load the appropriate modules (in this order):

1. libcam.so — Common Access Method library

2. cam-*.so — Common Access Method module(s)

3. io-blk.so — block I/O module

4. fs-*.so — filesystem personality module(s)

The CAM .so files are documented under cam-* in the Utilities Reference. Currently,

we support CD-ROMs (cam-cdrom.so), hard disks (cam-disk.so), and optical

disks (cam-optical.so).

The io-blk.so module is responsible for dealing with a disk on a block-by-block

basis. It includes caching support.

The fs-* modules are responsible for providing the high-level knowledge about how

a particular filesystem is structured. We currently support the following:

ModuleFilesystem

fs-dos.soMS-DOS

fs-ext2.soLinux

fs-mac.soMacintosh HFS and HFS Plus

fs-nt.soWindows NT

fs-qnx4.soQNX 4

fs-qnx6.soPower-Safe

fs-udf.soISO-9660 CD-ROM, Universal Disk

Format (UDF)

68 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

Flash filesystems

To run a flash filesystem, you need to select the appropriate flash driver for your target

system. For details on the supported flash drivers, see the various devf-* entries in

the Utilities Reference.

The devf-generic flash driver that can be thought of as a universal driver

whose capabilities make it accessible to most flash devices.

The flash filesystem drivers don't rely on any flash-specific .so files, so the only

module required is the standard C library (libc.so).

Since the flash filesystem drivers are written for specific target systems, you can

usually start them without command-line options; they'll find the flash for the specific

system they were written for.

Network drivers

Network services are started from the io-pkt* command, which is responsible for

loading in the required .so files.

For dynamic control of network drivers, you can simply use mount and umount

to start and stop drivers at the command line. For example:

mount -T io-pkt devn-ne2000.so

For more information, see mount in the Utilities Reference.

Two levels of .so files are started, based on the command-line options given to

io-pkt*:

• -d specifies driver .so files

• -p specifies protocol .so files.

The -d option lets you choose the hardware driver that knows how to talk to a particular

card. For example, choosing -d ne2000 will cause io-pkt* to load devn-ne2000.so

to access an NE-2000-compatible network card. You may specify additional

command-line options after the -d, such as the interrupt vector to be used by the card.

The -p option lets you choose the protocol driver that deals with a particular protocol.

As with the -d option, you would specify command-line options after the -p for the

driver, such as the IP address for a particular interface.

For more information about network services, see the devn-*, and io-pkt entries

in the Utilities Reference.

Copyright © 2014, QNX Software Systems Limited 69

System configuration

Network filesystems

We support two types of network filesystems:

• NFS (fs-nfs2, fs-nfs3), which allows file access over a network to a UNIX or

other system running an NFS server.

• CIFS (fs-cifs), which allows file access over a network to a Windows 98 or NT

system or to a UNIX system running an SMB server.

The CIFS protocol makes no attempt to conform to POSIX.

Although NFS is primarily a UNIX-based filesystem, you may find some versions of

NFS available for Windows.

Running applications

There's nothing special required to run your applications. Generally, they'll be placed

in the script file after all the other drivers have started. If you require a particular

driver to be present and “ready,” you would typically use the waitfor command in

the script.

Here's an example. An application called peelmaster needs to wait for a driver (let's

call it driver-spud) to be ready before it should start. The following sequence is

typical:

driver-spud &
waitfor /dev/spud
peelmaster

This causes the driver (driver-spud) to be run in the background (specified by the

ampersand character). The expectation is that when the driver is ready, it will register

the pathname /dev/spud. The waitfor command tries to stat() the pathname

/dev/spud periodically, blocking execution of the script until the pathname appears

or a predetermined timeout has occurred. Once the pathname appears in the pathname

space, we assume that the driver is ready to accept requests. At that point, the

waitfor will unblock, and the next program in the list (in our case, peelmaster)

will execute.

Without the waitfor command, the peelmaster program would run immediately

after the driver was started, which could cause peelmaster to miss the /dev/spud

pathname and fail.

70 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

Debugging an embedded system

When you're developing embedded systems under some operating systems, you often

need to use a hardware debugger, a physical device that connects to target hardware

via a JTAG (Joint Test Action Group) interface. This is necessary for development of

drivers, and possibly user applications, because they're linked into the same memory

space as the kernel. If a driver or application crashes, the kernel and system may crash

as a result. This makes using software debuggers difficult, because they depend on a

running system.

Debugging target systems with QNX Neutrino is different because its architecture is

significantly different from other embeddable realtime operating systems:

• All QNX Neutrino applications (including drivers) run in their own memory-protected

virtual address space. This has the advantage that the software is more reliable

and fault tolerant. However, conventional hardware debuggers rely on decoding

physical memory addresses, making them incompatible with debugging user

applications based in a virtual memory environment.

• QNX Neutrino lets you develop multithreaded applications, which hardware

debuggers generally don't support.

Under QNX Neutrino, you typically use:

• a hardware debugger for the IPL and startup

• a software debugger for the rest of the software

In other words, you rarely have to use a JTAG hardware debugger, especially if you're

using one of our board support packages.

pdebug software debugging agent

We provide a software debugging agent called pdebug that makes it easier for you to

debug system drivers and user applications. The pdebug agent runs on the target

system and communicates with the host debugger over a serial or Ethernet connection.

For more information, see “The process-level debug agent” in the Compiling and

Debugging chapter of the Programmer's Guide.

Hardware debuggers and QNX Neutrino

The major constraint of using pdebug is that the kernel must already be running on

the target. In other words, you can't use pdebug until the IPL and startup have

successfully started the kernel.

However, the IPL and startup program run with the CPU in physical mode, so you can

use conventional hardware debuggers to debug them. This is the primary function of

Copyright © 2014, QNX Software Systems Limited 71

Debugging an embedded system

the JTAG debugger throughout the QNX Neutrino software development phase. You

use the hardware debugger to debug the BSP (IPL and startup), and pdebug to debug

drivers and applications once the kernel is running. You can also use a hardware

debugger to examine registers and view memory while the kernel and applications are

running, if you know the physical addresses.

If hardware debuggers, such as SH or AMC have builtin QNX Neutrino awareness, you

can use a JTAG to debug applications. These debuggers can interpret kernel information

as well as perform the necessary translation between virtual and physical memory

addresses to view application data.

Producing debug symbol information for IPL and startup

You can use hardware debuggers to debug QNX Neutrino IPL and startup programs

without any extra information. However, in this case, you're limited to assembly-level

debugging, and assembler symbols such as subroutine names aren't visible. To perform

full source-level debugging, you need to provide the hardware debugger with the symbol

information and C source code.

This section describes the steps necessary to generate the symbol and debug

information required by a hardware debugger for source-level debugging.

The examples below assume that you're logged in on the development host with root

privileges.

Generating IPL debug symbols

To generate symbol information for the IPL, you must recompile both the IPL library

and the board's IPL with debug information. The general procedure is as follows:

1. Modify the IPL source.

2. Build the IPL library and the board's IPL.

3. Burn the IPL into the flash memory of the board using a flash burner or JTAG.

4. Modify the board_name.lnk file to output ELF format.

5. Recompile the IPL library and the board's IPL source with debug options.

6. Load the board's IPL ELF file containing debug information into the hardware

debugger.

Be sure to synchronize the source code, the IPL burned into flash, and the IPL

debug symbols.

To build the IPL library with debug information:

cd bsp_working_dir/src/hardware/ipl/lib/target/a.le
make clean
make CCOPTS=-g
cp libipl.a bsp_working_dir/board_name/install/processor/lib
make install

72 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

The above steps recompile the target-specific IPL library (libipl.a) with DWARF

debug information and copy this library to the board's install directory, assuming

that the BSP is configured to look for this library first in this directory. The make

install is optional, and copies libipl.a to /processor/usr/lib.

Some BSPs have been set up to work with SREC format files. However, to generate

debug and symbol information to be loaded into the hardware debugger, you must

generate ELF-format files.

Modify the board_name.lnk file to output ELF format:

cd bsp_working_dir/board_name/src/hardware/ipl/boards/board_name

Edit the file board_name.lnk, changing the first lines from:

TARGET(elf32-target)
OUTPUT_FORMAT(srec)
ENTRY(entry_vec)

to:

TARGET(elf32-target)
OUTPUT_FORMAT(elf32-target)
ENTRY(entry_vec)

You can now rebuild the board's IPL to produce symbol and debug information in ELF

format. To build the board's IPL with debug information:

cd bsp_working_dir/board_name/src/hardware/ipl/boards/board_name/target/le
make clean
make CCOPTS=-g

The ipl-board_name file is now in ELF format with debug symbols from both the

IPL library and the board's IPL.

To rebuild the BSP, you need to change the board_name.lnk file back to

outputting SREC format. It's also important to keep the IPL that's burned into

the board's flash memory in sync with the generated debug information; if you

modify the IPL source, you need to rebuild the BSP, burn the new IPL into

flash, and rebuild the IPL symbol and debug information.

You can use the objdump utility to view the ELF information. For example, to view

the symbol information contained in the ipl-board_name file:

objdump -t ipl-board_name | less

You can now import the ipl-board_name file into a hardware debugger to provide

the symbol information required for debugging. In addition, the hardware debugger

needs the source code listings found in the following directories:

• bsp_working_dir/board_name/src/hardware/ipl/boards/board_name

• bsp_working_dir/src/hardware/ipl/lib

• bsp_working_dir/src/hardware/ipl/lib/target

Copyright © 2014, QNX Software Systems Limited 73

Debugging an embedded system

Generating startup debug symbols

To generate symbol information for startup, you must recompile both the startup library

and the board's startup with debug information. The general procedure is as follows:

1. Modify the startup source.

2. Build the startup library and board's startup with debug information.

3. Rebuild the image and symbol file.

4. Load the symbol file into the hardware debugger program.

5. Transfer the image to the target (burn into flash, transfer over a serial connection).

To build the startup library with debug information:

cd bsp_working_dir/src/hardware/startup/lib/target/a.be
make clean
make CCOPTS=-g
cp libstartup.a bsp_working_dir/board_name/install/processor/lib
make install

The above steps recompile the startup library (libstartup.a) with DWARF debug

information and copy this library to the install directory, assuming that the BSP

is configured to look for this library first in this directory. The make install is

optional, and copies libstartup.a to /processor/usr/lib.

To build the board's startup with debugging information:

cd bsp_working_dir/board_name/src/hardware/startup/boards/board_name/target/be
make clean
make CCOPTS=-g
make install

The above steps generate the file startup-board_name with symbol and debug

information. Again, you can use the -gstabs+ debug option instead of -g. The make

install is necessary, and copies startup-board_name into the install directory,

bsp_working_dir/board_name/install/processor/boot/sys.

You can't load the startup-board_name ELF file into the hardware debugger

to obtain the debug symbols, because the mkifs utility adds an offset to the

addresses defined in the symbols according to the offset specified in the build

file.

Modify the build file to include the +keeplinked attribute for startup:

cd bsp_working_dir/board_name/images

Modify the startup line of your buildfile to look like:

[image=0x10000]
[virtual=processor,binary +compress] .bootstrap = {
 [+keeplinked] startup-board_name -vvv -D8250
 PATH=/proc/boot procnto -vv
}

The +keeplinked option makes mkifs generate a symbol file that represents the debug

information positioned within the image filesystem by the specified offset.

74 Copyright © 2014, QNX Software Systems Limited

Making an OS Image

To rebuild the image to generate the symbol file:

cd bsp_working_dir/board_name/images
make clean

Then, if you're using one of the provided .build files:

make all

otherwise:

mkifs -v -r ../install myfile.build image

These commands create the symbol file, startup-board_name.sym. You can use

the objdump utility to view the ELF information.

To view the symbol information contained in the startup-board_name.sym file:

objdump -t startup-board_name.sym | less

You can now import the startup-board_name.sym file into a hardware debugger

to provide the symbol information required for debugging startup. In addition, the

hardware debugger needs the source code listings found in the following directories:

• bsp_working_dir/src/hardware/startup/lib

• bsp_working_dir/src/hardware/startup/lib/public/target

• bsp_working_dir/src/hardware/startup/lib/public/sys

• bsp_working_dir/src/hardware/startup/lib/target

• bsp_working_dir/board_name/src/hardware/startup/boards/board_name

Copyright © 2014, QNX Software Systems Limited 75

Debugging an embedded system

Chapter 4
Writing an IPL Program

Copyright © 2014, QNX Software Systems Limited 77

Initial program loader (IPL)

In this section, we'll examine the IPL program in detail, including how to customize

it for your particular hardware, if you need to.

Responsibilities of the IPL

The initial task of the IPL is to minimally configure the hardware to create an

environment that allows the startup program (e.g. startup-bios,

startup-ixdp425, etc.), and consequently the microkernel, to run. This includes

at least the following:

1. Start execution from the reset vector.

2. Configure the memory controller. This may include configuring the chip selects

and/or PCI controller.

3. Configure clocks.

4. Set up a stack to allow the IPL library to perform OS verification and setup

(download, scan, set up, and jump to the OS image).

The IPL's initialization part is written entirely in assembly language (because it executes

from ROM with no memory controller). After initializing the hardware, the IPL then

calls the main() function to initiate the C-language environment.

Once the C environment is set up, the IPL can perform different tasks, depending on

whether the OS is booting from a linearly mapped device or a bank-switched device:

Linearly mapped

The entire image is in the processor's linear address space.

Bank-switched

The image isn't entirely addressable by the processor (e.g. bank-switched

ROM, disk device, network, etc.).

Note that we use the term “ROM” generically to mean any nonvolatile memory device

used to store the image (Flash, RAM, ROM, EPROM, flash, battery-backed SRAM,

etc.).

Linearly mapped images

For linearly mapped images, we have the following sources:

• ROM

78 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

Bank-switched images

For bank-switched images, we have the following sources:

• PC-Card (PCMCIA) (some implementations)

• ROM, RAM, bank-switched

• Network device

• Serial or parallel port

• Disk device

• Other.

Processors & configurations

In conjunction with the above, we have the following processors and configurations:

• 486 and higher processors, which power up in 16-bit real mode.

• ARM family of processors (StrongARM, XScale), which power up in 32-bit physical

mode.

Booting from a bank-switched device

Let's assume we're booting from a bank-switched or paged device (e.g. paged flash,

disk device, network, etc.), and that the image is uncompressed. The IPL needs to

handle these main tasks:

1. The IPL must first use a C function to talk to the device in question. We'll use a

serial download for this discussion. For serial downloads, the IPL uses

image_download_8250(), a function that specifically knows how to configure and

control the 8250 class of serial controllers.

Once the controller is set up, the function's task is to copy the image via the serial

controller to a location in RAM.

2. We now have an OS image in RAM. The IPL then uses the image_scan() function,

which takes a start address and end address as its parameters. It returns the address

at which it found the image:

unsigned long image_scan (unsigned long start,
 unsigned long end);

The image_scan() function:

• Scans for a valid OS signature over the range provided. Note that this can be

multiple OS images.

• Copies the startup header from the image to a struct startup_header variable.

• Authenticates the startup signature (STARTUP_HDR_SIGNATURE).

Copyright © 2014, QNX Software Systems Limited 79

Initial program loader (IPL)

• Performs a checksum on the startup.

• Performs a checksum on the OS image filesystem.

• Saves the address and version number of the OS in case it's set up to scan for

multiple OS images.

3. Once the OS image has been found and validated, the IPL's next function to call

is image_setup(), which takes the address of the image as its parameter and always

returns 0:

int image_setup (unsigned long address)

The image_setup() function:

• Copies the startup header from the image to a struct startup_header

variable. Although this was performed in image_scan() (and startup_header

is a global), it's necessary here because image_scan() can scan for multiple

images, which will overwrite this structure.

• Calculates the address to which startup is to be copied, based on the ram_paddr

and paddr_bias structure members (from the startup header).

• Fills in the imagefs_paddr structure member, based on where the image is

stored. The startup program relies on this member, because it's the one

responsible for copying the OS image filesystem to its final location in RAM.

The startup program doesn't necessarily know where the image is stored.

• Copies the final startup structure to the ram_paddr address, and then copies

the startup program itself.

At this phase, the startup program has been copied to RAM (and it must always

execute from RAM), and the startup header has been patched with the address of

the OS image.

Since the startup program is responsible for copying the image filesystem

to its final destination in RAM, the IPL must copy the image to a location

that's linearly accessible by the startup program, which has no knowledge

of paged devices (serial, disk, parallel, network, etc.).

Note also that if the image is compressed, then the IPL can copy the

compressed image to a location that won't interfere with startup's

decompression of the image to its final destination in RAM. When the image

lives in flash (or ROM or whatever linear storage device), this isn't an issue.

But when the image is stored on a paged device, more care must be taken

in placing the image in a RAM location that won't interfere with startup's

decompression of the image. Here are the rules:

Uncompressed

80 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

If the image is uncompressed, then the IPL can copy the image

from the paged device directly to its destined location. Startup

will compare the addresses and realize that the image doesn't

need to be copied.

Compressed

If the image is compressed, then startup must copy and

decompress the image using a different location than the final

RAM location.

4. The last phase is to jump to the startup entry point. This is accomplished by calling

image_start():

int image_start (unsigned long address);

The image_start() function should never return; it returns -1 if it fails.

The function jumps to the startup_vaddr address as defined in the startup header.

Booting from a linear device

For a system that boots from a linearly mapped device (e.g. linear flash, ROM, etc.),

the IPL's tasks are the same as in the paged-device scenario above, but with one

notable exception: the IPL doesn't need to concern itself with copying a full OS image

from the device to RAM.

“Warm” vs “cold” start

Your IPL code may be quite simple or fairly elaborate, depending on how your

embedded system is configured. We'll use the terms warm start and cold start to

describe the different types of IPL:

Warm-start IPL

If there's a BIOS or ROM monitor already installed at the reset vector, then

your IPL code is simply an extension to the BIOS or ROM monitor.

Cold-start IPL

The system doesn't have (or doesn't use) a BIOS or ROM monitor program.

The IPL must be located at the reset vector.

Copyright © 2014, QNX Software Systems Limited 81

Initial program loader (IPL)

Warm-start IPL

In this case, the IPL doesn't get control immediately after the reset, but instead gets

control from the BIOS or ROM monitor.

The x86 PC BIOS allows extensions, as do various ROM monitors. During the power-up

memory scan, the BIOS or ROM monitor attempts to detect extensions in the address

space. To be recognized as an extension, the extension ROM must have a well-defined

extension signature (e.g. for a PC BIOS, this is the sequence 0x55 and then 0xAA as

the first two bytes of the extension ROM). The extension ROM must be prepared to

receive control at the extension entry offset (e.g. for a PC BIOS, this is an offset of

0x0003 into the extension ROM).

Note that this method is used by the various PC BOOTP ROMs available. The ROM

presents itself as an extension, and then, when control is transferred to it, gets an

image from the network and loads it into RAM.

Cold-start IPL

One of the benefits of QNX Neutrino, especially in a cost-reduced embedded system,

is that you don't require a BIOS or ROM monitor program. This discussion is primarily

for developers who must write their own IPL program or who (for whatever reason)

don't wish to use the default IPL supplied by their BIOS/monitor.

Let's take a look at what the IPL does in this case.

When power is first applied to the processor (or whenever the processor is reset), some

of its registers are set to a known state, and it begins executing from a known memory

location (i.e. the reset vector).

Your IPL software must be located at the reset vector and must be able to:

1. Set up the processor.

2. Locate the OS image.

3. Copy the startup program into RAM.

4. Transfer control to the startup program.

For example, on an x86 system, the reset vector is located at address 0xFFFFFFF0.

The device that contains the IPL must be installed within that address range. In a

typical x86 PC BIOS, the reset vector code contains a JMP instruction that then

branches to the code that performs diagnostics, setup, and IPL functionality.

Loading the image

Regardless of the processor being used, once the IPL code is started, it has to load

the image in a manner that meets the requirements of the microkernel as described

above. The IPL code may also have to support a backup way of loading the image (e.g.

82 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

an .altboot in the case of a hard/floppy boot). This may also have to be an automatic

fallback in the case of a corrupted image.

Note, however, that the amount of work your IPL code has to do really depends on the

location of the image; there may be only a small amount of work for the IPL or there

may be a lot.

Let's look again at the two classifications of image sources.

If the source is a linearly mapped device

This is the simplest scenario. In this case, the entire image is stored in some form of

directly addressable storage — either a ROM device or a form of PC-Card device that

maps its entire address space into the processor's address space. All that's required

is to copy the startup code into RAM. This is ideal for small or deeply embedded

systems.

Note that on x86 architectures, the device isn't required to be addressable within the

first megabyte of memory. The startup program also needn't be in the first megabyte

of RAM.

Note also that for PC-Card devices, some form of setup may be required before the

entire PC-Card device's address space will appear in the address space of the processor.

It's up to your IPL code to perform this setup operation. (We provide library routines

for several standard PC-Card interface chips.)

RAM

Flash ROM

Startup

procnto

Prog1

Prog2

IPLjmp jmp

Flash/ROM

File

Low memory

High memory

Figure 8: Linearly mapped device.

If the source is a bank-switched device

In this scenario, the image is stored in a device that isn't directly mapped into linear

memory. An additional factor needs to be considered here — how will your IPL code

get at the image stored in the device?

Many types of hardware devices conform to this model:

Copyright © 2014, QNX Software Systems Limited 83

Initial program loader (IPL)

• ROM

• Network boot

• Serial or parallel port

• Traditional disk

Let's look at the common characteristics. In such systems, the IPL code knows how

to fetch data from some piece of hardware. The process is as follows:

1. The IPL receives control.

2. The IPL loads the image from the hardware into RAM.

3. The IPL then transfers control to the newly loaded image.

RAM

Startup

procnto

Prog1

Prog2

File

IPLjmp jmp

Flash/ROM Low memory

High memory

Paged ROM,
Network,

Serial/Parallel port,
or Disk

Figure 9: Bank-switched devices.

ROM devices

In this scenario, a solid-state storage device (ROM, EPROM, flash, etc.) contains the

image, but the processor can see only a small portion of the contents of the device.

How is this implemented? The hardware has a small window (say 32 KB) into the

address space of the processor; additional hardware registers control which portion of

the device is manifested into that window.

Window

Top of address space

FFFC FFFF
Top of window

FFFC 8000
Bottom of window

Bottom of address space

Window
mapping
hardware

20M
storage
medium

Figure 10: Large storage medium, bank-switched into a window.

84 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

In order to load the image, your IPL code must know how to control the hardware that

maps the window. Your IPL code then needs to copy the image out of the window into

RAM and transfer control.

If possible, avoid the use of any mapping hardware (whether custom-designed

or “industry-standard”); it only serves to complicate the hardware and software

designs. We strongly recommend linearly mapped devices. (See the appendix

on System Design Considerations for more information.)

Network boot

Depending on your embedded system's requirements or on your development process,

you can load the image via an Ethernet network. On some embedded boards, the ROM

monitor contains the BOOTP code. On a PC with an ISA or PCI network card, some

form of boot ROM is placed into the address space of the processor, where we assume

the PC BIOS will transfer control to it. The BOOTP code knows how to talk to the

networking hardware and how to get the image from a remote system.

Using a BOOTP server

To boot a QNX Neutrino system using BOOTP, you'll need a BOOTP ROM for your OS

client and a BOOTP server (e.g. bootpd) for your server. Since the TFTP protocol is

used to move the image from the server to the client, you'll also need a TFTP

server—this is usually provided with a BOOTP server on most systems (QNX Neutrino,

UNIX, Windows 95/98/NT).

Serial port

A serial port on the target can be useful during development for downloading an image

or as a failsafe mechanism (e.g. if a checksum fails, you can simply reload the image

via the serial port).

A serial loader can be built into the IPL code so that the code can fetch the image

from an external hardware port. This generally has a minimal impact on the cost of

an embedded system; in most cases, the serial port hardware can be left off for final

assembly. Evaluation boards supplied by hardware chip vendors often have serial ports.

We supply source code for an embedded serial loader for the 8250 chip.

The IPL process in this case is almost identical to the one discussed above for the

Network boot, except that the serial port is used to fetch the image.

Traditional disk

In a traditional PC-style embedded system with a BIOS, this is the simplest boot

possible. The BIOS performs all the work for you — it fetches the image from disk,

transfers it to RAM, and starts it.

Copyright © 2014, QNX Software Systems Limited 85

Initial program loader (IPL)

On the other hand, if you don't have a BIOS but you wish to implement this kind of a

boot, then this method involves the most complicated processing discussed so far.

This is because you'll need a driver that knows how to access the disk (whether it's a

traditional rotating-medium hard disk or a solid-state disk). Your IPL code then needs

to look into the partition table of the device and figure out where the contents of the

image reside. Once that determination has been made, the IPL then needs to either

map the image portions into a window and transfer bytes to RAM (in the case of a

solid-state disk) or fetch the data bytes from the disk hardware.

None of the above?

It's entirely conceivable that none of the above adequately describes your particular

embedded system. In that case, the IPL code you'll write must still perform the same

basic steps as described above — handle the reset vector, fetch the image from some

medium, and transfer control to the startup routine.

Transferring control to the startup program

Once the image has either been loaded into RAM or is available for execution in ROM,

we must transfer control to the startup code (copied from the image to RAM).

For detailed information about the different types of startup programs, see the chapter

on Customizing Image Startup Programs (p. 109).

Once the startup code is off and running, the work of the IPL process is done.

86 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

Customizing IPLs

This section describes in detail the steps necessary to write the IPL for an embedded

system that boots from ROM or Flash.

Systems that boot from disk or over the network typically come with a BIOS or ROM

monitor, which already contains a large part of the IPL within it. If your embedded

system fits this category, you can probably skip directly to the chapter on Customizing

Image Startup Programs (p. 109).

Your IPL loader gets control at reset time and performs the following main functions:

1. Initialize hardware (via assembly-language code).

2. Download the image into RAM (e.g. via serial using image_download_8250()).

3. Locate the OS image (via image_scan()).

4. Copy the startup program (via image_setup()).

5. Jump to the loaded image (via image_start()).

Initialize hardware

Basic hardware initialization is done at this time. This includes gaining access to the

system RAM, which may not be addressable after reset. The amount of initialization

done here will depend on what was done by any code before this loader gained control.

On some systems, the power-on-reset will point directly to this code, which will have

to do everything. On other systems, this loader may be called by an even more primitive

loader, which may have already performed some of these tasks.

Note that it's not necessary to initialize standard peripheral hardware such as an IDE

interface or the baud rate of serial ports. This will be done by the OS drivers when

they're started later. Technically, you need to initialize only enough hardware to allow

control to be transferred to the startup program in the image.

The startup program is written in C and is provided in full source-code format. The

startup code is structured in a readily customizable manner, providing a simple

environment for performing further initializations, such as setting up the system page

in-memory data structure.

Loading the image into RAM

The IPL code must locate the boot image (made with the mkifs utility) and copy part

or all of it into memory.

The loader uses information in the header to copy the header and startup into RAM.

The loader would be responsible for copying the entire image into RAM if the image

weren't located in linearly addressable memory.

Copyright © 2014, QNX Software Systems Limited 87

Customizing IPLs

Structure of the boot header

The boot header structure struct startup_header is defined in the include file

<sys/startup.h>. It is 256 bytes in size and contains the following members,

which are examined by the IPL and/or startup code:

• unsigned long signature

• unsigned short version

• unsigned char flags1

• unsigned char flags2

• unsigned short header_size

• unsigned short machine

• unsigned long startup_vaddr

• unsigned long paddr_bias

• unsigned long image_paddr

• unsigned long ram_paddr

• unsigned long ram_size

• unsigned long startup_size

• unsigned long stored_size

• unsigned long imagefs_paddr

• unsigned long imagefs_size

• unsigned short preboot_size

• unsigned short zero0

• unsigned long zero [3]

• unsigned long info [48]

A valid image (for bootable images) is detected by performing a checksum (via the

function call checksum()) over the entire image, as follows:

checksum (image_paddr, startup_size);
checksum (image_paddr + startup_size, stored_size - startup_size);

signature

This is the first 32 bits in the header and always contains 0x00FF7EEB in native byte

order. It's used to identify the header. On a machine that can be either big-endian or

little-endian (a bi-endian machine), there's typically a hardware strap that gets set on

the board to specify the endianness.

version

The version of mkifs that made the image.

88 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

flags1 and flags2

The following flags are defined for flags1 (flags2 is currently not used):

STARTUP_HDR_FLAGS1_VIRTUAL

If this flag is set, the operating system is to run with the Memory Management

Unit (MMU) enabled.

For this release of the QNX Neutrino RTOS, you should always specify

a virtual system (by specifying the virtual= attribute in your

buildfile, which then sets the STARTUP_HDR_FLAGS1_VIRTUAL

flag).

STARTUP_HDR_FLAGS1_BIGENDIAN

The processor is big-endian. Processors should always examine this flag to

check that the ENDIAN is right for them.

STARTUP_HDR_FLAGS1_COMPRESS_NONE

The image isn't compressed.

STARTUP_HDR_FLAGS1_COMPRESS_ZLIB

The image is compressed using libz (gzip).

STARTUP_HDR_FLAGS1_COMPRESS_LZO

The image is compressed with liblzo.

STARTUP_HDR_FLAGS1_COMPRESS_UCL

The image is compressed with libucl. This is the format chosen when

using the [+compress] attribute in the mkifs build script.

Currently, the startup-* programs are built to understand only

the UCL compression method. By twiddling the SUPPORT_CMP_*

macro definitions in startup/lib/uncompress.c, you can

change to one of the other supported compression methods.

The STARTUP_HDR_FLAGS1_COMPRESS_* constants aren't really flags because they

may set more than one bit; they're used as an enumeration of the types of compression.

Note that both flag flags1 and flags2 are single-byte; this ensures that they're

endian-neutral.

Copyright © 2014, QNX Software Systems Limited 89

Customizing IPLs

header_size

The size of the startup header (sizeof (struct startup_header)).

machine

Machine type, from <sys/elf.h>.

startup_vaddr

Virtual address to transfer to after IPL is done.

paddr_bias

Value to add to physical address to get a value to put into a pointer and indirect

through.

image_paddr

The physical address of the image. This can be in ROM or RAM, depending on the

type of image; for more information, see “Relationship of struct startup_header

fields (p. 94),” later in this chapter.

ram_paddr

The physical address in RAM to copy the image to. You should copy startup_size bytes

worth of data.

ram_size

The number of bytes the image will occupy when it's loaded into RAM. This value is

used by the startup code in the image and isn't currently needed by the IPL code.

This size may be greater than stored_size if the image was compressed. It may also

be smaller than stored_size if the image is XIP.

startup_size

This is the size of the startup code. Copy this number of bytes from the start of the

image into RAM. Note that the startup code is never compressed, so this size is true

in all cases.

stored_size

This is the size of the image including the header. The stored_size member is also

used in the copy/decompress routines for non-XIP images.

90 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

imagefs_paddr

Set by the IPL to the physical address of the image filesystem. Used by the startup.

imagefs_size

Size of uncompressed image filesystem.

preboot_size

Contains the number of bytes from the beginning of the loaded image to the startup

header. Note that this value will usually be zero, indicating that nothing precedes the

startup portion. On an x86 with a BIOS, it will be nonzero, because there's a small

piece of code that gets data from the BIOS in real mode and then switches into

protected mode and performs the startup.

zero and zero0

Zero filler; reserved for future expansion.

info

An array of startup_info* structures. This is the communications area between

the IPL and the startup code. When the IPL code detects various system features

(amount of memory installed, current time, information about the bus used on the

system, etc.), it stores that information into the info array so that the startup code can

fetch it later. This saves the startup code from performing the same detection logic

again.

Note that the info is declared as an array of longs — this is purely to allocate the

storage space. In reality, the info storage area contains a set of structures, each

beginning with this header:

struct startup_info_hdr {
 unsigned short type;
 unsigned short size;
};

The type member is selected from the following list:

STARTUP_INFO_SKIP

Ignore this field. If the corresponding size member is 0, it means that this

is the end of the info list.

STARTUP_INFO_MEM

A startup_info_mem or startup_info_mem_extended structure is

present.

Copyright © 2014, QNX Software Systems Limited 91

Customizing IPLs

STARTUP_INFO_DISK

A startup_info_disk structure is present.

STARTUP_INFO_TIME

A startup_info_time structure is present.

STARTUP_INFO_BOX

A startup_info_box structure is present.

Note that the struct startup_info_hdr header (containing the type and size

members) is encapsulated within each of the above mentioned struct

startup_info* structures as the first element.

Let's look at the individual structures.

struct startup_info_skip

Contains only the header as the member hdr.

struct startup_info_mem and startup_info_mem_extended

These structures contain an address and size pair defining a chunk of memory that

should be added to procnto's free memory pool.

The startup_info_mem structure is defined as follows:

struct startup_info_mem {
 struct startup_info_hdr hdr;
 unsigned long addr;
 unsigned long size;
};

The addr and size fields are 32 bits long, so memory is limited to 4 GB. For larger

memory blocks, the startup_info_mem_extended structure is used:

struct startup_info_mem_extended {
 struct startup_info_mem mem;
 unsigned long addr_hi;
 unsigned long size_hi;
};

For the extended structure, determine the address and size from the addr_hi and

size_hi members and the encapsulated startup_info_mem structure as follows:

((paddr64_t) addr_hi << 32) | mem.addr
((paddr64_t) size_hi << 32) | mem.size

More than one startup_info_mem or startup_info_mem_extended structure

may be present to accommodate systems that have free memory located in various

blocks throughout the address space.

92 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

Both these structures are indentified by a type member of STARTUP_INFO_MEM

in the startup_info_hdr structure; use the size field in the header to tell

them apart.

struct startup_info_disk

Contains the following:

struct startup_info_disk {
 struct startup_info_hdr hdr;
 unsigned char drive;
 unsigned char zero;
 unsigned short heads;
 unsigned short cylinders;
 unsigned short sectors;
 unsigned long blocks;
};

Contains information about any hard disks detected (on a PC with a BIOS). The

members are as follows:

drive

Drive number.

zero

Reserved; must be zero.

heads

Number of heads present.

cylinders

Number of cylinders present.

sectors

Number of sectors present.

blocks

Total blocksize of device. Computed by the formula heads × cylinders ×

sectors. Note that this assumes 512 bytes per block.

struct startup_info_time

Contains the following:

struct startup_info_time {
 struct startup_info_hdr hdr;
 unsigned long time;
};

Copyright © 2014, QNX Software Systems Limited 93

Customizing IPLs

The time member contains the current time as the number of seconds since 1970 01

01 00:00:00 GMT.

struct startup_info_box

Contains the following:

struct startup_info_box {
 struct startup_info_hdr hdr;
 unsigned char boxtype;
 unsigned char bustype;
 unsigned char spare [2];
};

Contains the boxtype and bustype information. For valid values, please see the chapter

on Customizing Image Startup Programs (p. 109).

The spare fields are reserved and must be zero.

Relationship of struct startup_header fields

The following explains some of the fields used by the IPL and startup for various types

of boot. These fields are stuffed by mkifs.

Note that we've indicated which steps are performed by the IPL and which are done

by the startup.

Linear ROM execute-in-place boot image

The following illustration shows an XIP image:

RAM

ram_size

ram_paddr
ROM

Startup
startup_size

stored_size

Startup
header

Imagefs
header

Imagefsimagefs_size

image_paddr

Startup

Startup
header

Reserved
for

imagefs
data

startup_vaddr

Low memory

High memory

In the following pseudo-code examples, image_paddr represents the source

location of the image in linear ROM, and ram_paddr represents the image's

destination in RAM.

Here are the steps required in the IPL:

checksum (image_paddr, startup_size)
checksum (image_paddr + startup_size, stored_size - startup_size)
copy (image_paddr, ram_paddr, startup_size)
jump (startup_vaddr)

94 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

Linear ROM compressed boot image

Here's the same scenario, but with a compressed image:

RAM

ram_size

ram_paddr
ROM

Startup
startup_size

stored_size

Startup
header

Compressed
imagefs
header

Imagefs

image_paddr

Startup

Startup
header

startup_vaddr

Imagefs
header

Imagefs

imagefs_size

Low memory

High memory

Here are the steps required in the IPL:

checksum (image_paddr, startup_size)
checksum (image_paddr + startup_size, stored_size - startup_size)
copy (image_paddr, ram_paddr, startup_size)
jump (startup_vaddr)

And here's the step required in the startup:

uncompress (ram_paddr + startup_size, image_paddr + startup_size,
stored_size - startup_size)

ROM non-XIP image

In this scenario, the image doesn't execute in place:

RAM

ram_size

ram_paddr
ROM

Startup
startup_size

stored_size

Startup
header

Imagefs
header

Imagefs

image_paddr

Startup

Startup
header

startup_vaddr

Imagefs
header

Imagefs imagefs_size
imagefs_size

Low memory

High memory

Here are the steps required in the IPL:

checksum (image_paddr, startup_size)
checksum (image_paddr + startup_size, stored_size - startup_size)
copy (image_paddr, ram_paddr, startup_size)
jump (startup_vaddr)

Copyright © 2014, QNX Software Systems Limited 95

Customizing IPLs

And here's the step required in the startup:

copy (ram_paddr + startup_size, image_paddr + startup_size,
stored_size - startup_size)

Disk/network image (x86 BIOS)

In this case our full IPL isn't involved. An existing BIOS IPL loads the image into

memory and transfers control to our IPL. Since the existing IPL doesn't know where

in startup to jump, it always jumps to the start of the image. On the front of the image

we build a tiny IPL that jumps to startup_vaddr:

Startup
startup_size

stored_size,
ram_size

Startup
header

Imagefs
header

Imagefs

image_paddr,
ram_paddr

startup_vaddr

imagefs_size

jump ipl

RAM
Low memory

High memory

Here's the step required in the IPL:

jump (startup_vaddr)

Disk/network compressed image

This is identical to the previous case, except that we need to decompress the image

in the startup:

Startup
startup_size

stored_size,
ram_size

Startup
header

Compressed
imagefs
header

Imagefs

image_paddr
startup_vaddr

imagefs_size

jump ipl

RAM

Imagefs
header

Imagefs

RAM

ram_paddr

Low memory

High memory

Here's the step required in the startup:

uncompress (ram_paddr + startup_size, image_paddr + startup_size,
stored_size - startup_size)

96 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

The case of a bank-switched ROM is much like a disk/network boot except you get to

write the code that copies the image into RAM using the following steps in the IPL:

bankcopy (image_paddr, ram_paddr, startup_size)
checksum (image_paddr, startup_size)
checksum (image_paddr + startup_size, stored_size - startup_size)
jump (startup_vaddr)

Your next step is to go to the disk/network or disk/network compressed scenario above.

You'll need to map the physical addresses and sizes into bank-switching as needed.

Have fun and next time don't bank-switch your rom! Make it linear in the address

space.

IPL structure

In this section, we'll examine the structure of the IPL source tree directory, and also

the structure of a typical IPL source file.

IPL source directory structure

The source tree structure looks like this:

startup flashipl

boards

bsp_working_dir/src/hardware

Figure 11: IPL directory structure.

The IPL source code for a particular board is stored in a directory under

bsp_working_dir/src/hardware/ipl/boards.

IPL code structure

The IPL code is structured in two stages. The first stage is written in assembly language;

it sets up just enough of an environment for the second stage, written in C, to run.

Generally, the minimum work done here is to set up the DRAM controllers, initialize

the various registers, and set up the chip selects so that you can address your hardware.

Generally, the IPL assembly-language source name begins with “init” (e.g.

init8xx.s for the MPC8xxFADS board); the C file is always called main.c.

Copyright © 2014, QNX Software Systems Limited 97

Customizing IPLs

Once your assembly-language routine has set up the minimum amount required to

transfer control to the C language portion, the main() program calls the following

functions in order:

image_download_8250()

This function is responsible for getting the image from wherever it may be

located. If the image is located in linear memory, this function isn't required

(the image is already “downloaded”).

If you're downloading the image from a custom piece of hardware, you should

call your function image_download_hw(), where the hw part is replaced with

a descriptive name for the hardware, e.g. image_download_x25().

image_scan()

This function is given a start and an end address to search for a boot image.

If successful, it returns a pointer to the start of the image. It's possible to

search within an address range that contains more than one image. If there

are multiple images, and one of them has a bad checksum, then the next

image is used. If there are multiple images with good checksums, the startup

header is examined, and the one with the higher version number is used.

Note that the scan will occur only between the specified addresses.

image_setup()

This function does the work of copying the necessary part of the image into

RAM.

image_start()

This function will jump to the start of the image loaded into RAM, which

will turn control over to the startup program.

An example

Take the main.c from the FADS8xx system:

#include "ipl.h"

unsigned int image;

int
main (void)
{
/*
 * Image is located at 0x2840000
 * Therefore, we don't require an image_download_8250 function
 */
 image = image_scan (0x2840000, 0x2841000);

/*
 * Copy startup to ram; it will do any necessary work on the image
 */
 image_setup (image);

98 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

/*
 * Set up link register and jump to startup entry point
 */
 image_start (image);

 return (0);
}

In this case, we have a linearly addressable flash memory device that contains the

image — that's why we don't need the image_download_8250() function.

The next function called is image_scan(), which is given a very narrow range of

addresses to scan for the image. We give it such a small range because we know where

the image is on this system — there's very little point searching for it elsewhere.

Then we call image_setup() with the address that we got from the image_scan(). This

copies the startup code to RAM.

Finally, we call image_start() to transfer control to the startup program. We don't expect

this function to return — the reason we have the return (0); statement is to keep

the C compiler happy (otherwise it would complain about “Missing return value from

function main”).

Creating a new IPL

To create a new IPL, it's best to start with one we've provided that's similar to the type

of CPU and board you have in your design.

The basic steps are:

1. Create a new directory under bsp_working_dir/src/hardware/ipl/boards

with your board name.

2. Copy all files and subdirectories from a similar board into the new directory.

3. Modify the files as appropriate.

Copyright © 2014, QNX Software Systems Limited 99

Customizing IPLs

The IPL library

The IPL library contains a set of routines for building a custom IPL. Here are the

available library functions:

DescriptionFunction

Enable the on-chip cache (x86 only).enable_cache (p. 101)

Download an image from the specified

serial port.

image_download_8250() (p. 101)

Scan memory for a valid system image.image_scan() (p. 102)

BIOS extension version of image_scan().image_scan_ext() (p. 102)

Prepare an image for execution.image_setup() (p. 102)

BIOS extension version of image_setup().image_setup_ext() (p. 102)

Transfer control to the image.image_start() (p. 102)

BIOS extension version of image_start().image_start_ext() (p. 103)

Copy data from high (above 1 MB)

memory to a buffer or to low (below 1 MB)

memory (x86 only).

int15_copy() (p. 103)

Print a byte to video (x86 only).print_byte() (p. 103)

Print a character to video (x86 only).print_char() (p. 103)

Print a long to video (x86 only).print_long() (p. 103)

Print a string, followed by a long to video

(x86 only).

print_sl() (p. 103)

Print a string to video (x86 only).print_string() (p. 103)

Print a variable to video (x86 only).print_var() (p. 104)

Print a word to video (x86 only).print_word() (p. 104)

Switch the processor to protected mode

(x86 only).

protected_mode (p. 104)

Output an 8-bit hex number to the UART

(x86 only).

uart_hex8 (p. 104)

Output a 16-bit hex number to the UART

(x86 only).

uart_hex16 (p. 105)

100 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

DescriptionFunction

Output a 32-bit hex number to the UART

(x86 only).

uart_hex32 (p. 105)

Initialize the on-chip UART (x86 only).uart_init (p. 105)

Output a single character to the UART

(x86 only).

uart_put (p. 106)

Output a NULL-terminated string to the

UART (x86 only).

uart_string (p. 106)

Output an 8-bit hex number to the UART

(for 32-bit protected mode environment;

x86 only).

uart32_hex8 (p. 106)

Output a 16-bit hex number to the UART

(for 32-bit protected mode environment;

x86 only).

uart32_hex16 (p. 107)

Output a 32-bit hex number to the UART

(for 32-bit protected mode environment;

x86 only).

uart32_hex32 (p. 107)

Initialize the on-chip UART (for 32-bit

protected mode environment; x86 only).

uart32_init (p. 107)

Output a single character to the UART (for

32-bit protected mode environment; x86

only).

uart32_put (p. 108)

Output a NULL-terminated string to the

UART (for 32-bit protected mode

environment; x86 only).

uart32_string (p. 108)

enable_cache

enable_cache

The enable_cache() function takes no parameters. The function is meant to be called

before the x86 processor is switched to protected mode. Note that the function is for

a non-BIOS system.

image_download_8250()

unsigned int image_download_8250 (port, span, address)

Copyright © 2014, QNX Software Systems Limited 101

The IPL library

Downloads an image from the specified serial port (port) to the specified address

(address) using a custom protocol. On the host side, this protocol is implemented via

the utility sendnto (you may need a NULL-modem cable — the protocol uses only

TX, RX, and GND). The span parameter indicates the offset from one port to the next

port on the serial device.

image_scan()

unsigned long image_scan (unsigned long start, unsigned long end)

The image_scan() function scans memory for a valid system image. It looks on 4 KB

boundaries for the image identifier bytes and then does a checksum on the image.

The function scans between start and end. If a valid image is found, image_scan()

returns the image's address. If no valid image is found, it returns -1.

Note that image_scan() will search for all images within the given range, and will pick

the “best” one as described above (in the “IPL code structure” (p. 97) section).

image_scan_ext()

unsigned long image_scan_ext (unsigned long start,
 unsigned long end)

This is a BIOS extension version of the image_scan() function. The image_scan_ext()

function operates in a 16-bit real-mode environment.

image_setup()

int image_setup (unsigned long address)

The image_setup() function prepares an image for execution. It copies the RAM-based

startup code from ROM.

The function takes the image's address as its parameter and always returns 0.

image_setup_ext()

int image_setup_ext (unsigned long address)

This is a BIOS extension version of the image_setup() function. The image_setup_ext()

function operates in a 16-bit real-mode environment and makes use of the int15_copy()

function to perform its tasks on the OS image.

image_start()

int image_start (unsigned long address)

The image_start() function starts the image by jumping to the startup_vaddr address

as defined in the startup header.

102 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

The function should never return; if it fails, it returns -1.

image_start_ext()

int image_start_ext (unsigned long address)

This is a BIOS extension version of the image_start() function. The image_start_ext()

function operates in a 16-bit real-mode environment.

int15_copy()

unsigned char int15_copy (long from, long to, long len)

The int15_copy() function is intended for an x86 system with a BIOS running in real

mode. The function lets you copy data from high memory (above 1 MB) to a buffer or

to low memory (below 1 MB).

The int15_copy() function also allows functions such as image_scan() and

image_setup() to perform scanning and setup of images living in high memory.

print_byte()

void print_byte (int n)

Using int10, this function displays a byte to video (x86 only).

print_char()

void print_char (int c)

Using int10, this function displays a character to video (x86 only).

print_long()

void print_long (unsigned long n)

Using int10, this function displays a long to video (x86 only).

print_sl()

void print_sl (char *s, unsigned long n)

Using int10, this function displays to video a string, followed by a long (x86 only).

print_string()

void print_string (char *msg)

Using int10, this function displays a string to video (x86 only).

Copyright © 2014, QNX Software Systems Limited 103

The IPL library

print_var()

void print_var (unsigned long n, int l)

Using int10, this function displays a variable to video (x86 only).

print_word()

void print_word (unsigned short n)

Using int10, this function displays a word to video (x86 only).

protected_mode()

This assembly call switches the x86 processor into protected mode. The function is

for non-BIOS systems.

Upon return, the DS and ES registers will be set to selectors that can access the entire

4 GB address space. This code is designed to be completely position-independent.

This routine must be called with a pointer to a 16-byte area of memory that's used to

store the GDT. The pointer is in ds:ax.

The following selectors are defined:

8

Data selector for 0-4 GB.

16

Code selector for 0-4 GB.

uart_hex8

This assembly call outputs an 8-bit hex number to the UART. The function is set up

for a 16-bit real-mode environment (x86 only).

On entry:

DX

UART base port.

AL

Value to output.

104 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

uart_hex16

This assembly call outputs a 16-bit hex number to the UART. The function is set up

for a 16-bit real-mode environment (x86 only).

On entry:

DX

UART base port.

AX

Value to output.

uart_hex32

This assembly call outputs a 32-bit hex number to the UART. The function is set up

for a 16-bit real-mode environment (x86 only).

On entry:

DX

UART base port.

EAX

Value to output.

uart_init

This assembly call initializes the on-chip UART to 8 data bits, 1 stop bit, and no parity

(8250 compatible). The function is set up for a 16-bit real-mode environment (x86

only).

On entry:

EAX

Baud rate.

EBX

Input clock in Hz (normally 1843200).

ECX

UART internal divisor (normally 16).

DX

Copyright © 2014, QNX Software Systems Limited 105

The IPL library

UART base port.

uart_put

This assembly call outputs a single character to the UART. The function is set up for

a 16-bit real-mode environment (x86 only).

On entry:

AL

Character to output.

DX

UART base port.

uart_string

This assembly call outputs a NULL-terminated string to the UART. The function is set

up for a 16-bit real-mode environment (x86 only).

On entry:

DX

UART base port address, return address, string.

For example:

mov UART_BASE_PORT, %dx
call uart_string
.ascii "string\r\n"
...

uart32_hex8

This assembly call outputs an 8-bit hex number to the UART. The function is set up

for a 32-bit protected-mode environment (x86 only).

On entry:

DX

UART base port.

AL

Value to output.

106 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

uart32_hex16

This assembly call outputs a 16-bit hex number to the UART. The function is set up

for a 32-bit protected-mode environment (x86 only).

On entry:

DX

UART base port.

AX

Value to output.

uart32_hex32

This assembly call outputs a 32-bit hex number to the UART. The function is set up

for a 32-bit protected-mode environment (x86 only).

On entry:

DX

UART base port.

EAX

Value to output.

uart32_init

This assembly call initializes the on-chip UART to 8 data bits, 1 stop bit, and no parity

(8250 compatible). The function is set up for a 32-bit protected-mode environment

(x86 only).

On entry:

EAX

Baud rate.

EBX

Input clock in Hz (normally 1843200).

ECX

UART internal divisor (normally 16).

DX

Copyright © 2014, QNX Software Systems Limited 107

The IPL library

UART base port.

uart32_put

This assembly call outputs a single character to the UART. The function is set up for

a 32-bit protected-mode environment (x86 only).

On entry:

AL

Character to output.

DX

UART base port.

uart32_string

This assembly call outputs a NULL-terminated string to the UART. The function is set

up for a 32-bit protected-mode environment (x86 only).

On entry:

DX

UART base port address, return address, string.

For example:

mov UART_BASE_PORT, %dx
call uart_string
.ascii "string\r\n"
...

108 Copyright © 2014, QNX Software Systems Limited

Writing an IPL Program

Chapter 5
Customizing Image Startup Programs

The first program in a bootable QNX Neutrino image is a startup program whose purpose

is to:

1. Initialize the hardware.

You do basic hardware initialization at this time. The amount of initialization done

here will depend on what was done in the IPL loader.

Note that you don't need to initialize standard peripheral hardware such as an IDE

interface or the baud rate of serial ports. This will be done by the drivers that

manage this hardware when they're started.

2. Initialize the system page.

Information about the system is collected and placed in an in-memory data structure

called the system page (p. 112). This includes information such as the processor

type, bus type, and the location and size of available system RAM.

The kernel as well as applications can access this information as a read-only data

structure. The hardware/system-specific code to interrogate the system for this

information is confined to the startup program. This code doesn't occupy any system

RAM after it has run.

3. Initialize callouts.

Another key function of the startup code is that the system page callouts are bound

in. These callouts are used by the kernel to perform various hardware- and

system-specific functions that must be specified by the systems integrator.

4. Load and transfer control to the next program in the image.

You can customize QNX Neutrino for different embedded-system hardware by changing

the startup program.

Copyright © 2014, QNX Software Systems Limited 109

Anatomy of a startup program

Each release of the QNX Neutrino RTOS ships with a growing number of startup

programs for many boards. To find out what boards we currently support, please refer

to the following sources:

• the boards directory under bsp_working_dir/src/hardware/startup

• QNX Neutrino docs (BSP docs as well as startup-* entries in the Utilities

Reference)

• the Community area of our website, www.qnx.com

Each startup program is provided as a ready-to-execute binary. Full source and a

Makefile are also available so you can customize and remake each one. The files are

kept in this directory structure as illustrated:

flashstartupipl

boards bootfile

bsp_working_dir/src/hardware

Figure 12: Startup directory structure.

Generally speaking, the following directory structure applies in the startup source for

the startup-boardname module:

bsp_working_dir/src/hardware/startup/boards/boardname

Structure of a startup program

Each startup program consists of a main() with the following structure (in pseudo

code):

Global variables

main()
{
 Call add_callout_array (p. 146)()

 Argument parsing (Call handle_common_option (p. 158)())

 Call init_raminfo (p. 165)()

110 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

http://www.qnx.com

 Remove ram used by modules in the image

 if (virtual) Call init_mmu (p. 164)() to initialize the MMU

 Call init_intrinfo (p. 164)()
 Call init_qtime (p. 164)()
 Call init_cacheattr (p. 163)()
 Call init_cpuinfo (p. 163)()

 Set hardware machine name

 Call init_system_private (p. 166)()

 Call print_syspage (p. 167)() to print debugging output
}

You should examine the commented source for each of the functions within

the library to see if you need to replace a library function with one of your own.

Creating a new startup program

To create a new startup program, you should make a new directory under

bsp_working_dir/src/hardware/startup/boards and copy the files from one of

the existing startup program directories. For example, to create something close to

the Intel PXA250TMDP board, called my_new_board, you would:

1. cd bsp_working_dir/src/hardware/startup/boards

2. mkdir my_new_board

3. cp -r pxa250tmdp/* my_new_board

4. cd my_new_board

5. make clean

For descriptions of all the startup functions, see “The startup library” (p. 143) section

in this chapter.

Copyright © 2014, QNX Software Systems Limited 111

Anatomy of a startup program

Structure of the system page

As mentioned at the beginning of this chapter (Customizing Image Startup Programs

(p. 109)), one of the main jobs of the startup program is to initialize the system page.

The system page structure struct syspage_entry is defined in the include file

<sys/syspage.h>. The structure contains a number of constants, references to

other structures, and a union shared between the various processor platforms supported

by the QNX Neutrino RTOS.

It's important to realize that there are two ways of accessing the data within the system

page, depending on whether you're adding data to the system page at startup time or

reading data from the system page later (as would be done by an application program

running after the system has been booted). Regardless of which access method you

use, the fields are the same.

Here's the system page structure definition, taken from <sys/syspage.h>:

/*
 * contains at least the following:
 */
struct syspage_entry {
 uint16_t size (p. 112);
 uint16_t total_size (p. 113);
 uint16_t type (p. 113);
 uint16_t num_cpu (p. 113);
 syspage_entry_info system_private (p. 113);
 syspage_entry_info asinfo (p. 113);
 syspage_entry_info hwinfo (p. 116);
 syspage_entry_info cpuinfo (p. 122);
 syspage_entry_info cacheattr (p. 124);
 syspage_entry_info qtime (p. 127);
 syspage_entry_info callout (p. 129);
 syspage_entry_info callin (p. 129);
 syspage_entry_info typed_strings (p. 129);
 syspage_entry_info strings (p. 130);
 syspage_entry_info intrinfo (p. 130);
 syspage_entry_info smp (p. 137);
 syspage_entry_info pminfo (p. 138);

 union {
 struct x86_syspage_entry x86 (p. 136);
 struct arm_syspage_entry arm (p. 137);
 } un (p. 136);
};

Note that some of the fields presented here may be initialized by the code provided

in the startup library, while some may need to be initialized by code provided by you.

The amount of initialization required really depends on the amount of customization

that you need to perform.

Let's look at the various fields.

size

The size of the system page entry. This member is set automatically by the library.

112 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

total_size

The size of the system page entry plus the referenced substructures; effectively the

size of the entire system-page database. This member is set automatically by the

library and adjusted later (grown) as required by other library calls.

type

This is used to indicate the CPU family for determining which union member in the

un (p. 136) element to use. Can be one of:

SYSPAGE_ARM, or SYSPAGE_X86.

The library sets this member automatically.

num_cpu

The num_cpu member indicates the number of CPUs present on the given system.

This member is initialized to the default value 1 in the library and adjusted by the

library call init_smp() (p. 165) if additional processors are detected.

system_private

The system_private area contains information that the operating system needs to know

when it boots. This is filled in by the startup library's init_system_private() (p. 166)

function.

DescriptionMember

User address (R/O) for cpupage pointeruser_cpupageptr

User address (R/O) for syspage pointeruser_syspageptr

Kernel address (R/W) for cpupage pointerkern_cpupageptr

Kernel address (R/W) for syspage pointerkern_syspageptr

Granularity of the OS memory allocator

(usually 16 in physical mode or 4096 in

virtual mode).

pagesize

asinfo

The asinfo section consists of an array of the following structure. Each entry describes

the attributes of one section of address space on the machine.

struct asinfo_entry {
 uint64_t start;
 uint64_t end;

Copyright © 2014, QNX Software Systems Limited 113

Structure of the system page

 uint16_t owner;
 uint16_t name;
 uint16_t attr;
 uint16_t priority;
 int (*alloc_checker)(struct syspage_entry *__sp,
 uint64_t *__base,
 uint64_t *__len,
 size_t __size,
 size_t __align);
 uint32_t spare;
};

DescriptionMember

Gives the first physical address of the

range being described.

start

Gives the last physical address of the

range being described. Note that this is

end

the actual last byte, not one beyond the

end.

An offset from the start of the section

giving the owner of this entry (its “parent”

owner

in the tree). It's set to AS_NULL_OFF if

the entry doesn't have an owner (it's at

the “root” of the address space tree).

An offset from the start of the strings

section of the system page giving the

string name of this entry.

name

Contains several bits affecting the address

range (see below (p. 114)).

attr

Indicates the speed of the memory in the

address range. Lower numbers mean

priority

slower memory. The macro

AS_PRIORITY_DEFAULT is defined to

use a default value for this field (currently

defined as 100).

The alloc_checker isn't currently used. When implemented, it will let you

provide finer-grain control over how the system allocates memory (e.g. making

sure that ISA memory used for DMA doesn't cross 64 KB boundaries).

The attr field

The attr field can have the following bits:

#define AS_ATTR_READABLE 0x0001

114 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

Address range is readable.

#define AS_ATTR_WRITABLE 0x0002

Address range is writable.

#define AS_ATTR_CACHABLE 0x0004

Address range can be cached (this bit should be off if you're using device

memory).

#define AS_ATTR_KIDS 0x0010

Indicates that there are other entries that use this one as their owner. Note

that the library turns on this bit automatically; you shouldn't specify it when

creating the section.

#define AS_ATTR_CONTINUED 0x0020

Indicates that there are multiple entries being used to describe one “logical”

address range. This bit will be on in all but the last one. Note that the library

turns on this bit and uses it internally; you shouldn't specify it when creating

the section.

Address space trees

The asinfo section contains trees describing address spaces (where RAM, ROM, flash,

etc. are located).

The general hierarchy for address spaces is:

/memory/memclass/....

Or:

/io/memclass/....

Or:

/memory/io/memclass/....

The memory or io indicates whether this is describing something in the memory or

I/O address space (the third form is used on a machine without separate in/out

instructions and where everything is memory-mapped).

The memclass is something like: ram, rom, flash, etc. Below that would be further

classifications, allowing the process manager to provide typed memory support.

Copyright © 2014, QNX Software Systems Limited 115

Structure of the system page

hwinfo

The hwinfo area contains information about the hardware platform (type of bus, devices,

IRQs, etc). This is filled in by the startup library's init_hwinfo() function.

This is one of the more elaborate sections of the QNX Neutrino system page. The

hwinfo section doesn't consist of a single structure or an array of the same type.

Instead, it consists of a sequence of symbolically “tagged” structures that as a whole

describe the hardware installed on the board. The following types and constants are

all defined in the <hw/sysinfo.h> file.

The hwinfo section doesn't have to describe all the hardware. For instance,

the startup program doesn't have to do PCI queries to discover what's been

plugged into any slots if it doesn't want to. It's up to you as the startup

implementor to decide how full to make the hwinfo description. As a rule, if

a component is hardwired on your board, consider putting it into hwinfo.

Tags

Each structure (or tag) in the section starts the same way:

struct hwi_prefix {
 uint16_t size;
 uint16_t name;
};

The size field gives the size, in 4-byte quantities, of the structure (including the

hwi_prefix).

The name field is an offset into the strings section of the system page, giving a

zero-terminated string name for the structure. It might seem wasteful to use an ASCII

string rather than an enumerated type to identify the structure, but it actually isn't.

The system page is typically allocated in 4 KB granularity, so the extra storage required

by the strings doesn't cost anything. On the upside, people can add new structures to

the section without requiring QNX Software Systems to act as a central repository for

handing out enumerated type values. When processing the section, code should ignore

any tag that it doesn't recognize (using the size field to skip over it).

Items

Each piece of hardware is described by a sequence of tags. This conglomeration of

tags is known as an item. Each item describes one piece of hardware. The first tag in

each item always starts out with the following structure (note that the first thing in it

is a hwi_prefix structure):

struct hwi_item {
 struct hwi_prefix prefix;
 uint16_t itemsize;
 uint16_t itemname;

116 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

 uint16_t owner;
 uint16_t kids;
};

The itemsize field gives the distance, in 4-byte quantities, until the start of the next

item tag.

The itemname gives an offset into the strings section of the system page for the name

of the item being described. Note that this differs from the prefix.name field, which

tells what type of the structure the hwi_item is buried in.

The owner field gives the offset, in bytes, from the start of the hwinfo section to the

item that this item is owned by. This field allows groups of items to be organized in

a tree structure, similar to a filesystem directory hierarchy. We'll see how this is used

later. If the item is at the root of a tree of ownership, the owner field is set to

HWI_NULL_OFF.

The kids field indicates how many other items call this one “daddy.”

The code currently requires that the tag name of any item structure must start

with an uppercase letter; nonitem tags have to start with a lowercase letter.

Device trees

The hwinfo section contains trees describing the various hardware devices on the

board.

The general hierarchy for devices is:

/hw/bus/devclass/device

where:

hw

the root of the hardware tree.

bus

the bus the hardware is on (pci, eisa, etc.).

devclass

the general class of the device (serial, rtc, etc.).

device

the actual chip implementing the device (8250, mc146818, etc.).

Building the section

Two basic calls in the startup library are used to add things to the hwinfo section:

Copyright © 2014, QNX Software Systems Limited 117

Structure of the system page

• hwi_alloc_tag()

• hwi_alloc_item()

void *hwi_alloc_tag(const char *name, unsigned size, unsigned align);

This call allocates a tag of size size with the tag name of name. If the structure contains

any 64-bit integer fields within it, the align field should be set to 8; otherwise, it

should be 4. The function returns a pointer to memory that can be filled in as

appropriate. Note that the hwi_prefix fields are automatically filled in by the

hwi_alloc_tag() function.

void *hwi_alloc_item(const char *name, unsigned size,
 unsigned align, const char *itemname,
 unsigned owner);

This call allocates an item structure. The first three parameters are the same as in the

hwi_alloc_tag() function.

The itemname and owner parameters are used to set the itemname and owner fields

of the hwi_item structure. All hwi_alloc_tag() calls done after a hwi_alloc_item() call

are assumed to belong to that item and the itemsize field is adjusted appropriately.

Here are the general steps for building an item:

1. Call hwi_alloc_item() to build a top-level item (one with the owner field to be

HWI_NULL_OFF).

2. Add whatever other tag structures you want in the item.

3. Use hwi_alloc_item() to start a new item. This item could be either another top-level

one or a child of the first.

Note that you can build the items in any order you wish, provided that the parent is

built before the child.

When building a child item, suppose you've remembered its owner in a variable or you

know only its item name. In order to find out the correct value of the owner parameter,

you can use the hwi_find_item() function (which is defined in the C library, since it's

useful for people processing the section):

unsigned hwi_find_item(unsigned start, ...);

The start parameter indicates where to start the search for the given item. For an initial

call, it should be set to HWI_NULL_OFF. If the item found isn't the one wanted, then

the return value from the first hwi_find_item() is used as the start parameter of the

second call. The search will pick up where it left off. This can be repeated as many

times as required (the return value from the second call going into the start parameter

of the third, etc). The item being searched is identified by a sequence of char *

parameters following start. The sequence is terminated by a NULL. The last string

before the NULL is the bottom-level itemname being searched for, the string in front

of that is the name of the item that owns the bottom-level item, etc.

118 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

For example, this call finds the first occurrence of an item called “foobar”:

item_off = hwi_find_item(HWI_NULL_OFF, "foobar", NULL);

The following call finds the first occurrence of an item called “foobar” that's owned

by “sam”:

item_off = hwi_find_item(HWI_NULL_OFF, "sam", "foobar", NULL);

If the requested item can't be found, HWI_NULL_OFF is returned.

Other functions

The following functions are in the C library for use in processing the hwinfo section:

hwi_tag2off()

unsigned hwi_tag2off(void *);

Given a pointer to the start of a tag, return the offset, in bytes, from the

beginning of the start of the hwinfo section.

hwi_off2tag()

void *hwi_off2tag(unsigned);

Given an offset, in bytes, from the start of the hwinfo section, return a pointer

to the start of the tag.

hwi_find_tag()

unsigned hwi_find_tag(unsigned start, int curr_item, const

char *tagname);

Find the tag named tagname. The start parameter works the same as the

one in hwi_find_item(). If curr_item is nonzero, the search stops at the end

of the current item (whatever item the start parameter points into). If

curr_item is zero, the search continues until the end of the section. If the

tag isn't found, HWI_NULL_OFF is returned.

hwi_next_item()

unsigned hwi_next_item(unsigned off);

Get the offset of the next item after the given offset from the start of the

hwinfo section.

hwi_next_tag()

unsigned hwi_next_tag(unsigned off, int curr_item);

Copyright © 2014, QNX Software Systems Limited 119

Structure of the system page

Get the offset of the next tag after the given offset from the start of the

hwinfo section. As it is for hwi_find_tag(), the curr_item restricts the search

to the current item.

For more information about these functions, see the QNX Neutrino C Library Reference.

Defaults

Before main() is invoked in the startup program, the library adds some initial entries

to serve as a basis for later items.

HWI_TAG_INFO() is a macro defined in the <startup.h> header and expands out

to the three name, size, align parameters for hwi_alloc_tag() and hwi_alloc_item()

based on some clever macro names.

void
hwi_default() {
 hwi_tag *tag;
 hwi_tag *tag;

 hwi_alloc_item(HWI_TAG_INFO(group), HWI_ITEM_ROOT_AS,
 HWI_NULL_OFF);
 tag = hwi_alloc_item(HWI_TAG_INFO(group), HWI_ITEM_ROOT_HW,
 HWI_NULL_OFF);

 hwi_alloc_item(HWI_TAG_INFO(bus), HWI_ITEM_BUS_UNKNOWN,
 hwi_tag2off(tag));

 loc = hwi_find_item(HWI_NULL_OFF, HWI_ITEM_ROOT_AS, NULL);

 tag = hwi_alloc_item(HWI_TAG_INFO(addrspace),
 HWI_ITEM_AS_MEMORY, loc);
 tag->addrspace.base = 0;
 tag->addrspace.len = (uint64_t)1 << 32;
 #ifndef __X86__
 loc = hwi_tag2off(tag);
 #endif
 tag = hwi_alloc_item(HWI_TAG_INFO(addrspace), HWI_ITEM_AS_IO,
 loc);
 tag->addrspace.base = 0;
 #ifdef __X86__
 tag->addrspace.len = (uint64_t)1 << 16;
 #else
 tag->addrspace.len = (uint64_t)1 << 32;
 #endif
}

Predefined items and tags

These are the items defined in the hw/sysinfo.h file. Note that you're free to create

additional items — these are just what we needed for our own purposes. You'll notice

that all things are defined as HWI_TAG_NAME_*, HWI_TAG_ALIGN_*, and struct

hwi_*. The names are chosen that way so that the HWI_TAG_INFO() macro in startup

works properly.

Group item

#define HWI_TAG_NAME_group "Group"
#define HWI_TAG_ALIGN_group (sizeof(uint32_t))
struct hwi_group {

120 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

 struct hwi_item item;
};

The Group item is used when you wish to group a number of items together. It serves

the same purpose as a directory in a filesystem. For example, the devclass level of the

/hw tree would use a Group item.

Bus item

#define HWI_TAG_NAME_bus "Bus"
#define HWI_TAG_ALIGN_bus (sizeof(uint32))
struct hwi_bus {
 struct hwi_item item;
};

The Bus item tells the system about a hardware bus. Item names can be (but are not

limited to):

#define HWI_ITEM_BUS_PCI "pci"
#define HWI_ITEM_BUS_ISA "isa"
#define HWI_ITEM_BUS_EISA "eisa"
#define HWI_ITEM_BUS_MCA "mca"
#define HWI_ITEM_BUS_PCMCIA "pcmcia"
#define HWI_ITEM_BUS_UNKNOWN "unknown"

Device item

#define HWI_TAG_NAME_device "Device"
#define HWI_TAG_ALIGN_device (sizeof(uint32))
struct hwi_device {
 struct hwi_item item;
 uint32_t pnpid;
};

The Device item tells the system about an individual device (the device level from the

“Trees” section — the devclass level is done with a “Group” tag). The pnpid field is

the Plug and Play device identifier assigned by Microsoft.

location tag

#define HWI_TAG_NAME_location "location"
#define HWI_TAG_ALIGN_location (sizeof(uint64))
struct hwi_location {
 struct hwi_prefix prefix;
 uint32_t len;
 uint64_t base;
 uint16_t regshift;
 uint16_t addrspace;
};

Note that location is a simple tag, not an item. It gives the location of the hardware

device's registers, whether in a separate I/O space or memory-mapped. There may be

more than one of these tags in an item description if there's more than one grouping

of registers.

The base field gives the physical address of the start of the registers. The len field

gives the length, in bytes, of the registers. The regshift tells how much each register

access is shifted by. If a register is documented at offset of a device, then the driver

will actually access offset offset2^regshift to get to that register.

Copyright © 2014, QNX Software Systems Limited 121

Structure of the system page

The addrspace field is an offset, in bytes, from the start of the asinfo section. It should

identify either the memory or io address space item to tell whether the device registers

are memory-mapped.

irq tag

#define HWI_TAG_NAME_irq "irq"
#define HWI_TAG_ALIGN_irq (sizeof(uint32))
struct hwi_irq {
 struct hwi_prefix prefix;
 uint32_t vector;
};

Note that this is a simple tag, not an item. The vector field gives the logical interrupt

vector number of the device.

diskgeometry tag

#define HWI_TAG_NAME_diskgeometry "diskgeometry"
#define HWI_TAG_ALIGN_diskgeometry (sizeof(uint32))
struct hwi_diskgeometry {
 struct hwi_prefix prefix;
 uint8_t disknumber;
 uint8_t sectorsize; /* as a power of two */
 uint16_t heads;
 uint16_t cyls;
 uint16_t sectors;
 uint32_t nblocks;
};

Note that this is a simple tag, not an item. This is an x86-only mechanism used to

transfer the information from the BIOS about disk geometry.

pad tag

#define HWI_TAG_NAME_pad "pad"
#define HWI_TAG_ALIGN_pad (sizeof(uint32))
struct hwi_pad {
 struct hwi_prefix prefix;
};

Note that this is a simple tag, not an item. This tag is used when padding must be

inserted to meet the alignment constraints for the subsequent tag.

cpuinfo

The cpuinfo area contains information about each CPU chip in the system, such as

the CPU type, speed, capabilities, performance, and cache sizes. There are as many

elements in the cpuinfo structure as the num_cpu (p. 113) member indicates (e.g. on

a dual-processor system, there will be two cpuinfo entries).

This table is filled automatically by the library function init_cpuinfo() (p. 163).

122 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

DescriptionMember

This is a number that represents the type

of CPU. Note that this number will vary

cpu

with the CPU architecture. For example,

on the x86 processor family, this number

will be the processor chip number (e.g.

486, 586).

Contains the MHz rating of the processor.speed

See below.flags

Contains an index into the strings (p. 130)

member in the system page structure. The

name

character string at the specified index

contains an ASCII, NULL-terminated

machine name.

Contains an index into the cacheattr (p.

124) array, described below. This index

ins_cache

points to the first definition in a list for

the instruction cache.

Contains an index into the cacheattr (p.

124) array, described below. This index

data_cache

points to the first definition in a list for

the data cache.

The flags member contains a bitmapped indication of the capabilities of the CPU chip.

Note that the prefix for the manifest constant indicates which CPU family it applies

to (e.g. ARM_ indicates this constant is for use by the ARM family of processors). In

the case of no prefix, it indicates that it's generic to any CPU.

The bits include the following:

Means that the CPU has or supports:This bit:

A Floating Point Unit (FPU)CPU_FLAG_FPU

A Memory Management Unit (MMU), and

the MMU is enabled (i.e. the CPU is

currently in virtual addressing mode)

CPU_FLAG_MMU

NEON technology, a 128-bit SIMD (Single

Instruction, Multiple Data) architecture

ARM_CPU_FLAG_NEON

extension to the ARM Cortex-A series

processor

Copyright © 2014, QNX Software Systems Limited 123

Structure of the system page

Means that the CPU has or supports:This bit:

Multiple processorsARM_CPU_FLAG_SMP

ARMv7 architectureARM_CPU_FLAG_V7

An iWMMX2 coprocessorARM_CPU_FLAG_WMMX2

CPUID instructionX86_CPU_CPUID

RDTSC instructionX86_CPU_RDTSC

INVLPG instructionX86_CPU_INVLPG

WP bit in the CR0 registerX86_CPU_WP

BSWAP instructionX86_CPU_BSWAP

MMX instructionsX86_CPU_MMX

CMOVxx instructionsX86_CPU_CMOV

Page size extensionsX86_CPU_PSE

TLB (Translation Lookaside Buffer) global

mappings

X86_CPU_PGE

MTRR (Memory Type Range Register)

registers

X86_CPU_MTRR

SYSENTER/SYSEXIT instructionsX86_CPU_SEP

SIMD instructions.X86_CPU_SIMD

FXSAVE/FXRSTOR instructionsX86_CPU_FXSR

Extended addressingX86_CPU_PAE

syspage_entry cacheattr

The cacheattr area contains information about the configuration of the on-chip and

off-chip cache system. It also contains the control() callout used for cache control

operations. This entry is filled by the library routines init_cpuinfo() (p. 163) and

init_cacheattr() (p. 163).

Note that init_cpuinfo() (p. 163) deals with caches implemented on the CPU itself;

init_cacheattr() handles board-level caches.

Each entry in the cacheattr area consists of the following:

DescriptionMember

index to next lower level entrynext

124 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

DescriptionMember

size of cache line in bytesline_size

number of cache linesnum_lines

See belowflags

callout supplied by startup code (see

below).

control

The total number of bytes described by a particular cacheattr entry is defined by

line_size × num_lines.

The flags parameter is a bitmapped variable consisting of the following:

Means that the cache:This constant:

Holds instructions.CACHE_FLAG_INSTR

Holds data.CACHE_FLAG_DATA

Holds both instructions and data.CACHE_FLAG_UNIFIED

Is shared between multiple processors in

an SMP system.

CACHE_FLAG_SHARED

Implements a bus-snooping protocol.CACHE_FLAG_SNOOPED

Is virtually tagged.CACHE_FLAG_VIRTUAL

Does write-back, not write-through.CACHE_FLAG_WRITEBACK

Takes physical addresses via its control()

function.

CACHE_FLAG_CTRL_PHYS

Obeys the subset property. This means

that one cache level caches something

CACHE_FLAG_SUBSET

from another level as well. As you go up

each cache level, if something is in a

particular level, it will also be in all the

lower-level caches as well. This impacts

the flushing operations of the cache in

that a “subsetted” level can be effectively

“ignored” by the control() function, since

it knows that the operation will be

performed on the lower-level cache.

Is noncoherent on SMP.CACHE_FLAG_NONCOHERENT

Doesn't obey ISA cache instructions.CACHE_FLAG_NONISA

Copyright © 2014, QNX Software Systems Limited 125

Structure of the system page

The cacheattr entries are organized in a linked list, with the next member indicating

the index of the next lower cache entry. This was done because some architectures

will have separate instruction and data caches at one level, but a unified cache at

another level. This linking allows the system page to efficiently contain the information.

Note that the entry into the cacheattr tables is done through the cpuinfo (p. 122)'s

ins_cache and data_cache. Since the cpuinfo (p. 122) is an array indexed by the CPU

number for SMP systems, it's possible to construct a description of caches for CPUs

with different cache architectures. Here's a diagram showing a two-processor system,

with separate L1 instruction and data caches as well as a unified L2 cache:

L1
instruction
cache

Memory

L1
data
cache

L2 unified

L1
instruction
cache

L1
data
cache

L2 unified

CPU 1CPU 2

Figure 13: Two-processor system with separate L1 instruction and data caches.

Given the above memory layout, here's what the cpuinfo (p. 122) and cacheattr (p. 124)

fields will look like:

/*
 * CPUINFO
 */
cpuinfo [0].ins_cache = 0;
cpuinfo [0].data_cache = 1;

cpuinfo [1].ins_cache = 0;
cpuinfo [1].data_cache = 1;

/*
 * CACHEATTR
 */
cacheattr [0].next = 2;
cacheattr [0].linesize = linesize;
cacheattr [0].numlines = numlines;
cacheattr [0].flags = CACHE_FLAG_INSTR;

cacheattr [1].next = 2;
cacheattr [1].linesize = linesize;
cacheattr [1].numlines = numlines;
cacheattr [1].flags = CACHE_FLAG_DATA;

cacheattr [2].next = CACHE_LIST_END;
cacheattr [2].linesize = linesize;
cacheattr [2].numlines = numlines;
cacheattr [2].flags = CACHE_FLAG_UNIFIED;

126 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

Note that the actual values chosen for linesize and numlines will, of course, depend

on the actual configuration of the caches present on the system.

syspage_entry qtime

The qtime area contains information about the timebase present on the system, as

well as other time-related information. The library routine init_qtime() (p. 164) fills

these data structures.

DescriptionMember

Contains the interrupt vector that the

clock chip uses to interrupt the processor.

intr

Seconds since Jan 1 1970 00:00:00 GMT

when the system was booted.

If you call ClockTime() to set the time of

day, the kernel checks to see if this field

boot_time

is zero. If it is, the kernel sets it to the

appropriate value. There's a -T option for

all startup programs that prevents the

setting of this field, so that the kernel will

set it the first time you call ClockTime()

to change the time of day. This is useful

if the RTC hardware isn't in UTC.

This 64-bit field holds the number of

nanoseconds since the system was booted.

nsec

When added to the nsec field, this field

gives the number of nanoseconds from

the start of the epoch (1970).

nsec_tod_adjust

Number of nanoseconds deemed to have

elapsed each time the clock triggers an

interrupt.

nsec_inc

Set to zero at startup — contains any

current timebase adjustment runtime

adjust

parameters (as specified by the kernel call

ClockAdjust()).

Used in conjunction with timer_scale (see

below).

timer_rate

See below.timer_scale

Copyright © 2014, QNX Software Systems Limited 127

Structure of the system page

DescriptionMember

Timer chip divisor value. The startup

program leaves this zero. The kernel sets

timer_load

it based on the last ClockPeriod() and

timer_rate/timer_scale values to a number,

which is then put into the timer chip by

the timer_load/timer_reload kernel

callouts.

For ClockCycles().cycles_per_sec

Currently set to 1970, but not used.epoch

Indicates when timer hardware is specific

to CPU0.

flags

The nsec field is always monotonically increasing and is never affected by

setting the current time of day via ClockTime() or ClockAdjust(). Since both

nsec and nsec_tod_adjust are modified in the kernel's timer interrupt handler

and are too big to load in an atomic read operation, to inspect them you must

either:

• disable interrupts

or:

• get the value(s) twice and make sure that they haven't changed between

the first and second read.

The parameters timer_rate and timer_scale relate to the external counter chip's input

frequency, in Hz, as follows:

1

timer_scale
timer_rate x 10

Yes, this does imply that timer_scale is a negative number. The goal when expressing

the relationship is to make timer_rate as large as possible in order to maximize the

number of significant digits available during calculations.

For example, on an x86 PC with standard hardware, the values would be 838095345UL

for the timer_rate and -15 for the timer_scale. This indicates that the timer value is

specified in femtoseconds (the -15 means “ten to the negative fifteen”); the actual

value is 838,095,345 femtoseconds (approximately 838 nanoseconds).

If the clock on your system drifts, you should make sure that the startup code specifies

the correct clock frequency. You can use the -f option in the startup command to

override the setting in the code.

128 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

callout

The callout area is where various callouts get bound into. These callouts allow you to

“hook into” the kernel and gain control when a given event occurs. The callouts operate

in an environment similar to that of an interrupt service routine — you have a very

limited stack, and you can't invoke any kernel calls (such as mutex operations, etc.).

On standard hardware platforms (x86-PC compatibles), you won't have to supply any

functionality — it's already provided by the startup code we supply.

DescriptionMember

Used by the kernel to reset the system.reboot

Provided for power management.power

The kernel uses these timer_* callouts to

deal with the hardware timer chip.
• timer_load

• timer_reload

• timer_value

Used by the kernel when it wishes to

interact with a serial port, console, or

debug

other device (e.g. when it needs to print

out some internal debugging information

or when there's a fault).

For details about the characteristics of the callouts, please see the sections “Callout

information (p. 139)” and “Writing your own kernel callout (p. 173)” later in this chapter.

callin

For internal use.

typed_strings

The typed_strings area consists of several entries, each of which is a number and a

string. The number is 4 bytes and the string is NULL-terminated as per C. The number

in the entry corresponds to a particular constant from the system include file

<confname.h> (see the C function confname() for more information).

Generally, you wouldn't access this member yourself; the various init_*() library

functions put things into the typed strings literal pool themselves. But if you need to

add something, you can use the function call add_typed_string() (p. 146) from the

library.

Copyright © 2014, QNX Software Systems Limited 129

Structure of the system page

strings

This member is a literal pool used for nontyped strings. Users of these strings would

typically specify an index into strings (for example, cpuinfo (p. 122)'s name member).

Generally, you wouldn't access this member yourself; the various init_*() library

functions put things into the literal pool themselves. But if you need to add something,

you can use the function call add_string() (p. 146) from the library.

intrinfo

The intrinfo area is used to store information about the interrupt system. It also contains

the callouts used to manipulate the interrupt controller hardware.

On a multicore system, each interrupt is directed to one (and only one) CPU, although

it doesn't matter which. How this happens is under control of the programmable

interrupt controller chip(s) on the board. When you initialize the PICs at startup, you

can program them to deliver the interrupts to whichever CPU you want to; on some

PICs you can even get the interrupt to rotate between the CPUs each time it goes off.

For the startups we write, we typically program things so that all interrupts (aside from

the one(s) used for interprocessor interrupts) are sent to CPU 0. This lets us use the

same startup for both procnto and procnto-smp. According to a study that Sun

did a number of years ago, it's more efficient to direct all interrupts to one CPU, since

you get better cache utilization.

The intrinfo area is automatically filled in by the library routine init_intrinfo() (p. 164).

If you need to override some of the defaults provided by init_intrinfo() (p. 164), or if

the function isn't appropriate for your custom environment, you can call

add_interrupt_array() (p. 146) directly with a table of the following format:

In all probability, you will need to modify this for non-x86

platforms.

DescriptionMember

The base number of the logical interrupt

numbers that programs will use (e.g. the

vector_base

interrupt vector passed to

InterruptAttach()).

The number of vectors starting at

vector_base described by this entry.

num_vectors

If this interrupt entry describes a set of

interrupts that are cascaded into another

cascade_vector

130 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

DescriptionMember

interrupt controller, then this variable

contains the logical interrupt number that

this controller cascades into.

The association between this set of

interrupts and the CPU's view of the

source of the interrupt (see below).

cpu_intr_base

The spacing between interrupt vector

entries for interrupt systems that do

cpu_intr_stride

autovectoring. On an x86 platform with

the standard 8259 controller setup, this

is the value 1, meaning that the interrupt

vector corresponding to the hardware

interrupt sources is offset by 1 (e.g.

interrupt vector 0 goes to interrupt 0x30,

interrupt vector 1 goes to interrupt 0x31,

and so on). On non-x86 systems it's

usually 0, because those interrupt systems

generally don't do autovectoring. A value

of 0 indicates that it's not autovectored.

Used by the startup code when generating

the kernel's interrupt service routine entry

points. See below under INTR_FLAG_*.

flags

A code snippet that gets copied into the

kernel's interrupt service routine used to

id

identify the source of the interrupt, in case

of multiple hardware events being able to

trigger one CPU-visible interrupt. Further

modified by the INTR_GENFLAG_* flags,

defined below.

A code snippet that gets copied into the

kernel's interrupt service routine that

eoi

provides the EOI (End Of Interrupt)

functionality. This code snippet is

responsible for telling the controller that

the interrupt is done and for unmasking

the interrupt level. For CPU

fault-as-an-interrupt handling, eoi

identifies the cause of the fault.

Copyright © 2014, QNX Software Systems Limited 131

Structure of the system page

DescriptionMember

An outcall to mask an interrupt source at

the hardware controller level. The numbers

mask

passed to this function are the interrupt

vector numbers (starting at 0 to

num_vectors - 1).

An outcall to unmask an interrupt source

at the hardware controller level. Same

vector numbers as mask, above.

unmask

Provides configuration information on

individual interrupt levels. Passed the

config

system page pointer (1st argument), a

pointer to this interrupt info entry (2nd

argument), and the zero-based interrupt

level. Returns a bitmask; see

INTR_CONFIG_FLAG* below.

Provides information about patched data.

The patched data is passed to the

patch_data

patcher() routine that gets called once for

each callout in a startup_intrinfo()

structure.

Each group of callouts (i.e. id, eoi, mask, unmask) for each level of interrupt

controller deals with a set of interrupt vectors that start at 0 (zero-based). Set

the callouts for each level of interruption accordingly.

Interrupt vector numbers are passed without offset to the callout routines. The

association between the zero-based interrupt vectors the callouts use and the

system-wide interrupt vectors is configured within the startup-intrinfo structures.

These structures are found in the init_intrinfo() routine of startup.

The cpu_intr_base member

The interpretation of the cpu_intr_base member varies with the processor:

InterpretationProcessor

The IDT (Interrupt Descriptor Table) entry,

typically 0x30.

x86

132 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

InterpretationProcessor

This value should be 0, since all ARM

interrupts are handled via the IRQ

exception.

ARM

The flags member

The flags member takes two sets of flags. The first set deals with the characteristics

of the interrupts:

INTR_FLAG_NMI

Indicates that this is a NonMaskable Interrupt (NMI). An NMI is an interrupt

which can't be disabled by clearing the CPU's interrupt enable flag, unlike

most normal interrupts. NonMaskable interrupts are typically used to signal

events that require immediate action, such as a parity error, a hardware

failure, or imminent loss of power. The address for the handler's NMI is

stored in the BIOS's Interrupt Vector table at position 02H. For this reason

an NMI is often referred to as INT 02H.

The code in the kernel needs to differentiate between normal interrupts and

NMIs, because with an NMI the kernel needs to know that it can't protect

(mask) the interrupt (hence the “N” in NonMaskable Interrupt). We strongly

discourage the use of the NMI vector in x86 designs; we don't support it on

any non-x86 platforms.

Regular interrupts that are normally used and referred to by number

are called maskable interrupts. Unlike non maskable interrupts,

maskable interrupts are those that can be masked, or ignored, to

allow the processor to complete a task.

INTR_FLAG_CASCADE_IMPLICIT_EOI

Indicates that an EOI to the primary interrupt controller is not required when

handling a cascaded interrupt (e.g. it's done automatically). Only used if

this entry describes a cascaded controller.

INTR_FLAG_CPU_FAULT

Indicates that one or more of the vectors described by this entry is not

connected to a hardware interrupt source, but rather is generated as a result

of a CPU fault (e.g. bus fault, parity error). Note that we strongly discourage

designing your hardware this way. The implication is that a check needs to

be inserted for an exception into the generated code stream; after the

interrupt has been identified, an EOI needs to be sent to the controller. The

Copyright © 2014, QNX Software Systems Limited 133

Structure of the system page

EOI code burst has the additional responsibility of detecting what address

caused the fault, retrieving the fault type, and then passing the fault on.

The primary disadvantage of this approach is that it causes extra code to be

inserted into the code path.

The second set of flags deals with code generation:

INTR_GENFLAG_LOAD_SYSPAGE

Before the interrupt identification or EOI code sequence is generated, a

piece of code needs to be inserted to fetch the system page pointer into a

register so that it's usable within the identification code sequence.

If you use the interrupt_id_dec(), interrupt_id_dec_smp(), or

interrupt_eoi_dec() callouts, you must specify the

INTR_GENFLAG_LOAD_SYSPAGE flag in the genflags field of the

intrinfo_entry structure in the board-specific code.

INTR_GENFLAG_LOAD_INTRINFO

Same as INTR_GENFLAG_LOAD_SYSPAGE, except that it loads a pointer

to this structure.

INTR_GENFLAG_LOAD_INTRMASK

Used only by EOI routines for hardware that doesn't automatically mask at

the chip level. When the EOI routine is about to reenable interrupts, it should

reenable only those interrupts that are actually enabled at the user level

(e.g. managed by the functions InterruptMask() and InterruptUnmask()).

When this flag is set, the existing interrupt mask is stored in a register for

access by the EOI routine. A zero in the register indicates that the interrupt

should be unmasked; a nonzero indicates it should remain masked.

INTR_GENFLAG_NOGLITCH

Used by the interrupt ID code to cause a check to be made to see if the

interrupt was due to a glitch or to a different controller. If this flag is set,

the check is omitted — you're indicating that there's no reason (other than

the fact that the hardware actually did generate an interrupt) to be in the

interrupt service routine. If this flag is not set, the check is made to verify

that the suspected hardware really is the source of the interrupt.

INTR_GENFLAG_LOAD_CPUNUM

Same as INTR_GENFLAG_LOAD_SYSPAGE, except that it loads a pointer

to the number of the CPU this structure uses.

INTR_GENFLAG_ID_LOOP

134 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

Some interrupt controllers have read-and-clear registers indicating the active

interrupts. That is, the first read returns a bitset with the pending interrupts,

and then immediately zeroes the register. Since the interrupt ID callout can

return only one interrupt number at a time, that means that we might fail

to process all the interrupts if there's more than one bit on in the status

register.

When INTR_GENFLAG_ID_LOOP is on, the kernel generates code to jump

back to the ID callout after the EOI has finished.

In the ID callout, you need to allocate read-write storage as per the usual

procedures. This storage is initially set to zero (done by default). When the

callout runs, the first thing it does is check the storage area:

• If the storage is nonzero, the callout uses it to identify another interrupt

to process, knocks that bit down, writes the new value back into the

storage location and returns the identified interrupt number.

• If the storage location is zero, the callout reads the hardware status

register (clearing it) and identifies the interrupt number from it. It then

knocks that bit off, writes the value to the storage location, and then

returns the appropriate interrupt number.

• If both the storage and hardware register are zero, the routine returns -1

to indicate no interrupt is present as per usual.

config return values

The config callout may return zero or more of the following flags:

INTR_CONFIG_FLAG_PREATTACH

Normally, an interrupt is masked off until a routine attaches to it via

InterruptAttach() or InterruptAttachEvent(). If CPU fault indications are

routed through to a hardware interrupt (not recommended!), the interrupt

would, by default, be disabled. Setting this flag causes a “dummy”

connection to be made to this source, causing this level to become

unmasked.

INTR_CONFIG_FLAG_DISALLOWED

Prevents user code from attaching to this interrupt level. Generally used

with INTR_CONFIG_FLAG_PREATTACH, but could be used to prevent user

code from attaching to any interrupt in general.

INTR_CONFIG_FLAG_IPI

Identifies the vector that's used as the target of an inter-processor interrupt

in an SMP system.

Copyright © 2014, QNX Software Systems Limited 135

Structure of the system page

syspage_entry union un

The un union is where processor-specific system page information is kept. The purpose

of the union is to serve as a demultiplexing point for the various CPU families. It is

demultiplexed based on the value of the type (p. 113) member of the system page

structure.

typeProcessorMember

SYSPAGE_X86The x86 familyx86

SYSPAGE_ARMThe ARM familyarm

un.x86

This structure contains the x86-specific information. On a standard PC-compatible

platform, the library routines (described later) fill these fields:

smpinfo

Contains info on how to manipulate the SMP control hardware; filled in by

the library call init_smp() (p. 165).

gdt

Contains the Global Descriptor Table (GDT); filled in by the library.

idt

Contains the Interrupt Descriptor Table (IDT); filled in by the library.

pgdir

Contains pointers to the Page Directory Table(s); filled in by the library.

real_addr

The virtual address corresponding to the physical address range 0 through

0xFFFFF inclusive (the bottom 1 megabyte).

un.x86.smpinfo (deprecated)

The members of this field are filled automatically by the function init_smp() (p. 165)

within the startup library.

136 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

un.arm

This structure contains the ARM-specific information:

L1_vaddr

Virtual address of the MMU level 1 page table used to map the kernel.

L1_paddr

Physical address of the MMU level 1 page table used to map the kernel.

startup_base

Virtual address of a 1-1 virtual-physical mapping used to map the startup

code that enables the MMU. This virtual mapping is removed when the

kernel is initialized.

startup_size

Size of the mapping used for startup_base.

cpu

Structure containing ARM core-specific operations and data. Currently this

contains the following:

page_flush

A routine used to implement CPU-specific cache/TLB flushing

when the memory manager unmaps or changes the access

protections to a virtual memory mapping for a page. This routine

is called for each page in a range being modified by the virtual

memory manager.

page_flush_deferred

A routine used to perform any operations that can be deferred

when page_flush is called. For example on the SA-1110 processor,

an Icache flush is deferred until all pages being operated on have

been modified.

smp

The smp area is CPU-independent and contains the following elements:

Copyright © 2014, QNX Software Systems Limited 137

Structure of the system page

DescriptionThis element

Sends an interprocess interrupt (IPI) to

the CPU.

send_ipi

Get the starting address for the IPI.start_address

Identify the pending interrupts for the

SMP processor.

pending

Identify the SMP CPU.cpu

pminfo

The pminfo area is a communication area between the power manager and

startup/power callout.

The pminfo area contains the following elements which are customizable in the power

manager structure and are power-manager dependent:

DescriptionThis element

Notifies the power callout that a wakeup

condition has occurred. The power

wakeup_pending

manager requires write access so it can

modify this entry.

Indicates to the power manager what has

caused the wakeup i.e. whether it's a

wakeup_condition

power-on reset, or an interrupt from

peripherals or other devices. The value is

set by the power callout.

This entry is an area where the power

manager can store any data it chooses.

managed_storage

This storage is not persistent storage; it

needs to be manually stored and restored

by the startup and power callout.

The managed_storage element is

initialized by the init_pminfo() function

call in startup and can be modified at

startup. The value passed into

init_pminfo() determines the size of the

managed_storage array.

138 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

Callout information

All the callout routines share a set of similar characteristics:

• coded in assembler

• position-independent

• no static read/write storage

Callouts are basically binding standalone pieces of code for the kernel to invoke without

having to statically link them to the kernel.

The requirement for coding the callouts in assembler stems from the second

requirement (i.e. that they must be written to be position-independent). This is because

the callouts are provided as part of the startup code, which will get overwritten when

the kernel starts up. In order to circumvent this, the startup program will copy the

callouts to a safe place — since they won't be in the location that they were loaded

in, they must be coded to be position-independent.

We need to qualify the last requirement (i.e. that callouts not use any static read/write

storage). There's a mechanism available for a given callout to allocate a small amount

of storage space within the system page, but the callouts cannot have any static

read/write storage space defined within themselves.

Debug interface

The debug interface consists of the following callouts:

• display_char()

• poll_key()

• break_detect().

These three callouts are used by the kernel when it wishes to interact with a serial

port, console, or other device (e.g. when it needs to print out some internal debugging

information or when there's a fault). Only the display_char() is required; the others

are optional.

Clock/timer interface

Here are the clock and timer interface callouts:

• timer_load()

• timer_reload()

• timer_value().

The kernel uses these callouts to deal with the hardware timer chip.

Copyright © 2014, QNX Software Systems Limited 139

Callout information

The timer_load() callout is responsible for stuffing the divisor value passed by the

kernel into the timer/counter chip. Since the kernel doesn't know the characteristics

of the timer chip, it's up to the timer_load() callout to take the passed value and

validate it. The kernel will then use the new value in any internal calculations it

performs. You can access the new value in the qtime_entry element of the system

page as well as through the ClockPeriod() function call.

The timer_reload() callout is called after the timer chip generates an interrupt. It's

used in two cases:

• Reloading the divisor value (because some timer hardware doesn't have an automatic

reload on the timer chip — this type of hardware should be avoided if possible).

• Telling the kernel whether the timer chip caused the interrupt or not (e.g. if you

had multiple interrupt sources tied to the same line used by the timer — not the

ideal hardware design, but…).

The timer_value() callout is used to return the value of the timer chip's internal count

as a delta from the last interrupt. This is used on processors that don't have a

high-precision counter built into the CPU (e.g. 80486).

Interrupt controller interface

Here are the callouts for the interrupt controller interface:

• mask()

• unmask()

• config()

In addition, two “code stubs” are provided:

• id

• eoi

The mask() and unmask() perform masking and unmasking of a particular interrupt

vector.

The config() callout is used to ascertain the configuration of an interrupt level.

For more information about these callouts, refer to the intrinfo (p. 130) structure in the

system page above.

Cache controller interface

Depending on the cache controller circuitry in your system, you may need to provide

a callout for the kernel to interface to the cache controller.

On the x86 architecture, the cache controller is integrated tightly with the CPU,

meaning that the kernel doesn't have to talk to the cache controller. On other

140 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

architectures, the cache controllers need to be told to invalidate portions of the cache

when certain functions are performed in the kernel.

The callout for cache control is control(). This callout gets passed:

• a set of flags (defining the operation to perform)

• the address (either in virtual or physical mode, depending on flags in the cacheattr

array in the system page)

• the number of cache lines to affect

The callout is responsible for returning the number of cache lines that it affected —

this allows the caller (the kernel) to call the control() callout repeatedly at a higher

level. A return of 0 indicates that the entire cache was affected (e.g. all cache entries

were invalidated).

System reset callout

The miscellaneous callout, reboot(), gets called whenever the kernel needs to reboot

the machine.

The reboot() callout is responsible for resetting the system. This callout lets developers

customize the events that occur when proc needs to reboot — such as turning off a

watchdog, banging the right registers etc. without customizing proc each time.

A “shutdown” of the binary will call sysmgr_reboot(), which will eventually trigger the

reboot() callout.

Power management callout

The power() callout gets called whenever power management needs to be activated.

This callout is specific to the CPU and target.

The general CPU power modes are as follows:

Active or Running

The system is actively running applications. Some peripherals or devices

may be idle or shut down.

Idle

The system isn't running applications; the CPU is halted. Code is all or

partially resident in memory.

Standby

The system isn't running applications; the CPU is halted. Code isn't resident

in memory.

Shutdown

Copyright © 2014, QNX Software Systems Limited 141

Callout information

Minimal or zero-power state. CPU, memory, and devices are all powered off.

These definitions are a guideline only; you can define multiple subsets for each state

(e.g. Idle1, Idle2, etc.). Furthermore, not all these CPU power modes may be required

or even possible for a specific board or CPU.

142 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

The startup library

The startup library contains a rich set of routines consisting of high-level functions

that are called by your main() through to utility functions for interrogating the hardware,

initializing the system page, loading the next process in the image, and switching to

protected mode. Full source is provided for all these functions, allowing you to make

local copies with minor modifications in your target startup directory.

The available library functions include the following (in alphabetical order):

• add_cache() (p. 145)

• add_callout() (p. 145)

• add_callout_array() (p. 146)

• add_interrupt() (p. 146)

• add_interrupt_array() (p. 146)

• add_ram() (p. 146)

• add_string() (p. 146)

• add_typed_string() (p. 146)

• alloc_qtime() (p. 147)

• alloc_ram() (p. 147)

• armv_cache (p. 147)

• armv_chip (p. 148)

• armv_chip_detect() (p. 150)

• armv_pte (p. 151)

• armv_setup_v7() (p. 152)

• as_add() (p. 152)

• as_add_containing() (p. 152)

• as_default() (p. 153)

• as_find() (p. 153)

• as_find_containing() (p. 153)

• as_info2off() (p. 153)

• as_off2info() (p. 154)

• as_set_checker() (p. 154)

• as_set_priority() (p. 154)

• avoid_ram() (p. 154)

• calc_time_t() (p. 154)

• calloc_ram() (p. 155)

• callout_io_map(), callout_io_map_indirect() (p. 155)

• callout_memory_map(), callout_memory_map_indirect() (p. 155)

• callout_register_data() (p. 155)

Copyright © 2014, QNX Software Systems Limited 143

The startup library

• chip_access() (p. 156)

• chip_done() (p. 156)

• chip_read8() (p. 156)

• chip_read16() (p. 157)

• chip_read32() (p. 157)

• chip_write8() (p. 157)

• chip_write16() (p. 157)

• chip_write32() (p. 157)

• copy_memory() (p. 157)

• del_typed_string() (p. 157)

• falcon_init_l2_cache() (p. 158)

• falcon_init_raminfo() (p. 158)

• falcon_system_clock() (p. 158)

• find_startup_info() (p. 158)

• find_typed_string() (p. 158)

• handle_common_option() (p. 158)

• hwi_add_device() (p. 160)

• hwi_add_inputclk() (p. 160)

• hwi_add_irq() (p. 160)

• hwi_add_location() (p. 160)

• hwi_add_nicaddr() (p. 161)

• hwi_add_rtc() (p. 161)

• hwi_alloc_item() (p. 161)

• hwi_alloc_tag() (p. 161)

• hwi_find_as() (p. 161)

• hwi_find_item() (p. 162)

• hwi_find_tag() (p. 162)

• hwi_off2tag() (p. 162)

• hwi_tag2off() (p. 163)

• init_asinfo() (p. 163)

• init_cacheattr() (p. 163)

• init_cpuinfo() (p. 163)

• init_hwinfo() (p. 163)

• init_intrinfo() (p. 164)

• init_mmu() (p. 164)

• init_pminfo() (p. 164)

• init_qtime() (p. 164)

• init_qtime_sa1100() (p. 165)

• init_raminfo() (p. 165)

• init_smp() (p. 165)

144 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

• init_syspage_memory() (p. 165) (deprecated)

• init_system_private() (p. 166)

• jtag_reserve_memory() (p. 166)

• kprintf() (p. 166)

• openbios_init_raminfo() (p. 166)

• pcnet_reset() (p. 166)

• print_syspage() (p. 167)

• rtc_time() (p. 168)

• startup_io_map() (p. 169)

• startup_io_unmap() (p. 169)

• startup_memory_map() (p. 169)

• startup_memory_unmap() (p. 169)

• tulip_reset() (p. 169)

• uncompress() (p. 170)

• x86_cpuid_string() (p. 170)

• x86_cputype() (p. 170)

• x86_enable_a20() (p. 170)

• x86_fputype() (p. 171)

• x86_init_pcbios() (p. 171)

• x86_pcbios_shadow_rom() (p. 171)

• x86_scanmem() (p. 172)

add_cache()

int add_cache(int next,
 unsigned flags,
 unsigned line_size,
 unsigned num_lines,
 const struct callout_rtn *rtn);

Add an entry to the cacheattr section of the system page structure. Parameters map

one-to-one with the structure's fields. The return value is the array index number of

the added entry. Note that if there's already an entry that matches the one you're trying

to add, that entry's index is returned — nothing new is added to the section.

add_callout()

void add_callout(unsigned offset,
 const struct callout_rtn *callout);

Add a callout to the callout_info section of the system page. The offset parameter

holds the offset from the start of the section (as returned by the offsetof() macro) that

the new routine's address should be placed in.

Copyright © 2014, QNX Software Systems Limited 145

The startup library

add_callout_array()

void add_callout_array (const struct callout_slot *slots,
 unsigned size)

Add the callout array specified by slots (for size bytes) into the callout array in the

system page.

add_interrupt()

struct intrinfo_entry
 *add_interrupt(const struct startup_intrinfo
 *startup_intr);

Add a new entry to the intrinfo section. Returns a pointer to the newly added entry.

add_interrupt_array()

void add_interrupt_array (const struct startup_intrinfo *intrs,
 unsigned size)

Add the interrupt array callouts specified by intrs (for size bytes) into the interrupt

callout array in the system page.

add_ram()

void add_ram(paddr_t start,
 paddr_t size);

Tell the system that there's RAM available starting at physical address start for size

bytes.

add_string()

unsigned add_string (const char *name)

Add the string specified by name into the string literal pool in the system page and

return the index.

add_typed_string()

unsigned add_typed_string (int type_index,
 const char *name)

Add the typed string specified by name (of type type_index) into the typed string literal

pool in the system page and return the index.

146 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

alloc_qtime()

struct qtime_entry *alloc_qtime(void);

Allocate space in the system page for the qtime section and fill in the epoch, boot_time,

and nsec_tod_adjust fields. Returns a pointer to the newly allocated structure so that

user code can fill in the other fields.

alloc_ram()

paddr_t alloc_ram (paddr_t addr,
 paddr_t size,
 paddr_t align)

Allocate memory from the free memory pool initialized by the call to init_raminfo().

The RAM is not cleared.

armv_cache

(QNX Neutrino 6.5.0 or later)

struct armv_cache {
 const struct arm_cache_config *dcache_config;
 const struct callout_rtn *dcache_rtn;
 const struct arm_cache_config *icache_config;
 const struct callout_rtn *icache_rtn;
};

The armv_cache structure describes the CPU caches. The members include:

dcache_config

Describes the data cache. It's required only when a CPU doesn't implement

the CP15 cache-type register.

When a CPU does implement the CP15 cache-type register, set this to 0,

so that the startup library will use arm_add_cache() to determine the cache

register configuration based on the CP15 cache-type register.

dcache_rtn

Manage the data cache with the help of a callout.

icache_config

Describes the instruction cache. This is required only if the CPU doesn't

implement the CP15 cache type register. When a CPU does implement the

CP15 cache-type register, set this to 0, so that the startup library will use

arm_add_cache() to determine the cache register configuration based on

the CP15 cache-type register.

icache_rtn

Copyright © 2014, QNX Software Systems Limited 147

The startup library

Manage the instruction cache with the help of a callout.

armv_chip

(QNX Neutrino 6.5.0 or later)

struct armv_chip {
 unsigned cpuid;
 const char *name;
 unsigned mmu_cr_set;
 unsigned mmu_cr_clr;
 int cycles;
 const struct armv_cache *cache;
 const struct callout_rtn *power;
 const struct callout_rtn *flush;
 const struct callout_rtn *deferred;
 const struct armv_pte *pte;
 const struct armv_pte *pte_wa;
 const struct armv_pte *pte_wb;
 const struct armv_pte *pte_wt;
 void (*setup)(struct cpuinfo_entry *cpu, unsigned cpuid);
 const struct armv_chip *(*detect)(void);
 unsigned short ttb_attr;
 unsigned short pte_attr;
};

The armv_chip structure describes the configuration for a particular CPU.

The ARMv7 processors use the WFI instruction to enter “wait for interrupt”

mode.

To enable swap instructions, bit 10 (ARM_MMU_CR_F) must be set. In ARMv7,

it's disabled by default, causing it to generate illegal instruction exceptions.

The members of the armv_chip structure include:

cpuid

Contains bits 15:0 of the CP15 main ID register.

The armv_list[] array defined in armv_list.c contains a list of all

supported CPUs, and the arm_chip_detect() function iterates through this

array to match bits 15:0 of the ID register.

A BSP can override the library's armv_list.c to provide a customized list

of supported CPUs, for example to specify armv_chip structures that aren't

implemented in libstartup, or to restrict the list to the processor(s)

implemented by the target board.

name

The textual name of the processor.

mmu_cr_set

148 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

Specifies which bits to set in the MMU control register when the MMU is

enabled in vstart().

mmu_cr_clr

Specifies which bits to clear in the MMU control register when the MMU is

enabled in vstart().

cycles

The number of CPU cycles taken by the arm_cpuspeed.c calibration loop

(which calculates loop cycles based on processor architecture from the ID

register).

cache

A pointer to an armv_cache structure describing the cache configuration.

power

A pointer to the CPU-specific power callout.

If no power callout is specified, the kernel's idle loop simply busy-loops,

and the sysmgr_cpumode() call fails with ENOSYS.

flush and deferred

Pointers to the CPU-specific callouts used by procnto to handle unmapping

pages.

The flush callout is used to flush the cache and TLB when unmapping a

page. This is called for each page in a region being unmapped.

The deferred callout is used after all pages in a region have been unmapped,

and can be used to perform any actions that the flush callout didn't perform.

For example, if the MMU doesn't support flushing the instruction cache by

virtual address, the deferred callout can be used to flush the instruction

cache after all pages have been unmapped, to reduce the cost of flushing.

pte

A pointer to the default page table configuration

pte_wa

A pointer to the page table configuration for write-allocate cache behavior.

If you specify the -wa option, the pte_wa configuration is used. If the CPU

doesn't support write-allocate caching, set pte_wa to 0, and the default pte

values will be used instead.

Copyright © 2014, QNX Software Systems Limited 149

The startup library

pte_wb

A pointer to the page table configuration for write-back cache behavior.

If you specify the -wb compile option, the pte_wb configuration is used. If

the CPU doesn't support write-back caching, set pte_wb to 0, and the default

pte values will be used instead.

The pte_wb member isn't supported by

MPCore.

pte_wt

A pointer to the page table configuration for write-through cache behavior.

If you specify the -wt compile option, the pte_wt configuration is used. If

the CPU doesn't support write-through caching, set pte_wt to 0, and the

default pte values will be used instead.

The pte_wt member isn't supported by

MPCore.

setup

A pointer to a function that performs additional CPU-specific initialization.

detect

A pointer to a function that checks for various configurations for Cortex A-8

and Cortex A-9 processors.

ttb_attr

Cacheability attributes for hardware page table walks.

pte_attr

Cacheability attributes for page table mappings used by the memory manager

to manipulate L1/L2 page table entries.

armv_chip_detect()

(QNX Neutrino 6.5.0 or later)

const struct armv_chip *armv_chip_detect()

The armv_chip_detect() function checks for various configurations for Cortex A-8 and

Cortex A-9 processors.

150 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

This function checks for a NULL name and non-NULL detect function to invoke the

CPU-specific detect function that returns the appropriate armv_chip().

armv_pte

(QNX Neutrino 6.5.0 or later)

struct armv_pte {
 unsigned short upte_ro;
 unsigned short upte_rw;
 unsigned short kpte_ro;
 unsigned short kpte_rw;
 unsigned short mask_nc;
 unsigned short l1_pgtable;
 unsigned kscn_ro;
 unsigned kscn_rw;
 unsigned kscn_cb;
};

The armv_pte structure describes the MMU page table encodings. Its members

include:

upte_ro

User-mode read-only pages.

upte_rw

User-mode read-write pages.

kpte_ro

Kernel-mode read-only pages.

kpte_rw

Encoding for kernel-mode read-write pages.

mask_nc

Non-cacheable mappings.

l1_pgtable

Bits to set for L1 page table entry.

kscn_ro

Kernel mode L1 read-only section mapping.

kscn_rw

Kernel mode L1 read-write section mapping.

kscn_cb

Cacheable section mapping.

Copyright © 2014, QNX Software Systems Limited 151

The startup library

armv_setup_v7()

(QNX Neutrino 6.5.0 or later)

void armv_setup_v7(struct cpuinfo_entry *cpu,
 unsigned cpuid,
 unsigned cpunum)

The *setup*() functions perform any CPU-specific initialization.

For ARMv7, there is a generic function, armv_setup_v7(), that performs generic ARMv7

initialization:

• checks for VFP (vector floating point) functionality and sets the CPU_FLAG_FPU,

if necessary

• sets up the MMU for the ARMv7 variant of procnto

The armv_setup_v7() function must be called by any CPU-specific setup function for

an ARMv7 CPU after it has performed its CPU-specific actions.

as_add()

unsigned as_add(paddr_t start,
 paddr_t end,
 unsigned attr,
 const char *name,
 unsigned owner);

Add an entry to the asinfo section of the system page. Parameters map one-to-one

with field names. Returns the offset from the start of the section for the new entry.

For more information and an example, see “Typed memory” in the Interprocess

Communication (IPC) chapter of the System Architecture guide.

as_add_containing()

unsigned as_add_containing(paddr_t start,
 paddr_t end,
 unsigned attr,
 const char *name,
 const char *container);

Add new entries to the asinfo section, with the owner field set to whatever entries are

named by the string pointed to by container. This function can add multiple entries

because the start and end values are constrained to stay within the start and end of

the containing entry (e.g. they get clipped such that they don't go outside the parent).

If more than one entry is added, the AS_ATTR_CONTINUED bit will be turned on in

all but the last. Returns the offset from the start of the section for the first entry added.

For more information and an example, see “Typed memory” in the Interprocess

Communication (IPC) chapter of the System Architecture guide.

152 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

as_default()

unsigned as_default(void);

Add the default memory and io entries to the asinfo section of the system page.

as_find()

unsigned as_find(unsigned start, ...);

The start parameter indicates where to start the search for the given item. For an initial

call, it should be set to AS_NULL_OFF. If the item found isn't the one wanted, then

the return value from the first as_find_item() is used as the start parameter of the

second call. The search will pick up where it left off. This can be repeated as many

times as required (the return value from the second call going into the start parameter

of the third, etc). The item being searched is identified by a sequence of char *

parameters following start. The sequence is terminated by a NULL. The last string

before the NULL is the bottom-level itemname being searched for, the string in front

of that is the name of the item that owns the bottom-level item, etc.

For example, this call finds the first occurrence of an item called “foobar”:

item_off = as_find_item(AS_NULL_OFF, "foobar", NULL);

The following call finds the first occurrence of an item called “foobar” that's owned

by “sam”:

item_off = as_find_item(AS_NULL_OFF, "sam", "foobar", NULL);

If the requested item can't be found, AS_NULL_OFF is returned.

as_find_containing()

unsigned as_find_containing(unsigned off,
 paddr_t start,
 paddr_t end,
 const char *container);

Find an asinfo entry with the name pointed to by container that at least partially covers

the range given by start and end. Follows the same rules as as_find() to know where

the search starts. Returns the offset of the matching entry or AS_NULL_OFF if none

is found. (The as_add_containing() function uses this to find what the owner fields

should be for the entries it's adding.)

as_info2off()

unsigned as_info2off(const struct asinfo_entry *);

Given a pointer to an asinfo entry, return the offset from the start of the section.

Copyright © 2014, QNX Software Systems Limited 153

The startup library

as_off2info()

struct asinfo_entry *as_off2info(unsigned offset);

Given an offset from the start of the asinfo section, return a pointer to the entry.

as_set_checker()

void as_set_checker(unsigned off,
 const struct callout_rtn *rtn);

Set the checker callout field of the indicated asinfo entry. If the AS_ATTR_CONTINUED

bit is on in the entry, advance to the next entry in the section and set its priority as

well (see as_add_containing() (p. 152) for why AS_ATTR_CONTINUED would be on).

Repeat until an entry without AS_ATTR_CONTINUED is found.

as_set_priority()

void as_set_priority(unsigned as_off,
 unsigned priority);

Set the priority field of the indicated entry. If the AS_ATTR_CONTINUED bit is on in

the entry, advance to the next entry in the section and set its priority as well (see

as_add_containing() (p. 152) for why AS_ATTR_CONTINUED would be on). Repeat

until an entry without AS_ATTR_CONTINUED is found.

avoid_ram()

void avoid_ram(paddr32_t start,
 size_t size);

Make startup avoid using the specified RAM for any of its internal allocations. Memory

remains available for procnto to use. This function is useful for specifying RAM that

the IPL/ROM monitor needs to keep intact while startup runs. Because it takes only

a paddr32_t, addresses can be specified in the first 4 GB. It doesn't need a full

paddr_t because startup will never use memory above 4 GB for its own storage

requirements.

calc_time_t()

unsigned long calc_time_t(const struct tm *tm);

Given a struct tm (with values appropriate for the UTC timezone), calculate the

value to be placed in the boot_time field of the qtime section.

154 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

calloc_ram()

paddr32_t calloc_ram (size_t size,
 unsigned align)

Allocate memory from the free memory pool initialized by the call to init_raminfo().

The RAM is cleared.

callout_io_map(), callout_io_map_indirect()

uintptr_t callout_io_map(unsigned size,
 paddr_t phys);

uintptr_t callout_io_map_indirect(unsigned size,
 paddr_t *phys);

Same as mmap_device_io() in the C library — provide access to an I/O port on the

x86 (for other systems, callout_io_map() is the same as callout_memory_map_indirect())

at a given physical address for a given size.

The difference between callout_io_map() and callout_io_map_indirect() is the second

argument: callout_io_map() takes a paddr_t, but callout_io_map_indirect() takes a

pointer to a paddr_t. Using the indirect form makes it easier for you to accomodate

32- and 64-bit addresses.

The return value is for use in the CPU's equivalent of in/out instructions (regular moves

on all but the x86). The value is for use in any kernel callouts (i.e. they live beyond

the end of the startup program and are maintained by the OS while running).

callout_memory_map(), callout_memory_map_indirect()

void *callout_memory_map(unsigned size,
 paddr_t phys,
 unsigned prot_flags);

void *callout_memory_map_indirect(unsigned size,
 paddr_t *phys,
 unsigned prot_flags);

Same as mmap_device_memory() in the C library — provide access to a

memory-mapped device. The value is for use in any kernel callouts (i.e. they live

beyond the end of the startup program and are maintained by the OS while running).

The difference between callout_memory_map() and callout_memory_map_indirect()

is the second argument: callout_memory_map() takes a paddr_t, but

callout_memory_map_indirect() takes a pointer to a paddr_t. Using the indirect form

makes it easier for you to accomodate 32- and 64-bit addresses.

callout_register_data()

void callout_register_data(void *rp,
 void *data);

Copyright © 2014, QNX Software Systems Limited 155

The startup library

This function lets you associate a pointer to arbitrary data with a callout. This data

pointer is passed to the patcher routine (see “Patching the callout code (p. 175),”

below.

The rp argument is a pointer to the pointer where the callout address is stored in the

system page you're building. For example, say you have a pointer to a system page

section that you're working on called foo. In the section there's a field bar that points

to a callout when the system page is finished. Here's the code:

// This sets the callout in the syspage:

foo->bar = (void *)&callout_routine_name;

// This registers data to pass to the patcher when we're
// building the final version of the system page:

callout_register_data(&foo->bar, &some_interesting_data_for_patcher);

When the patcher is called to fix up the callout that's pointed at by foo->bar,

&some_interesting_data_for_patcher is passed to it.

chip_access()

void chip_access(paddr_t base,
 unsigned reg_shift,
 unsigned mem_mapped,
 unsigned size);

Get access to a hardware chip at physical address base with a register shift value of

reg_shift (0 if registers are one byte apart; 1 if registers are two bytes apart, etc. See

devc-ser8250 for more information).

If mem_mapped is zero, the function uses startup_io_map() to get access; otherwise,

it uses startup_memory_map(). The size parameter gives the range of locations to be

given access to (the value is scaled by the reg_shift parameter for the actual amount

that's mapped). After this call is made, the chip_read*() and chip_write*() functions

can access the specified device. You can have only one chip_access() in effect at any

one time.

chip_done()

void chip_done(void);

Terminate access to the hardware chip specified by chip_access().

chip_read8()

unsigned chip_read8(unsigned off);

Read one byte from the device specified by chip_access(). The off parameter is first

scaled by the reg_shift value specified in chip_access() before being used.

156 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

chip_read16()

unsigned chip_read16(unsigned off);

Same as chip_read8() (p. 156), but for 16 bits.

chip_read32()

unsigned chip_read32(unsigned off);

Same as chip_read16() (p. 157), but for 32 bits.

chip_write8()

void chip_write8(unsigned off,
 unsigned val);

Write one byte from the device specified by chip_access(). The off parameter is first

scaled by the reg_shift value specified in chip_access() before being used.

chip_write16()

void chip_write16(unsigned off,
 unsigned val);

Same as chip_write8() (p. 157), but for 16 bits.

chip_write32()

void chip_write32(unsigned off,
 unsigned val);

Same as chip_write16() (p. 157), but for 32 bits.

copy_memory()

void copy_memory (paddr_t dst,
 paddr_t src,
 paddr_t len)

Copy len bytes of memory from physical memory at src to dst.

del_typed_string()

int del_typed_string(int type_index);

Find the string in the typed_strings section of the system page indicated by the type

type_index and remove it. Returns the offset where the removed string was, or -1 if

no such string was present.

Copyright © 2014, QNX Software Systems Limited 157

The startup library

falcon_init_l2_cache()

void falcon_init_l2_cache(paddr_t base);

Enable the L2 cache on a board with a Falcon system controller chip. The base physical

address of the Falcon controller registers are given by base.

falcon_init_raminfo()

void falcon_init_raminfo(paddr_t falcon_base);

On a system with the Falcon system controller chip located at falcon_base, determine

how much/where RAM is installed and call add_ram() (p. 146) with the appropriate

parameters.

falcon_system_clock()

unsigned falcon_system_clock(paddr_t falcon_base);

On a system with a Falcon chipset located at physical address falcon_base, return the

speed of the main clock input to the CPU (in Hertz). This can then be used in turn to

set the cpu_freq, timer_freq, and cycles_freq variables.

find_startup_info()

const void *find_startup_info (const void *start,
 unsigned type)

Attempt to locate the kind of information specified by type in the data area used by

the IPL code to communicate such information. Pass start as NULL to find the first

occurrence of the given type of information. Pass start as the return value from a

previous call in order to get the next information of that type. Returns 0 if no

information of that type is found starting from start.

find_typed_string()

int find_typed_string(int type_index);

Return the offset from the beginning of the type_strings section of the string with the

type_index type. Return -1 if no such string is present.

handle_common_option()

void handle_common_option (int opt)

Take the option identified by opt (a single ASCII character) and process it. This function

assumes that the global variable optarg points to the argument string for the option.

158 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

Valid values for opt and their actions are:

A

Reboot switch. If set, an OS crash will cause the system to reboot. If not

set, an OS crash will cause the system to hang.

D

Output channel specification (e.g. kprintf(), stdout, etc.).

f [cpu_freq][,[cycles_freq][,timer_freq]]

Specify CPU frequencies. All frequencies can be followed by H for hertz, K

for kilohertz, or M for megahertz (these suffixes aren't case-sensitive). If no

suffix is given, the library assumes megahertz if the number is less than

1000; otherwise, it assumes hertz.

If they're specified, cpu_freq, cycles_freq, and timer_freq are used to set

the corresponding variables in the startup code:

• cpu_freq — the CPU clock frequency. Also sets the speed field in the

cpuinfo section of the system page.

• cycles_freq — the frequency at which the value returned by ClockCycles()

increments. Also sets the cycles_per_sec field in the qtime section of

the system page.

• timer_freq — the frequency at which the timer chip input runs. Also sets

the timer_rate and timer_scale values of the qtime section of the system

page.

K

kdebug remote debug protocol channel.

M

Placeholder for processing additional memory blocks. The parsing of

additional memory blocks is deferred until init_system_private() (p. 166).

N

Add the hostname specified to the typed name string space under the

identifier _CS_HOSTNAME.

R

Used for reserving memory at the bottom of the address space.

r

Used for reserving memory at any address space you specify.

Copyright © 2014, QNX Software Systems Limited 159

The startup library

S

Placeholder for processing debug code's -S option.

P

Specify maximum number of CPUs in an SMP system.

j

Add Jtag-related options. Reserves four bytes of memory at the specified

location and copies the physical address of the system page to this location

so the hardware debugger can retrieve it.

v

Increment the verbosity global flag, debug_flag.

hwi_add_device()

void hwi_add_device(const char *bus,
 const char *class,
 const char *name,
 unsigned pnp);

Add an hwi_device item to the hwinfo section. The bus and class parameters are used

to locate where in the device tree the new device is placed.

hwi_add_inputclk()

void hwi_add_inputclk(unsigned clk,
 unsigned div);

Add an hwi_inputclk tag to the hw item currently being constructed.

hwi_add_irq()

void hwi_add_irq(unsigned vector);

Add an irq tag structure to the hwinfo section. The logical vector number for the

interrupt will be set to vector.

hwi_add_location()

void hwi_add_location(paddr_t base,
 paddr_t len,
 unsigned reg_shift,
 unsigned addr_space);

Add a location tag structure to the hwinfo section. The fields of the structure will be

set to the given parameters.

160 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

hwi_add_nicaddr()

void hwi_add_nicaddr(const uint8 *addr,
 unsigned len);

Add an hwi_nicaddr tag to the hw item currently being constructed.

hwi_add_rtc()

void hwi_add_rtc(const char *name,
 paddr_t base,
 unsigned reg_shift,
 unsigned len,
 int mmap,
 int cent_reg);

Add an hwi_device item describing the realtime clock to the hwinfo section. The name

of the device is name. The hwi_location tag items are given by base, reg_shift, len,

and mmap. The mmap parameter indicates if the device is memory-mapped or

I/O-space-mapped and is used to set the addrspace field.

If the cent_reg parameter is not -1, it's used to add an hwi_regname tag with the offset

field set to its value. This indicates the offset from the start of the device where the

century byte is stored.

hwi_alloc_item()

void *hwi_alloc_item(const char *tagname,
 unsigned size,
 unsigned align,
 const char *itemname,
 unsigned owner);

Add an item structure to the hwinfo section.

hwi_alloc_tag()

void *hwi_alloc_tag(const char *tagname,
 unsigned size,
 unsigned align);

Add a tag structure to the hwinfo section.

hwi_find_as()

unsigned hwi_find_as(paddr_t base,
int mmap);

Given a physical address of base and mmap (indicating 1 for memory-mapped and 0

for I/O-space-mapped), return the offset from the start of the asinfo section indicating

the appropriate addrspace field value for an hwi_location tag.

Copyright © 2014, QNX Software Systems Limited 161

The startup library

hwi_find_item()

unsigned hwi_find_item(unsigned start, ...);

Although the hwi_find_item() function resides in the C library (proto in

<hw/sysinfo.h>), the function is still usable from startup programs.

Search for a given item in the hwinfo section of the system page. If start is

HWI_NULL_OFF, the search begins at the start of the hwinfo section. If not, it starts

from the item after the offset of the one passed in (this allows people to find multiple

tags of the same type; it works just like the find_startup_info() function). The var args

portion is a list of character pointers, giving item names; the list is terminated with a

NULL. The order of the item names gives ownership information. For example:

item = hwi_find_item(HWI_NULL_OFF, "foobar", NULL);

searches for an item name called “foobar.” The following:

item = hwi_find_item(HWI_NULL_OFF, "mumblyshwartz",
 "foobar", NULL);

also searches for “foobar,” but this time it has to be owned by an item called

“mumblyshwartz.”

If the item can't be found, HWI_NULL_OFF is returned; otherwise, the byte offset

within the hwinfo section is returned.

hwi_find_tag()

unsigned hwi_find_tag(unsigned start,
 int curr_item,
 const char *tagname);

Although the hwi_find_tag() function resides in the C library (proto in

<hw/sysinfo.h>), the function is still usable from startup programs.

Search for a given tagname in the hwinfo section of startup. The start parameter works

just like in hwi_find_item(). If curr_item is nonzero, the tagname must occur within

the current item. If zero, the tagname can occur anywhere from the starting point of

the search to the end of the section. If the tag can't be found, then HWI_NULL_OFF

is returned; otherwise, the byte offset within the hwinfo section is returned.

hwi_off2tag()

void *hwi_off2tag(unsigned off);

162 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

Although the hwi_off2tag() function resides in the C library (proto in

<hw/sysinfo.h>), the function is still usable from startup programs.

Given a byte offset from the start of the hwinfo section, return a pointer to the hwinfo

tag structure.

hwi_tag2off()

unsigned hwi_tag2off(void *tag);

Although the hwi_tag2off() function resides in the C library (proto in

<hw/sysinfo.h>), the function is still usable from startup programs.

Given a pointer to the start of a hwinfo tag instruction, convert it to a byte offset from

the start of the hwinfo system page section.

init_asinfo()

void init_asinfo(unsigned mem);

Initialize the asinfo section of the system page. The mem parameter is the offset of

the memory entry in the section and can be used as the owner parameter value for

as_add() (p. 152)s that are adding memory.

init_cacheattr()

void init_cacheattr (void)

Initialize the cacheattr (p. 124) member. For all platforms, this is a do-nothing stub.

init_cpuinfo()

void init_cpuinfo (void)

Initialize the members of the cpuinfo (p. 122) structure with information about the

installed CPU(s) and related capabilities. Most systems will be able to use this function

directly from the library.

init_hwinfo()

void init_hwinfo (void)

Initialize the appropriate variant of the hwinfo structure in the system page.

Copyright © 2014, QNX Software Systems Limited 163

The startup library

init_intrinfo()

void init_intrinfo (void)

Initialize the intrinfo (p. 130) structure.

x86

You would need to change this only if your hardware doesn't have the

standard PC-compatible dual 8259 configuration.

ARM

No default version exists; you must supply one.

If you're providing your own function, make sure it initializes:

• the interrupt controller hardware as appropriate (e.g. on the x86 it should program

the two 8259 interrupt controllers)

• the intrinfo structure with the details of the interrupt controller hardware.

This initialization of the structure is done via a call to the function add_interrupt_array()

(p. 146).

init_mmu()

void init_mmu (void)

Sets up the processor for virtual addressing mode by setting up page-mapping hardware

and enabling the pager.

On the x86 family, it sets up the page tables as well as special mappings to “known”

physical address ranges (e.g. sets up a virtual address for the physical address ranges

0 through 0xFFFFF inclusive).

On the ARM family, this function simply sets up the page tables.

init_pminfo()

*init_pminfo (unsigned managed_size)

Initialize the pminfo section of the system page and set the number of elements in

the managed storage array.

init_qtime()

void init_qtime (void)

Initialize the qtime (p. 127) structure in the system page. Most systems will be able to

use this function directly from the library.

164 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

This function doesn't exist for ARM. Specific functions exist for ARM processors with

on-chip timers; currently, this includes only init_qtime_sa1100().

init_qtime_sa1100()

void init_qtime_sa1100 (void)

Initialize the qtime (p. 127) structure and kernel callouts in the system page to use the

on-chip timer for the SA1100 and SA1110 processors.

init_raminfo()

void init_raminfo (void)

Determine the location and size of available system RAM and initialize the asinfo (p.

113) structure in the system page.

If you know the exact amount and location of RAM in your system, you can replace

this library function with one that simply hard-codes the values via one or more

add_ram() (p. 146) calls.

x86

If the RAM configuration is known (e.g. set by the IPL code, or the multi-boot

IPL code gets set by the gnu utility), then the library version of init_raminfo()

will call the library routine find_startup_info() (p. 158) to fetch the information

from a known location in memory. If the RAM configuration isn't known,

then a RAM scan (via x86_scanmem() (p. 172)) is performed looking for valid

memory between locations 0 and 0xFFFFFF, inclusive. (Note that the VGA

aperture that usually starts at location 0xB0000 is specifically ignored.)

ARM

There's no library default. You must supply your own init_raminfo() function.

init_smp()

void init_smp (void)

Initialize the SMP functionality of the system, assuming the hardware (e.g. x86)

supports SMP.

init_syspage_memory() (deprecated)

void init_syspage_memory (void *base,
 unsigned size)

Initialize the system page structure's individual member pointers to point to the data

areas for the system page substructures (e.g. typed_strings). The base parameter is a

Copyright © 2014, QNX Software Systems Limited 165

The startup library

pointer to where the system page is currently stored (it will be moved to the kernel's

address space later); the size indicates how big this area is. On all platforms, this

routine shouldn't require modification.

init_system_private()

void init_system_private (void)

Find all the boot images that need to be started and fill a structure with that

information; parse any -M options used to specify memory regions that should be

added; tell QNX Neutrino where the image filesystem is located; and finally allocate

room for the actual storage of the system page. On all platforms, this shouldn't require

modification.

Note that this must be the last init_*() function

called.

jtag_reserve_memory()

void jtag_reserve_memory (unsigned long resmem_addr,
 unsigned long resmem_size,
 uint8_t resmem_flag)

Reserve a user-specified block of memory at the location specified in resmem_addr.

If the resmem_flag is set to 0, clear the memory.

kprintf()

void kprintf (const char *fmt, ...)

Display output using the put_char() function you provide. It supports a very limited

set of printf() style formats.

openbios_init_raminfo()

void openbios_init_raminfo(void);

On a system that contains an OpenBIOS ROM monitor, add the system RAM

information.

pcnet_reset()

void pcnet_reset(paddr_t base,
 int mmap);

Ensure that a PCnet-style Ethernet controller chip at the given physical address (either

I/O or memory-mapped as specified by mmap) is disabled. Some ROM monitors leave

166 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

the Ethernet receiver enabled after downloading the OS image. This causes memory

to be corrupted after the system starts and before QNX Neutrino's Ethernet driver is

run, due to the reception of broadcast packets. This function makes sure that no

further packets are received by the chip until the QNX Neutrino driver starts up and

properly initializes it.

print_syspage()

void print_syspage (void)

Print the contents of all the structures in the system page. The global variable

debug_level is used to determine what gets printed. The debug_level must be at least

2 to print anything; a debug_level of 3 will print the information within the individual

substructures.

Note that you can set the debug level at the command line by specifying multiple -v

options to the startup program.

You can also use the startup program's -S command-line option to select which entries

are printed from the system page: -Sname selects name to be printed, whereas -S~name

disables name from being printed. The name can be selected from the following list:

Syspage entryProcessorsName

Cache attributesallcacheattr

Calloutsallcallout

CPU infoallcpuinfo

Global Descriptor Tablex86gdt

Hardware infoallhwinfo

Interrupt Descriptor Tablex86idt

Interrupt infoallintrinfo

Memory layoutallmeminfo

Page directoryx86pgdir

System time infoallqtime

SMP infoallsmp

Stringsallstrings

Entire system pageallsyspage

System private infoallsystem_private

Typed stringsalltyped_strings

Copyright © 2014, QNX Software Systems Limited 167

The startup library

rtc_time()

unsigned long rtc_time (void)

This is a user-replaceable function responsible for returning the number of seconds

since January 1 1970 00:00:00 GMT.

x86

This function defaults to calling rtc_time_mc146818(), which knows how

to get the time from an IBM-PC standard clock chip.

ARM

The default library version simply returns zero.

Currently, these are the chip-specific versions:

rtc_time_ds1386()

Dallas Semiconductor DS-1386 compatible

rtc_time_m48t5x()

SGS-Thomson M48T59 RTC/NVRAM chip

rtc_time_mc146818()

Motorola 146818 compatible

rtc_time_rtc72423()

FOX RTC-72423 compatible

There's also a “none” version to use if your board doesn't have RTC hardware:

unsigned long rtc_time_none(void);

If you're supplying the rtc_time() routine, you should call one of the chip-specific

routines or write your own. The chip-specific routines all share the same parameter

list:

(paddr_t base, unsigned reg_shift, int mmap, int cent_reg);

The base parameter indicates the physical base address or I/O port of the device. The

reg_shift indicates the register offset as a power of two.

A typical value would be 0 (meaning 20, i.e. 1), indicating that the registers of the

device are one byte apart in the address space. As another example, a value of 2

(meaning 22, i.e. 4) indicates that the registers in the device are four bytes apart.

If the mmap variable is 0, then the device is in I/O space. If mmap is 1, then the

device is in memory space.

168 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

Finally, cent_reg indicates which register in the device contains the century byte (-1

indicates no such register). If there's no century byte register, then the behavior is

chip-specific. If the chip is year 2000-compliant, then we will get the correct time.

If the chip isn't compliant, then if the year is less than 70, we assume it's in the range

2000 to 2069; else we assume it's in the range 1970 to 1999.

startup_io_map()

uintptr_t startup_io_map(unsigned size,
 paddr_t phys);

Same as mmap_device_io() in the C library — provide access to an I/O port on the

x86 (for other systems, startup_io_map() is the same as startup_memory_map()) at a

given physical address for a given size. The return value is for use in the in*/out*

functions in the C library. The value is for use during the time the startup program is

running (as opposed to callout_io_map(), which is for use after startup is completed).

startup_io_unmap()

void startup_io_unmap(uintptr_t port);

Same as unmap_device_io() in the C library — remove access to an I/O port on the

x86 (on other systems, unmap_device_io() is the same as startup_memory_unmap())

at the given port location.

startup_memory_map()

void *startup_memory_map(unsigned size,
 paddr_t phys,
 unsigned prot_flags);

Same as mmap_device_io_memory() in the C library — provide access to a

memory-mapped device. The value is for use during the time the startup program is

running (as opposed to callout_memory_map(), which is for use after startup is

completed).

startup_memory_unmap()

void startup_memory_unmap(void *vaddr);

Same as unmap_device_memory() in the C library — remove access to a

memory-mapped device at the given location.

tulip_reset()

void tulip_reset(paddr_t phys,
 int mem_mapped);

Copyright © 2014, QNX Software Systems Limited 169

The startup library

Ensure that a Tulip Ethernet chip (Digital 21x4x) at the given physical address (either

I/O or memory-mapped as specified by mem_mapped) is disabled. Some ROM monitors

leave the Ethernet receiver enabled after downloading the OS image. This causes

memory to be corrupted after the system starts and before QNX Neutrino's Ethernet

driver is run, due to the reception of broadcast packets. This function makes sure that

no further packets are received by the chip until the QNX Neutrino driver starts up

and properly initializes it.

uncompress()

int uncompress(char *dst,
 int *dstlen,
 char *src,
 int srclen,
 char *win);

This function resides in the startup library and is responsible for expanding a

compressed OS image out to full size (this is invoked before main() gets called). If

you know you're never going to be given a compressed image, you can replace this

function with a stub version in your own code and thus make a smaller startup program.

x86_cpuid_string()

int x86_cpuid_string (char *buf,
 int max)

Place a string representation of the CPU in the string buf to a maximum of max

characters. The general format of the string is:

manufacturer part Ffamily Mmodel Sstepping

This information is determined using the cpuid instruction. If it's not supported, then

a subset (typically only the part) will be placed in the buffer (e.g. 486).

x86_cputype()

unsigned x86_cputype (void)

An x86 platform-only function that determines the type of CPU and returns the number

(e.g. 486).

x86_enable_a20()

int x86_enable_a20 (unsigned long cpu,
 int only_keyboard)

Enable address line A20, which is often disabled on many PCs on reset. It first checks

if address line A20 is enabled and if so returns 0. Otherwise, it sets bit 0x02 in port

0x92, which is used by many systems as a fast A20 enable. It again checks to see if

A20 is enabled and if so returns 0. Otherwise, it uses the keyboard microcontroller to

170 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

enable A20 as defined by the old PC/AT standard. It again checks to see if A20 is

enabled and if so returns 0. Otherwise, it returns -1.

If cpu is a 486 or greater, it issues a wbinvd opcode to invalidate the cache when

doing a read/write test of memory to see if A20 is enabled.

In the rare case where setting bit 0x02 in port 0x92 may affect other hardware, you

can skip this by setting only_keyboard to 1. In this case, it will attempt to use only

the keyboard microcontroller.

x86_fputype()

unsigned x86_fputype (void)

An x86-only function that returns the FPU type number (e.g. 387).

x86_init_pcbios()

void x86_init_pcbios(void);

Perform initialization unique to an IBM PC BIOS system.

x86_pcbios_shadow_rom()

int x86_pcbios_shadow_rom(paddr_t rom,
 size_t size);

Given the physical address of a ROM BIOS extension, this function makes a copy of

the ROM in a RAM location and sets the x86 page tables in the _syspage_ptr-

>un.x86.real_addr range to refer to the RAM copy rather than the ROM version.

When something runs in V86 mode, it'll use the RAM locations when accessing the

memory.

The amount of ROM shadowed is the maximum of the size parameter and the size

indicated by the third byte of the BIOS extension.

The function returns:

0

if there's no ROM BIOS extension signature at the address given

1

if you're starting the system in physical mode and there's no MMU to make

a RAM copy be referenced

2

if everything works.

Copyright © 2014, QNX Software Systems Limited 171

The startup library

x86_scanmem()

unsigned x86_scanmem (paddr_t beg,
 paddr_t end)

An x86-only function that scans memory between beg and end looking for RAM, and

returns the total amount of RAM found. It scans memory performing a R/W test of 3

values at the start of each 4 KB page. Each page is marked with a unique value. It

then rescans the memory looking for contiguous areas of memory and adds them to

the asinfo (p. 113) entry in the system page.

A special check is made for a block of memory between addresses 0xB0000 and

0xBFFFF, inclusive. If memory is found there, the block is skipped (since it's probably

the dual-ported memory of a VGA card).

The call x86_scanmem (0, 0xFFFFFF) would locate all memory in the first 16

megabytes of memory (except VGA memory). You may make multiple calls to

x86_scanmem() to different areas of memory in order to step over known areas of

dual-ported memory with hardware.

172 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

Writing your own kernel callout

In order for the microkernel to work on all boards, all hardware-dependent operations

have been factored out of the code. Known as kernel callouts, these routines must be

provided by the startup program.

The startup can actually have a number of different versions of the same callout

available — during hardware discovery it can determine which one is appropriate for

the board it's running on and make that particular instance of the callout available to

the kernel. Alternatively, if you're on a deeply embedded system and the startup knows

exactly what hardware is present, only one of each callout might be present; the startup

program simply tells the kernel about them with no discovery process.

The callout code is copied from the startup program into the system page and after

this, the startup memory (text and data) is freed.

At the point where the reboot callout is called:

• the MMU is enabled (the callout would have to disable it if necessary)

• you are running on the kernel stack

• you are executing code copied into the system page so no functions in the startup

program are available.

The patch code is run during execution of the startup program itself, so regular calls

work as normal.

Once copied, your code must be completely self-contained and position independent.

The purpose of the patch routines is to allow you to patch up the code with constants,

access to RW data storage etc. so that your code is self-contained and contains all

the virtual-physical mappings required.

Find out who's gone before

The startup library provides a number of different callout routines that we've already

written. You should check the source tree (originally installed in

bsp_working_dir/src/hardware/startup/lib/) to see if a routine for your

device/board is already available before embarking on the odyssey of writing your own.

This directory includes generic code, as well as processor-specific directories.

In the CPU-dependent level of the tree for all the source files, look for files that match

the pattern:

callout_*.[sS]

Those are all the callouts provided by the library. Whether a file ends in .s or .S

depends on whether it's sent through the C preprocessor before being handed off to

an assembler. For our purposes here, we'll simply refer to them as .s files.

Copyright © 2014, QNX Software Systems Limited 173

Writing your own kernel callout

The names break down further like this:

callout_category_device.s

where category is one of:

cache

cache control routines

debug

kernel debug input and output routines

interrupt

interrupt handling routines

timer

timer chip routine

reboot

rebooting the system

The device identifies the unique hardware that the callouts are for. Typically, all the

routines in a particular source file would be used (or not) as a group by the kernel.

For example, the callout_debug_8250.s file contains the display_char_8250(),

poll_key_8250(), and break_detect_8250() routines for dealing with an 8250-style

UART chip.

Why are they in assembly language?

Since the memory used by the startup executable is reclaimed by the OS after startup

has finished, the callouts that are selected for use by the kernel can't be used in place.

Instead, they must be copied to a safe location (the library takes care of this for you).

Therefore, the callout code must be completely position-independent, which is why

callouts have to be written in assembly language. We need to know where the callout

begins and where it ends; there isn't a portable way to tell where a C function ends.

The other issue is that there isn't a portable way to control the preamble/postamble

creation or code generation. So if an ABI change occurs or a build configuration issue

occurs, we could have a very latent bug.

For all but two of the routines, the kernel invokes the callouts with the normal

function-calling conventions. Later we'll deal with the two exceptions (interrupt_id()

and interrupt_eoi()).

174 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

Starting off

Find a callout source file of the appropriate category that's close to what you want and

copy it to a new filename. If the new routines will be useful on more than one board,

you might want to keep the source file in your own private copy of the startup library.

If not, you can just copy to the directory where you've put your board-specific files.

Now edit the new source file. At the top you'll see something that looks like this:

#include "callout.ah"

Or:

.include "callout.ah"

The difference depends on the assembler syntax being used.

This include file defines the CALLOUT_START and CALLOUT_END macros. The

CALLOUT_START macro takes three parameters and marks the start of one callout.

The first parameter is the name of the callout routine (we'll come back to the two

remaining parameters later).

The CALLOUT_END macro indicates the end of the callout routine source. It takes

one parameter, which has to be the same as the first parameter in the preceding

CALLOUT_START. If this particular routine is selected to be used by the kernel, the

startup library will copy the code between the CALLOUT_START and CALLOUT_END

to a safe place for the kernel to use. The exact syntax of the two macros depends on

exactly which assembler is being used on the source. Two common versions are:

CALLOUT_START(timer_load_8254, 0, 0)
CALLOUT_END(timer_load_8254)

Or:

CALLOUT_START timer_load_8254, 0, 0
CALLOUT_END timer_load_8254

Just keep whatever syntax is being used by the original file you started from. The

original file will also have C prototypes for the routines as comments, so you'll know

what parameters are being passed in. Now you should replace the code from the

original file with what will work for the new device you're dealing with.

“Patching” the callout code

You may need to write a callout that deals with a device that may appear in different

locations on different boards. You can do this by “patching” the callout code as it is

copied to its final position. The third parameter of the CALLOUT_START macro is

Copyright © 2014, QNX Software Systems Limited 175

Writing your own kernel callout

either a zero or the address of a patcher() routine. This routine has the following

prototype:

void patcher(paddr_t paddr,
 paddr_t vaddr,
 unsigned rtn_offset,
 unsigned rw_offset,
 void *data,
 struct callout_rtn *src);

This routine is invoked immediately after the callout has been copied to its final resting

place. The parameters are as follows:

paddr

Physical address of the start of the system page.

vaddr

Virtual address of the system page that allows read/write access (usable only

by the kernel).

rtn_offset

Offset from the beginning of the system page to the start of the callout's

code.

rw_offset

See the section on “Getting some R/W storage (p. 177)” below.

data

A pointer to arbitrary data registered by callout_register_data() (p. 155) (see

above).

src

A pointer to the callout_rtn structure that's being copied into place.

The data and src arguments were added in the QNX Neutrino Core OS 6.3.2.

Earlier patcher functions can ignore them.

Here's an example of a patcher routine for an x86 processor:

patch_debug_8250:
 movl 0x4(%esp),%eax // get paddr of routine
 addl 0xc(%esp),%eax // ...
 movl 0x14(%esp),%edx // get base info

 movl DDI_BASE(%edx),%ecx // patch code with real serial port
 movl %ecx,0x1(%eax)
 movl DDI_SHIFT(%edx),%ecx // patch code with register shift
 movl $REG_LS,%edx
 shll %cl,%edx
 movl %edx,0x6(%eax)
 ret

176 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

CALLOUT_START(display_char_8250, 0, patch_debug_8250)
 movl $0x12345678,%edx // get serial port base (patched)
 movl $0x12345678,%ecx // get serial port shift (patched)

CALLOUT_END(display_char_8250)

After the display_char_8250() routine has been copied, the patch_debug_8250()

routine is invoked, where it modifies the constants in the first two instructions to the

appropriate I/O port location and register spacing for the particular board. The patcher

routines don't have to be written in assembler, but they typically are to keep them in

the same source file as the code they're patching. By arranging the first instructions

in a group of related callouts all the same (e.g. debug_char_*(), poll_key_*(),

break_detect_*()), the same patcher routine can be used for all of them.

Getting some R/W storage

Your callouts may need to have access to some static read/write storage. Normally this

wouldn't be possible because of the position-independent requirements of a callout.

But you can do it by using the patcher routines and the second parameter to

CALLOUT_START. The second parameter to CALLOUT_START is the address of a

four-byte variable that contains the amount of read/write storage the callout needs.

For example:

rw_interrupt:
 .long 4

patch_interrupt:
 add a1,a1,a2
 j ra
 sh a3,0+LOW16(a1)

/*
 * Mask the specified interrupt
 */
CALLOUT_START(interrupt_mask_my_board, rw_interrupt, patch_interrupt)
/*
 * Input Parameters :
 * a0 - syspage_ptr
 * a1 - Interrupt Number
 * Returns:
 * v0 - error status
 */

 ...
CALLOUT_END(interrupt_mask_my_board)

The rw_interrupt address as the second parameter tells the startup library that the

routine needs four bytes of read/write storage (since the contents at that location is a

4). The startup library allocates space at the end of the system page and passes the

offset to it as the rw_offset parameter of the patcher routine. The patcher routine then

modifies the initial instruction of the callout to the appropriate offset. While the callout

is executing, the t3 register will contain a pointer to the read/write storage. The

question you're undoubtedly asking at this point is: Why is the CALLOUT_START

parameter the address of a location containing the amount of storage? Why not just

pass the amount of storage directly?

Copyright © 2014, QNX Software Systems Limited 177

Writing your own kernel callout

That's a fair question. It's all part of a clever plan. A group of related callouts may

want to have access to shared storage so that they can pass information among

themselves. The library passes the same rw_offset value to the patcher routine for all

routines that share the same address as the second parameter to CALLOUT_START.

In other words:

CALLOUT_START(interrupt_mask_my_board, rw_interrupt, patch_interrupt)

CALLOUT_END(interrupt_mask_my_board)

CALLOUT_START(interrupt_unmask_my_board, rw_interrupt, patch_interrupt)

CALLOUT_END(interrupt_unmask_my_board)

CALLOUT_START(interrupt_eoi_my_board, rw_interrupt, patch_interrupt)

CALLOUT_END(interrupt_eoi_my_board)

CALLOUT_START(interrupt_id_my_board, rw_interrupt, patch_interrupt)

CALLOUT_END(interrupt_id_my_board)

will all get the same rw_offset parameter value passed to patch_interrupt() and thus

will share the same read/write storage.

The exception that proves the rule

To clean up a final point, the interrupt_id() and interrupt_eoi() routines aren't called

as normal routines. Instead, for performance reasons, the kernel intermixes these

routines directly with kernel code — the normal function-calling conventions aren't

followed. The callout_interrupt_*.s files in the startup library will have a

description of what registers are used to pass values into and out of these callouts for

your particular CPU. Note also that you can't return from the middle of the routine as

you normally would. Instead, you're required to “fall off the end” of the code.

178 Copyright © 2014, QNX Software Systems Limited

Customizing Image Startup Programs

Chapter 6
Customizing the Flash Filesystem

Copyright © 2014, QNX Software Systems Limited 179

Introduction

The QNX Neutrino RTOS ships with a small number of prebuilt flash filesystem drivers

for particular embedded systems. For the currently available drivers, look in the

${QNX_TARGET}/${PROCESSOR}/sbin directory. The flash filesystem drivers are

named devf-system, where system is derived from the name of the embedded system.

You'll find a general description of the flash filesystem in the System Architecture

book and descriptions of all the flash filesystem drivers in the Utilities Reference.

If a driver isn't provided for your particular target embedded system, you should first

try our “generic” driver (devf-generic). This driver often — but not always — works

with standard flash hardware. The driver assumes a supported memory technology

driver (MTD) and linear memory addressing.

If none of our drivers works for your hardware, you'll need to build your own driver.

We provide all the source code needed for you to customize a flash filesystem driver

for your target. After installation, look in the

bsp_working_dir/src/hardware/flash/boards directory — you'll find a

subdirectory for each board we support.

Besides the boards directory, you should also refer to the following sources to find

out what boards/drivers we currently support:

• QNX Neutrino docs (BSP docs as well as devf-* entries in Utilities Reference)

• the Community area of our website, www.qnx.com

Note that we currently support customizing a driver only for embedded systems with

onboard flash memory (also called a resident flash array or RFA). If you need support

for removable media like PCMCIA or compact or miniature memory cards, then please

contact us.

180 Copyright © 2014, QNX Software Systems Limited

Customizing the Flash Filesystem

http://www.qnx.com

Driver structure

Every flash filesystem driver consists of the following components:

• dispatch, resmgr, and iofunc layers

• flash filesystem

• socket services

• flash services

• probe routine

When customizing the flash filesystem driver for your system, you'll be modifying the

main() routine for the flash filesystem and providing an implementation of the socket

services component. The other components are supplied as libraries to link into the

driver.

/fs0p0 /dev/fs0p0

Flash filesystem

Socket services

Flash
services

Hardware

dispatch*,
resmgr*, iofunc*

Probe
routine

Applications

Figure 14: Structure of the flash filesystem driver.

resmgr and iofunc layers

Like all QNX Neutrino device managers, the flash filesystem uses the standard

resmgr/iofunc interface and accepts the standard set of resource manager messages.

The flash filesystem turns these messages into read, write, and erase operations on

the underlying flash devices.

For example, an open message would result in code being executed that would read

the necessary filesystem data structures on the flash device and locate the requested

file. A subsequent write message will modify the contents of the file on flash. Special

functions, such as erasing the flash device, are implemented using devctl messages.

Copyright © 2014, QNX Software Systems Limited 181

Driver structure

Flash filesystem component

The flash filesystem itself is the “personality” component of the flash filesystem driver.

The filesystem contains all the code to process filesystem requests and to manage the

filesystem on the flash devices. The socket and flash services components are used

by the flash filesystem to access the flash devices.

The code for the flash filesystem component is platform-independent and is provided

in the libfs-flash3.a library.

Socket services component

The socket services component is responsible for any system-specific initialization

required by the flash devices at startup and for providing addressability to the flash

devices (this applies mainly to windowed flash interfaces).

Before reading/writing the flash device, other components will use socket services to

make sure the required address range can be accessed. On systems where the flash

device is linearly mapped into the processor address space, addressability is trivial.

On systems where the flash is either bank-switched or hidden behind some other

interface (such as PCMCIA), addressability is more complicated.

The socket services component is the one that will require the most customization for

your system.

Flash services component

The flash services component contains the device-specific code required to write and

erase particular flash devices. This component is also called the memory technology

driver (MTD).

The directory ${QNX_TARGET}/${PROCESSOR}/lib contains the MTD library

libmtd-flash.a to handle the flash devices we support.

bsp_working_dir/src/hardware/flash/mtd-flash contains source for

the libmtd-flash.a library.

Probe routine component

The probe routine uses a special algorithm to estimate the size of the flash array.

Since the source code for the probe routine is available, you should be able to readily

identify any failures in the sizing algorithm.

182 Copyright © 2014, QNX Software Systems Limited

Customizing the Flash Filesystem

Building your flash filesystem driver

Before you start customizing your own flash filesystem driver, you should examine the

source of all the sample drivers supplied. Most likely, one of the existing drivers can

be easily customized to support your system. If not, the devf-ram source provides

a good template to start with.

The source tree

The source files are organized as follows:

startupipl flash

bsp_working_dir /src/hardware

mtd-flash

board_name flash_type target

boards

Figure 15: Flash directory structure.

The following pathnames apply to the flash filesystems:

DescriptionPathname

Header file f3s_mtd.h.${QNX_TARGET}/usr/include/sys

Header files f3s_api.h,

f3s_socket.h, and f3s_flash.h.

${QNX_TARGET}/usr/include/fs

Libraries for flash filesystem and flash

services.

${QNX_TARGET}/${PROCESSOR}/lib

Source code for socket services.bsp_working_dir/src/hardware/flash/boards

Source code for flash services as well as

for probe routine and helper functions.

bsp_working_dir/src/hardware/flash/mtd-flash

Before you modify any source, you should:

Copyright © 2014, QNX Software Systems Limited 183

Building your flash filesystem driver

1. Create a new directory for your driver in the

bsp_working_dir/src/hardware/flash/boards directory.

2. Copy the files from the sample directory you want into your new directory.

For example, to create a driver called myboard based on an existing board, you would:

cd bsp_working_dir/hardware/flash/boards
mkdir myboard
cp -cRv existing_board myboard
cd myboard
make clean

The copy command (cp) specifies a recursive copy (the -R option). This will copy all

files from the specified source directory including the subdirectory indicating which

CPU this driver should be built for. For example, if the existing_board directory has a

arm subdirectory, then the new driver (myboard in our example) will be built for ARM.

The Makefile

When you go to build your new flash filesystem driver, you don't need to change the

Makefile. Our recursive makefile structure ensures you're linking to the appropriate

libraries.

Making the driver

You should use the following command to make the driver:

make F3S_VER=3 MTD_VER=2

The main() function

The main() function for the driver, which you'll find in the main.c file in the sample

directories, is the first thing that needs to be modified for your system. Let's look at

the main.c file for the 800FADS board example:

/*
** File: main.c for 800FADS board
*/
#include <sys/f3s_mtd.h>
#include "f3s_800fads.h"

int main(int argc, char **argv)
{
 int error;
 static f3s_service_t service[]=
 {
 {
 sizeof(f3s_service_t),
 f3s_800fads_open,
 f3s_800fads_page,
 f3s_800fads_status,
 f3s_800fads_close
 },
 {
 /* mandatory last entry */
 0, 0, 0, 0, 0
 }
 };

184 Copyright © 2014, QNX Software Systems Limited

Customizing the Flash Filesystem

 static f3s_flash_v2_t flash[] =
 {
 {
 sizeof(f3s_flash_v2_t),
 f3s_a29f040_ident, /* Common Ident */
 f3s_a29f040_reset, /* Common Reset */

 /* v1 Read/Write/Erase/Suspend/Resume/Sync (Unused) */
 NULL, NULL, NULL, NULL, NULL, NULL,

 NULL, /* v2 Read (Use default) */

 f3s_a29f040_v2write, /* v2 Write */
 f3s_a29f040_v2erase, /* v2 Erase */
 f3s_a29f040_v2suspend, /* v2 Suspend */
 f3s_a29f040_v2resume, /* v2 Resume */
 f3s_a29f040_v2sync, /* v2 Sync */

 /* v2 Islock/Lock/Unlock/Unlockall (not supported) */
 NULL, NULL, NULL, NULL
 },

 {
 /* mandatory last entry */
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

 }
 };

 /* init f3s */
 f3s_init(argc, argv, flash);

 /* start f3s */
 error = f3s_start(service, flash);

 return error;
}

The service array contains one or more f3s_service_t structures, depending on

how many different sockets your driver has to support. The f3s_service_t structure,

defined in <fs/f3s_socket.h>, contains function pointers to the socket services

routines.

The flash array contains one or more f3s_flash_t structures, depending on how

many different types of flash device your driver has to support. The f3s_flash_t

structure, defined in <fs/f3s_flash.h>, contains function pointers to the flash

services routines.

The f3s_init() and f3s_start() functions are defined in the <fs/f3s_api.h> header

file.

Don't use the <fs/f3s_socket.h>, <fs/f3s_flash.h>, and

<fs/f3s_api.h> header files directly. Instead, you should include

<sys/f3s_mtd.h> for backward and forward compatibility.

f3s_init()

f3s_init (int argc,
 char **argv,
 f3s_flash_t *flash_vect)

Copyright © 2014, QNX Software Systems Limited 185

Building your flash filesystem driver

This function passes the command-line arguments to the flash filesystem component,

which then initializes itself.

f3s_start()

f3s_start (f3s_service_t *service,
 f3s_flash_t *flash)

This function passes the service and flash arrays to the filesystem component so it

can make calls to the socket and flash services, and then starts the driver. This function

returns only when the driver is about to exit.

When writing your main.c, you'll need to enter:

• the socket services functions for each socket in the service array

• the flash services functions for each flash device in the flash array.

If you have a system with only one socket consisting of the same flash devices, then

there will be only a single entry in each array.

Socket services interface

The socket services interface, defined in the <fs/f3s_socket.h> header file,

consists of the following functions:

• f3s_open() (p. 186)

• f3s_page() (p. 186)

• f3s_status() (p. 187)

• f3s_close() (p. 187)

• f3s_socket_option() (p. 189)

• f3s_socket_syspage() (p. 190)

f3s_open()

int32_t f3s_open (f3s_socket_t *socket,
 uint32_t flags)

This function is called to initialize a socket or a particular window in a socket. The

function should process any socket options, initialize and map in the flash devices,

and initialize the socket structure.

f3s_page()

uint8_t *f3s_page (f3s_socket_t *socket,
 uint32_t flags,
 uint32_t offset,
 int32_t *size)

This function is called to access a window_size sized window at address offset from

the start of the device; it must be provided for both bank-switched and linearly mapped

186 Copyright © 2014, QNX Software Systems Limited

Customizing the Flash Filesystem

flash devices. If the size parameter is non-NULL, you should set it to the size of the

window. The function must return a pointer suitable for accessing the device at address

offset. On error, it should return NULL and set errno to ERANGE.

f3s_status()

int32_t f3s_status (f3s_socket_t *socket,
 uint32_t flags)

This function is called to get the socket status. It's used currently only for interfaces

that support dynamic insertion and removal. For onboard flash, you should simply

return EOK.

f3s_close()

void f3s_close (f3s_socket_t *socket,
 uint32_t flags)

This function is called to close the socket. If you need to, you can disable the flash

device and remove any programming voltage, etc.

The following flags are defined for the flags parameter in the socket functions:

F3S_POWER_VCC

Apply read power.

F3S_POWER_VPP

Apply program power.

F3S_OPER_SOCKET

Operation applies to socket given in socket_index.

F3S_OPER_WINDOW

Operation applies to window given in window_index.

The socket parameter is used for passing arguments and returning results from the

socket services and for storing information about each socket. To handle complex

interfaces such as PCMCIA, the structure has been defined so that there can be more

than one socket; each socket can have more than one window. A simple linear flash

array would have a single socket and no windows.

The socket structure is defined as:

typedef struct f3s_socket_s
{
 /*
 * these fields are initialized by the flash file system
 * and later validated and set by the socket services
 */
 uint16_t struct_size; /* size of this structure */
 uint16_t status; /* status of this structure */
 uint8_t *option; /* option string from flashio */

Copyright © 2014, QNX Software Systems Limited 187

Building your flash filesystem driver

 uint16_t socket_index; /* index of socket */
 uint16_t window_index; /* index of window */

 /*
 * these fields are initialized by the socket services and later
 * referenced by the flash file system
 */
 uint8_t *name; /* name of driver */
 _Paddr64t address; /* physical address 0 for allocated */
 uint32_t window_size; /* size of window power of 2 mandatory */
 uint32_t array_offset; /* offset of array 0 for based */
 uint32_t array_size; /* size of array 0 for window_size */
 uint32_t unit_size; /* size of unit 0 for probed */
 uint32_t flags; /* flags for capabilities */
 uint16_t bus_width; /* width of bus */
 uint16_t window_num; /* number of windows 0 for not windowed */

 /*
 * these fields are initialized by the socket services and later
 * referenced by the socket services
 */
 uint8_t* memory; /* access pointer for window memory */
 void *socket_handle; /* socket handle pointer for external
 library */
 void *window_handle; /* window handle pointer for external
 library */

 /*
 * this field is modified by the socket services as different window
 * pages are selected
 */
 uint32_t window_offset; /* offset of window */
}
f3s_socket_t;

Here's a description of the fields:

option

Option string from command line; parse using the f3s_socket_option()

function.

socket_index

Current socket.

window_index

Current window.

name

String containing name of driver.

address

Base address of flash array.

window_size

Size of window in bytes.

array_size

Size of array in bytes; 0 indicates unknown.

188 Copyright © 2014, QNX Software Systems Limited

Customizing the Flash Filesystem

unit_size

Size of unit in bytes; 0 indicates probed.

flags

The flags field is currently unused.

bus_width

Width of the flash devices in bytes.

window_num

Number of windows in socket; 0 indicates non-windowed.

memory

Free for use by socket services; usually stores current window address.

socket_handle

Free for use by socket services; usually stores pointer to any extra data for

socket.

window_handle

Free for use by socket services; usually stores pointer to any extra data for

window.

window_offset

Offset of window from base of device in bytes.

Options parsing

The socket services should parse any applicable options before initializing the flash

devices in the f3s_open() function. Two support functions are provided for this:

f3s_socket_option()

int f3s_socket_option (f3s_socket_t *socket)

Parse the driver command-line options that apply to the socket services.

Currently the following options are defined:

-s baseaddress,windowsize, arrayoffset, arraysize, unitsize, buswidth, interleave

where:

baseaddress

Copyright © 2014, QNX Software Systems Limited 189

Building your flash filesystem driver

Base address of the socket/window.

windowsize

Size of the socket/window.

arrayoffset

Offset of window from base of devices in bytes.

arraysize

Size of array in bytes, 0 indicates unknown.

buswidth

Memory bus attached to the flash chips.

interleave

Number of physical chips interleaved to form a larger logical chip (e.g. two

16-bit chips interleaved to form a 32-bit logical chip).

f3s_socket_syspage()

int f3s_socket_syspage (f3s_socket_t *socket)

Parse the syspage options that apply to the socket services.

The syspage options allow the socket services to get any information about the flash

devices in the system that is collected by the startup program and stored in the syspage.

See the chapter on Customizing Image Startup Programs (p. 109) for more information.

Flash services interface

The flash services interface, defined in the <fs/f3s_flash.h> header file, consists

of the following functions:

• f3s_ident() (p. 191)

• f3s_reset() (p. 191)

• f3s_v2read() (p. 191)

• f3s_v2write() (p. 192)

• f3s_v2erase() (p. 193)

• f3s_v2suspend() (p. 193)

• f3s_v2resume() (p. 194)

• f3s_v2sync() (p. 195)

• f3s_v2islock() (p. 196)

• f3s_v2lock() (p. 196)

190 Copyright © 2014, QNX Software Systems Limited

Customizing the Flash Filesystem

• f3s_v2unlock() (p. 197)

• f3s_v2unlockall() (p. 198)

The values for the flags parameter are defined in <fs/s3s_flash.h>. The

most important one is F3S_VERIFY_WRITE. If this is set, the routine must

perform a read-back verification after the write as a double check that the write

succeeded. Occasionally, however, the hardware reports success even when

the write didn't work as expected.

f3s_ident()

int32_t f3s_ident (f3s_dbase_t *dbase,
 f3s_access_t *access,
 uint32_t text_offset,
 uint32_t flags)

Identifies the flash device at address text_offset and fills in the dbase structure with

information about the device type and geometry.

f3s_reset()

void f3s_reset (f3s_dbase_t *dbase,
 f3s_access_t *access,
 uint32_t text_offset)

Resets the flash device at address text_offset into the default read-mode after calling

the fs3_ident() function or after a device error.

f3s_v2read()

int32_t f3s_v2read (f3s_dbase_t *dbase,
 f3s_access_t *access,
 uint32_t flags,
 uint32_t text_offset,
 int32_t buffer_size,
 uint8_t *buffer);

This optional function is called to read buffer_size bytes from address text_offset into

buffer. Normally the flash devices will be read directly via memcpy().

On success, it should return the number of bytes read. If an error occurs, it should

return -1 with errno set to one of the following:

EIO

Recoverable I/O error (e.g. failed due to low power, but corruption is localized

and block will be usable after erasing).

EFAULT

Unrecoverable I/O error (e.g. block no longer usable).

Copyright © 2014, QNX Software Systems Limited 191

Building your flash filesystem driver

EINVAL

Invalid command error.

ERANGE

Flash memory access out of range (via service->page function).

ENODEV

Flash no longer accessible (e.g. flash removed).

ESHUTDOWN

Critical error; shut down the flash driver.

f3s_v2write()

int32_t f3s_v2write (f3s_dbase_t *dbase,
 f3s_access_t *access,
 uint32_t flags,
 uint32_t text_offset,
 int32_t buffer_size,
 uint8_t *buffer);

This function writes buffer_size bytes from buffer to address text_offset.

On success, it should return the number of bytes written. If an error occurs, it should

return -1 with errno set to one of the following:

EIO

Recoverable I/O error (e.g. failed due to low power or write failed, but

corruption is localized and block will be usable after erasing).

EFAULT

Unrecoverable I/O error (e.g. block no longer usable).

EROFS

Block is write protected.

EINVAL

Invalid command error.

ERANGE

Flash memory access out of range (via service->page function).

ENODEV

Flash no longer accessible (e.g. flash removed).

ESHUTDOWN

192 Copyright © 2014, QNX Software Systems Limited

Customizing the Flash Filesystem

Critical error; shut down the flash driver.

f3s_v2erase()

int f3s_v2erase (f3s_dbase_t *dbase,
 f3s_access_t *access,
 uint32_t flags,
 uint32_t text_offset);

This function begins erasing the flash block containing the text_offset. It can optionally

determine if an error has already occurred, or it can just return EOK and let f3s_v2sync()

detect any error.

On success, it should return EOK. If an error occurs, it should return one of the

following:

EIO

Recoverable I/O error (e.g. failed due to low power or erase failed, but

corruption is localized and block will be usable after an erase)

EFAULT

Unrecoverable I/O error (e.g. block no longer usable)

EROFS

Block is write protected

EINVAL

Invalid command error

EBUSY

Flash busy, try again (e.g. erasing same block twice)

ERANGE

Flash memory access out of range (via service->page function)

ENODEV

Flash no longer accessible (e.g. flash removed)

ESHUTDOWN

Critical error; shut down the flash driver.

f3s_v2suspend()

int f3s_v2suspend (f3s_dbase_t *dbase,
 f3s_access_t *access,
 uint32_t flags,
 uint32_t text_offset);

Copyright © 2014, QNX Software Systems Limited 193

Building your flash filesystem driver

This function suspends an erase operation, when supported, for a read or for a write.

On success, it should return EOK. If an error occurs, it should return one of the

following:

EIO

Recoverable I/O error (e.g. failed due to low power or erase failed, but

corruption is localized and block will be usable after erasing).

EFAULT

Unrecoverable I/O error (e.g. block no longer usable).

EINVAL

Invalid command error.

ECANCELED

Suspend canceled because erase has already completed.

ERANGE

Flash memory access out of range (via service->page function).

ENODEV

Flash no longer accessible (e.g. flash removed).

ESHUTDOWN

Critical error; shut down the flash driver.

f3s_v2resume()

int f3s_v2resume (f3s_dbase_t *dbase,
 f3s_access_t *access,
 uint32_t flags,
 uint32_t text_offset);

This function resumes an erase operation after a suspend command has been issued.

On success, it should return EOK. If an error occurs, it should return one of the

following:

EIO

Recoverable I/O error (e.g. failed due to low power or erase failed, but

corruption is localized and block will be usable after erasing).

EFAULT

Unrecoverable I/O error (e.g. block no longer usable).

EINVAL

194 Copyright © 2014, QNX Software Systems Limited

Customizing the Flash Filesystem

Invalid command error.

ERANGE

Flash memory access out of range (via service->page function).

ENODEV

Flash no longer accessible (e.g. flash removed).

ESHUTDOWN

Critical error; shut down the flash driver.

f3s_v2sync()

int f3s_v2sync (f3s_dbase_t *dbase,
 f3s_access_t *access,
 uint32_t flags,
 uint32_t text_offset);

This function determines whether an erase operation has completed and returns any

detected error.

On success, it should return EOK. If an error occurs, it should return one of the

following:

EAGAIN

Still erasing.

EIO

Recoverable I/O error (e.g. failed due to low power or erase failed, but

corruption is localized and block will be usable after an erase).

EFAULT

Unrecoverable I/O error (e.g. block no longer usable).

EROFS

Block is write protected.

EINVAL

Invalid command error.

ERANGE

Flash memory access out of range (via service->page function).

ENODEV

Flash no longer accessible (e.g. flash removed).

Copyright © 2014, QNX Software Systems Limited 195

Building your flash filesystem driver

ESHUTDOWN

Critical error; shut down the flash driver.

f3s_v2islock()

int f3s_v2islock (f3s_dbase_t *dbase,
 f3s_access_t *access,
 uint32_t flags,
 uint32_t text_offset);

This function determines whether the block containing the address text_offset can be

written to (we term it as success) or not.

On success, it should return EOK. If the block cannot be written to, it should return

EROFS. Otherwise, an error has occurred and it should return one of the following:

EIO

Recoverable I/O error (e.g. failed due to low power or lock failed, but

corruption is localized and block will be usable after an erase).

EFAULT

Unrecoverable I/O error (e.g. block no longer usable).

EINVAL

Invalid command error.

ERANGE

Flash memory access out of range (via service->page function).

ENODEV

Flash no longer accessible (e.g. flash removed).

ESHUTDOWN

Critical error; shut down the flash driver.

f3s_v2lock()

int f3s_v2lock (f3s_dbase_t *dbase,
 f3s_access_t *access,
 uint32_t flags,
 uint32_t text_offset);

This function write-protects the block containing the address text_offset (if supported).

If the block is already locked, it does nothing.

On success, it should return EOK. If an error occurs, it should return one of the

following:

196 Copyright © 2014, QNX Software Systems Limited

Customizing the Flash Filesystem

EIO

Recoverable I/O error (e.g. failed due to low power or lock failed, but

corruption is localized and block will be usable after an erase).

EFAULT

Unrecoverable I/O error (e.g. block no longer usable).

EINVAL

Invalid command error.

ERANGE

Flash memory access out of range (via service->page function).

ENODEV

Flash no longer accessible (e.g. flash removed).

ESHUTDOWN

Critical error; shut down the flash driver.

f3s_v2unlock()

int f3s_v2unlock (f3s_dbase_t *dbase,
 f3s_access_t *access,
 uint32_t flags,
 uint32_t text_offset);

This function clears write-protection of the block containing the address text_offset

(if supported). If the block is already unlocked, it does nothing. Note that some devices

do not support unlocking of arbitrary blocks. Instead all blocks must be unlocked at

the same time. In this case, use f3s_v2unlockall() instead.

On success, it should return EOK. If an error occurs, it should return one of the

following:

EIO

Recoverable I/O error (e.g. failed due to low power or unlock failed, but

corruption is localized and block will be usable after an erase).

EFAULT

Unrecoverable I/O error (e.g. block no longer usable).

EINVAL

Invalid command error.

ERANGE

Copyright © 2014, QNX Software Systems Limited 197

Building your flash filesystem driver

Flash memory access out of range (via service->page function).

ENODEV

Flash no longer accessible (e.g. flash removed).

ESHUTDOWN

Critical error; shut down the flash driver.

f3s_v2unlockall()

int f3s_v2unlockall (f3s_dbase_t *dbase,
 f3s_access_t *access,
 uint32_t flags,
 uint32_t text_offset);

This function clears all write-protected blocks on the device containing the address

text_offset. Some boards use multiple chips to form one single logical device. In this

situation, each chip will have f3s_v2unlockall() invoked on it separately.

On success, it should return EOK. If an error occurs, it should return one of the

following:

EIO

Recoverable I/O error (e.g. failed due to low power or unlock failed, but

corruption is localized and block will be usable after an erase).

EFAULT

Unrecoverable I/O error (e.g. block no longer usable).

EINVAL

Invalid command error.

ERANGE

Flash memory access out of range (via service->page function).

ENODEV

Flash no longer accessible (e.g. flash removed).

ESHUTDOWN

Critical error; shut down the flash driver.

We currently don't support user-customized flash services, nor do we supply

detailed descriptions of the flash services implementation.

198 Copyright © 2014, QNX Software Systems Limited

Customizing the Flash Filesystem

Choosing the right routines

We provide several device-specific variants of the core set of flash services:

• f3s_ident()

• f3s_reset()

• f3s_v2write()

• f3s_v2erase()

• f3s_v2suspend()

• f3s_v2resume()

• f3s_v2sync()

• f3s_v2islock()

• f3s_v2lock()

• f3s_v2unlock()

• f3s_v2unlockall().

For example, if you have a 16-bit Intel device and you want to use f3s_v2erase(), you'd

use the f3s_iCFI_v2erase() routine.

For more information, see the technical note Choosing the correct MTD Routine for

the Flash Filesystem.

The file <sys/f3s_mtd.h> can be found in:

bsp_working_dir/src/hardware/flash/mtd-flash/public/sys/f3s_mtd.h.

Copyright © 2014, QNX Software Systems Limited 199

Building your flash filesystem driver

Example: The devf-ram driver

This driver uses main memory rather than flash for storing the flash filesystem.

Therefore, the filesystem is not persistent — all data is lost when the system reboots

or /dev/shmem/fs0 is removed. This driver is used mainly for test purposes.

main()

In the main() function, we declare a single services array entry for the socket services

functions and a null entry for the flash services functions.

/*
** File: f3s_ram_main.c
**
** Description:
**
** This file contains the main function for the f3s
** flash filesystem
**
*/
#include "f3s_ram.h"

int main(int argc, char **argv)
{
 int error;
 static f3s_service_t service[] =
 {
 {
 sizeof(f3s_service_t),
 f3s_ram_open,
 f3s_ram_page,
 f3s_ram_status,
 f3s_ram_close
 },

 {
 /* mandatory last entry */
 0, 0, 0, 0, 0
 }
 };

 static f3s_flash_v2_t flash[] =
 {
 {
 sizeof(f3s_flash_v2_t),
 f3s_sram_ident, /* Common Ident */
 f3s_sram_reset, /* Common Reset */
 NULL, /* v1 Read (Deprecated) */
 NULL, /* v1 Write (Deprecated) */
 NULL, /* v1 Erase (Deprecated) */
 NULL, /* v1 Suspend (Deprecated) */
 NULL, /* v1 Resume (Deprecated) */
 NULL, /* v1 Sync (Deprecated) */
 NULL, /* v2 Read (Use default) */
 f3s_sram_v2write, /* v2 Write */
 f3s_sram_v2erase, /* v2 Erase */
 NULL, /* v2 Suspend (Unused) */
 NULL, /* v2 Resume (Unused) */
 f3s_sram_v2sync, /* v2 Sync */
 f3s_sram_v2islock, /* v2 Islock */
 f3s_sram_v2lock, /* v2 Lock */
 f3s_sram_v2unlock, /* v2 Unlock */
 f3s_sram_v2unlockall /* v2 Unlockall */
 },

 {
 /* mandatory last entry */
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

200 Copyright © 2014, QNX Software Systems Limited

Customizing the Flash Filesystem

 }
 };

 /* init f3s */
 f3s_init(argc, argv, (f3s_flash_t *)flash);

 /* start f3s */
 error = f3s_start(service, (f3s_flash_t *)flash);

 return (error);
}

f3s_ram_open()

In the socket services open() function, we assign a name for the driver and then process

any options. If no options are specified, a default size is assigned and the memory for

the (virtual) flash is allocated.

/*
** File: f3s_ram_open.c
**
** Description:
**
** This file contains the open function for the ram library
**
*/
#include "f3s_ram.h"

int32_t f3s_ram_open(f3s_socket_t *socket,
 uint32_t flags)
{
 static void * memory;
 char name[8];
 int fd;
 int flag;

 /* check if not initialized */
 if (!memory)
 {
 /* get io privileges */
 ThreadCtl(_NTO_TCTL_IO, NULL);

 /* setup socket name */
 socket->name = "RAM (flash simulation)";

 /* check if there are socket options */
 if (f3s_socket_option(socket))
 socket->window_size = 1024 * 1024;

 /* check if array size was not chosen */
 if (!socket->array_size)
 socket->array_size = socket->window_size;

 /* check if array size was not specified */
 if (!socket->array_size) return (ENXIO);

 /* set shared memory name */
 sprintf(name, "/fs%X", socket->socket_index);

 /* open shared memory */
 fd = shm_open(name, O_CREAT | O_RDWR, 0777);

 if (fd < 0) return (errno);

 /* set size of shared memory */
 flag = ftruncate(fd, socket->array_size);

 if (flag)
 {
 close(fd);
 return (errno);
 }

 /* map physical address into memory */

Copyright © 2014, QNX Software Systems Limited 201

Example: The devf-ram driver

 memory = mmap(NULL, socket->array_size,
 PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, socket->address);

 if (!memory)
 {
 close(fd);
 return (errno);
 }

 /* copy socket handle */
 socket->socket_handle = (void *)fd;
 }

 /* set socket memory pointer to previously initialized
 value */
 socket->memory = memory;
 return (EOK);
}

f3s_ram_page()

In the socket services page() function, we first check that the given offset doesn't

exceed the bounds of the allocated memory, and then assign the window size if

required. The function returns the offset address modulo the window size.

/*
** File: f3s_ram_page.c
**
** Description:
**
** This file contains the page function for the ram library
**
*/
#include "f3s_ram.h"

uint8_t *f3s_ram_page(f3s_socket_t *socket,
 uint32_t flags,
 uint32_t offset,
 int32_t *size)
{
 /* check if offset does not fit in array */
 if (offset >= socket->window_size)
 {
 errno = ERANGE;
 return (NULL);
 }

 /* select proper page */
 socket->window_offset = offset & ~(socket->window_size - 1);

 /* set size properly */
 *size = min((offset & ~(socket->window_size - 1)) +
 socket->window_size - offset, *size);

 /* return memory pointer */
 return (socket->memory + offset);
}

The socket services status() and close() don't do anything interesting in this driver.

202 Copyright © 2014, QNX Software Systems Limited

Customizing the Flash Filesystem

Appendix A
System Design Considerations

Since QNX Neutrino is a protected-mode 32-bit operating system, many limiting design

considerations won't apply (particularly on the x86 platform, which is steeped in DOS

and 8088 legacy concerns). By noting the various “do's” and “don'ts” given in this

appendix, you'll be able to design and build an embedded system tailored for QNX

Neutrino.

You may also be able to realize certain savings, in terms of design time, hardware

costs, and software customization effort.

Copyright © 2014, QNX Software Systems Limited 203

Before you design your system

Before you begin designing your system, here are some typical questions you might

consider:

• What speed of processor do you need?

• How much memory is required?

• What peripherals are required?

• How will you debug the platform?

• How will you perform field upgrades?

Naturally, your particular system will dictate whether all of these (or others) are relevant.

But for the purposes of this discussion, we'll assume all these considerations apply.

Processor speed

Although QNX Neutrino is a realtime operating system, this fact alone doesn't

necessarily mean that any given application will run quickly. Graphical user

interface applications can consume a reasonable amount of CPU and are

particularly sensitive to the end-user's perception of speed.

If at all possible, try to prototype the system on either a standard PC (in the

case of x86-based designs) or a supported evaluation board (in the case of

x86 and ARM designs). This will very quickly give you a “feel” for the speed

of a particular processor.

Memory requirements

During initial prototyping, you should plan on more memory on the target

than during the final stages. This is because you'll often be running

debugging versions of software, which may be larger. Also, you'll want to

include diagnostics and utility programs, which again will consume more

memory than expected. Once your prototype system is up and running, you

can then start thinking about how much memory you “really” need.

Peripherals

Given a choice, you should use peripherals that are listed as supported by

QNX Neutrino. This includes such items as disk controllers, network cards,

PC-Card controllers, flash memory chips, and graphics controllers. For lists

of supported hardware, see the Community area of our website,

http:www.qnx.com; for information about third-party products, see the

Download area.

Graphics controllers are one of the particularly delicate areas in the design

of an embedded system, often because a chip may be very new when it's

204 Copyright © 2014, QNX Software Systems Limited

System Design Considerations

http://www.qnx.com

selected and we may not yet have a driver for it. Also, if you're using a

graphics controller in conjunction with an LCD panel, beware that this is

perhaps the most complicated setup because of the many registers that

must be programmed to make it work.

Note that QNX Software Systems can do custom development work for you;

for more information, contact your sales representative. Other consulting

houses offer similar services to the QNX community.

Debugging

In many cases, especially in cost-sensitive designs, you won't want to provide

any additional functionality beyond that absolutely required for the project

at hand. But since the project is usually a brand new design, you'll need to

ensure that the hardware actually works per se and then actually works with

the software.

We recommend that you install some form of easy-to-get-at hardware

debugging port, so that the software can output diagnostics as it's booting.

Generally, something as simple as a latched output that can drive a single

LED is sufficient, but an 8- or 16-bit port that drives a number of 7-segment

LEDs would be even better. Best of all is a simple serial port, because more

meaningful diagnostics can be written by the software and easily captured.

This debug port can be left off for final assembly or a slightly modified

“final” version of the board can be created. The cost savings in terms of

software development time generally pay for the hardware modifications

many times over.

Field upgrades

You can handle the issue of field upgrades in various ways, depending on

the nature of your particular target system:

• a JTAG port

• socketed Flash/EPROM devices

• a communications port

You may need such a vehicle for your update software even during your initial

software development effort. At this early phase, you'll effectively be

performing “field upgrades” as your software is being developed.

The target requirements vary depending on your intended usage. The bare minimum

requirements for generic x86 target systems are:

• a Pentium-class x86 CPU (including the Intel Atom family)

• 16 megabytes of DRAM (you might still be able to run the kernel, libc, and a

shell in less than 16 MB, but it would require some fine-tuning and customization)

Copyright © 2014, QNX Software Systems Limited 205

Before you design your system

• a BIOS, capable of booting the board by loading an OS image from an external

hard drive, CD-ROM, USB mass storage device, etc.

We also support non-BIOS IPL for x86 on specific processors and chipsets, but you

should ask us about your exact target configuration.

For requirements for non-x86 targets, see the Board Support Packages that we provide;

the target boards that we support represent a cross section of the minimum hardware

(in terms of DRAM, CPU/SoC performance, storage space, etc.) that we require. If

you're considering another board, ask us to help analyze it.

206 Copyright © 2014, QNX Software Systems Limited

System Design Considerations

Other design considerations

There are other design considerations that relate to both the hardware and software

development process. In this section, we'll discuss some of the more common ones.

EPROM/Flash filesystem considerations

Solid-state mass storage can be located anywhere in the address space — it should

be linearly mapped. In legacy designs (particularly x86), the mass storage device was

often forced into a window of some size (typically from 8 KB to 64 KB), with additional

hardware being required to map that window into the processor's address space.

Additionally, this window was traditionally located in the first 1 MB of memory.

With a modern, 32-bit processor, the physical address space of the processor is usually

sufficient to address the entire mass storage device. In fact, this makes the software

easier by not having to worry about how to address the window-mapping hardware.

The two driving factors to be considered in the hardware design of solid-state media

are cost and compatibility. If the medium is to be soldered onto the board, then there's

little chance that it may need to be compatible with other operating systems. Therefore,

simply map the entire medium into the address space of the processor and don't add

additional hardware to perform windowing or bank switching.

Adhering to standards (e.g. PCMCIA, FFS2, etc.) for solid-state memory is also

unnecessary — our Flash filesystem drivers know how to address and use just a raw

Flash device.

When the time comes to decide on the logical layout of the flash memory chips, the

tradeoff will be between the size of the erase block and the speed of access. By taking

four flash devices and organizing them into a 32-bit wide bus, you gain speed. However,

you also increase the erase block size by a factor of four (e.g. 256 KB erase blocks).

Note that we don't recommend trying to XIP out of flash memory that's being used for

a flash filesystem. This is because the flash filesystem may need to erase a particular

block of memory. While this erase operation is in progress, depending on the particular

type of flash memory device you have, the entire device may be unusable. If this is

also the device containing the code that the processor is actively executing from, you'll

run into problems. Therefore, we recommend that you use at least two independent

sets of flash devices: one set for the filesystem and one set for the code.

IPL location

Under QNX Neutrino, the only location requirement is that the ROM boot device that

performs the IPL be addressable at the processor's reset vector. No special hardware

is required to be able to “move” the location of the boot ROM.

Copyright © 2014, QNX Software Systems Limited 207

Other design considerations

Graphics cards

All the drivers under QNX Neutrino can be programmed to deal with graphics hardware

at any address—there's no requirement to map the VGA video aperture below 1 MB.

A20 gate

On the x86 platform, another vestige of the legacy 1 MB address limitation is usually

found in something called an A20 gate. This is a piece of hardware that would force

the A20 address line to zero, regardless of the actual setting of the A20 address line

on the processor.

The justification for this was for legacy software that would depend on the ability to

wrap past location 0xFFFFF back to 0x00000. The QNX Neutrino RTOS doesn't have

such a requirement. As a result, the OS doesn't need any A20 gate hardware to be

installed. Note that some embedded x86 processors have the A20 gate hardware built

right into the processor chip itself—the IPL will disable the A20 gate as soon as

possible after startup.

If your system requires a standard BIOS, there's a small chance that the BIOS

will make use of the A20 gate. To find out for certain, consult your BIOS

supplier.

External ISA bus slots

QNX Neutrino doesn't require the external ISA bus to be mapped into the usual x86

0x00000-to-0xFFFFF address range. This simplifies the hardware design, eliminating

issues such as shadow RAM and the requirement to move a portion of the RAM (usually

0xA0000 through 0xFFFFF) to some other location.

But if your hardware needs to run with a standard BIOS and to support BIOS extensions,

then this optimization can't be implemented, because the BIOS expects extensions

at 0xA0000 through 0xEFFFF (typically).

PCI bus slots

In QNX Neutrino, all PCI drivers interface to a PCI resource manager (e.g. pci-bios,

pci-p5064, pci-raven), which handles the hardware on behalf of the drivers.

For details, see the pci-* entries in the Utilities Reference.

External clocks

The QNX Neutrino RTOS can be driven with an external clock. In some systems there's

a “standard” clock source supplied as part of the system or of the highly integrated

208 Copyright © 2014, QNX Software Systems Limited

System Design Considerations

CPU chip itself. For convenience, the OS can operate with an external clock source

that's not generated by this component. However, keep two things in mind:

• The timing resolution for software timers will be no better than the timing resolution

of the external clock.

• The hardware clock will be driving a software interrupt handler.

Therefore, keep the rates down to a reasonable number. Almost all modern processors

can handle clock interrupts at 1 kHz or lower — processors with higher CPU clock

rates (e.g. Pentium-class, 300 MHz RISC processors, etc.) can handle faster clock

interrupts.

Note that there's no requirement to keep the clock frequency to some “round number.”

If it's convenient to derive the clock interrupt from a baud rate generator or other

crystal, the OS will be able to accurately scale the incoming clock rate for use in its

internal timers and time-of-day clocks.

Interrupts & controllers

On an x86 design, the default startup supports two Programmable Interrupt Controllers

(PICs). These must be 8259-compatible, with the standard configuration of a secondary

8259 connected to the IRQ2 line of the primary interrupt controller.

Beware of hanging devices off IRQ7 and IRQ15 on an 8259 chip — these are

generally known as the “glitch interrupts” and can be unreliable.

If your x86 hardware design differs, there's no constraint about the PICs, but you must

write the code to handle them.

On non-x86 designs, be aware that there may be only one interrupt line going to the

processor and that a number of hardware devices may be sharing that one line. This

is generally accomplished in one of two ways:

• wire-OR

• PIC chip

In either case, the relevant design issue is to determine the ordering and priority of

interrupts from hardware sources. You'll want to arrange the hardware and software

to give highest priority (and first order) to the interrupt source that has the most

stringent latency requirements. (For more details, see the chapter on Writing an

Interrupt Handler in the Programmer's Guide, along with the InterruptAttach() and

InterruptAttachEvent() function calls in the QNX Neutrino C Library Reference.)

Serial and parallel ports

Serial and parallel ports are certainly desirable—and highly recommended—but not

required. The 16550 component with 16-byte FIFOs is suitable for QNX Neutrino.

Copyright © 2014, QNX Software Systems Limited 209

Other design considerations

Our drivers can work with these devices on a byte-aligned or doubleword-aligned

manner.

If you're going to support multiple serial ports on your device, you can have the multiple

devices share the same interrupt. It's up to the software to decide which device

generated the interrupt and then to handle that interrupt. The standard QNX Neutrino

serial port handlers are able to do this.

Although the serial driver can be told to use a “nonstandard” clock rate when

calculating its divisor values, this can cause the baud rate to deviate from the standard.

Try to run DTR, DSR, RTS, CTS if possible, because hardware flow control will help

on slower CPUs.

Parallel port considerations

Generally, the parallel port does not require an interrupt line — this isn't used by our

standard parallel port drivers.

210 Copyright © 2014, QNX Software Systems Limited

System Design Considerations

Avoid Non-Maskable Interrupts (NMIs)

Avoid the Non-Maskable Interrupt (NMI) in x86 designs. ARM doesn't even support

it. An NMI is an interrupt which can't be disabled by clearing the CPU's interrupt

enable flag, unlike most normal interrupts. Non-Maskable interrupts are typically used

to signal events that require immediate action, such as a parity error, a hardware

failure, or imminent loss of power.

The problem with NMIs is that they can occur even when interrupts have been disabled.

This is important because sometimes it's assumed that interrupts can be masked to

avoid being interrupted. NMIs undermine this assumption and this can lead to

unexpected behaviour if an NMI fires during a period in which that software expects

to be operating without interruption.

For this reason, NMIs are normally only used when the subsequent condition of the

machine is not a relevant consideration; for instance, when the machine is about to

shut down, or when an unrecoverable hardware error has occurred.

Anytime an NMI is used, any software may experience unexpected behavior and there's

no good way to predict what the behavior may be.

Copyright © 2014, QNX Software Systems Limited 211

Avoid Non-Maskable Interrupts (NMIs)

Design do's and don'ts

Before you commit to a design, take a look at the following tips — you may save

yourself some grief. Although some of these points assume you're relying on our Custom

Engineering services, the principles behind all of them are sound.

Do:

• Do design in more speed/memory than you think you need.

• Do try a proof of concept using off-the-shelf hardware, if possible.

• Do have a serial port/debug output device on the board; have it reasonably

close to the CPU in hardware terms (i.e., don't put it on the other side

of a PCI bridge).

• Do allow the ROM/flash devices holding the IPL code to be socketed.

• Do consider staggering a device's ports by any power of 2, but don't mix

up the address lines so that the I/O registers appear in a strange order.

• Do try to use a timer chip that allows free-running operation, rather than

one that requires poking after every interrupt.

• Do put the timer on its own interrupt line so that the kernel doesn't have

to check that the interrupt actually came from the timer.

• Do follow the CPU's interface for reporting a bus error; don't report it as

a hardware interrupt.

• If you have optional pieces, make sure you have some positive method

of determining what pieces are present (something other than poking at

it and seeing if it responds).

• Do run your design by us, ideally before you build it.

• Do make a point of stating requirements you think are obvious.

• Do remember to point out any pitfalls you know about.

• Do send us as much documentation as you have available on chipsets,

panels, etc.

Don't:

• Don't use write-only registers.

• Don't nest interrupt controller chips too deeply—one big wide interrupt

controller is better.

• Don't use hardware that requires short delays between register accesses

(e.g., Zilog SCC).

• Don't put information from many different places into the same I/O

register location if the OS/drivers also have to do RMW cycles to it.

212 Copyright © 2014, QNX Software Systems Limited

System Design Considerations

• Don't decide that no-BIOS is the way to go just because it sounds cool.

• Don't use a $2.00 chip instead of a $3.00 chip and expect the

performance of a $10.00 chip.

• Don't build your first run of boards without leaving a way to debug the

system.

• Don't build your first run of boards with only 1 MB of RAM on board.

• Don't send us anything without correct schematics that match what you

send.

• Don't program the flash and then solder it on, leaving us with no option

to reprogram it.

• Don't build just one prototype that must be shipped back and forth several

times.

Copyright © 2014, QNX Software Systems Limited 213

Design do's and don'ts

Appendix B
Sample Buildfiles

In this appendix, we'll look at some typical buildfiles you can use with mkifs or import

into the IDE's System Builder to get your system up and running. This appendix is

divided into two main parts:

• a “generic” part that contains some incomplete cut-and-paste fragments illustrating

common techniques, as well as complete samples for the x86 platform

• processor-specific notes

We finish with a section for each of the supported processor platforms, showing you

differences from the x86 samples and noting things to look out for.

Note that you should read both the section for your particular processor as well as the

section on generic samples, because things like shared objects (which are required

by just about everything) are documented in the generic section.

Copyright © 2014, QNX Software Systems Limited 215

Generic examples

In this section, we'll look at some common buildfile examples that are applicable

(perhaps with slight modifications, which we'll note) to all platforms. We'll start with

some fragments that illustrate various techniques, and then we'll wrap up with a few

complete buildfiles. In the “Processor-specific notes” section, we'll look at what needs

to be different for the various processor families.

Shared libraries

The first thing you'll need to do is to ensure that the shared objects required by the

various drivers you'll be running are present.

All drivers require at least the standard C library shared object (libc.so). Since the

shared object search order looks in /proc/boot, you don't have to do anything

special, except include the shared library into the image. This is done by simply

specifying the name of the shared library on a line by itself, meaning “include this

file.”

The runtime linker is expected to be found in a file called ldqnx.so.2, but

the runtime linker is currently contained within the libc.so file, so we would

make a process manager symbolic link to it.

The following buildfile snippet applies:

include the C shared library
libc.so
create a symlink called ldqnx.so.2 to it
[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so

How do you determine which shared objects you need in the image? There are several

ways:

• The easiest method (which gives the most concise output) is to use the ldd (“list

dynamic dependencies”) utility. For example:

ldd `which ping`
/usr/bin/ping:
 libsocket.so.3 => /lib/libsocket.so.3 (0xb8200000)
 libc.so.3 => /usr/lib/ldqnx.so.2 (0xb0300000)

• You can use the objdump utility to display information about the executables

you're including in the image; look for the objects marked as NEEDED. For example:

objdump -x `which ping` | grep NEEDED
 NEEDED libsocket.so.3
 NEEDED libc.so.3

216 Copyright © 2014, QNX Software Systems Limited

Sample Buildfiles

The ping executable needs libsocket.so.3 and libc.so.3. You need to use

objdump recursively to see what these shared objects need:

objdump -x /lib/libsocket.so.3 | grep NEEDED
 NEEDED libc.so.3
objdump -x /lib/libc.so.3 | grep NEEDED

The libsocket.so.3 shared object needs only libc.so.3, which, in turn,

needs nothing.

• You can set the DL_DEBUG environment variable. This causes the shared library

loader to display debugging information about the libraries as they're opened:

export DL_DEBUG=libs
ping 10.42.110.235
load_object: attempt load of libsocket.so.3
load_elf32: loaded lib at addr b8200000(text) b822bccc(data)
dlopen("nss_files.so.0",513)
load_object: attempt load of nss_files.so.0
dlopen: Library cannot be found
dlopen("nss_dns.so.0",513)
load_object: attempt load of nss_dns.so.0
dlopen: Library cannot be found

For more information about the values for DL_DEBUG, see the entry for dlopen()

in the QNX Neutrino C Library Reference.

Running executables more than once

If you want to be able to run executables more than once, you'll need to specify the

[data=copy] attribute for those executables. If you want it to apply to all executables,

just put it on a line by itself before the executables. This causes the data segment to

be copied before it's used, preventing it from being overwritten by the first invocation

of the program.

Multiple consoles

For systems that have multiple consoles or multiple serial ports, you may wish to have

the shell running on each of them. Here's an example showing you how that's done:

[+script] .script = {
 # start any other drivers you need here
 devc-con -e -n4 &
 reopen /dev/con1
 [+session] esh &
 reopen /dev/con2
 [+session] esh &
 ...

As you can see, the trick is to:

1. Start the console driver with the -n option to ask for more than one console (in this

case, we asked for four virtual consoles).

2. Redirect standard input, output, and error to each of the consoles in turn.

3. Start the shell on each console.

Copyright © 2014, QNX Software Systems Limited 217

Generic examples

It's important to run the shell in the background (via the ampersand character “&”)

— if you don't, then the interpretation of the script will suspend until the shell exits!

Starting other programs on consoles

Generally speaking, this method can be used to start various other programs on the

consoles (that is to say, you don't have to start the shell; it could be any program).

To do this for serial ports, start the appropriate serial driver (e.g. devc-ser8250),

and redirect standard input, output, and error for each port (e.g. /dev/ser1,

/dev/ser2). Then run the appropriate executable (in the background!) after the

redirection.

The [+session] directive makes the program the session leader (as per POSIX) —

this may not be necessary for arbitrary executables.

Redirection

You can do the reopen on any device as many times as you want. You would do this,

for example, to start a program on /dev/con1, then start the shell on /dev/con2,

and then start another program on /dev/con1 again:

[+script] .script = {
 ...
 reopen /dev/con1
 prog1 &
 reopen /dev/con2
 [+session] esh &
 reopen /dev/con1
 prog2 &
 ...

/tmp

To create the /tmp directory on a RAM-disk, you can use the following in your buildfile:

[type=link] /tmp = /dev/shmem

This will establish /tmp as a symbolic link in the process manager's pathname table

to the /dev/shmem directory. Since the /dev/shmem directory is really the place

where shared memory objects are stored, this effectively lets you create files on a

RAM-disk — files created are, in reality, shared memory objects living in RAM.

Note that the line containing the link attribute (the [type=link] line) should be

placed outside of the script file or boot file — after all, you're telling mkifs that it

should create a file that just happens to be a link rather than a “real” file.

Complete example — minimal configuration

This configuration file does the bare minimum necessary to give you a shell prompt

on the first serial port:

[virtual=processor,srec] .bootstrap = {

218 Copyright © 2014, QNX Software Systems Limited

Sample Buildfiles

 startup-rpx-lite -Dsmc1.115200.64000000.16
 PATH=/proc/boot procnto
}
[+script] .script = {
 devc-serversion -e -F -c64000000 -b115200 smc1 &
 reopen

 [+session] PATH=/proc/boot esh &
}

[type=link] /dev/console=/dev/ser1
[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so

libc.so

[data=copy]
devc-serversion
esh
specify executables that you want to be able
to run from the shell: echo, ls, pidin, etc...
echo
ls
pidin
cat
cp

Complete example — flash filesystem

Let's now examine a complete buildfile that starts up the flash filesystem:

[virtual=x86,bios +compress] .bootstrap = {
 startup-bios
 PATH=/proc/boot:/bin procnto
}

[+script] .script = {
 devc-con -e -n5 &
 reopen /dev/con1
 devf-i365sl -r -b3 -m2 -u2 -t4 &
 waitfor /fs0p0
 [+session] TERM=qansi PATH=/proc/boot:/bin esh &
}

[type=link] /tmp=/dev/shmem
[type=link] /bin=/fs0p0/bin
[type=link] /etc=/fs0p0/etc

libc.so
[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so
libsocket.so

[data=copy]

devf-i365sl
devc-con
esh

The buildfile's .bootstrap specifies the usual startup-bios and procnto (the

startup program and the kernel). Notice how we set the PATH environment variable

to point not only to /proc/boot, but also to /bin — the /bin directory is a link

(created with the [type=link]) to the flash filesystem's /fs0p0/bin path.

In the .script file, we started up the console driver with five consoles, reopened

standard input, output, and error for /dev/con1, and started the flash filesystem

driver devf-i365sl. Let's look at the command-line options we gave it:

-r

Enable fault recovery for dirty extents, dangling extents, and partial reclaims.

Copyright © 2014, QNX Software Systems Limited 219

Generic examples

-b3

Enable background reclaim at priority 3.

-u2

Specify the highest update level (2) to update files and directories.

-t4

Specify the highest number of threads. Extra threads will increase

performance when background reclaim is enabled (with the -b option) and

when multiple chips and/or spare blocks are available.

The devf-i365sl will automatically mount the flash partition as /fs0p0. Notice

the process manager symbolic links we created at the bottom of the buildfile:

[type=link] /bin=/fs0p0/bin
[type=link] /etc=/fs0p0/etc

These give us /bin and /etc from the flash filesystem.

Complete example — disk filesystem

In this example, we'll look at a filesystem for rotating media. Notice the shared libraries

that need to be present:

[virtual=x86,bios +compress] .bootstrap = {
 startup-bios
 PATH=/proc/boot:/bin LD_LIBRARY_PATH=/proc/boot:/lib:/dll procnto
}

[+script] .script = {
 pci-bios &
 devc-con &
 reopen /dev/con1
Disk drivers
 devb-eide blk cache=2m,automount=hd0t79:/,automount=cd0:/cd &

Wait for a bin for the rest of the commands
 waitfor /x86 10

Some common servers
 pipe &
 mqueue &
 devc-pty &

Start the main shell
 [+session] esh &
}

make /tmp point to the shared memory area
[type=link] /tmp=/dev/shmem

Redirect console messages
[type=link] /dev/console=/dev/ser1

Programs require the runtime linker (ldqnx.so) to be at
a fixed location
[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so

Add for HD support
[type=link] /usr/lib/libcam.so.2=/proc/boot/libcam.so

add symbolic links for bin, dll, and lib

220 Copyright © 2014, QNX Software Systems Limited

Sample Buildfiles

(files in /x86 with devb-eide)
[type=link] /bin=/x86/bin
[type=link] /dll=/x86/lib/dll
[type=link] /lib=/x86/lib

We use the C shared lib (which also contains the runtime linker)
libc.so

Just in case someone needs floating point and our CPU doesn't
have a floating point unit
fpemu.so.2

Include the hard disk shared objects so we can access the disk
libcam.so
io-blk.so

For the QNX 4 filesystem
cam-disk.so
fs-qnx4.so

For the UDF filesystem and the PCI
cam-cdrom.so
fs-udf.so
pci-bios

Copy code and data for all executables after this line
[data=copy]

Include a console driver, shell, etc.
esh
devb-eide
devc-con

For this release of the QNX Neutrino RTOS, you can't use the floating-point

emulator (fpemu.so) in statically linked executables.

In this buildfile, we see the startup command line for the devb-eide command:

devb-eide blk cache=2m,automount=hd0t79:/automount=cd0:/cd &

This line indicates that the devb-eide driver should start and then pass the string

beginning with the cache= through to the end (except for the ampersand) to the block

I/O file (io-blk.so). This will examine the passed command line and then start up

with a 2-megabyte cache (the cache=2m part), automatically mount the partition

identified by hd0t79 (the first QNX filesystem partition) as the pathname /hd, and

automatically mount the CD-ROM as /cd.

Once this driver is started, we then need to wait for it to get access to the disk and

perform the mount operations. This line does that:

waitfor /x86 10

This waits for the pathname /x86 to show up in the pathname space. (We're assuming

a formatted hard disk that contains a valid QNX filesystem with ${QNX_TARGET}

copied to the root.)

Now that we have a complete filesystem with all the shipped executables installed,

we run a few common executables, like the Pipe server.

Finally, the list of shared objects contains the .so files required for the drivers and

the filesystem.

Copyright © 2014, QNX Software Systems Limited 221

Generic examples

Complete example — TCP/IP with network filesystem

Here's an example of a buildfile that starts up an Ethernet driver, the TCP/IP stack,

and the network filesystem:

[virtual=armle-v7,elf +compress] .bootstrap = {
 startup-abc123 -vvv
 PATH=/proc/boot procnto
}
[+script] .script = {
 devc-ser8250 -e -b9600 0x1d0003f8,0x23 &
 reopen

Start the PCI server
 pci-abc123 &
 waitfor /dev/pci

Network drivers and filesystems

 io-pkt-v4 -dtulip-abc123 name=en
 if_up -p en0
 ifconfig en0 10.0.0.1

 fs-nfs3 10.0.0.2:/armle-v7/ / 10.0.0.2:/etc /etc &
Wait for a "bin" for the rest of the commands
 waitfor /usr/bin

Some common servers
 pipe &
 mqueue &
 devc-pty &

 [+session] sh &
}

make /tmp point to the shared memory area
[type=link] /tmp=/dev/shmem

Redirect console messages
[type=link] /dev/console=/dev/ser1

Programs require the runtime linker (ldqnx.so) to be at
a fixed location
[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so
We use the C shared lib (which also contains the runtime linker)
libc.so

If someone needs floating point...
fpemu.so.2

Include the network files so we can access files across the net
devn-tulip-abc123.so

Include the socket library
libsocket.so
[data=copy]

Include the network executables.
devc-ser8250
io-pkt-v4
fs-nfs3

For this release of the QNX Neutrino RTOS, you can't use the floating-point

emulator (fpemu.so.2) in statically linked executables.

This buildfile is very similar to the previous one shown for the disk. The major difference

is that instead of starting devb-eide to get a disk filesystem driver running, we

started io-pkt-v4 to get the network drivers running. The -d specifies the driver

222 Copyright © 2014, QNX Software Systems Limited

Sample Buildfiles

that should be loaded, in this case the driver for a DEC 21x4x (Tulip)-compatible

Ethernet controller.

Once the network manager is running, we need to synchronize the script file

interpretation to the availability of the drivers. That's what the waitfor /dev/socket

is for — it waits for the network manager to initialize itself. The ifconfig en0

10.0.0.1 command then specifies the IP address of the interface.

The next thing started is the NFS filesystem module, fs-nfs3, with options telling

it that it should mount the filesystem present on 10.0.0.2 in two different places:

${QNX_TARGET} should be mounted in /, and /etc should be mounted as /etc.

Since it may take some time to go over the network and establish the mounting, we

see another waitfor, this time ensuring that the filesystem on the remote has been

correctly mounted (here we assume that the remote has a directory called

${QNX_TARGET}/armle-v7/bin — since we've mounted the remote's

${QNX_TARGET} as /, the waitfor is really waiting for armle-v7/bin under the

remote's ${QNX_TARGET} to show up).

Copyright © 2014, QNX Software Systems Limited 223

Generic examples

Processor-specific notes

Let's look at what's different from the generic files listed above for each processor

family. Since almost everything that's processor- and platform-specific in QNX Neutrino

is contained in the kernel and startup programs, there's very little change required to

go from an x86 with standard BIOS to, for example, an ARM evaluation board.

Specifying the processor

The first obvious difference is that you must specify the processor that the

buildfile is for. This is actually a simple change; in the [virtual=…] line,

substitute the x86 specification with armle-v7.

For example:

Use this attribute:For this CPU:

[virtual=armle-v7,binary]ARM (little-endian)

Specifying the startup program

Another difference is that the startup program is tailored not only for the

processor family, but also for the actual board the processor runs on. If

you're not running an x86 with a standard BIOS, you should replace the

startup-bios command with one of the many startup-* programs we

supply.

To find out what startup programs we currently provide, refer to the following

sources:

• the boards directory under bsp_working_dir/src/hardware/startup

• QNX Neutrino docs (BSP docs as well as startup-* entries in the

Utilities Reference)

• the Community area of our website, www.qnx.com

Specifying the serial device

The examples listed previously provide support for the 8250 family of serial

chips. Some non-x86 platforms support the 8250 family as well, but others

have their own serial port chips.

For details on our current serial drivers, see:

• devc-* entries in the Utilities Reference

• the Community area of our website, www.qnx.com

224 Copyright © 2014, QNX Software Systems Limited

Sample Buildfiles

http://www.qnx.com
http://www.qnx.com

Glossary

A20 gate

On x86-based systems, a hardware component that forces the A20 address

line on the bus to zero, regardless of the actual setting of the A20 address

line on the processor. This component is in place to support legacy systems,

but the QNX Neutrino RTOS doesn't require any such hardware. Note that

some processors, such as the 386EX, have the A20 gate hardware built right

into the processor itself — our IPL will disable the A20 gate as soon as

possible after startup.

adaptive

Scheduling policy whereby a thread's priority is decayed by 1. See also FIFO,

round robin, and sporadic.

adaptive partitioning

A method of dividing, in a flexible manner, CPU time, memory, file resources,

or kernel resources with some policy of minimum guaranteed usage.

application ID

A number that identifies all processes that are part of an application. Like

process group IDs, the application ID value is the same as the process id of

the first process in the application. A new application is created by spawning

with the POSIX_SPAWN_NEWAPP or SPAWN_NEWAPP flag. A process created

without one of those inherits the application ID of its parent. A process needs

the PROCMGR_AID_CHILD_NEWAPP ability in order to set those flags.

The SignalKill() kernel call accepts a SIG_APPID flag ORed into the signal

number parameter. This tells it to send the signal to all the processes with

an application ID that matches the pid argument. The DCMD_PROC_INFO

devctl() returns the application ID in a structure field.

asymmetric multiprocessing (AMP)

A multiprocessing system where a separate OS, or a separate instantiation

of the same OS, runs on each CPU.

atomic

Of or relating to atoms. :-)

In operating systems, this refers to the requirement that an operation, or

sequence of operations, be considered indivisible. For example, a thread

may need to move a file position to a given location and read data. These

operations must be performed in an atomic manner; otherwise, another

Copyright © 2014, QNX Software Systems Limited 225

thread could preempt the original thread and move the file position to a

different location, thus causing the original thread to read data from the

second thread's position.

attributes structure

Structure containing information used on a per-resource basis (as opposed

to the OCB, which is used on a per-open basis).

This structure is also known as a handle. The structure definition is fixed

(iofunc_attr_t), but may be extended. See also mount structure.

bank-switched

A term indicating that a certain memory component (usually the device

holding an image) isn't entirely addressable by the processor. In this case,

a hardware component manifests a small portion (or “window”) of the device

onto the processor's address bus. Special commands have to be issued to

the hardware to move the window to different locations in the device. See

also linearly mapped.

base layer calls

Convenient set of library calls for writing resource managers. These calls all

start with resmgr_*(). Note that while some base layer calls are unavoidable

(e.g. resmgr_pathname_attach()), we recommend that you use the POSIX

layer calls where possible.

BIOS/ROM Monitor extension signature

A certain sequence of bytes indicating to the BIOS or ROM Monitor that the

device is to be considered an “extension” to the BIOS or ROM Monitor —

control is to be transferred to the device by the BIOS or ROM Monitor, with

the expectation that the device will perform additional initializations.

On the x86 architecture, the two bytes 0x55 and 0xAA must be present (in

that order) as the first two bytes in the device, with control being transferred

to offset 0x0003.

block-integral

The requirement that data be transferred such that individual structure

components are transferred in their entirety — no partial structure component

transfers are allowed.

In a resource manager, directory data must be returned to a client as

block-integral data. This means that only complete struct dirent

structures can be returned — it's inappropriate to return partial structures,

226 Copyright © 2014, QNX Software Systems Limited

Glossary

assuming that the next _IO_READ request will “pick up” where the previous

one left off.

bootable

An image can be either bootable or nonbootable. A bootable image is one

that contains the startup code that the IPL can transfer control to.

bootfile

The part of an OS image that runs the startup code and the microkernel.

bound multiprocessing (BMP)

A multiprocessing system where a single instantiation of an OS manages all

CPUs simultaneously, but you can lock individual applications or threads to

a specific CPU.

budget

In sporadic scheduling, the amount of time a thread is permitted to execute

at its normal priority before being dropped to its low priority.

buildfile

A text file containing instructions for mkifs specifying the contents and

other details of an image, or for mkefs specifying the contents and other

details of an embedded filesystem image.

canonical mode

Also called edited mode or “cooked” mode. In this mode the character device

library performs line-editing operations on each received character. Only

when a line is “completely entered” — typically when a carriage return (CR)

is received — will the line of data be made available to application processes.

Contrast raw mode.

channel

A kernel object used with message passing.

In QNX Neutrino, message passing is directed towards a connection (made

to a channel); threads can receive messages from channels. A thread that

wishes to receive messages creates a channel (using ChannelCreate()), and

then receives messages from that channel (using MsgReceive()). Another

thread that wishes to send a message to the first thread must make a

connection to that channel by “attaching” to the channel (using

ConnectAttach()) and then sending data (using MsgSend()).

chid

Copyright © 2014, QNX Software Systems Limited 227

An abbreviation for channel ID.

CIFS

Common Internet File System (also known as SMB) — a protocol that allows

a client workstation to perform transparent file access over a network to a

Windows 95/98/NT server. Client file access calls are converted to CIFS

protocol requests and are sent to the server over the network. The server

receives the request, performs the actual filesystem operation, and sends a

response back to the client.

CIS

Card Information Structure — a data block that maintains information about

flash configuration. The CIS description includes the types of memory devices

in the regions, the physical geometry of these devices, and the partitions

located on the flash.

coid

An abbreviation for connection ID.

combine message

A resource manager message that consists of two or more messages. The

messages are constructed as combine messages by the client's C library

(e.g. stat(), readblock()), and then handled as individual messages by the

resource manager.

The purpose of combine messages is to conserve network bandwidth and/or

to provide support for atomic operations. See also connect message and I/O

message.

connect message

In a resource manager, a message issued by the client to perform an

operation based on a pathname (e.g. an io_open message). Depending on

the type of connect message sent, a context block (see OCB) may be

associated with the request and will be passed to subsequent I/O messages.

See also combine message and I/O message.

connection

A kernel object used with message passing.

Connections are created by client threads to “connect” to the channels made

available by servers. Once connections are established, clients can

MsgSendv() messages over them. If a number of threads in a process all

attach to the same channel, then the one connection is shared among all

228 Copyright © 2014, QNX Software Systems Limited

Glossary

the threads. Channels and connections are identified within a process by a

small integer.

The key thing to note is that connections and file descriptors (FD) are one

and the same object. See also channel and FD.

context

Information retained between invocations of functionality.

When using a resource manager, the client sets up an association or context

within the resource manager by issuing an open() call and getting back a

file descriptor. The resource manager is responsible for storing the

information required by the context (see OCB). When the client issues further

file-descriptor based messages, the resource manager uses the OCB to

determine the context for interpretation of the client's messages.

cooked mode

See canonical mode.

core dump

A file describing the state of a process that terminated abnormally.

critical section

A code passage that must be executed “serially” (i.e. by only one thread at

a time). The simplest from of critical section enforcement is via a mutex.

deadlock

A condition in which one or more threads are unable to continue due to

resource contention. A common form of deadlock can occur when one thread

sends a message to another, while the other thread sends a message to the

first. Both threads are now waiting for each other to reply to the message.

Deadlock can be avoided by good design practices or massive kludges —

we recommend the good design approach.

device driver

A process that allows the OS and application programs to make use of the

underlying hardware in a generic way (e.g. a disk drive, a network interface).

Unlike OSs that require device drivers to be tightly bound into the OS itself,

device drivers for the QNX Neutrino RTOS are standard processes that can

be started and stopped dynamically. As a result, adding device drivers doesn't

affect any other part of the OS — drivers can be developed and debugged

like any other application. Also, device drivers are in their own protected

address space, so a bug in a device driver won't cause the entire OS to shut

down.

Copyright © 2014, QNX Software Systems Limited 229

discrete (or traditional) multiprocessor system

A system that has separate physical processors hooked up in multiprocessing

mode over a board-level bus.

DNS

Domain Name Service — an Internet protocol used to convert ASCII domain

names into IP addresses. In QNX Neutrino native networking, dns is one of

Qnet's builtin resolvers.

dynamic bootfile

An OS image built on the fly. Contrast static bootfile.

dynamic linking

The process whereby you link your modules in such a way that the Process

Manager will link them to the library modules before your program runs. The

word “dynamic” here means that the association between your program and

the library modules that it uses is done at load time, not at linktime. Contrast

static linking. See also runtime loading.

edge-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller) can be

programmed to respond to interrupts. In edge-sensitive mode, the interrupt

is “noticed” upon a transition to/from the rising/falling edge of a pulse.

Contrast level-sensitive.

edited mode

See canonical mode.

EOI

End Of Interrupt — a command that the OS sends to the PIC after processing

all Interrupt Service Routines (ISR) for that particular interrupt source so

that the PIC can reset the processor's In Service Register. See also PIC and

ISR.

EPROM

Erasable Programmable Read-Only Memory — a memory technology that

allows the device to be programmed (typically with higher-than-operating

voltages, e.g. 12V), with the characteristic that any bit (or bits) may be

individually programmed from a 1 state to a 0 state. To change a bit from

a 0 state into a 1 state can only be accomplished by erasing the entire

device, setting all of the bits to a 1 state. Erasing is accomplished by shining

an ultraviolet light through the erase window of the device for a fixed period

230 Copyright © 2014, QNX Software Systems Limited

Glossary

of time (typically 10-20 minutes). The device is further characterized by

having a limited number of erase cycles (typically 10e5 - 10e6). Contrast

flash and RAM.

event

A notification scheme used to inform a thread that a particular condition

has occurred. Events can be signals or pulses in the general case; they can

also be unblocking events or interrupt events in the case of kernel timeouts

and interrupt service routines. An event is delivered by a thread, a timer,

the kernel, or an interrupt service routine when appropriate to the requestor

of the event.

FD

File Descriptor — a client must open a file descriptor to a resource manager

via the open() function call. The file descriptor then serves as a handle for

the client to use in subsequent messages. Note that a file descriptor is the

exact same object as a connection ID (coid, returned by ConnectAttach()).

FIFO

First In First Out — a scheduling policy whereby a thread is able to consume

CPU at its priority level without bounds. See also adaptive, round robin, and

sporadic.

flash memory

A memory technology similar in characteristics to EPROM memory, with the

exception that erasing is performed electrically instead of via ultraviolet

light, and, depending upon the organization of the flash memory device,

erasing may be accomplished in blocks (typically 64 KB at a time) instead

of the entire device. Contrast EPROM and RAM.

FQNN

Fully Qualified Node Name — a unique name that identifies a QNX Neutrino

node on a network. The FQNN consists of the nodename plus the node

domain tacked together.

garbage collection

Also known as space reclamation, the process whereby a filesystem manager

recovers the space occupied by deleted files and directories.

HA

High Availability — in telecommunications and other industries, HA describes

a system's ability to remain up and running without interruption for extended

periods of time.

Copyright © 2014, QNX Software Systems Limited 231

handle

A pointer that the resource manager base library binds to the pathname

registered via resmgr_attach(). This handle is typically used to associate

some kind of per-device information. Note that if you use the iofunc_*()

POSIX layer calls, you must use a particular type of handle — in this case

called an attributes structure.

hard thread affinity

A user-specified binding of a thread to a set of processors, done by means

of a runmask. Contrast soft thread affinity.

image

In the context of embedded QNX Neutrino systems, an “image” can mean

either a structure that contains files (i.e. an OS image) or a structure that

can be used in a read-only, read/write, or read/write/reclaim FFS-2-compatible

filesystem (i.e. a flash filesystem image).

inherit mask

A bitmask that specifies which processors a thread's children can run on.

Contrast runmask.

interrupt

An event (usually caused by hardware) that interrupts whatever the processor

was doing and asks it do something else. The hardware will generate an

interrupt whenever it has reached some state where software intervention is

required.

interrupt handler

See ISR.

interrupt latency

The amount of elapsed time between the generation of a hardware interrupt

and the first instruction executed by the relevant interrupt service routine.

Also designated as “Til”. Contrast scheduling latency.

interrupt service routine

See ISR.

interrupt service thread

A thread that is responsible for performing thread-level servicing of an

interrupt.

232 Copyright © 2014, QNX Software Systems Limited

Glossary

Since an ISR can call only a very limited number of functions, and since

the amount of time spent in an ISR should be kept to a minimum, generally

the bulk of the interrupt servicing work should be done by a thread. The

thread attaches the interrupt (via InterruptAttach() or InterruptAttachEvent())

and then blocks (via InterruptWait()), waiting for the ISR to tell it to do

something (by returning an event of type SIGEV_INTR). To aid in minimizing

scheduling latency, the interrupt service thread should raise its priority

appropriately.

I/O message

A message that relies on an existing binding between the client and the

resource manager. For example, an _IO_READ message depends on the

client's having previously established an association (or context) with the

resource manager by issuing an open() and getting back a file descriptor.

See also connect message, context, combine message, and message.

I/O privileges

A particular right, that, if enabled for a given thread, allows the thread to

perform I/O instructions (such as the x86 assembler in and out

instructions). By default, I/O privileges are disabled, because a program with

it enabled can wreak havoc on a system. To enable I/O privileges, the thread

must be running as root, and call ThreadCtl().

IPC

Interprocess Communication — the ability for two processes (or threads) to

communicate. The QNX Neutrino RTOS offers several forms of IPC, most

notably native messaging (synchronous, client/server relationship), POSIX

message queues and pipes (asynchronous), as well as signals.

IPL

Initial Program Loader — the software component that either takes control

at the processor's reset vector (e.g. location 0xFFFFFFF0 on the x86), or

is a BIOS extension. This component is responsible for setting up the

machine into a usable state, such that the startup program can then perform

further initializations. The IPL is written in assembler and C. See also BIOS

extension signature and startup code.

IRQ

Interrupt Request — a hardware request line asserted by a peripheral to

indicate that it requires servicing by software. The IRQ is handled by the

PIC, which then interrupts the processor, usually causing the processor to

execute an Interrupt Service Routine (ISR).

Copyright © 2014, QNX Software Systems Limited 233

ISR

Interrupt Service Routine — a routine responsible for servicing hardware

(e.g. reading and/or writing some device ports), for updating some data

structures shared between the ISR and the thread(s) running in the

application, and for signalling the thread that some kind of event has

occurred.

kernel

See microkernel.

level-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller) can be

programmed to respond to interrupts. If the PIC is operating in level-sensitive

mode, the IRQ is considered active whenever the corresponding hardware

line is active. Contrast edge-sensitive.

linearly mapped

A term indicating that a certain memory component is entirely addressable

by the processor. Contrast bank-switched.

message

A parcel of bytes passed from one process to another. The OS attaches no

special meaning to the content of a message — the data in a message has

meaning for the sender of the message and for its receiver, but for no one

else.

Message passing not only allows processes to pass data to each other, but

also provides a means of synchronizing the execution of several processes.

As they send, receive, and reply to messages, processes undergo various

“changes of state” that affect when, and for how long, they may run.

microkernel

A part of the operating system that provides the minimal services used by

a team of optional cooperating processes, which in turn provide the

higher-level OS functionality. The microkernel itself lacks filesystems and

many other services normally expected of an OS; those services are provided

by optional processes.

mount structure

An optional, well-defined data structure (of type iofunc_mount_t) within

an iofunc_*() structure, which contains information used on a per-mountpoint

basis (generally used only for filesystem resource managers). See also

attributes structure and OCB.

234 Copyright © 2014, QNX Software Systems Limited

Glossary

mountpoint

The location in the pathname space where a resource manager has

“registered” itself. For example, the serial port resource manager registers

mountpoints for each serial device (/dev/ser1, /dev/ser2, etc.), and a

CD-ROM filesystem may register a single mountpoint of /cdrom.

multicore system

A chip that has one physical processor with multiple CPUs interconnected

over a chip-level bus.

mutex

Mutual exclusion lock, a simple synchronization service used to ensure

exclusive access to data shared between threads. It is typically acquired

(pthread_mutex_lock()) and released (pthread_mutex_unlock()) around the

code that accesses the shared data (usually a critical section). See also

critical section.

name resolution

In a QNX Neutrino network, the process by which the Qnet network manager

converts an FQNN to a list of destination addresses that the transport layer

knows how to get to.

name resolver

Program code that attempts to convert an FQNN to a destination address.

nd

An abbreviation for node descriptor, a numerical identifier for a node relative

to the current node. Each node's node descriptor for itself is 0

(ND_LOCAL_NODE).

NDP

Node Discovery Protocol — proprietary QNX Software Systems protocol for

broadcasting name resolution requests on a QNX Neutrino LAN.

network directory

A directory in the pathname space that's implemented by the Qnet network

manager.

NFS

Network FileSystem — a TCP/IP application that lets you graft remote

filesystems (or portions of them) onto your local namespace. Directories on

the remote systems appear as part of your local filesystem and all the utilities

Copyright © 2014, QNX Software Systems Limited 235

you use for listing and managing files (e.g. ls, cp, mv) operate on the remote

files exactly as they do on your local files.

NMI

Nonmaskable Interrupt — an interrupt that can't be masked by the processor.

We don't recommend using an NMI!

Node Discovery Protocol

See NDP.

node domain

A character string that the Qnet network manager tacks onto the nodename

to form an FQNN.

nodename

A unique name consisting of a character string that identifies a node on a

network.

nonbootable

A nonbootable OS image is usually provided for larger embedded systems

or for small embedded systems where a separate, configuration-dependent

setup may be required. Think of it as a second “filesystem” that has some

additional files on it. Since it's nonbootable, it typically won't contain the

OS, startup file, etc. Contrast bootable.

OCB

Open Control Block (or Open Context Block) — a block of data established

by a resource manager during its handling of the client's open() function.

This context block is bound by the resource manager to this particular

request, and is then automatically passed to all subsequent I/O functions

generated by the client on the file descriptor returned by the client's open().

package filesystem

A virtual filesystem manager that presents a customized view of a set of files

and directories to a client. The “real” files are present on some medium;

the package filesystem presents a virtual view of selected files to the client.

partition

A division of CPU time, memory, file resources, or kernel resources with

some policy of minimum guaranteed usage.

pathname prefix

See mountpoint.

236 Copyright © 2014, QNX Software Systems Limited

Glossary

pathname space mapping

The process whereby the Process Manager maintains an association between

resource managers and entries in the pathname space.

persistent

When applied to storage media, the ability for the medium to retain

information across a power-cycle. For example, a hard disk is a persistent

storage medium, whereas a ramdisk is not, because the data is lost when

power is lost.

PIC

Programmable Interrupt Controller — hardware component that handles

IRQs. See also edge-sensitive, level-sensitive, and ISR.

PID

Process ID. Also often pid (e.g. as an argument in a function call).

POSIX

An IEEE/ISO standard. The term is an acronym (of sorts) for Portable

Operating System Interface — the “X” alludes to “UNIX”, on which the

interface is based.

POSIX layer calls

Convenient set of library calls for writing resource managers. The POSIX

layer calls can handle even more of the common-case messages and functions

than the base layer calls. These calls are identified by the iofunc_*() prefix.

In order to use these (and we strongly recommend that you do), you must

also use the well-defined POSIX-layer attributes (iofunc_attr_t), OCB

(iofunc_ocb_t), and (optionally) mount (iofunc_mount_t) structures.

preemption

The act of suspending the execution of one thread and starting (or resuming)

another. The suspended thread is said to have been “preempted” by the

new thread. Whenever a lower-priority thread is actively consuming the CPU,

and a higher-priority thread becomes READY, the lower-priority thread is

immediately preempted by the higher-priority thread.

prefix tree

The internal representation used by the Process Manager to store the

pathname table.

priority inheritance

Copyright © 2014, QNX Software Systems Limited 237

The characteristic of a thread that causes its priority to be raised or lowered

to that of the thread that sent it a message. Also used with mutexes. Priority

inheritance is a method used to prevent priority inversion.

priority inversion

A condition that can occur when a low-priority thread consumes CPU at a

higher priority than it should. This can be caused by not supporting priority

inheritance, such that when the lower-priority thread sends a message to a

higher-priority thread, the higher-priority thread consumes CPU on behalf

of the lower-priority thread. This is solved by having the higher-priority thread

inherit the priority of the thread on whose behalf it's working.

process

A nonschedulable entity, which defines the address space and a few data

areas. A process must have at least one thread running in it — this thread

is then called the first thread.

process group

A collection of processes that permits the signalling of related processes.

Each process in the system is a member of a process group identified by a

process group ID. A newly created process joins the process group of its

creator.

process group ID

The unique identifier representing a process group during its lifetime. A

process group ID is a positive integer. The system may reuse a process group

ID after the process group dies.

process group leader

A process whose ID is the same as its process group ID.

process ID (PID)

The unique identifier representing a process. A PID is a positive integer.

The system may reuse a process ID after the process dies, provided no

existing process group has the same ID. Only the Process Manager can have

a process ID of 1.

pty

Pseudo-TTY — a character-based device that has two “ends”: a master end

and a slave end. Data written to the master end shows up on the slave end,

and vice versa. These devices are typically used to interface between a

program that expects a character device and another program that wishes

238 Copyright © 2014, QNX Software Systems Limited

Glossary

to use that device (e.g. the shell and the telnet daemon process, used for

logging in to a system over the Internet).

pulses

In addition to the synchronous Send/Receive/Reply services, QNX Neutrino

also supports fixed-size, nonblocking messages known as pulses. These carry

a small payload (four bytes of data plus a single byte code). A pulse is also

one form of event that can be returned from an ISR or a timer. See

MsgDeliverEvent() for more information.

Qnet

The native network manager in the QNX Neutrino RTOS.

QoS

Quality of Service — a policy (e.g. loadbalance) used to connect nodes

in a network in order to ensure highly dependable transmission. QoS is an

issue that often arises in high-availability (HA) networks as well as realtime

control systems.

RAM

Random Access Memory — a memory technology characterized by the ability

to read and write any location in the device without limitation. Contrast flash

and EPROM.

raw mode

In raw input mode, the character device library performs no editing on

received characters. This reduces the processing done on each character to

a minimum and provides the highest performance interface for reading data.

Also, raw mode is used with devices that typically generate binary data —

you don't want any translations of the raw binary stream between the device

and the application. Contrast canonical mode.

replenishment

In sporadic scheduling, the period of time during which a thread is allowed

to consume its execution budget.

reset vector

The address at which the processor begins executing instructions after the

processor's reset line has been activated. On the x86, for example, this is

the address 0xFFFFFFF0.

resource manager

Copyright © 2014, QNX Software Systems Limited 239

A user-level server program that accepts messages from other programs and,

optionally, communicates with hardware. QNX Neutrino resource managers

are responsible for presenting an interface to various types of devices,

whether actual (e.g. serial ports, parallel ports, network cards, disk drives)

or virtual (e.g. /dev/null, a network filesystem, and pseudo-ttys).

In other operating systems, this functionality is traditionally associated with

device drivers. But unlike device drivers, QNX Neutrino resource managers

don't require any special arrangements with the kernel. In fact, a resource

manager looks just like any other user-level program. See also device driver.

RMA

Rate Monotonic Analysis — a set of methods used to specify, analyze, and

predict the timing behavior of realtime systems.

round robin

A scheduling policy whereby a thread is given a certain period of time to

run. Should the thread consume CPU for the entire period of its timeslice,

the thread will be placed at the end of the ready queue for its priority, and

the next available thread will be made READY. If a thread is the only thread

READY at its priority level, it will be able to consume CPU again immediately.

See also adaptive, FIFO, and sporadic.

runmask

A bitmask that indicates which processors a thread can run on. Contrast

inherit mask.

runtime loading

The process whereby a program decides while it's actually running that it

wishes to load a particular function from a library. Contrast static linking.

scheduling latency

The amount of time that elapses between the point when one thread makes

another thread READY and when the other thread actually gets some CPU

time. Note that this latency is almost always at the control of the system

designer.

Also designated as “Tsl”. Contrast interrupt latency.

scoid

An abbreviation for server connection ID.

session

240 Copyright © 2014, QNX Software Systems Limited

Glossary

A collection of process groups established for job control purposes. Each

process group is a member of a session. A process belongs to the session

that its process group belongs to. A newly created process joins the session

of its creator. A process can alter its session membership via setsid(). A

session can contain multiple process groups.

session leader

A process whose death causes all processes within its process group to

receive a SIGHUP signal.

soft thread affinity

The scheme whereby the microkernel tries to dispatch a thread to the

processor where it last ran, in an attempt to reduce thread migration from

one processor to another, which can affect cache performance. Contrast

hard thread affinity.

software interrupts

Similar to a hardware interrupt (see interrupt), except that the source of the

interrupt is software.

sporadic

A scheduling policy whereby a thread's priority can oscillate dynamically

between a “foreground” or normal priority and a “background” or low priority.

A thread is given an execution budget of time to be consumed within a

certain replenishment period. See also adaptive, FIFO, and round robin.

startup code

The software component that gains control after the IPL code has performed

the minimum necessary amount of initialization. After gathering information

about the system, the startup code transfers control to the OS.

static bootfile

An image created at one time and then transmitted whenever a node boots.

Contrast dynamic bootfile.

static linking

The process whereby you combine your modules with the modules from the

library to form a single executable that's entirely self-contained. The word

“static” implies that it's not going to change — all the required modules

are already combined into one.

symmetric multiprocessing (SMP)

Copyright © 2014, QNX Software Systems Limited 241

A multiprocessor system where a single instantiation of an OS manages all

CPUs simultaneously, and applications can float to any of them.

system page area

An area in the kernel that is filled by the startup code and contains

information about the system (number of bytes of memory, location of serial

ports, etc.) This is also called the SYSPAGE area.

thread

The schedulable entity under the QNX Neutrino RTOS. A thread is a flow of

execution; it exists within the context of a process.

tid

An abbreviation for thread ID.

timer

A kernel object used in conjunction with time-based functions. A timer is

created via timer_create() and armed via timer_settime(). A timer can then

deliver an event, either periodically or on a one-shot basis.

timeslice

A period of time assigned to a round-robin or adaptive scheduled thread.

This period of time is small (on the order of tens of milliseconds); the actual

value shouldn't be relied upon by any program (it's considered bad design).

TLB

An abbreviation for translation look-aside buffer. To maintain performance,

the processor caches frequently used portions of the external memory page

tables in the TLB.

TLS

An abbreviation for thread local storage.

242 Copyright © 2014, QNX Software Systems Limited

Glossary

Index

_CS_LIBPATH 48
in bootstrap files 48

_CS_PATH 48
in bootstrap files 48

.~~~ filename extension 61
/dev/shmem 23
/tmp, creating on a RAM-disk 218

A

A20 171, 208
adaptive partitioning 48
add_cache() 145
add_callout_array() 146
add_callout() 145
add_interrupt_array() 130, 146, 164
add_interrupt() 146
add_ram() 146, 165
add_string() 130, 146
add_typed_string() 129, 146
alloc_qtime() 147
alloc_ram() 147
ARM 132, 137, 164, 165, 168, 224
ARM_CPU_FLAG_NEON 123
ARM_CPU_FLAG_SMP 123
ARM_CPU_FLAG_V7 123
ARM_CPU_FLAG_WMMX2 123
armv_cache 147
armv_chip 148
armv_chip_detect() 150
armv_pte 151
armv_setup_v7() 152
as_add_containing() 152
as_add() 152
AS_ATTR_CACHABLE 115
AS_ATTR_CONTINUED 115
AS_ATTR_KIDS 115
AS_ATTR_READABLE 115
AS_ATTR_WRITABLE 115
as_default() 153
as_find_containing() 153
as_find() 153
as_info2off() 153
AS_NULL_OFF 114
as_off2info() 154
AS_PRIORITY_DEFAULT 114
as_set_checker() 154
as_set_priority() 154
avoid_ram() 154

B

bank-switched 78
See also image
defined 78

See also image

BIOS 16, 17, 82, 122, 171, 224
extension 82, 171
if you don't have one 224

block_size buildfile attribute 57, 58
Board Support Packages, See BSPs
boot header 88
bootfile 47
BOOTP 82, 85
bootstrap file (.bootstrap) 48, 49
bound multiprocessing (BMP) 50
break_detect() 139
bsp_working_dir 32
BSPs 29, 30, 31, 33, 34

content 29, 31
obtaining 29
source code 30, 31, 33, 34

command line 31, 34
importing into the IDE 30

buildfile 47, 48, 49, 50, 52, 53, 54, 57, 58, 59, 74, 89,
216, 217, 218, 224

attributes 48, 49, 52, 54, 57, 58, 59, 74, 89, 217,
218, 224

block_size 57, 58
combining 54
compress 49, 89
data 217
filter 58, 59
gid 54
keeplinked 74
max_size 57
min_size 58
module 48
newpath 52
perms 54
physical 49
script 49
search 52
spare_blocks 57, 59
type 218
uid 54
virtual 48, 49, 89, 224

complete examples of 216
including lots of files in 54
inline files 47, 53
modifiers 50

CPU 50
simple example of 47
specifying a processor in 224
syntax 47

Bus item (system page) 121

C

cache 122, 123, 124, 140
CACHE_FLAG_CTRL_PHYS 125
CACHE_FLAG_DATA 125

Copyright © 2014, QNX Software Systems Limited 243

Building Embedded Systems

CACHE_FLAG_INSTR 125
CACHE_FLAG_NONCOHERENT 125
CACHE_FLAG_NONISA 125
CACHE_FLAG_SHARED 125
CACHE_FLAG_SNOOPED 125
CACHE_FLAG_SUBSET 125
CACHE_FLAG_UNIFIED 125
CACHE_FLAG_VIRTUAL 125
CACHE_FLAG_WRITEBACK 125
cacheattr 124
calc_time_t() 154
calloc_ram() 155
callout area 129
CALLOUT_END 175
callout_io_map_indirect() 155
callout_io_map() 155
callout_memory_map_indirect() 155
callout_memory_map() 155
callout_register_data() 155
CALLOUT_START 175
callouts 18, 19, 139, 173

writing your own 173
character I/O devices 25
chip_access() 156
chip_done() 156
chip_read16() 157
chip_read32() 157
chip_read8() 156
chip_write16() 157
chip_write32() 157
chip_write8() 157
CIFS 70
CIFS (Common Internet File System) 70
clock, external 209
ClockAdjust() 127, 128
ClockCycles() 127
ClockPeriod() 127
ClockTime() 127, 128
cold-start IPL 17, 82
compress buildfile attribute 49, 89
compressing/decompressing 59
compression 61, 89

.~~~ filename extension 61
methods, choosing 89
rules 61

config callout 135
config() 140
confname() 129
control() 141
copy_memory() 157
CPU buildfile modifier 50
CPU mode, setting 141
CPU_FLAG_FPU 123
CPU_FLAG_MMU 123
cpuinfo 126
CPUs, number of on the system 113
custom engineering 205

D

data buildfile attribute 217

debugging 71, 72, 204, 205, 217
hardware considerations 205
shared objects 217
symbol information, providing 72
versions of software 204

deflate 59
del_typed_string() 157
design do's and don'ts 212
devf-generic 24, 39, 180
devf-ram 23, 183, 200

template for new drivers 183, 200
Device item (system page) 121
disks, information about detected 93
display_char() 139
DL_DEBUG 217
DOS filesystem 68
dumpifs 55
dynamically linked libraries, debugging 217

E

Embedded Transaction Filesystem (ETFS) images 44
enable_cache() 101
environment variables 50, 217

DL_DEBUG 217
setting in the script file 50

EOI (End of Interrupt) 132, 133
Ethernet 223
extension signature 82

F

f3s_close() 187
f3s_flash_t 185
f3s_ident() 191
f3s_init() 185
f3s_open() 186, 189
F3S_OPER_SOCKET 187
F3S_OPER_WINDOW 187
f3s_page() 186
F3S_POWER_VCC 187
F3S_POWER_VPP 187
f3s_reset() 191
f3s_service_t 185
f3s_socket_option() 188, 189
f3s_socket_syspage() 190
f3s_start() 186
f3s_status() 187
f3s_sync() 195
f3s_v2erase() 193
f3s_v2islock() 196
f3s_v2lock() 196
f3s_v2read() 191
f3s_v2resume() 194
f3s_v2suspend() 193
f3s_v2unlock() 197
f3s_v2unlockall() 198
f3s_v2write() 192
falcon_init_l2_cache() 158
falcon_init_raminfo() 158
falcon_system_clock() 158
field upgrades 205

244 Copyright © 2014, QNX Software Systems Limited

Index

files 47, 48, 49, 53, 59, 97
.bootstrap 48, 49
compressing 59
inline 47, 53
main.c 97

filesystems 22, 68, 70
choosing 22
CIFS (Common Internet File System) 70
NFS (Network File System) 70
Universal Disk Format (UDF) 68
ISO-9660 CD-ROM (fs-udf.so) 68
Linux (fs-ext2.so) 68
Macintosh HFS and HFS Plus (fs-mac.so) 68
MS-DOS (fs-dos.so) 68
Power-Safe (fs-qnx6.so) 68
QNX 4 (fs-qnx4.so) 68
Windows NT (fs-nt.so) 68

filter buildfile attribute 58, 59
find_startup_info() 158, 165
find_typed_string() 158
flags member 133
flash 38, 39, 44, 57, 59, 64, 180, 207

accessing compressed files without decompressing 59
erasing 39
filesystem 38, 39, 44, 57, 180

customizing 180
images 44, 57
partitions 38, 39

logical layout of memory chips 207
transferring images to 64
two independent sets of devices 207

flashctl 39, 64
floating-point emulator (fpemu.so), can't use in statically linked
executables 221
fs-cifs 70
fs-dos.so 68
fs-ext2.so 68
fs-mac.so 68
fs-nfs2, fs-nfs3 70
fs-nt.so 68
fs-qnx4.so 68
fs-qnx6.so 68
fs-udf.so 68
ftruncate() 61

G

gid buildfile attribute 54
glitch interrupts, beware of 209
Global Descriptor Table (GDT) 136
Group item (system page) 121

H

handle_common_option() 158
hardware 21, 24, 25, 71, 116, 203

debuggers 71
information about 116
supported by QNX Neutrino 21, 24, 25
system design considerations 203

HFS and HFS Plus 68
hwi_add_device() 160

hwi_add_inputclk() 160
hwi_add_irq() 160
hwi_add_location() 160
hwi_add_nicaddr() 161
hwi_add_rtc() 161
hwi_alloc_item() 117, 118, 120, 161
hwi_alloc_tag 161
hwi_alloc_tag() 117, 118, 120
hwi_find_as() 161
hwi_find_item() 118, 119, 162
hwi_find_tag() 162
hwi_next_item() 119
hwi_next_tag() 120
HWI_NULL_OFF 117, 118, 119
hwi_off2tag() 119, 162
HWI_TAG_INFO() 120
hwi_tag2off() 119, 163

I

IDT (Interrupt Descriptor Table) 132
image_download_8250() 79, 98, 102
image_scan_ext() 102
image_scan() 79, 98, 102
image_setup_ext() 102
image_setup() 80, 98, 102
image_start_ext() 103
image_start() 81, 98, 102
images 17, 35, 36, 43, 45, 46, 49, 55, 63, 64, 78, 79, 82,

83, 88, 90, 216
bank-switched 78, 79, 83

sources of 79
bootable 45
building 35, 43, 55
combining multiple files 63
compressing 49
defined 45
determining which shared libraries to include 216
example of using an OS image as a filesystem 46
format 17, 63
linearly mapped 78
listing contents of 55
loading 82
more than one in system 45
nonbootable 45
physical address 90
signature 88
transferring onto your board 36
transferring to flash 64

inflator 59, 60
init_asinfo() 163
init_cacheattr() 124, 163
init_cpuinfo() 122, 124, 163
init_hwinfo() 116, 163
init_intrinfo() 130, 164
init_mmu() 164
init_pminfo() 164
init_qtime_sa1100() 165
init_qtime() 127, 164
init_raminfo() 147, 155, 165
init_smp() 113, 136, 165
init_syspage_memory() 165

Copyright © 2014, QNX Software Systems Limited 245

Building Embedded Systems

init_system_private() 113, 159, 166
Initial Program Loader, See IPL
inline files 47, 53
int15_copy() 103
Intel hex records 63
interrupt_eoi_dec() 134
interrupt_id_dec_smp() 134
interrupt_id_dec() 134
InterruptAttach() 130, 135, 209
InterruptAttachEvent() 135, 209
InterruptMask() 134
interrupts 18, 127, 130, 132, 133, 136, 137, 140, 209,

210, 211, 212
clock 127, 209, 212
controller, callouts for 140
EOI (End of Interrupt) 132, 133
IDT (Interrupt Descriptor Table) 132
Interrupt Descriptor Table (IDT) 136
IPI (Interprocess Interrupt) 137
multicore systems 130
NMI (Non-Maskable Interrupt) 133, 211
parallel ports 210
Programmable Interrupt Controller (PIC) 209
programming in startup 18, 130
serial ports 210

InterruptUnmask() 134
INTR_CONFIG_FLAG_DISALLOWED 135
INTR_CONFIG_FLAG_IPI 135
INTR_CONFIG_FLAG_PREATTACH 135
INTR_FLAG_CASCADE_IMPLICIT_EOI 133
INTR_FLAG_CPU_FAULT 134
INTR_FLAG_NMI 133
INTR_GENFLAG_ID_LOOP 135
INTR_GENFLAG_LOAD_CPUNUM 134
INTR_GENFLAG_LOAD_INTRINFO 134
INTR_GENFLAG_LOAD_INTRMASK 134
INTR_GENFLAG_LOAD_SYSPAGE 134
INTR_GENFLAG_NOGLITCH 134
intrinfo area 130
io 122
IPI (Interprocess Interrupt) 137
IPL 16, 17, 36, 71, 72, 78, 81, 82, 87, 97

code, structure of 97
cold-start 17, 82
customizing 87
debugging 71, 72

debug symbol information 72
responsibilities of 78
types of 16
warm-start 16, 81

IRQ7 and IRQ15, beware of 209
ISA bus slots, external 208
ISO-9660 CD-ROM filesystem 68

J

JTAG 71, 205
field upgrades 205
hardware debuggers 71

jtag_reserve_memory() 166

K

keeplinked buildfile attribute 74
kernel callouts, See callouts
kprintf() 159, 166

L

LD_LIBRARY_PATH 48
in bootstrap files 48

ldd 216
ldqnx.so.2 50, 216
linearly mapped 78, 83, 85

See also image
defined 78
recommended 85
sources of 78

See also image
linker, runtime 216
Linux filesystem 68
ln 23
location tag 121
lseek() 60
lstat() 60

M

machine type 90
Macintosh HFS and HFS Plus 68
main() 110, 120, 181, 184
mask() 140
max_size buildfile attribute 57
memory 17, 122, 204

linearly addressable 17
planning for target system 204

min_size buildfile attribute 58
mkefs 44, 57

buildfile 57
mketfs 44
mkifs 44, 47, 55, 88, 215

version of 88
MKIFS_PATH 51
mkimage 62
mkrec 63
module buildfile attribute 48
Motorola S records 63
mountpoints 64, 65

filesystem 65
raw 64

transferring images to flash 64
MS-DOS filesystem 68
multicore systems 113, 130

interrupts on 130
number of processors 113

N

NEON, determining if supported 123
network 24, 67, 69, 70, 85, 222

boot 85
drivers 67, 69

246 Copyright © 2014, QNX Software Systems Limited

Index

network (continued)
filesystems 67, 70, 222
media 24

newpath buildfile attribute 52
NFS (Network File System) 70
NFS (Network Filesystem) 24, 223
NMI (Non-Maskable Interrupt) 133, 211
NT filesystem 68

O

O_TRUNC 61
objdump 216
openbios_init_raminfo() 166
OS images, See images

P

Page Directory Tables 136
parallel port 210

doesn't need an interrupt line 210
PATH 48

in bootstrap files 48
pcnet_reset() 166
pdebug 71
peripherals, choosing 204
perms buildfile attribute 54
physical buildfile attribute 49
PIC 209
poll_key() 139
POSIX 57, 60, 61, 70, 218
pound sign, in buildfiles 47
power management 138, 141
Power-Safe filesystem 68
power() 141
print_byte() 103
print_char() 103, 166
print_long() 103
print_sl() 103
print_string() 103
print_syspage() 167
print_var() 104
print_word() 104
printf() 166
PROCESSOR 51
processors 21, 113, 204

families, supported 21
number of on the system 113
speed 204

procnto 16, 18, 48, 92
memory pool, adding to 92
optional modules, binding 48
starting 16, 18, 48

protected_mode() 104

Q

Qnet (QNX native networking) 24
QNX 4 filesystem 68
QNX Neutrino 40

running for the first time 40

qtime 127

R

RAM, using as a "disk" 23
read() 60
reboot() 141
reclamation 59
reopen 218
reset vector 16, 21
ROM 17, 84

devices 84
monitor 17

rtc_time() 168
runmask, specifying 50
runtime linker 216

S

script buildfile attribute 49
script file 20, 51

on the target 51
search buildfile attribute 52
sendnto 36
serial port 85, 210

loader 85
recommended on target system 210
support for multiple 210

shared libraries 216
which to include in an image 216

shared memory 23
shell 218

running in background 218
SMP 136, 165
SMP (Symmetric Multiprocessing) 130

interrupts on 130
socket services 182, 186
software debuggers 71
spare_blocks buildfile attribute 57, 59
startup 17, 18, 71, 74, 86, 110, 111, 143

creating your own 111
debugging 71, 74

debug symbol information 74
library 143
structure of 110
transferring control to 86

STARTUP_HDR_FLAGS1_BIGENDIAN 89
STARTUP_HDR_FLAGS1_COMPRESS_LZO 89
STARTUP_HDR_FLAGS1_COMPRESS_NONE 89
STARTUP_HDR_FLAGS1_COMPRESS_UCL 89
STARTUP_HDR_FLAGS1_COMPRESS_ZLIB 89
STARTUP_HDR_FLAGS1_VIRTUAL 89
STARTUP_HDR_SIGNATURE 79
startup_header 80, 88, 94

structure of 88
use by IPL and startup 94

STARTUP_INFO_* 91
startup_info_box 94
startup_info_disk 93
startup_info_mem, startup_info_mem_extended 92
startup_info_skip 92
startup_info_time 93

Copyright © 2014, QNX Software Systems Limited 247

Building Embedded Systems

startup_info* structures 91
startup_io_map() 169
startup_io_unmap() 169
startup_memory_map() 169
startup_memory_unmap() 169
stat() 60, 70
SUPPORT_CMP_* 89
SYSENTER/SYSEXIT 123
SYSPAGE_ARM 113, 136
syspage_entry 112, 124, 127
SYSPAGE_X86 113, 136
system page area 19, 109, 112

accessing data within 112
fields in 112

T

TCP/IP 222
Technical support 14
temporary directory, creating on a RAM-disk 218
timer_load() 139
timer_reload() 139
timer_value() 139
truncation 61
tulip_reset() 169
type buildfile attribute 218
typed_strings area 129
Typographical conventions 12

U

uart_hex16 105
uart_hex32 105
uart_hex8 104
uart_init 105
uart_put 106
uart_string 106
uart32_hex16 107
uart32_hex32 107
uart32_hex8 106
uart32_init 107
uart32_put 108

uart32_string 108
uid buildfile attribute 54
uncompress() 95, 96, 170
union 136
Universal Disk Format (UDF) filesystem 68
unmask() 140

V

video, displaying on 103, 104
virtual buildfile attribute 48, 49, 89, 224

W

waitfor 70
warm-start IPL 16, 81
Windows NT filesystem 68

X

X86_CPU_BSWAP 123
X86_CPU_CMOV 123
X86_CPU_CPUID 123
X86_CPU_FXSR 123
X86_CPU_INVLPG 123
X86_CPU_MMX 123
X86_CPU_MTRR 123
X86_CPU_PAE 123
X86_CPU_PGE 123
X86_CPU_PSE 123
X86_CPU_RDTSC 123
X86_CPU_SEP 123
X86_CPU_SIMD 123
X86_CPU_WP 123
x86_cpuid_string() 170
x86_cputype() 170
x86_enable_a20() 170
x86_fputype() 171
x86_init_pcbios() 171
x86_pcbios_shadow_rom() 171
x86_scanmem() 165, 172
x86-specific information 136

248 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Book
	Typographical conventions
	Technical support

	Overview of Building Embedded Systems
	Introduction
	The role of the IPL
	Warm-start and cold-start IPL

	The role of the startup program
	Startup's responsibilities
	Copying and decompressing the image
	Configuring the hardware
	Determining system configuration
	Establishing callouts
	Starting the OS
	The startup library

	The role of the QNX Neutrino RTOS

	Hardware aspects
	Choice of processor
	Source of initialization and configuration
	Choice of filesystems
	No additional storage required
	Additional read-only storage required
	Additional read/write nonpersistent storage required
	Additional read/write persistent storage required

	I/O devices
	Character I/O devices
	Special/custom devices

	Getting started
	Hardware design
	Customizing the software
	Customizing the source

	Working with a BSP
	Using BSPs in the IDE
	Using BSPs on the command line
	Structure of a BSP
	prebuilt subdirectory
	install subdirectory
	src subdirectory

	Building source from the command line
	Supporting additional devices

	Transferring an OS image onto your board
	Transferring an OS image
	Working with a flash filesystem
	Raw partitions
	Flash filesystem partitions
	Flash filesystem source
	How do I create a partition?

	Testing QNX Neutrino on your board
	Where do I go from here?
	Filename conventions

	Making an OS Image
	Images, images, images
	What is an OS image?
	The OS image as a filesystem
	Configuring an OS image
	A simple buildfile
	Inline files

	The bootstrap file
	Compressing the image

	The script file
	Bound multiprocessing attributes
	The script file on the target

	Plain ordinary lists of files
	Including files from different places
	Modifying the search path
	Specifying the pathname explicitly
	Creating the contents of the file in line
	Specifying file ownership and permissions
	Including a whole whack of files

	Generating the image
	Listing the contents of an image

	Building a flash filesystem image
	Using mkefs
	mkefs buildfile
	Block size
	Spare blocks

	Compressing files
	Abstraction layer
	Two sizes

	Compression rules
	The exception

	Embedding an image
	Combining image files using mkimage
	Combining image files using the IDE

	Converting images using mkrec
	Transferring an image to flash

	System configuration
	Establishing an output device
	A simple desktop example

	Running drivers/filesystems
	Disk drivers
	Flash filesystems
	Network drivers
	Network filesystems

	Running applications

	Debugging an embedded system
	pdebug software debugging agent
	Hardware debuggers and QNX Neutrino
	Producing debug symbol information for IPL and startup
	Generating IPL debug symbols
	Generating startup debug symbols

	Writing an IPL Program
	Initial program loader (IPL)
	Responsibilities of the IPL
	Linearly mapped images
	Bank-switched images
	Processors & configurations

	Booting from a bank-switched device
	Booting from a linear device
	“Warm” vs “cold” start
	Warm-start IPL
	Cold-start IPL

	Loading the image
	If the source is a linearly mapped device
	If the source is a bank-switched device
	ROM devices
	Network boot
	Using a BOOTP server
	Serial port
	Traditional disk
	None of the above?

	Transferring control to the startup program

	Customizing IPLs
	Initialize hardware
	Loading the image into RAM
	Structure of the boot header
	signature
	version
	flags1 and flags2
	header_size
	machine
	startup_vaddr
	paddr_bias
	image_paddr
	ram_paddr
	ram_size
	startup_size
	stored_size
	imagefs_paddr
	imagefs_size
	preboot_size
	zero and zero0
	info
	struct startup_info_skip
	struct startup_info_mem and startup_info_mem_extended
	struct startup_info_disk
	struct startup_info_time
	struct startup_info_box

	Relationship of struct startup_header fields
	Linear ROM execute-in-place boot image
	Linear ROM compressed boot image
	ROM non-XIP image
	Disk/network image (x86 BIOS)
	Disk/network compressed image

	IPL structure
	IPL source directory structure
	IPL code structure
	An example

	Creating a new IPL

	The IPL library
	enable_cache
	image_download_8250()
	image_scan()
	image_scan_ext()
	image_setup()
	image_setup_ext()
	image_start()
	image_start_ext()
	int15_copy()
	print_byte()
	print_char()
	print_long()
	print_sl()
	print_string()
	print_var()
	print_word()
	protected_mode()
	uart_hex8
	uart_hex16
	uart_hex32
	uart_init
	uart_put
	uart_string
	uart32_hex8
	uart32_hex16
	uart32_hex32
	uart32_init
	uart32_put
	uart32_string

	Customizing Image Startup Programs
	Anatomy of a startup program
	Structure of a startup program
	Creating a new startup program

	Structure of the system page
	size
	total_size
	type
	num_cpu
	system_private
	asinfo
	The attr field
	Address space trees

	hwinfo
	Tags
	Items
	Device trees
	Building the section
	Other functions
	Defaults
	Predefined items and tags
	Group item
	Bus item
	Device item
	location tag
	irq tag
	diskgeometry tag
	pad tag

	cpuinfo
	syspage_entry cacheattr
	syspage_entry qtime
	callout
	callin
	typed_strings
	strings
	intrinfo
	The cpu_intr_base member
	The flags member
	config return values

	syspage_entry union un
	un.x86
	un.x86.smpinfo (deprecated)
	un.arm
	smp
	pminfo

	Callout information
	Debug interface
	Clock/timer interface
	Interrupt controller interface
	Cache controller interface
	System reset callout
	Power management callout

	The startup library
	add_cache()
	add_callout()
	add_callout_array()
	add_interrupt()
	add_interrupt_array()
	add_ram()
	add_string()
	add_typed_string()
	alloc_qtime()
	alloc_ram()
	armv_cache
	armv_chip
	armv_chip_detect()
	armv_pte
	armv_setup_v7()
	as_add()
	as_add_containing()
	as_default()
	as_find()
	as_find_containing()
	as_info2off()
	as_off2info()
	as_set_checker()
	as_set_priority()
	avoid_ram()
	calc_time_t()
	calloc_ram()
	callout_io_map(), callout_io_map_indirect()
	callout_memory_map(), callout_memory_map_indirect()
	callout_register_data()
	chip_access()
	chip_done()
	chip_read8()
	chip_read16()
	chip_read32()
	chip_write8()
	chip_write16()
	chip_write32()
	copy_memory()
	del_typed_string()
	falcon_init_l2_cache()
	falcon_init_raminfo()
	falcon_system_clock()
	find_startup_info()
	find_typed_string()
	handle_common_option()
	hwi_add_device()
	hwi_add_inputclk()
	hwi_add_irq()
	hwi_add_location()
	hwi_add_nicaddr()
	hwi_add_rtc()
	hwi_alloc_item()
	hwi_alloc_tag()
	hwi_find_as()
	hwi_find_item()
	hwi_find_tag()
	hwi_off2tag()
	hwi_tag2off()
	init_asinfo()
	init_cacheattr()
	init_cpuinfo()
	init_hwinfo()
	init_intrinfo()
	init_mmu()
	init_pminfo()
	init_qtime()
	init_qtime_sa1100()
	init_raminfo()
	init_smp()
	init_syspage_memory() (deprecated)
	init_system_private()
	jtag_reserve_memory()
	kprintf()
	openbios_init_raminfo()
	pcnet_reset()
	print_syspage()
	rtc_time()
	startup_io_map()
	startup_io_unmap()
	startup_memory_map()
	startup_memory_unmap()
	tulip_reset()
	uncompress()
	x86_cpuid_string()
	x86_cputype()
	x86_enable_a20()
	x86_fputype()
	x86_init_pcbios()
	x86_pcbios_shadow_rom()
	x86_scanmem()

	Writing your own kernel callout
	Find out who's gone before
	Why are they in assembly language?
	Starting off
	“Patching” the callout code
	Getting some R/W storage
	The exception that proves the rule

	Customizing the Flash Filesystem
	Introduction
	Driver structure
	resmgr and iofunc layers
	Flash filesystem component
	Socket services component
	Flash services component
	Probe routine component

	Building your flash filesystem driver
	The source tree
	The Makefile
	Making the driver
	The main() function
	f3s_init()
	f3s_start()

	Socket services interface
	f3s_open()
	f3s_page()
	f3s_status()
	f3s_close()

	Options parsing
	f3s_socket_option()
	f3s_socket_syspage()

	Flash services interface
	f3s_ident()
	f3s_reset()
	f3s_v2read()
	f3s_v2write()
	f3s_v2erase()
	f3s_v2suspend()
	f3s_v2resume()
	f3s_v2sync()
	f3s_v2islock()
	f3s_v2lock()
	f3s_v2unlock()
	f3s_v2unlockall()

	Choosing the right routines

	Example: The devf-ram driver
	main()
	f3s_ram_open()
	f3s_ram_page()

	System Design Considerations
	Before you design your system
	Other design considerations
	EPROM/Flash filesystem considerations
	IPL location
	Graphics cards
	A20 gate
	External ISA bus slots
	PCI bus slots
	External clocks
	Interrupts & controllers
	Serial and parallel ports
	Parallel port considerations

	Avoid Non-Maskable Interrupts (NMIs)
	Design do's and don'ts

	Sample Buildfiles
	Generic examples
	Shared libraries
	Running executables more than once
	Multiple consoles
	Starting other programs on consoles
	Redirection
	/tmp

	Complete example — minimal configuration
	Complete example — flash filesystem
	Complete example — disk filesystem
	Complete example — TCP/IP with network filesystem

	Processor-specific notes

	Glossary
	Index

