
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

QNX® Neutrino® RTOS
System Architecture

©1996–2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, February 20, 2014

Table of Contents

About This Guide ..9
Typographical conventions ...10

Technical support ...12

Chapter 1: The Philosophy of the QNX Neutrino RTOS ...13

An embeddable POSIX OS? ...14

Product scaling ..15

Why POSIX for embedded systems? ..16

Why QNX Neutrino for embedded systems? ...18

Microkernel architecture ..19

The OS as a team of processes ...20

A true kernel ...21

System processes ..22

Interprocess communication ..24

QNX Neutrino as a message-passing operating system ...24

Network distribution of kernels ...25

Single-computer model ..25

Flexible networking ..25

Chapter 2: The QNX Neutrino Microkernel ..27

The implementation of the QNX Neutrino RTOS ...28

POSIX realtime and thread extensions ...28

System services ..29

Threads and processes ..31

Thread attributes ...33

Thread life cycle ..35

Thread scheduling ..38

Scheduling priority ..38

Scheduling policies ...40

IPC issues ..45

Thread complexity issues ...46

Synchronization services ..47

Mutexes: mutual exclusion locks ...48

Condvars: condition variables ...49

Barriers ..50

Sleepon locks ...52

Reader/writer locks ..52

Semaphores ..53

Synchronization via scheduling policy ..54

Synchronization via message passing ...54

QNX® Neutrino® RTOS

Synchronization via atomic operations ...54

Synchronization services implementation ...55

Clock and timer services ..56

Time correction ...57

Timers ..57

Interrupt handling ...60

Interrupt latency ...60

Scheduling latency ..61

Nested interrupts ..61

Interrupt calls ...62

Chapter 3: Interprocess Communication (IPC) ...67

Synchronous message passing ...68

Message copying ..71

Simple messages ..74

Channels and connections ...75

Pulses ..76

Priority inheritance and messages ...77

Message-passing API ..78

Robust implementations with Send/Receive/Reply ...79

Events ...81

I/O notification ..82

Signals ..83

Special signals ..84

Summary of signals ...86

POSIX message queues ...89

Why use POSIX message queues? ...89

File-like interface ..89

Message-queue functions ...90

Shared memory ..91

Shared memory with message passing ...91

Creating a shared-memory object ..92

mmap() ..93

Initializing allocated memory ..96

Typed memory ..99

Implementation-defined behavior ..99

Practical examples ..103

Pipes and FIFOs ...105

Chapter 4: The Instrumented Microkernel ...107

Instrumentation at a glance ...108

Event control ..109

Modes of emission ...109

Ring buffer ...110

Table of Contents

Data interpretation ..111

System analysis with the IDE ..111

Proactive tracing ...113

Chapter 5: Multicore Processing ..115

Asymmetric multiprocessing (AMP) ..116

Symmetric multiprocessing (SMP) ..117

The QNX Neutrino RTOS's microkernel approach ..117

Booting an x86 SMP system ...118

How the SMP microkernel works ...119

Critical sections ..120

Bound multiprocessing (BMP) ..122

A viable migration strategy ...123

Choosing between AMP, SMP, and BMP ..124

Chapter 6: Process Manager ..125

Process management ..126

Process primitives ...126

Process loading ...131

Memory management ..132

Memory Management Units (MMUs) ...132

Memory protection at run time ..133

Quality control ..135

Full-protection model ...135

Variable page size ..136

Locking memory ..136

Defragmenting physical memory ...138

Pathname management ...142

Resolving pathnames ...143

Symbolic prefixes ..147

File descriptor namespace ..150

Chapter 7: Dynamic Linking ..153

Statically linked ..154

Dynamically linked ..155

Augmenting code at runtime ..156

How shared objects are used ..157

Memory layout for a typical process ...158

Runtime linker ..159

Loading a shared library at runtime ...160

Symbol name resolution ...160

Chapter 8: Resource Managers ..163

QNX® Neutrino® RTOS

What is a resource manager? ..164

Why write a resource manager? ...164

The types of resource managers ..166

Communication via native IPC ..167

Resource manager architecture ..169

Message types ...169

The resource manager shared library ...170

Summary ...175

Chapter 9: Filesystems ...177

Filesystems and pathname resolution ...178

Filesystem classes ..179

Filesystems as shared libraries ..179

io-blk ...180

Filesystem limitations ..183

Image filesystem ..185

RAM “filesystem” ...186

Embedded transaction filesystem (ETFS) ..187

Inside a transaction ...187

Types of storage media ...188

Reliability features ..189

QNX 4 filesystem ..191

Power-Safe filesystem ...192

Problems with existing disk filesystems ...192

Copy-on-write filesystem ..192

Performance ...195

Encryption ..196

DOS Filesystem ..201

CD-ROM filesystem ...204

FFS3 filesystem ..205

Customization ...205

Organization ...205

Features ...206

Utilities ..208

System calls ...209

NFS filesystem ...210

CIFS filesystem ..211

Linux Ext2 filesystem ..212

Universal Disk Format (UDF) filesystem ..213

Apple Macintosh HFS and HFS Plus ...214

Windows NT filesystem ...215

Virtual inflator filesystem ...216

Chapter 10: PPS ..217

Table of Contents

Persistence ..218

PPS objects ...219

Publishing ...220

Subscribing ..221

Chapter 11: Character I/O ...223

Driver/io-char communication ..225

Device control ..227

Input modes ...228

Raw input mode ..228

Edited input mode ...230

Device subsystem performance ..232

Console devices ..233

Serial devices ...234

Parallel devices ..235

Pseudo terminal devices (ptys) ...236

Chapter 12: Networking Architecture ...237

Network manager (io-pkt*) ...238

Threading model ...240

Protocol module ...241

Driver module ...242

Chapter 13: Native Networking (Qnet) ..243

QNX Neutrino distributed ..244

Name resolution and lookup ..246

File descriptor (connection ID) ..246

Behind a simple open() ..247

Global Name Service (GNS) ..248

Network naming ..248

Redundant Qnet: Quality of Service (QoS) and multiple paths ...250

QoS policies ...250

Specifying QoS policies ..252

Symbolic links ..252

Examples ...254

Chapter 14: TCP/IP Networking ...257

Structure of the TCP/IP manager ..259

Socket API ...260

Database routines ..261

Multiple stacks ...263

IP filtering and NAT ..264

NTP ..265

QNX® Neutrino® RTOS

Dynamic host configuration ...266

AutoIP ..266

PPP over Ethernet ...267

/etc/autoconnect ...268

Chapter 15: High Availability ..269

An OS for HA ...270

Inherent HA ..270

HA-specific modules ..271

Custom hardware support ..272

Client library ..273

Recovery example ..273

High Availability Manager ..275

HAM and the Guardian ..275

HAM hierarchy ..276

Publishing autonomously detected conditions ..279

Subscribing to autonomously published conditions ...280

HAM as a “filesystem” ...281

Multistage recovery ..281

HAM API ..281

Chapter 16: Adaptive Partitioning ..285

What are partitions? ..286

If adaptive partitions aren't “boxes,” what are they? ..287

Why adaptive? ..288

Benefits of adaptive partitioning ...289

Engineering product performance ...289

Dealing with design complexity ...289

Providing security ..290

Debugging ..292

Adaptive partitioning thread scheduler ..293

Glossary ..295

Table of Contents

About This Guide

The System Architecture guide accompanies the QNX Neutrino RTOS and is intended

for both application developers and end-users.

This guide describes the philosophy of QNX Neutrino and the architecture used to

robustly implement the OS. It covers message-passing services, followed by the details

of the microkernel, the process manager, resource managers, and other aspects of the

OS.

The following table may help you find information quickly:

Go to:To find out about:

The Philosophy of the QNX Neutrino RTOS (p. 13)OS design goals; message-passing IPC

The microkernel (p. 27)System services

Interprocess Communication (IPC) (p. 67)Sharing information between processes

The Instrumented Microkernel (p. 107)System event monitoring

Multicore Processing (p. 115)Working on a system with more than one processor

Process Manager (p. 125)Memory management, pathname management, etc.

Dynamic Linking (p. 153)Shared objects

Resource Managers (p. 163)Device drivers

Filesystems (p. 177)Image, RAM, Power-Safe, QNX 4, DOS, CD-ROM, Flash, NFS,

CIFS, Ext2, and other filesystems

PPS (p. 217)Persistent Publish/Subscribe (PPS)

Character I/O (p. 223)Serial and parallel devices

Networking Architecture (p. 237)Network subsystem

Native Networking (Qnet) (p. 243)Native QNX Neutrino networking

TCP/IP Networking (p. 257)TCP/IP implementation

High Availability (p. 269)Fault recovery

Adaptive Partitioning (p. 285)Sharing resources among competing processes

GlossaryTerms used in QNX Neutrino documentation

For information about programming, see Get Programming with the QNX Neutrino

RTOS and the QNX Neutrino Programmer's Guide.

Copyright © 2014, QNX Software Systems Limited 9

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

10 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 11

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

12 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
The Philosophy of the QNX Neutrino RTOS

The primary goal of the QNX Neutrino RTOS is to deliver the open systems POSIX API

in a robust, scalable form suitable for a wide range of systems—from tiny,

resource-constrained embedded systems to high-end distributed computing

environments. The OS supports several processor families, including x86 and ARM.

For mission-critical applications, a robust architecture is also fundamental, so the OS

makes flexible and complete use of MMU hardware.

Of course, simply setting out these goals doesn't guarantee results. We invite you to

read through this System Architecture guide to get a feel for our implementation

approach and the design trade-offs chosen to achieve these goals. When you reach

the end of this guide, we think you'll agree that QNX Neutrino is the first OS product

of its kind to truly deliver open systems standards, wide scalability, and high reliability.

Copyright © 2014, QNX Software Systems Limited 13

An embeddable POSIX OS?

According to a prevailing myth, if you scratch a POSIX operating system, you'll find

UNIX beneath the surface! A POSIX OS is therefore too large and unsuitable for

embedded systems.

The fact, however, is that POSIX is not UNIX. Although the POSIX standards are rooted

in existing UNIX practice, the POSIX working groups explicitly defined the standards

in terms of “interface, not implementation.”

Thanks to the precise specification within the standards, as well as the availability of

POSIX test suites, nontraditional OS architectures can provide a POSIX API without

adopting the traditional UNIX kernel. Compare any two POSIX systems and they'll look

very much alike—they'll have many of the same functions, utilities, etc. But when it

comes to performance or reliability, they may be as different as night and day.

Architecture makes the difference.

Despite its decidedly non-UNIX architecture, QNX Neutrino implements the standard

POSIX API. By adopting a microkernel architecture, the OS delivers this API in a form

easily scaled down for realtime embedded systems or incrementally scaled up, as

required.

14 Copyright © 2014, QNX Software Systems Limited

The Philosophy of the QNX Neutrino RTOS

Product scaling

Since you can readily scale a microkernel OS simply by including or omitting the

particular processes that provide the functionality required, you can use a single

microkernel OS for a much wider range of purposes than you can a realtime executive.

Product development often takes the form of creating a “product line,” with successive

models providing greater functionality. Rather than be forced to change operating

systems for each version of the product, developers using a microkernel OS can easily

scale the system as needed—by adding filesystems, networking, graphical user

interfaces, and other technologies.

Some of the advantages to this scalable approach include:

• portable application code (between product-line members)

• common tools used to develop the entire product line

• portable skill sets of development staff

• reduced time-to-market

Copyright © 2014, QNX Software Systems Limited 15

Product scaling

Why POSIX for embedded systems?

A common problem with realtime application development is that each realtime OS

tends to come equipped with its own proprietary API. In the absence of industry

standards, this isn't an unusual state for a competitive marketplace to evolve into,

since surveys of the realtime marketplace regularly show heavy use of in-house

proprietary operating systems. POSIX represents a chance to unify this marketplace.

Among the many POSIX standards, those of most interest to embedded systems

developers are:

• 1003.1—defines the API for process management, device I/O, filesystem I/O, and

basic IPC. This encompasses what might be described as the base functionality of

a UNIX OS, serving as a useful standard for many applications. From a C-language

programming perspective, ANSI X3J11 C is assumed as a starting point, and then

the various aspects of managing processes, files, and tty devices are detailed beyond

what ANSI C specifies.

• Realtime Extensions—defines a set of realtime extensions to the base 1003.1

standard. These extensions consist of semaphores, prioritized process scheduling,

realtime extensions to signals, high-resolution timer control, enhanced IPC

primitives, synchronous and asynchronous I/O, and a recommendation for realtime

contiguous file support.

• Threads—further extends the POSIX environment to include the creation and

management of multiple threads of execution within a given address space.

• Additional Realtime Extensions—defines further extensions to the realtime standard.

Facilities such as attaching interrupt handlers are described.

• Application Environment Profiles—defines several AEPs (Realtime AEP, Embedded

Systems AEP, etc.) of the POSIX environment to suit different embedded capability

sets. These profiles represent embedded OSs with/without filesystems and other

capabilities.

For information about the many POSIX drafts and standards, see the IEEE

website at http://www.ieee.org/.

Apart from any “bandwagon” motive for adopting industry standards, there are several

specific advantages to applying the POSIX standard to the embedded realtime

marketplace:

Multiple OS sources

Hardware manufacturers are loath to choose a single-sourced hardware

component because of the risks implied if that source discontinues

production. For the same reason, manufacturers shouldn't be tied to a

16 Copyright © 2014, QNX Software Systems Limited

The Philosophy of the QNX Neutrino RTOS

http://www.ieee.org/

single-sourced, proprietary OS simply because their application source code

isn't portable to other OSs.

By building applications to the POSIX standards, developers can use OSs

from multiple vendors. Application source code can be readily ported from

platform to platform and from OS to OS, provided that developers avoid

using OS-specific extensions.

Portability of development staff

Using a common API for embedded development, programmers experienced

with one realtime OS can directly apply their skill sets to other projects

involving other processors and operating systems. In addition, programmers

with UNIX or POSIX experience can easily work on embedded realtime

systems, since the nonrealtime portion of the realtime OS's API is already

familiar territory.

Development environment

Even in a cross-hosted development environment, the API remains essentially

the same as on the embedded system. Regardless of the particular host

(Linux, Windows,...) or the target (x86, ARM), the programmer doesn't need

to worry about platform-specific endian, alignment, or I/O issues.

Copyright © 2014, QNX Software Systems Limited 17

Why POSIX for embedded systems?

Why QNX Neutrino for embedded systems?

The main responsibility of an operating system is to manage a computer's resources.

All activities in the system—scheduling application programs, writing files to disk,

sending data across a network, and so on—should function together as seamlessly

and transparently as possible.

Some environments call for more rigorous resource management and scheduling than

others. Realtime applications, for instance, depend on the OS to handle multiple

events and to ensure that the system responds to those events within predictable time

limits. The more responsive the OS, the more “time” a realtime application has to

meet its deadlines.

The QNX Neutrino RTOS is ideal for embedded realtime applications. It can be scaled

to very small sizes and provides multitasking, threads, priority-driven preemptive

scheduling, and fast context-switching—all essential ingredients of an embedded

realtime system. Moreover, the OS delivers these capabilities with a POSIX-standard

API; there's no need to forgo standards in order to achieve a small system.

QNX Neutrino is also remarkably flexible. Developers can easily customize the OS to

meet the needs of their applications. From a “bare-bones” configuration of the

microkernel with a few small modules to a full-blown network-wide system equipped

to serve hundreds of users, you're free to set up your system to use only those resources

you require to tackle the job at hand.

QNX Neutrino achieves its unique degree of efficiency, modularity, and simplicity

through two fundamental principles:

• microkernel architecture

• message-based interprocess communication

18 Copyright © 2014, QNX Software Systems Limited

The Philosophy of the QNX Neutrino RTOS

Microkernel architecture

Buzzwords often fall in and out of fashion. Vendors tend to enthusiastically apply the

buzzwords of the day to their products, whether the terms actually fit or not.

The term “microkernel” has become fashionable. Although many new operating systems

are said to be “microkernels” (or even “nanokernels”), the term may not mean very

much without a clear definition.

Let's try to define the term. A microkernel OS is structured as a tiny kernel that provides

the minimal services used by a team of optional cooperating processes, which in turn

provide the higher-level OS functionality. The microkernel itself lacks filesystems and

many other services normally expected of an OS; those services are provided by optional

processes.

The real goal in designing a microkernel OS is not simply to “make it small.” A

microkernel OS embodies a fundamental change in the approach to delivering OS

functionality. Modularity is the key, size is but a side effect. To call any kernel a

“microkernel” simply because it happens to be small would miss the point entirely.

Since the IPC services provided by the microkernel are used to “glue” the OS itself

together, the performance and flexibility of those services govern the performance of

the resulting OS. With the exception of those IPC services, a microkernel is roughly

comparable to a realtime executive, both in terms of the services provided and in their

realtime performance.

The microkernel differs from an executive in how the IPC services are used to extend

the functionality of the kernel with additional, service-providing processes. Since the

OS is implemented as a team of cooperating processes managed by the microkernel,

user-written processes can serve both as applications and as processes that extend

the underlying OS functionality for industry-specific applications. The OS itself becomes

“open” and easily extensible. Moreover, user-written extensions to the OS won't affect

the fundamental reliability of the core OS.

A difficulty for many realtime executives implementing the POSIX 1003.1 standard

is that their runtime environment is typically a single-process, multiple-threaded model,

with unprotected memory between threads. Such an environment is only a subset of

the multi-process model that POSIX assumes; it cannot support the fork() function.

In contrast, QNX Neutrino fully utilizes an MMU to deliver the complete POSIX process

model in a protected environment.

As the following diagrams show, a true microkernel offers complete memory protection,

not only for user applications, but also for OS components (device drivers, filesystems,

etc.):

Copyright © 2014, QNX Software Systems Limited 19

Microkernel architecture

Kernel space

Applications Device drivers

File
system

TCP/IP
stack

Figure 1: Conventional executives offer no memory protection.

Applications
Kernel space

User space

File
system

TCP/IP
stack

Device drivers

Figure 2: In a monolithic OS, system processes have no protection.

User space

Applications

Device drivers

File
system

TCP/IP
stack

Microkernel

Figure 3: A microkernel provides complete memory protection.

The first version of the QNX OS was shipped in 1981. With each successive product

revision, we have applied the experience from previous product generations to the

latest incarnation, our most capable, scalable OS to date. We believe that this

time-tested experience is what enables the QNX Neutrino RTOS to deliver the

functionality it does using the limited resources it consumes.

The OS as a team of processes

The QNX Neutrino RTOS consists of a small microkernel managing a group of

cooperating processes.

As the following illustration shows, the structure looks more like a team than a

hierarchy, as several “players” of equal rank interact with each other through the

coordinating kernel.

20 Copyright © 2014, QNX Software Systems Limited

The Philosophy of the QNX Neutrino RTOS

Software bus

Power-
Safe file
manager

HFS file
manager

Process
manager

Flash
file

manager

UDF file
manager

NFS file
manager

GUI
manager

Character
manager

Mqueue
manager

CIFS file
manager

Application
Network
manager

QNX Neutrino
microkernel

Application

Figure 4: The QNX Neutrino RTOS architecture.

QNX Neutrino acts as a kind of “software bus” that lets you dynamically plug in/out

OS modules whenever they're needed.

A true kernel

The kernel is the heart of any operating system. In some systems, the “kernel”

comprises so many functions that for all intents and purposes it is the entire operating

system!

But our microkernel is truly a kernel. First of all, like the kernel of a realtime executive,

it's very small. Secondly, it's dedicated to only a few fundamental services:

• thread services via POSIX thread-creation primitives

• signal services via POSIX signal primitives

• message-passing services—the microkernel handles the routing of all messages

between all threads throughout the entire system.

• synchronization services via POSIX thread-synchronization primitives.

• scheduling services—the microkernel schedules threads for execution using the

various POSIX realtime scheduling policies.

• timer services—the microkernel provides the rich set of POSIX timer services.

• process management services—the microkernel and the process manager together

form a unit (called procnto). The process manager portion is responsible for

managing processes, memory, and the pathname space.

Unlike threads, the microkernel itself is never scheduled for execution. The processor

executes code in the microkernel only as the result of an explicit kernel call, an

exception, or in response to a hardware interrupt.

Copyright © 2014, QNX Software Systems Limited 21

Microkernel architecture

System processes

All OS services, except those provided by the mandatory microkernel/process manager

module (procnto), are handled via standard processes.

A richly configured system could include the following:

• filesystem managers

• character device managers

• native network manager

• TCP/IP

System processes vs user-written processes

System processes are essentially indistinguishable from any user-written program—they

use the same public API and kernel services available to any (suitably privileged) user

process.

It is this architecture that gives the QNX Neutrino RTOS unparalleled extensibility.

Since most OS services are provided by standard system processes, it's very simple

to augment the OS itself: just write new programs to provide new OS services.

In fact, the boundary between the operating system and the application can become

very blurred. The only real difference between system services and applications is that

OS services manage resources for clients.

Suppose you've written a database server—how should such a process be classified?

Just as a filesystem accepts requests (via messages) to open files and read or write

data, so too would a database server. While the requests to the database server may

be more sophisticated, both servers are very much the same in that they provide an

API (implemented by messages) that clients use to access a resource. Both are

independent processes that can be written by an end-user and started and stopped

on an as-needed basis.

A database server might be considered a system process at one installation, and an

application at another. It really doesn't matter! The important point is that the OS

allows such processes to be implemented cleanly, with no need for modifications to

the standard components of the OS itself. For developers creating custom embedded

systems, this provides the flexibility to extend the OS in directions that are uniquely

useful to their applications, without needing access to OS source code.

Device drivers

Device drivers allow the OS and application programs to make use of the underlying

hardware in a generic way (e.g., a disk drive, a network interface).

While most OSs require device drivers to be tightly bound into the OS itself, device

drivers for QNX Neutrino can be started and stopped as standard processes. As a

22 Copyright © 2014, QNX Software Systems Limited

The Philosophy of the QNX Neutrino RTOS

result, adding device drivers doesn't affect any other part of the OS—drivers can be

developed and debugged like any other application.

Copyright © 2014, QNX Software Systems Limited 23

Microkernel architecture

Interprocess communication

When several threads run concurrently, as in typical realtime multitasking environments,

the OS must provide mechanisms to allow them to communicate with each other.

Interprocess communication (IPC) is the key to designing an application as a set of

cooperating processes in which each process handles one well-defined part of the

whole.

The OS provides a simple but powerful set of IPC capabilities that greatly simplify the

job of developing applications made up of cooperating processes. For more information,

see the Interprocess Communication (IPC) (p. 67) chapter.

QNX Neutrino as a message-passing operating system

QNX Neutrino was the first commercial operating system of its kind to make use of

message passing as the fundamental means of IPC. The OS owes much of its power,

simplicity, and elegance to the complete integration of the message-passing method

throughout the entire system.

In QNX Neutrino, a message is a parcel of bytes passed from one process to another.

The OS attaches no special meaning to the content of a message—the data in a

message has meaning for the sender of the message and for its receiver, but for no

one else.

Message passing not only allows processes to pass data to each other, but also provides

a means of synchronizing the execution of several processes. As they send, receive,

and reply to messages, processes undergo various “changes of state” that affect when,

and for how long, they may run. Knowing their states and priorities, the microkernel

can schedule all processes as efficiently as possible to make the most of available

CPU resources. This single, consistent method—message-passing—is thus constantly

operative throughout the entire system.

Realtime and other mission-critical applications generally require a dependable form

of IPC, because the processes that make up such applications are so strongly

interrelated. The discipline imposed by QNX Neutrino's message-passing design helps

bring order and greater reliability to applications.

24 Copyright © 2014, QNX Software Systems Limited

The Philosophy of the QNX Neutrino RTOS

Network distribution of kernels

In its simplest form, local area networking provides a mechanism for sharing files and

peripheral devices among several interconnected computers. QNX Neutrino goes far

beyond this simple concept and integrates the entire network into a single,

homogeneous set of resources.

Any thread on any machine in the network can directly make use of any resource on

any other machine. From the application's perspective, there's no difference between

a local or remote resource—no special facilities need to be built into applications to

allow them to make use of remote resources.

Users may access files anywhere on the network, take advantage of any peripheral

device, and run applications on any machine on the network (provided they have the

appropriate authority). Processes can communicate in the same manner anywhere

throughout the entire network. Again, the OS's all-pervasive message-passing IPC

accounts for such fluid, transparent networking.

Single-computer model

QNX Neutrino is designed from the ground up as a network-wide operating system.

In some ways, a native QNX Neutrino network feels more like a mainframe computer

than a set of individual micros. Users are simply aware of a large set of resources

available for use by any application. But unlike a mainframe, QNX Neutrino provides

a highly responsive environment, since the appropriate amount of computing power

can be made available at each node to meet the needs of each user.

In a mission-critical environment, for example, applications that control realtime I/O

devices may require more performance than other, less critical, applications, such as

a web browser. The network is responsive enough to support both types of applications

at the same time—the OS lets you focus computing power on the devices in your hard

realtime system where and when it's needed, without sacrificing concurrent connectivity

to the desktop. Moreover, critical aspects of realtime computing, such as priority

inheritance, function seamlessly across a QNX Neutrino network, regardless of the

physical media employed (switch fabric, serial, etc.).

Flexible networking

QNX Neutrino networks can be put together using various hardware and

industry-standard protocols. Since these are completely transparent to application

programs and users, new network architectures can be introduced at any time without

disturbing the OS.

Each node in the network is assigned a unique name that becomes its identifier. This

name is the only visible means to determine whether the OS is running as a network

or as a standalone operating system.

Copyright © 2014, QNX Software Systems Limited 25

Network distribution of kernels

This degree of transparency is yet another example of the distinctive power of QNX

Neutrino's message-passing architecture. In many systems, important functions such

as networking, IPC, or even message passing are built on top of the OS, rather than

integrated directly into its core. The result is often an awkward, inefficient “double

standard” interface, whereby communication between processes is one thing, while

penetrating the private interface of a mysterious monolithic kernel is another matter

altogether.

In contrast to monolithic systems, QNX Neutrino is grounded on the principle that

effective communication is the key to effective operation. Message passing thus forms

the cornerstone of our microkernel architecture and enhances the efficiency of all

transactions among all processes throughout the entire system, whether across a PC

backplane or across a mile of twisted pair.

26 Copyright © 2014, QNX Software Systems Limited

The Philosophy of the QNX Neutrino RTOS

Chapter 2
The QNX Neutrino Microkernel

The microkernel implements the core POSIX features used in embedded realtime

systems, along with the fundamental QNX Neutrino message-passing services.

The POSIX features that aren't implemented in the procnto microkernel (file and

device I/O, for example) are provided by optional processes and shared libraries.

To determine the release version of the kernel on your system, use the uname

-a command. For more information, see its entry in the Utilities Reference.

Successive microkernels from QNX Software Systems have seen a reduction in the

code required to implement a given kernel call. The object definitions at the lowest

layer in the kernel code have become more specific, allowing greater code reuse (such

as folding various forms of POSIX signals, realtime signals, and QNX Neutrino pulses

into common data structures and code to manipulate those structures).

At its lowest level, the microkernel contains a few fundamental objects and the highly

tuned routines that manipulate them. The OS is built from this foundation.

Interface Microkernel Objects

Thread

Sched

Synch

Signal

Message

Clock

Interrupt

Channel

Dispatch

Vector

Connection

Channel

Pulse

Timer

Thread

Timer

Figure 5: The microkernel.

Some developers have assumed that our microkernel is implemented entirely in

assembly code for size or performance reasons. In fact, our implementation is coded

primarily in C; size and performance goals are achieved through successively refined

algorithms and data structures, rather than via assembly-level peep-hole optimizations.

Copyright © 2014, QNX Software Systems Limited 27

The implementation of the QNX Neutrino RTOS

Historically, the “application pressure” on QNX Software Systems' operating systems

has been from both ends of the computing spectrum—from memory-limited embedded

systems all the way up to high-end SMP (symmetrical multiprocessing) machines with

gigabytes of physical memory.

Accordingly, the design goals for QNX Neutrino accommodate both seemingly exclusive

sets of functionality. Pursuing these goals is intended to extend the reach of systems

well beyond what other OS implementations could address.

POSIX realtime and thread extensions

Since the QNX Neutrino RTOS implements the majority of the realtime and thread

services directly in the microkernel, these services are available even without the

presence of additional OS modules.

In addition, some of the profiles defined by POSIX suggest that these services be

present without necessarily requiring a process model. In order to accommodate this,

the OS provides direct support for threads, but relies on its process manager portion

to extend this functionality to processes containing multiple threads.

Note that many realtime executives and kernels provide only a nonmemory-protected

threaded model, with no process model and/or protected memory model at all. Without

a process model, full POSIX compliance cannot be achieved.

28 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

System services

The microkernel has kernel calls to support the following:

• threads

• message passing

• signals

• clocks

• timers

• interrupt handlers

• semaphores

• mutual exclusion locks (mutexes)

• condition variables (condvars)

• barriers

The entire OS is built upon these calls. The OS is fully preemptible, even while passing

messages between processes; it resumes the message pass where it left off before

preemption.

The minimal complexity of the microkernel helps place an upper bound on the longest

nonpreemptible code path through the kernel, while the small code size makes

addressing complex multiprocessor issues a tractable problem. Services were chosen

for inclusion in the microkernel on the basis of having a short execution path.

Operations requiring significant work (e.g., process loading) were assigned to external

processes/threads, where the effort to enter the context of that thread would be

insignificant compared to the work done within the thread to service the request.

Rigorous application of this rule to dividing the functionality between the kernel and

external processes destroys the myth that a microkernel OS must incur higher runtime

overhead than a monolithic kernel OS. Given the work done between context switches

(implicit in a message pass), and the very quick context-switch times that result from

the simplified kernel, the time spent performing context switches becomes “lost in

the noise” of the work done to service the requests communicated by the message

passing between the processes that make up the OS.

The following diagram shows the preemption details for the non-SMP kernel (x86

implementation).

Copyright © 2014, QNX Software Systems Limited 29

System services

Entry

Exit

SYSCALL

SYSEXIT

usecs

usecs to
msecs

Interrupts off

Interrupts off

Interrupts on,
full preemption

Interrupts on,
no preemption

usecs

usecs

Lockdown

Kernel
operations,
which may
include a
message
pass

Figure 6: QNX Neutrino preemption details.

Interrupts are disabled, or preemption is held off, for only very brief intervals (typically

in the order of hundreds of nanoseconds).

30 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

Threads and processes

When building an application (realtime, embedded, graphical, or otherwise), the

developer may want several algorithms within the application to execute concurrently.

This concurrency is achieved by using the POSIX thread model, which defines a process

as containing one or more threads of execution.

A thread can be thought of as the minimum “unit of execution,” the unit of scheduling

and execution in the microkernel. A process, on the other hand, can be thought of as

a “container” for threads, defining the “address space” within which threads will

execute. A process will always contain at least one thread.

Depending on the nature of the application, threads might execute independently with

no need to communicate between the algorithms (unlikely), or they may need to be

tightly coupled, with high-bandwidth communications and tight synchronization. To

assist in this communication and synchronization, the QNX Neutrino RTOS provides

a rich variety of IPC and synchronization services.

The following pthread_* (POSIX Threads) library calls don't involve any microkernel

thread calls:

• pthread_attr_destroy()

• pthread_attr_getdetachstate()

• pthread_attr_getinheritsched()

• pthread_attr_getschedparam()

• pthread_attr_getschedpolicy()

• pthread_attr_getscope()

• pthread_attr_getstackaddr()

• pthread_attr_getstacksize()

• pthread_attr_init()

• pthread_attr_setdetachstate()

• pthread_attr_setinheritsched()

• pthread_attr_setschedparam()

• pthread_attr_setschedpolicy()

• pthread_attr_setscope()

• pthread_attr_setstackaddr()

• pthread_attr_setstacksize()

• pthread_cleanup_pop()

• pthread_cleanup_push()

• pthread_equal()

• pthread_getspecific()

• pthread_setspecific()

Copyright © 2014, QNX Software Systems Limited 31

Threads and processes

• pthread_key_create()

• pthread_key_delete()

• pthread_self()

The following table lists the POSIX thread calls that have a corresponding microkernel

thread call, allowing you to choose either interface:

DescriptionMicrokernel callPOSIX call

Create a new thread of executionThreadCreate()pthread_create()

Destroy a threadThreadDestroy()pthread_exit()

Detach a thread so it doesn't need to be joinedThreadDetach()pthread_detach()

Join a thread waiting for its exit statusThreadJoin()pthread_join()

Cancel a thread at the next cancellation pointThreadCancel()pthread_cancel()

Change a thread's QNX Neutrino-specific thread

characteristics

ThreadCtl()N/A

Create a mutexSyncTypeCreate()pthread_mutex_init()

Destroy a mutexSyncDestroy()pthread_mutex_destroy()

Lock a mutexSyncMutexLock()pthread_mutex_lock()

Conditionally lock a mutexSyncMutexLock()pthread_mutex_trylock()

Unlock a mutexSyncMutexUnlock()pthread_mutex_unlock()

Create a condition variableSyncTypeCreate()pthread_cond_init()

Destroy a condition variableSyncDestroy()pthread_cond_destroy()

Wait on a condition variableSyncCondvarWait()pthread_cond_wait()

Signal a condition variableSyncCondvarSignal()pthread_cond_signal()

Broadcast a condition variableSyncCondvarSignal()pthread_cond_broadcast()

Get the scheduling parameters and policy of a

thread

SchedGet()pthread_getschedparam()

Set the scheduling parameters and policy of a threadSchedSet()pthread_setschedparam(),

pthread_setschedprio()

Examine or set a thread's signal maskSignalProcmask()pthread_sigmask()

Send a signal to a specific threadSignalKill()pthread_kill()

The OS can be configured to provide a mix of threads and processes (as defined by

POSIX). Each process is MMU-protected from each other, and each process may

contain one or more threads that share the process's address space.

32 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

The environment you choose affects not only the concurrency capabilities of the

application, but also the IPC and synchronization services the application might make

use of.

Even though the common term “IPC” refers to communicating processes, we

use it here to describe the communication between threads, whether they're

within the same process or separate processes.

For information about processes and threads from the programming point of view, see

the Processes and Threads chapter of Get Programming with the QNX Neutrino RTOS,

and the Programming Overview and Processes chapters of the QNX Neutrino

Programmer's Guide.

Thread attributes

Although threads within a process share everything within the process's address space,

each thread still has some “private” data. In some cases, this private data is protected

within the kernel (e.g., the tid or thread ID), while other private data resides unprotected

in the process's address space (e.g., each thread has a stack for its own use). Some

of the more noteworthy thread-private resources are:

tid

Each thread is identified by an integer thread ID, starting at 1. The tid is

unique within the thread's process.

Priority

Each thread has a priority that helps determine when it runs. A thread inherits

its initial priority from its parent, but the priority can change, depending on

the scheduling policy, explicit changes that the thread makes, or messages

sent to the thread.

In the QNX Neutrino RTOS, processes don't have priorities; their

threads do.

For more information, see “Thread scheduling (p. 38),” later in this chapter.

Name

Starting with the QNX Neutrino Core OS 6.3.2, you can assign a name to a

thread; see the entries for pthread_getname_np() and pthread_setname_np()

in the QNX Neutrino C Library Reference. Utilities such as dumper and

pidin support thread names. Thread names are a QNX Neutrino extension.

Register set

Copyright © 2014, QNX Software Systems Limited 33

Threads and processes

Each thread has its own instruction pointer (IP), stack pointer (SP), and

other processor-specific register context.

Stack

Each thread executes on its own stack, stored within the address space of

its process.

Signal mask

Each thread has its own signal mask.

Thread local storage

A thread has a system-defined data area called “thread local storage” (TLS).

The TLS is used to store “per-thread” information (such as tid, pid, stack

base, errno, and thread-specific key/data bindings). The TLS doesn't need

to be accessed directly by a user application. A thread can have user-defined

data associated with a thread-specific data key.

Cancellation handlers

Callback functions that are executed when the thread terminates.

Thread-specific data, implemented in the pthread library and stored in the TLS,

provides a mechanism for associating a process global integer key with a unique

per-thread data value. To use thread-specific data, you first create a new key and then

bind a unique data value to the key (per thread). The data value may, for example, be

an integer or a pointer to a dynamically allocated data structure. Subsequently, the

key can return the bound data value per thread.

A typical application of thread-specific data is for a thread-safe function that needs

to maintain a context for each calling thread.

key

tid

Figure 7: Sparse matrix (tid,key) to value mapping.

You use the following functions to create and manipulate this data:

DescriptionFunction

Create a data key with destructor functionpthread_key_create()

34 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

DescriptionFunction

Destroy a data keypthread_key_delete()

Bind a data value to a data keypthread_setspecific()

Return the data value bound to a data keypthread_getspecific()

Thread life cycle

The number of threads within a process can vary widely, with threads being created

and destroyed dynamically.

Thread creation (pthread_create()) involves allocating and initializing the necessary

resources within the process's address space (e.g., thread stack) and starting the

execution of the thread at some function in the address space.

Thread termination (pthread_exit(), pthread_cancel()) involves stopping the thread

and reclaiming the thread's resources. As a thread executes, its state can generally

be described as either “ready” or “blocked.” More specifically, it can be one of the

following:

SEND

REPLY

NANO
SLEEP

CONDVAR

MUTEX

SIGSUSP

JOIN

SIG
WAITINFO

INTERRUPTRECEIVE

NET_SEND

SEM

STACK

WAITCTX

WAITPAGE

WAIT
THREAD

RUNNINGNET_REPLY

STOPPED

READY

DEAD

Figure 8: Possible thread states. Note that, in addition to the transitions shown above,

a thread can move from any state (except DEAD) to READY.

Copyright © 2014, QNX Software Systems Limited 35

Threads and processes

CONDVAR

The thread is blocked on a condition variable (e.g., it called

pthread_cond_wait()).

DEAD

The thread has terminated and is waiting for a join by another thread.

INTERRUPT

The thread is blocked waiting for an interrupt (i.e., it called InterruptWait()).

JOIN

The thread is blocked waiting to join another thread (e.g., it called

pthread_join()).

MUTEX

The thread is blocked on a mutual exclusion lock (e.g., it called

pthread_mutex_lock()).

NANOSLEEP

The thread is sleeping for a short time interval (e.g., it called nanosleep()).

NET_REPLY

The thread is waiting for a reply to be delivered across the network (i.e., it

called MsgReply*()).

NET_SEND

The thread is waiting for a pulse or signal to be delivered across the network

(i.e., it called MsgSendPulse(), MsgDeliverEvent(), or SignalKill()).

READY

The thread is waiting to be executed while the processor executes another

thread of equal or higher priority.

RECEIVE

The thread is blocked on a message receive (e.g., it called MsgReceive()).

REPLY

The thread is blocked on a message reply (i.e., it called MsgSend(), and the

server received the message).

RUNNING

The thread is being executed by a processor. The kernel uses an array (with

one entry per processor in the system) to keep track of the running threads.

36 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

SEM

The thread is waiting for a semaphore to be posted (i.e., it called

SyncSemWait()).

SEND

The thread is blocked on a message send (e.g., it called MsgSend(), but the

server hasn't yet received the message).

SIGSUSPEND

The thread is blocked waiting for a signal (i.e., it called sigsuspend()).

SIGWAITINFO

The thread is blocked waiting for a signal (i.e., it called sigwaitinfo()).

STACK

The thread is waiting for the virtual address space to be allocated for the

thread's stack (parent will have called ThreadCreate()).

STOPPED

The thread is blocked waiting for a SIGCONT signal.

WAITCTX

The thread is waiting for a noninteger (e.g., floating point) context to become

available for use.

WAITPAGE

The thread is waiting for physical memory to be allocated for a virtual

address.

WAITTHREAD

The thread is waiting for a child thread to finish creating itself (i.e., it called

ThreadCreate()).

Copyright © 2014, QNX Software Systems Limited 37

Threads and processes

Thread scheduling

Part of the kernel's job is to determine which thread runs and when.

First, let's look at when the kernel makes its scheduling decisions.

The execution of a running thread is temporarily suspended whenever the microkernel

is entered as the result of a kernel call, exception, or hardware interrupt. A scheduling

decision is made whenever the execution state of any thread changes—it doesn't

matter which processes the threads might reside within. Threads are scheduled globally

across all processes.

Normally, the execution of the suspended thread will resume, but the thread scheduler

will perform a context switch from one thread to another whenever the running thread:

• is blocked

• is preempted

• yields

When is a thread blocked?

The running thread is blocked when it must wait for some event to occur

(response to an IPC request, wait on a mutex, etc.). The blocked thread is

removed from the running array and the highest-priority ready thread is then

run. When the blocked thread is subsequently unblocked, it's placed on the

end of the ready queue for that priority level.

When is a thread preempted?

The running thread is preempted when a higher-priority thread is placed on

the ready queue (it becomes READY, as the result of its block condition

being resolved). The preempted thread is put at the beginning of the ready

queue for that priority and the higher-priority thread runs.

When is a thread yielded?

The running thread voluntarily yields the processor (sched_yield()) and is

placed on the end of the ready queue for that priority. The highest-priority

thread then runs (which may still be the thread that just yielded).

Scheduling priority

Every thread is assigned a priority. The thread scheduler selects the next thread to

run by looking at the priority assigned to every thread that is READY (i.e., capable of

using the CPU). The thread with the highest priority is selected to run.

The following diagram shows the ready queue for five threads (B–F) that are READY.

Thread A is currently running. All other threads (G–Z) are BLOCKED. Thread A, B, and

38 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

C are at the highest priority, so they'll share the processor based on the running thread's

scheduling policy.

Ready
queue

5

0

255

10

Pr
io
ri
ty

E

D

Blocked

B C

Idle

F

Running

A

G Z

Figure 9: The ready queue.

The OS supports a total of 256 scheduling priority levels. An unprivileged thread can

set its priority to a level from 1 to 63 (the highest priority), independent of the

scheduling policy. Only root threads (i.e., those whose effective uid is 0) or those

with the PROCMGR_AID_PRIORITY ability enabled (see procmgr_ability()) are allowed

to set priorities above 63. The special idle thread (in the process manager) has priority

0 and is always ready to run. A thread inherits the priority of its parent thread by

default.

You can change the allowed priority range for unprivileged processes with the procnto

-P option:

procnto -P priority

In QNX Neutrino 6.6 or later, you can append an s or S to this option if you want

out-of-range priority requests by default to saturate at the maximum allowed value

instead of resulting in an error. When you're setting a priority, you can wrap it in one

these (non-POSIX) macros to specify how to handle out-of-range priority requests:

• SCHED_PRIO_LIMIT_ERROR(priority) — indicate an error

• SCHED_PRIO_LIMIT_SATURATE(priority) — saturate at the maximum allowed

priority

Here's a summary of the ranges:

OwnerPriority level

Idle thread0

Unprivileged or privileged1 through priority − 1

Privilegedpriority through 255

Copyright © 2014, QNX Software Systems Limited 39

Thread scheduling

Note that in order to prevent priority inversion, the kernel may temporarily boost a

thread's priority. For more information, see “Priority inheritance and mutexes (p. 48)”

later in this chapter, and “Priority inheritance and messages (p. 77)” in the Interprocess

Communication (IPC) chapter. The initial priority of the kernel's threads is 255, but

the first thing they all do is block in a MsgReceive(), so after that they operate at the

priority of threads that send messages to them.

The threads on the ready queue are ordered by priority. The ready queue is actually

implemented as 256 separate queues, one for each priority. The first thread in the

highest-priority queue is selected to run.

Most of the time, threads are queued in FIFO order in the queue of their priority, but

there are some exceptions:

• A server thread that's coming out of a RECEIVE-blocked state with a message from

a client is inserted at the head of the queue for that priority—that is, the order is

LIFO, not FIFO.

• If a thread sends a message with an “nc” (non-cancellation point) variant of

MsgSend*(), then when the server replies, the thread is placed at the front of the

ready queue, rather than at the end. If the scheduling policy is round-robin, the

thread's timeslice isn't replenished; for example, if the thread had already used

half its timeslice before sending, then it still has only half a timeslice left before

being eligible for preemption.

Scheduling policies

To meet the needs of various applications, the QNX Neutrino RTOS provides these

scheduling algorithms:

• FIFO scheduling

• round-robin scheduling

• sporadic scheduling

Each thread in the system may run using any method. The methods are effective on

a per-thread basis, not on a global basis for all threads and processes on a node.

Remember that the FIFO and round-robin scheduling policies apply only when two or

more threads that share the same priority are READY (i.e., the threads are directly

competing with each other). The sporadic method, however, employs a “budget” for

a thread's execution. In all cases, if a higher-priority thread becomes READY, it

immediately preempts all lower-priority threads.

In the following diagram, three threads of equal priority are READY. If Thread A blocks,

Thread B will run.

40 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

Blocked

Ready
queue

10

C

A

Running

B

Pr
io
ri
ty

Figure 10: Thread A blocks; Thread B runs.

Although a thread inherits its scheduling policy from its parent process, the thread

can request to change the algorithm applied by the kernel.

FIFO scheduling

In FIFO scheduling, a thread selected to run continues executing until it:

• voluntarily relinquishes control (e.g., it blocks)

• is preempted by a higher-priority thread

Ready
queue

10

B C

Running

A

Pr
io
ri
ty

Figure 11: FIFO scheduling.

Round-robin scheduling

In round-robin scheduling, a thread selected to run continues executing until it:

• voluntarily relinquishes control

• is preempted by a higher-priority thread

• consumes its timeslice

As the following diagram shows, Thread A ran until it consumed its timeslice; the next

READY thread (Thread B) now runs:

Copyright © 2014, QNX Software Systems Limited 41

Thread scheduling

Ready
queue

10

C

A

Running

BPr
io
ri
ty

Figure 12: Round-robin scheduling.

A timeslice is the unit of time assigned to every process. Once it consumes its timeslice,

a thread is preempted and the next READY thread at the same priority level is given

control. A timeslice is 4 × the clock period. (For more information, see the entry for

ClockPeriod() in the QNX Neutrino C Library Reference.)

Apart from time slicing, round-robin scheduling is identical to FIFO scheduling.

Sporadic scheduling

The sporadic scheduling policy is generally used to provide a capped limit on the

execution time of a thread within a given period of time.

This behavior is essential when Rate Monotonic Analysis (RMA) is being performed

on a system that services both periodic and aperiodic events. Essentially, this algorithm

allows a thread to service aperiodic events without jeopardizing the hard deadlines of

other threads or processes in the system.

As in FIFO scheduling, a thread using sporadic scheduling continues executing until

it blocks or is preempted by a higher-priority thread. And as in adaptive scheduling,

a thread using sporadic scheduling will drop in priority, but with sporadic scheduling

you have much more precise control over the thread's behavior.

Under sporadic scheduling, a thread's priority can oscillate dynamically between a

foreground or normal priority and a background or low priority. Using the following

parameters, you can control the conditions of this sporadic shift:

Initial budget (C)

The amount of time a thread is allowed to execute at its normal priority (N)

before being dropped to its low priority (L).

Low priority (L)

The priority level to which the thread will drop. The thread executes at this

lower priority (L) while in the background, and runs at normal priority (N)

while in the foreground.

Replenishment period (T)

42 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

The period of time during which a thread is allowed to consume its execution

budget. To schedule replenishment operations, the POSIX implementation

also uses this value as the offset from the time the thread becomes READY.

Max number of pending replenishments

This value limits the number of replenishment operations that can take

place, thereby bounding the amount of system overhead consumed by the

sporadic scheduling policy.

In a poorly configured system, a thread's execution budget may

become eroded because of too much blocking—i.e., it won't receive

enough replenishments.

As the following diagram shows, the sporadic scheduling policy establishes a thread's

initial execution budget (C), which is consumed by the thread as it runs and is

replenished periodically (for the amount T). When a thread blocks, the amount of the

execution budget that's been consumed (R) is arranged to be replenished at some

later time (e.g., at 40 msec) after the thread first became ready to run.

R
C

T

C

Replenished at this point

0 msec 40 msec 80 msec

Figure 13: A thread's budget is replenished periodically.

At its normal priority N, a thread will execute for the amount of time defined by its

initial execution budget C. As soon as this time is exhausted, the priority of the thread

will drop to its low priority L until the replenishment operation occurs.

Assume, for example, a system where the thread never blocks or is never preempted:

T

Replenished at this point;
priority is restored

0 msec 40 msec 80 msec

Priority N

Priority L

Exhausts budget;
drops to lower priority

May or may not run

Figure 14: A thread drops in priority until its budget is replenished.

Here the thread will drop to its low-priority (background) level, where it may or may

not get a chance to run depending on the priority of other threads in the system.

Copyright © 2014, QNX Software Systems Limited 43

Thread scheduling

Once the replenishment occurs, the thread's priority is raised to its original level. This

guarantees that within a properly configured system, the thread will be given the

opportunity every period T to run for a maximum execution time C. This ensures that

a thread running at priority N will consume only C/T of the system's resources.

When a thread blocks multiple times, then several replenishment operations may be

started and occur at different times. This could mean that the thread's execution

budget will total C within a period T; however, the execution budget may not be

contiguous during that period.

T

0 msec 40 msec 80 msec

Priority N

Priority L

T

1 2

3 4 5 6

Figure 15: A thread oscillates between high and low priority.

In the diagram above, the thread has a budget (C) of 10 msec to be consumed within

each 40-msec replenishment period (T).

1. The initial run of the thread is blocked after 3 msec, so a replenishment operation

of 3 msec is scheduled to begin at the 40-msec mark, i.e., when its first

replenishment period has elapsed.

2. The thread gets an opportunity to run again at 6 msec, which marks the start of

another replenishment period (T). The thread still has 7 msec remaining in its

budget.

3. The thread runs without blocking for 7 msec, thereby exhausting its budget, and

then drops to low priority L, where it may or may not be able to execute. A

replenishment of 7 msec is scheduled to occur at 46 msec (40 + 6), i.e., when T

has elapsed.

4. The thread has 3 msec of its budget replenished at 40 msec (see Step 1) and is

therefore boosted back to its normal priority.

5. The thread consumes the 3 msec of its budget and then is dropped back to the

low priority.

6. The thread has 7 msec of its budget replenished at 46 msec (see Step 3) and is

boosted back to its normal priority.

And so on. The thread will continue to oscillate between its two priority levels, servicing

aperiodic events in your system in a controlled, predictable manner.

44 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

Manipulating priority and scheduling policies

A thread's priority can vary during its execution, either from direct manipulation by

the thread itself or from the kernel adjusting the thread's priority as it receives a

message from a higher-priority thread.

In addition to priority, you can also select the scheduling algorithm that the kernel

will use for the thread. Although our libraries provide a number of different ways to

get and set the scheduling parameters, your best choices are pthread_getschedparam(),

pthread_setschedparam(), and pthread_setschedprio(). For information about the other

choices, see “Scheduling policies” in the Programming Overview chapter of the QNX

Neutrino Programmer's Guide.

IPC issues

Since all the threads in a process have unhindered access to the shared data space,

wouldn't this execution model “trivially” solve all of our IPC problems? Can't we just

communicate the data through shared memory and dispense with any other execution

models and IPC mechanisms?

If only it were that simple!

One issue is that the access of individual threads to common data must be

synchronized. Having one thread read inconsistent data because another thread is

part way through modifying it is a recipe for disaster. For example, if one thread is

updating a linked list, no other threads can be allowed to traverse or modify the list

until the first thread has finished. A code passage that must execute “serially” (i.e.,

by only one thread at a time) in this manner is termed a “critical section.” The program

would fail (intermittently, depending on how frequently a “collision” occurred) with

irreparably damaged links unless some synchronization mechanism ensured serial

access.

Mutexes, semaphores, and condvars are examples of synchronization tools that can

be used to address this problem. These tools are described later in this section.

Although synchronization services can be used to allow threads to cooperate, shared

memory per se can't address a number of IPC issues. For example, although threads

can communicate through the common data space, this works only if all the threads

communicating are within a single process. What if our application needs to

communicate a query to a database server? We need to pass the details of our query

to the database server, but the thread we need to communicate with lies within a

database server process and the address space of that server isn't addressable to us.

The OS takes care of the network-distributed IPC issue because the one

interface—message passing—operates in both the local and network-remote cases,

and can be used to access all OS services. Since messages can be exactly sized, and

since most messages tend to be quite tiny (e.g., the error status on a write request,

or a tiny read request), the data moved around the network can be far less with message

Copyright © 2014, QNX Software Systems Limited 45

Thread scheduling

passing than with network-distributed shared memory, which would tend to copy 4K

pages around.

Thread complexity issues

Although threads are very appropriate for some system designs, it's important to respect

the Pandora's box of complexities their use unleashes.

In some ways, it's ironic that while MMU-protected multitasking has become common,

computing fashion has made popular the use of multiple threads in an unprotected

address space. This not only makes debugging difficult, but also hampers the generation

of reliable code.

Threads were initially introduced to UNIX systems as a “light-weight” concurrency

mechanism to address the problem of slow context switches between “heavy weight”

processes. Although this is a worthwhile goal, an obvious question arises: Why are

process-to-process context switches slow in the first place?

Architecturally, the OS addresses the context-switch performance issue first. In fact,

threads and processes provide nearly identical context-switch performance numbers.

The QNX Neutrino RTOS's process-switch times are faster than UNIX thread-switch

times. As a result, QNX Neutrino threads don't need to be used to solve the IPC

performance problem; instead, they're a tool for achieving greater concurrency within

application and server processes.

Without resorting to threads, fast process-to-process context switching makes it

reasonable to structure an application as a team of cooperating processes sharing an

explicitly allocated shared-memory region. An application thus exposes itself to bugs

in the cooperating processes only so far as the effects of those bugs on the contents

of the shared-memory region. The private memory of the process is still protected from

the other processes. In the purely threaded model, the private data of all threads

(including their stacks) is openly accessible, vulnerable to stray pointer errors in any

thread in the process.

Nevertheless, threads can also provide concurrency advantages that a pure process

model cannot address. For example, a filesystem server process that executes requests

on behalf of many clients (where each request takes significant time to complete),

definitely benefits from having multiple threads of execution. If one client process

requests a block from disk, while another client requests a block already in cache, the

filesystem process can utilize a pool of threads to concurrently service client requests,

rather than remain “busy” until the disk block is read for the first request.

As requests arrive, each thread is able to respond directly from the buffer cache or to

block and wait for disk I/O without increasing the response latency seen by other client

processes. The filesystem server can “precreate” a team of threads, ready to respond

in turn to client requests as they arrive. Although this complicates the architecture of

the filesystem manager, the gains in concurrency are significant.

46 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

Synchronization services

The QNX Neutrino RTOS provides the POSIX-standard thread-level synchronization

primitives, some of which are useful even between threads in different processes.

The synchronization services include at least the following:

Supported across a QNX

Neutrino LAN

Supported between

processes

Synchronization service

NoYesMutexes (p. 48)

NoYesCondvars (p. 49)

NoNoBarriers (p. 50)

NoNoSleepon locks (p. 52)

NoYesReader/writer locks (p. 52)

Yes (named only)YesSemaphores (p. 53)

NoYesFIFO scheduling (p. 54)

YesYesSend/Receive/Reply (p. 54)

NoYesAtomic operations (p. 54)

The above synchronization primitives are implemented directly by the kernel, except

for:

• barriers, sleepon locks, and reader/writer locks (which are built from mutexes and

condvars)

• atomic operations (which are either implemented directly by the processor or

emulated in the kernel)

You should allocate mutexes, condvars, barriers, reader/writer locks, and

semaphores, as well as objects you plan to use atomic operations on, only in

normal memory mappings. On certain processors, atomic operations and calls

such as pthread_mutex_lock() will cause a fault if the object is allocated in

uncached memory.

Copyright © 2014, QNX Software Systems Limited 47

Synchronization services

Mutexes: mutual exclusion locks

Mutual exclusion locks, or mutexes, are the simplest of the synchronization services.

A mutex is used to ensure exclusive access to data shared between threads.

A mutex is typically acquired (pthread_mutex_lock() or pthread_mutex_timedlock())

and released (pthread_mutex_unlock()) around the code that accesses the shared data

(usually a critical section).

Only one thread may have the mutex locked at any given time. Threads attempting to

lock an already locked mutex will block until the thread that owns the mutex unlocks

it. When the thread unlocks the mutex, the highest-priority thread waiting to lock the

mutex will unblock and become the new owner of the mutex. In this way, threads will

sequence through a critical region in priority-order.

On most processors, acquisition of a mutex doesn't require entry to the kernel for a

free mutex. What allows this is the use of the compare-and-swap opcode on x86

processors and the load/store conditional opcodes on most RISC processors.

Entry to the kernel is done at acquisition time only if the mutex is already held so that

the thread can go on a blocked list; kernel entry is done on exit if other threads are

waiting to be unblocked on that mutex. This allows acquisition and release of an

uncontested critical section or resource to be very quick, incurring work by the OS

only to resolve contention.

A nonblocking lock function (pthread_mutex_trylock()) can be used to test whether

the mutex is currently locked or not. For best performance, the execution time of the

critical section should be small and of bounded duration. A condvar should be used

if the thread may block within the critical section.

Priority inheritance and mutexes

By default, if a thread with a higher priority than the mutex owner attempts to lock a

mutex, then the effective priority of the current owner is increased to that of the

higher-priority blocked thread waiting for the mutex. The current owner's effective

priority is again adjusted when it unlocks the mutex; its new priority is the maximum

of its own priority and the priorities of those threads it still blocks, either directly or

indirectly.

This scheme not only ensures that the higher-priority thread will be blocked waiting

for the mutex for the shortest possible time, but also solves the classic priority-inversion

problem.

The pthread_mutexattr_init() function sets the protocol to PTHREAD_PRIO_INHERIT

to allow this behavior; you can call pthread_mutexattr_setprotocol() to override this

setting. The pthread_mutex_trylock() function doesn't change the thread priorities

because it doesn't block.

48 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

You can also modify the attributes of the mutex (using pthread_mutexattr_settype())

to allow a mutex to be recursively locked by the same thread. This can be useful to

allow a thread to call a routine that might attempt to lock a mutex that the thread

already happens to have locked.

Condvars: condition variables

A condition variable, or condvar, is used to block a thread within a critical section

until some condition is satisfied. The condition can be arbitrarily complex and is

independent of the condvar. However, the condvar must always be used with a mutex

lock in order to implement a monitor.

A condvar supports three operations:

• wait (pthread_cond_wait())

• signal (pthread_cond_signal())

• broadcast (pthread_cond_broadcast())

Note that there's no connection between a condvar signal and a POSIX

signal.

Here's a typical example of how a condvar can be used:

pthread_mutex_lock(&m);
. . .
while (!arbitrary_condition) {
 pthread_cond_wait(&cv, &m);
 }
. . .
pthread_mutex_unlock(&m);

In this code sample, the mutex is acquired before the condition is tested. This ensures

that only this thread has access to the arbitrary condition being examined. While the

condition is true, the code sample will block on the wait call until some other thread

performs a signal or broadcast on the condvar.

The while loop is required for two reasons. First of all, POSIX cannot guarantee that

false wakeups will not occur (e.g., multiprocessor systems). Second, when another

thread has made a modification to the condition, we need to retest to ensure that the

modification matches our criteria. The associated mutex is unlocked atomically by

pthread_cond_wait() when the waiting thread is blocked to allow another thread to

enter the critical section.

A thread that performs a signal will unblock the highest-priority thread queued on the

condvar, while a broadcast will unblock all threads queued on the condvar. The

associated mutex is locked atomically by the highest-priority unblocked thread; the

thread must then unlock the mutex after proceeding through the critical section.

Copyright © 2014, QNX Software Systems Limited 49

Synchronization services

A version of the condvar wait operation allows a timeout to be specified

(pthread_cond_timedwait()). The waiting thread can then be unblocked when the

timeout expires.

An application shouldn't use a PTHREAD_MUTEX_RECURSIVE mutex with

condition variables because the implicit unlock performed for a

pthread_cond_wait() or pthread_cond_timedwait() may not actually release the

mutex (if it's been locked multiple times). If this happens, no other thread can

satisfy the condition of the predicate.

Barriers

A barrier is a synchronization mechanism that lets you “corral” several cooperating

threads (e.g., in a matrix computation), forcing them to wait at a specific point until

all have finished before any one thread can continue.

Unlike the pthread_join() function, where you'd wait for the threads to terminate, in

the case of a barrier you're waiting for the threads to rendezvous at a certain point.

When the specified number of threads arrive at the barrier, we unblock all of them so

they can continue to run.

You first create a barrier with pthread_barrier_init():

#include <pthread.h>

int
pthread_barrier_init (pthread_barrier_t *barrier,
 const pthread_barrierattr_t *attr,
 unsigned int count);

This creates a barrier object at the passed address (a pointer to the barrier object is

in barrier), with the attributes as specified by attr. The count member holds the number

of threads that must call pthread_barrier_wait().

Once the barrier is created, each thread will call pthread_barrier_wait() to indicate

that it has completed:

#include <pthread.h>

int pthread_barrier_wait (pthread_barrier_t *barrier);

When a thread calls pthread_barrier_wait(), it blocks until the number of threads

specified initially in the pthread_barrier_init() function have called

pthread_barrier_wait() (and blocked also). When the correct number of threads have

called pthread_barrier_wait(), all those threads will unblock at the same time.

Here's an example:

/*
 * barrier1.c
 */

#include <stdio.h>

50 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

#include <unistd.h>
#include <stdlib.h>
#include <time.h>
#include <pthread.h>
#include <sys/neutrino.h>

pthread_barrier_t barrier; // barrier synchronization object

void *
thread1 (void *not_used)
{
 time_t now;

 time (&now);
 printf ("thread1 starting at %s", ctime (&now));

 // do the computation
 // let's just do a sleep here...
 sleep (20);
 pthread_barrier_wait (&barrier);
 // after this point, all three threads have completed.
 time (&now);
 printf ("barrier in thread1() done at %s", ctime (&now));
}

void *
thread2 (void *not_used)
{
 time_t now;

 time (&now);
 printf ("thread2 starting at %s", ctime (&now));

 // do the computation
 // let's just do a sleep here...
 sleep (40);
 pthread_barrier_wait (&barrier);
 // after this point, all three threads have completed.
 time (&now);
 printf ("barrier in thread2() done at %s", ctime (&now));
}

int main () // ignore arguments
{
 time_t now;

 // create a barrier object with a count of 3
 pthread_barrier_init (&barrier, NULL, 3);

 // start up two threads, thread1 and thread2
 pthread_create (NULL, NULL, thread1, NULL);
 pthread_create (NULL, NULL, thread2, NULL);

 // at this point, thread1 and thread2 are running

 // now wait for completion
 time (&now);
 printf ("main() waiting for barrier at %s", ctime (&now));
 pthread_barrier_wait (&barrier);

 // after this point, all three threads have completed.
 time (&now);
 printf ("barrier in main() done at %s", ctime (&now));
 pthread_exit(NULL);
 return (EXIT_SUCCESS);
}

The main thread created the barrier object and initialized it with a count of the total

number of threads that must be synchronized to the barrier before the threads may

carry on. In the example above, we used a count of 3: one for the main() thread, one

for thread1(), and one for thread2().

Then we start thread1() and thread2(). To simplify this example, we have the threads

sleep to cause a delay, as if computations were occurring. To synchronize, the main

Copyright © 2014, QNX Software Systems Limited 51

Synchronization services

thread simply blocks itself on the barrier, knowing that the barrier will unblock only

after the two worker threads have joined it as well.

In this release, the following barrier functions are included:

DescriptionFunction

Get the value of a barrier's process-shared

attribute

pthread_barrierattr_getpshared()

Destroy a barrier's attributes objectpthread_barrierattr_destroy()

Initialize a barrier's attributes objectpthread_barrierattr_init()

Set the value of a barrier's process-shared

attribute

pthread_barrierattr_setpshared()

Destroy a barrierpthread_barrier_destroy()

Initialize a barrierpthread_barrier_init()

Synchronize participating threads at the

barrier

pthread_barrier_wait()

Sleepon locks

Sleepon locks are very similar to condvars, with a few subtle differences.

Like condvars, sleepon locks (pthread_sleepon_lock()) can be used to block until a

condition becomes true (like a memory location changing value). But unlike condvars,

which must be allocated for each condition to be checked, sleepon locks multiplex

their functionality over a single mutex and dynamically allocated condvar, regardless

of the number of conditions being checked. The maximum number of condvars ends

up being equal to the maximum number of blocked threads. These locks are patterned

after the sleepon locks commonly used within the UNIX kernel.

Reader/writer locks

More formally known as “Multiple readers, single writer locks,” these locks are used

when the access pattern for a data structure consists of many threads reading the

data, and (at most) one thread writing the data. These locks are more expensive than

mutexes, but can be useful for this data access pattern.

This lock works by allowing all the threads that request a read-access lock

(pthread_rwlock_rdlock()) to succeed in their request. But when a thread wishing to

write asks for the lock (pthread_rwlock_wrlock()), the request is denied until all the

current reading threads release their reading locks (pthread_rwlock_unlock()).

Multiple writing threads can queue (in priority order) waiting for their chance to write

the protected data structure, and all the blocked writer-threads will get to run before

52 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

reading threads are allowed access again. The priorities of the reading threads are not

considered.

There are also calls (pthread_rwlock_tryrdlock() and pthread_rwlock_trywrlock()) to

allow a thread to test the attempt to achieve the requested lock, without blocking.

These calls return with a successful lock or a status indicating that the lock couldn't

be granted immediately.

Reader/writer locks aren't implemented directly within the kernel, but are instead built

from the mutex and condvar services provided by the kernel.

Semaphores

Semaphores are another common form of synchronization that allows threads to “post”

and “wait” on a semaphore to control when threads wake or sleep.

The post (sem_post()) operation increments the semaphore; the wait (sem_wait())

operation decrements it.

If you wait on a semaphore that is positive, you will not block. Waiting on a nonpositive

semaphore will block until some other thread executes a post. It is valid to post one

or more times before a wait. This use will allow one or more threads to execute the

wait without blocking.

A significant difference between semaphores and other synchronization primitives is

that semaphores are “async safe” and can be manipulated by signal handlers. If the

desired effect is to have a signal handler wake a thread, semaphores are the right

choice.

Note that in general, mutexes are much faster than semaphores, which always

require a kernel entry. Semaphores don't affect a thread's effective priority; if

you need priority inheritance, use a mutex. For more information, see “Mutexes:

mutual exclusion locks (p. 48),” earlier in this chapter.

Another useful property of semaphores is that they were defined to operate between

processes. Although our mutexes work between processes, the POSIX thread standard

considers this an optional capability and as such may not be portable across systems.

For synchronization between threads in a single process, mutexes will be more efficient

than semaphores.

As a useful variation, a named semaphore service is also available. It lets you use

semaphores between processes on different machines connected by a network.

Note that named semaphores are slower than the unnamed

variety.

Copyright © 2014, QNX Software Systems Limited 53

Synchronization services

Since semaphores, like condition variables, can legally return a nonzero value because

of a false wake-up, correct usage requires a loop:

while (sem_wait(&s) && (errno == EINTR)) { do_nothing(); }
do_critical_region(); /* Semaphore was decremented */

Synchronization via scheduling policy

By selecting the POSIX FIFO scheduling policy, we can guarantee that no two threads

of the same priority execute the critical section concurrently on a non-SMP system.

The FIFO scheduling policy dictates that all FIFO-scheduled threads in the system at

the same priority will run, when scheduled, until they voluntarily release the processor

to another thread.

This “release” can also occur when the thread blocks as part of requesting the service

of another process, or when a signal occurs. The critical region must therefore be

carefully coded and documented so that later maintenance of the code doesn't violate

this condition.

In addition, higher-priority threads in that (or any other) process could still preempt

these FIFO-scheduled threads. So, all the threads that could “collide” within the

critical section must be FIFO-scheduled at the same priority. Having enforced this

condition, the threads can then casually access this shared memory without having

to first make explicit synchronization calls.

This exclusive-access relationship doesn't apply in multiprocessor systems,

since each CPU could run a thread simultaneously through the region that

would otherwise be serially scheduled on a single-processor machine.

Synchronization via message passing

Our Send/Receive/Reply message-passing IPC services (described later) implement

an implicit synchronization by their blocking nature. These IPC services can, in many

instances, render other synchronization services unnecessary. They are also the only

synchronization and IPC primitives (other than named semaphores, which are built

on top of messaging) that can be used across the network.

Synchronization via atomic operations

In some cases, you may want to perform a short operation (such as incrementing a

variable) with the guarantee that the operation will perform atomically—i.e., the

operation won't be preempted by another thread or ISR (Interrupt Service Routine).

The QNX Neutrino RTOS provides atomic operations for:

• adding a value

• subtracting a value

• clearing bits

54 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

• setting bits

• toggling (complementing) bits

These atomic operations are available by including the C header file <atomic.h>.

Although you can use these atomic operations just about anywhere, you'll find them

particularly useful in these two cases:

• between an ISR and a thread

• between two threads (SMP or single-processor)

Since an ISR can preempt a thread at any given point, the only way that the thread

would be able to protect itself would be to disable interrupts. Since you should avoid

disabling interrupts in a realtime system, we recommend that you use the atomic

operations provided with QNX Neutrino.

On an SMP system, multiple threads can and do run concurrently. Again, we run into

the same situation as with interrupts above—you should use the atomic operations

where applicable to eliminate the need to disable and reenable interrupts.

Synchronization services implementation

The following table lists the various microkernel calls and the higher-level POSIX calls

constructed from them:

DescriptionPOSIX callMicrokernel call

Create object for mutex, condvars, and

semaphore

pthread_mutex_init(), pthread_cond_init(),

sem_init()

SyncTypeCreate()

Destroy synchronization objectpthread_mutex_destroy(), pthread_cond_destroy(),

sem_destroy()

SyncDestroy()

Block on a condvarpthread_cond_wait(), pthread_cond_timedwait()SyncCondvarWait()

Wake up condvar-blocked threadspthread_cond_broadcast(), pthread_cond_signal()SyncCondvarSignal()

Lock a mutexpthread_mutex_lock(), pthread_mutex_trylock()SyncMutexLock()

Unlock a mutexpthread_mutex_unlock()SyncMutexUnlock()

Post a semaphoresem_post()SyncSemPost()

Wait on a semaphoresem_wait(), sem_trywait()SyncSemWait()

Copyright © 2014, QNX Software Systems Limited 55

Synchronization services

Clock and timer services

Clock services are used to maintain the time of day, which is in turn used by the kernel

timer calls to implement interval timers.

Valid dates on a QNX Neutrino system range from January 1970 to at least

2038. The time_t data type is an unsigned 32-bit number, which extends

this range for many applications through 2106. The kernel itself uses unsigned

64-bit numbers to count the nanoseconds since January 1970, and so can

handle dates through 2554. If your system must operate past 2554 and there's

no way for the system to be upgraded or modified in the field, you'll have to

take special care with system dates (contact us for help with this).

The ClockTime() kernel call allows you to get or set the system clock specified by an

ID (CLOCK_REALTIME), which maintains the system time. Once set, the system time

increments by some number of nanoseconds based on the resolution of the system

clock. This resolution can be queried or changed using the ClockPeriod() call.

Within the system page, an in-memory data structure, there's a 64-bit field (nsec)

that holds the number of nanoseconds since the system was booted. The nsec field

is always monotonically increasing and is never affected by setting the current time

of day via ClockTime() or ClockAdjust().

The ClockCycles() function returns the current value of a free-running 64-bit cycle

counter. This is implemented on each processor as a high-performance mechanism

for timing short intervals. For example, on Intel x86 processors, an opcode that reads

the processor's time-stamp counter is used. On a Pentium processor, this counter

increments on each clock cycle. A 100 MHz Pentium would have a cycle time of

1/100,000,000 seconds (10 nanoseconds). Other CPU architectures have similar

instructions.

On processors that don't implement such an instruction in hardware, the kernel will

emulate one. This will provide a lower time resolution than if the instruction is provided

(838.095345 nanoseconds on an IBM PC-compatible system).

In all cases, the SYSPAGE_ENTRY(qtime)->cycles_per_sec field gives the

number of ClockCycles() increments in one second.

The ClockPeriod() function allows a thread to set the system timer to some multiple

of nanoseconds; the OS kernel will do the best it can to satisfy the precision of the

request with the hardware available.

The interval selected is always rounded down to an integral of the precision of the

underlying hardware timer. Of course, setting it to an extremely low value can result

in a significant portion of CPU performance being consumed servicing timer interrupts.

56 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

DescriptionPOSIX callMicrokernel

call

Get or set the time of day (using a 64-bit value in

nanoseconds ranging from 1970 to 2554).

clock_gettime(), clock_settime()ClockTime()

Apply small time adjustments to synchronize clocks.N/AClockAdjust()

Read a 64-bit free-running high-precision counter.N/AClockCycles()

Get or set the period of the clock.clock_getres()ClockPeriod()

Return an integer that's passed to ClockTime() as a

clockid_t.

clock_getcpuclockid(),

pthread_getcpuclockid()

ClockId()

The kernel can run in a tickless mode in order to reduce power consumption, but this

is a bit of a misnomer. The system still has clock ticks, and everything runs as normal

unless the system is idle. Only when the system goes completely idle does the kernel

turn off clock ticks, and in reality what it does is slow down the clock so that the next

tick interrupt occurs just after the next active timer is to fire, so that the timer will

fire immediately. To enable tickless operation, specify the -Z option for the startup-*

code.

Time correction

In order to facilitate applying time corrections without having the system experience

abrupt “steps” in time (or even having time jump backwards), the ClockAdjust() call

provides the option to specify an interval over which the time correction is to be applied.

This has the effect of speeding or retarding time over a specified interval until the

system has synchronized to the indicated current time. This service can be used to

implement network-coordinated time averaging between multiple nodes on a network.

Timers

The QNX Neutrino RTOS directly provides the full set of POSIX timer functionality.

Since these timers are quick to create and manipulate, they're an inexpensive resource

in the kernel.

The POSIX timer model is quite rich, providing the ability to have the timer expire on:

• an absolute date

• a relative date (i.e., n nanoseconds from now)

• cyclical (i.e., every n nanoseconds)

The cyclical mode is very significant, because the most common use of timers tends

to be as a periodic source of events to “kick” a thread into life to do some processing

and then go back to sleep until the next event. If the thread had to re-program the

timer for every event, there would be the danger that time would slip unless the thread

was programming an absolute date. Worse, if the thread doesn't get to run on the timer

Copyright © 2014, QNX Software Systems Limited 57

Clock and timer services

event because a higher-priority thread is running, the date next programmed into the

timer could be one that has already elapsed!

The cyclical mode circumvents these problems by requiring that the thread set the

timer once and then simply respond to the resulting periodic source of events.

Since timers are another source of events in the OS, they also make use of its

event-delivery system. As a result, the application can request that any of the QNX

Neutrino-supported events be delivered to the application upon occurrence of a timeout.

An often-needed timeout service provided by the OS is the ability to specify the

maximum time the application is prepared to wait for any given kernel call or request

to complete. A problem with using generic OS timer services in a preemptive realtime

OS is that in the interval between the specification of the timeout and the request for

the service, a higher-priority process might have been scheduled to run and preempted

long enough that the specified timeout will have expired before the service is even

requested. The application will then end up requesting the service with an already

lapsed timeout in effect (i.e., no timeout). This timing window can result in “hung”

processes, inexplicable delays in data transmission protocols, and other problems.

alarm(...);
 ...
 ... Alarm fires here
 ...
blocking_call();

Our solution is a form of timeout request atomic to the service request itself. One

approach might have been to provide an optional timeout parameter on every available

service request, but this would overly complicate service requests with a passed

parameter that would often go unused.

QNX Neutrino provides a TimerTimeout() kernel call that allows an application to

specify a list of blocking states for which to start a specified timeout. Later, when the

application makes a request of the kernel, the kernel will atomically enable the

previously configured timeout if the application is about to block on one of the specified

states.

Since the OS has a very small number of blocking states, this mechanism works very

concisely. At the conclusion of either the service request or the timeout, the timer will

be disabled and control will be given back to the application.

TimerTimeout(...);
 ...
 ...
 ...
blocking_call();
 ... Timer atomically armed within kernel

58 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

DescriptionPOSIX callMicrokernel

call

Set a process alarmalarm()TimerAlarm()

Create an interval timertimer_create()TimerCreate()

Destroy an interval timertimer_delete()TimerDestroy()

Get the time remaining on an interval timertimer_gettime()TimerInfo()

Get the number of overruns on an interval timertimer_getoverrun()TimerInfo()

Start an interval timertimer_settime()TimerSettime()

Arm a kernel timeout for any blocking statesleep(), nanosleep(), sigtimedwait(),

pthread_cond_timedwait(),

pthread_mutex_trylock()

TimerTimeout()

For more information, see the Clocks, Timers, and Getting a Kick Every So Often

chapter of Get Programming with the QNX Neutrino RTOS.

Copyright © 2014, QNX Software Systems Limited 59

Clock and timer services

Interrupt handling

No matter how much we wish it were so, computers are not infinitely fast. In a realtime

system, it's absolutely crucial that CPU cycles aren't unnecessarily spent. It's also

crucial to minimize the time from the occurrence of an external event to the actual

execution of code within the thread responsible for reacting to that event. This time

is referred to as latency.

The two forms of latency that most concern us are interrupt latency and scheduling

latency.

Latency times can vary significantly, depending on the speed of the processor

and other factors. For more information, visit our website (www.qnx.com).

Interrupt latency

Interrupt latency is the time from the assertion of a hardware interrupt until the first

instruction of the device driver's interrupt handler is executed.

The OS leaves interrupts fully enabled almost all the time, so that interrupt latency

is typically insignificant. But certain critical sections of code do require that interrupts

be temporarily disabled. The maximum such disable time usually defines the worst-case

interrupt latency—in QNX Neutrino this is very small.

The following diagrams illustrate the case where a hardware interrupt is processed by

an established interrupt handler. The interrupt handler either will simply return, or it

will return and cause an event to be delivered.

T interrupt latency

T interrupt processing time

T

il

int

iret interrupt termination time

Tint

Interrupt
occurs

Interrupt handler
runs

Interrupt handler
finishes

Interrupted process
continues execution

Til Tiret

Time

Figure 16: Interrupt handler simply terminates.

The interrupt latency (Til) in the above diagram represents the minimum latency—that

which occurs when interrupts were fully enabled at the time the interrupt occurred.

Worst-case interrupt latency will be this time plus the longest time in which the OS,

or the running system process, disables CPU interrupts.

60 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

http://www.qnx.com

Scheduling latency

In some cases, the low-level hardware interrupt handler must schedule a higher-level

thread to run. In this scenario, the interrupt handler will return and indicate that an

event is to be delivered. This introduces a second form of latency—scheduling

latency—which must be accounted for.

Scheduling latency is the time between the last instruction of the user's interrupt

handler and the execution of the first instruction of a driver thread. This usually means

the time it takes to save the context of the currently executing thread and restore the

context of the required driver thread. Although larger than interrupt latency, this time

is also kept small in a QNX Neutrino system.

Til interrupt latency

Tint interrupt processing time

Tsl scheduling latency

Tint

Interrupt
occurs

Interrupt handler
runs

Interrupt handler
finishes,

triggering a
sigevent

Driver thread
runs

Til Tsl

Time

Figure 17: Interrupt handler terminates, returning an event.

It's important to note that most interrupts terminate without delivering an event. In a

large number of cases, the interrupt handler can take care of all hardware-related

issues. Delivering an event to wake up a higher-level driver thread occurs only when

a significant event occurs. For example, the interrupt handler for a serial device driver

would feed one byte of data to the hardware upon each received transmit interrupt,

and would trigger the higher-level thread within (devc-ser*) only when the output

buffer is nearly empty.

Nested interrupts

The QNX Neutrino RTOS fully supports nested interrupts.

The previous scenarios describe the simplest—and most common—situation where

only one interrupt occurs. Worst-case timing considerations for unmasked interrupts

must take into account the time for all interrupts currently being processed, because

a higher priority, unmasked interrupt will preempt an existing interrupt.

In the following diagram, Thread A is running. Interrupt IRQx causes interrupt handler

Intx to run, which is preempted by IRQy and its handler Inty. Inty returns an event

causing Thread B to run; Intx returns an event causing Thread C to run.

Copyright © 2014, QNX Software Systems Limited 61

Interrupt handling

IRQy

IRQx

Intx

Thread B

Thread C

Thread A

Inty

Time

Figure 18: Stacked interrupts.

Interrupt calls

The interrupt-handling API includes the following kernel calls:

DescriptionFunction

Attach a local function (an Interrupt

Service Routine or ISR) to an interrupt

vector.

InterruptAttach()

Generate an event on an interrupt, which

will ready a thread. No user interrupt

handler runs. This is the preferred call.

InterruptAttachEvent()

Detach from an interrupt using the ID

returned by InterruptAttach() or

InterruptAttachEvent().

InterruptDetach()

Wait for an interrupt.InterruptWait()

Enable hardware interrupts.InterruptEnable()

Disable hardware interrupts.InterruptDisable()

Mask a hardware interrupt.InterruptMask()

Unmask a hardware interrupt.InterruptUnmask()

Guard a critical section of code between

an interrupt handler and a thread. A

InterruptLock()

spinlock is used to make this code

SMP-safe. This function is a superset of

InterruptDisable() and should be used in

its place.

Remove an SMP-safe lock on a critical

section of code.

InterruptUnlock()

62 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

Using this API, a suitably privileged user-level thread can call InterruptAttach() or

InterruptAttachEvent(), passing a hardware interrupt number and the address of a

function in the thread's address space to be called when the interrupt occurs. QNX

Neutrino allows multiple ISRs to be attached to each hardware interrupt

number—unmasked interrupts can be serviced during the execution of running interrupt

handlers.

• The startup code is responsible for making sure that all interrupt sources

are masked during system initialization. When the first call to

InterruptAttach() or InterruptAttachEvent() is done for an interrupt vector,

the kernel unmasks it. Similarly, when the last InterruptDetach() is done

for an interrupt vector, the kernel remasks the level.

• For more information on InterruptLock() and InterruptUnlock(), see “Critical

sections (p. 120)” in the chapter on Multicore Processing in this guide.

• It isn't safe to use floating-point operations in Interrupt Service Routines.

The following code sample shows how to attach an ISR to the hardware timer interrupt

on the PC (which the OS also uses for the system clock). Since the kernel's timer ISR

is already dealing with clearing the source of the interrupt, this ISR can simply

increment a counter variable in the thread's data space and return to the kernel:

#include <stdio.h>
#include <sys/neutrino.h>
#include <sys/syspage.h>

struct sigevent event;
volatile unsigned counter;

const struct sigevent *handler(void *area, int id) {
 // Wake up the thread every 100th interrupt
 if (++counter == 100) {
 counter = 0;
 return(&event);
 }
 else
 return(NULL);
 }

int main() {
 int i;
 int id;

 // Request I/O privileges
 ThreadCtl(_NTO_TCTL_IO, 0);

 // Initialize event structure
 event.sigev_notify = SIGEV_INTR;

 // Attach ISR vector
 id=InterruptAttach(SYSPAGE_ENTRY(qtime)->intr, &handler,
 NULL, 0, 0);

 for(i = 0; i < 10; ++i) {
 // Wait for ISR to wake us up
 InterruptWait(0, NULL);
 printf("100 events\n");
 }

 // Disconnect the ISR handler
 InterruptDetach(id);

Copyright © 2014, QNX Software Systems Limited 63

Interrupt handling

 return 0;
 }

With this approach, appropriately privileged user-level threads can dynamically attach

(and detach) interrupt handlers to (and from) hardware interrupt vectors at run time.

These threads can be debugged using regular source-level debug tools; the ISR itself

can be debugged by calling it at the thread level and source-level stepping through it

or by using the InterruptAttachEvent() call.

When the hardware interrupt occurs, the processor will enter the interrupt redirector

in the microkernel. This code pushes the registers for the context of the currently

running thread into the appropriate thread table entry and sets the processor context

such that the ISR has access to the code and data that are part of the thread the ISR

is contained within. This allows the ISR to use the buffers and code in the user-level

thread to resolve the interrupt and, if higher-level work by the thread is required, to

queue an event to the thread the ISR is part of, which can then work on the data the

ISR has placed into thread-owned buffers.

Since it runs with the memory-mapping of the thread containing it, the ISR can directly

manipulate devices mapped into the thread's address space, or directly perform I/O

instructions. As a result, device drivers that manipulate hardware don't need to be

linked into the kernel.

The interrupt redirector code in the microkernel will call each ISR attached to that

hardware interrupt. If the value returned indicates that a process is to be passed an

event of some sort, the kernel will queue the event. When the last ISR has been called

for that vector, the kernel interrupt handler will finish manipulating the interrupt

control hardware and then “return from interrupt.”

This interrupt return won't necessarily be into the context of the thread that was

interrupted. If the queued event caused a higher-priority thread to become READY,

the microkernel will then interrupt-return into the context of the now-READY thread

instead.

This approach provides a well-bounded interval from the occurrence of the interrupt

to the execution of the first instruction of the user-level ISR (measured as interrupt

latency), and from the last instruction of the ISR to the first instruction of the thread

readied by the ISR (measured as thread or process scheduling latency).

The worst-case interrupt latency is well-bounded, because the OS disables interrupts

only for a couple opcodes in a few critical regions. Those intervals when interrupts are

disabled have deterministic runtimes, because they're not data dependent.

The microkernel's interrupt redirector executes only a few instructions before calling

the user's ISR. As a result, process preemption for hardware interrupts or kernel calls

is equally quick and exercises essentially the same code path.

While the ISR is executing, it has full hardware access (since it's part of a privileged

thread), but can't issue other kernel calls. The ISR is intended to respond to the

hardware interrupt in as few microseconds as possible, do the minimum amount of

64 Copyright © 2014, QNX Software Systems Limited

The QNX Neutrino Microkernel

work to satisfy the interrupt (read the byte from the UART, etc.), and if necessary,

cause a thread to be scheduled at some user-specified priority to do further work.

Worst-case interrupt latency is directly computable for a given hardware priority from

the kernel-imposed interrupt latency and the maximum ISR runtime for each interrupt

higher in hardware priority than the ISR in question. Since hardware interrupt priorities

can be reassigned, the most important interrupt in the system can be made the highest

priority.

Note also that by using the InterruptAttachEvent() call, no user ISR is run. Instead,

a user-specified event is generated on each and every interrupt; the event will typically

cause a waiting thread to be scheduled to run and do the work. The interrupt is

automatically masked when the event is generated and then explicitly unmasked by

the thread that handles the device at the appropriate time.

Both InterruptMask() and InterruptUnmask() are counting functions. For

example, if InterruptMask() is called ten times, then InterruptUnmask() must

also be called ten times.

Thus the priority of the work generated by hardware interrupts can be performed at

OS-scheduled priorities rather than hardware-defined priorities. Since the interrupt

source won't re-interrupt until serviced, the effect of interrupts on the runtime of

critical code regions for hard-deadline scheduling can be controlled.

In addition to hardware interrupts, various “events” within the microkernel can also

be “hooked” by user processes and threads. When one of these events occurs, the

kernel can upcall into the indicated function in the user thread to perform some

specific processing for this event. For example, whenever the idle thread in the system

is called, a user thread can have the kernel upcall into the thread so that

hardware-specific low-power modes can be readily implemented.

DescriptionMicrokernel call

When the kernel has no active thread to

schedule, it will run the idle thread, which

InterruptHookIdle()

can upcall to a user handler. This handler

can perform hardware-specific

power-management operations.

This function attaches a pseudo interrupt

handler that can receive trace events from

the instrumented kernel.

InterruptHookTrace()

For more information about interrupts, see the Interrupts chapter of Get Programming

with the QNX Neutrino RTOS, and the Writing an Interrupt Handler chapter of the

QNX Neutrino Programmer's Guide.

Copyright © 2014, QNX Software Systems Limited 65

Interrupt handling

Chapter 3
Interprocess Communication (IPC)

Interprocess Communication plays a fundamental role in the transformation of the

microkernel from an embedded realtime kernel into a full-scale POSIX operating

system. As various service-providing processes are added to the microkernel, IPC is

the glue that connects those components into a cohesive whole.

Although message passing is the primary form of IPC in the QNX Neutrino RTOS,

several other forms are available as well. Unless otherwise noted, those other forms

of IPC are built over our native message passing. The strategy is to create a simple,

robust IPC service that can be tuned for performance through a simplified code path

in the microkernel; more “feature cluttered” IPC services can then be implemented

from these.

Benchmarks comparing higher-level IPC services (like pipes and FIFOs implemented

over our messaging) with their monolithic kernel counterparts show comparable

performance.

QNX Neutrino offers at least the following forms of IPC:

Implemented in:Service:

KernelMessage-passing

KernelSignals

External processPOSIX message queues

Process managerShared memory

External processPipes

External processFIFOs

The designer can select these services on the basis of bandwidth requirements, the

need for queuing, network transparency, etc. The trade-off can be complex, but the

flexibility is useful.

As part of the engineering effort that went into defining the microkernel, the focus on

message passing as the fundamental IPC primitive was deliberate. As a form of IPC,

message passing (as implemented in MsgSend(), MsgReceive(), and MsgReply()), is

synchronous and copies data. Let's explore these two attributes in more detail.

Copyright © 2014, QNX Software Systems Limited 67

Synchronous message passing

Synchronous messaging is the main form of IPC in the QNX Neutrino RTOS.

A thread that does a MsgSend() to another thread (which could be within another

process) will be blocked until the target thread does a MsgReceive(), processes the

message, and executes a MsgReply(). If a thread executes a MsgReceive() without a

previously sent message pending, it will block until another thread executes a

MsgSend().

In QNX Neutrino, a server thread typically loops, waiting to receive a message from a

client thread. As described earlier, a thread—whether a server or a client—is in the

READY state if it can use the CPU. It might not actually be getting any CPU time

because of its and other threads' priority and scheduling policy, but the thread isn't

blocked.

Let's look first at the client thread:

Server does a
MsgReceive()

Server does a
MsgReply() or

MsgError()

Client does a
MsgSend()

SEND
blocked

Client does a
MsgSend()

Other thread

This thread

Legend:
READY REPLY

blocked

Figure 19: Changes of state for a client thread in a send-receive-reply transaction.

• If the client thread calls MsgSend(), and the server thread hasn't yet called

MsgReceive(), then the client thread becomes SEND blocked. Once the server

thread calls MsgReceive(), the kernel changes the client thread's state to be REPLY

blocked, which means that server thread has received the message and now must

reply. When the server thread calls MsgReply(), the client thread becomes READY.

• If the client thread calls MsgSend(), and the server thread is already blocked on

the MsgReceive(), then the client thread immediately becomes REPLY blocked,

skipping the SEND-blocked state completely.

• If the server thread fails, exits, or disappears, the client thread becomes READY,

with MsgSend() indicating an error.

Next, let's consider the server thread:

68 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

Server does a
MsgReceive()

Server does a
MsgReply() or

MsgError()

READY

Client does a
MsgSend()

RECEIVE
blocked

Server does a
MsgReceive() Other thread

This thread

Legend:

Figure 20: Changes of state for a server thread in a send-receive-reply transaction.

• If the server thread calls MsgReceive(), and no other thread has sent to it, then

the server thread becomes RECEIVE blocked. When another thread sends to it, the

server thread becomes READY.

• If the server thread calls MsgReceive(), and another thread has already sent to it,

then MsgReceive() returns immediately with the message. In this case, the server

thread doesn't block.

• If the server thread calls MsgReply(), it doesn't become blocked.

This inherent blocking synchronizes the execution of the sending thread, since the

act of requesting that the data be sent also causes the sending thread to be blocked

and the receiving thread to be scheduled for execution. This happens without requiring

explicit work by the kernel to determine which thread to run next (as would be the

case with most other forms of IPC). Execution and data move directly from one context

to another.

Data-queuing capabilities are omitted from these messaging primitives because

queueing could be implemented when needed within the receiving thread. The sending

thread is often prepared to wait for a response; queueing is unnecessary overhead and

complexity (i.e., it slows down the nonqueued case). As a result, the sending thread

doesn't need to make a separate, explicit blocking call to wait for a response (as it

would if some other IPC form had been used).

While the send and receive operations are blocking and synchronous, MsgReply() (or

MsgError()) doesn't block. Since the client thread is already blocked waiting for the

reply, no additional synchronization is required, so a blocking MsgReply() isn't needed.

This allows a server to reply to a client and continue processing while the kernel and/or

networking code asynchronously passes the reply data to the sending thread and marks

it ready for execution. Since most servers will tend to do some processing to prepare

to receive the next request (at which point they block again), this works out well.

Note that in a network, a reply may not complete as “immediately” as in a

local message pass. For more information on network message passing, see

the chapter on Qnet networking (p. 243) in this book.

MsgReply() vs MsgError()

Copyright © 2014, QNX Software Systems Limited 69

Synchronous message passing

The MsgReply() function is used to return a status and zero or more bytes to the client.

MsgError(), on the other hand, is used to return only a status to the client. Both

functions will unblock the client from its MsgSend().

70 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

Message copying

Since our messaging services copy a message directly from the address space of one

thread to another without intermediate buffering, the message-delivery performance

approaches the memory bandwidth of the underlying hardware.

The kernel attaches no special meaning to the content of a message—the data in a

message has meaning only as mutually defined by sender and receiver. However,

“well-defined” message types are also provided so that user-written processes or

threads can augment or substitute for system-supplied services.

The messaging primitives support multipart transfers, so that a message delivered

from the address space of one thread to another needn't pre-exist in a single, contiguous

buffer. Instead, both the sending and receiving threads can specify a vector table that

indicates where the sending and receiving message fragments reside in memory. Note

that the size of the various parts can be different for the sender and receiver.

Multipart transfers allow messages that have a header block separate from the data

block to be sent without performance-consuming copying of the data to create a

contiguous message. In addition, if the underlying data structure is a ring buffer,

specifying a three-part message will allow a header and two disjoint ranges within the

ring buffer to be sent as a single atomic message. A hardware equivalent of this concept

would be that of a scatter/gather DMA facility.

Each
IOV

may have
any

number
of parts

Message Data
Len Addr

Part 1

Part 3

Part 2

2

0

IOV

Each part
may be
0 to 4 GB

Figure 21: A multipart transfer.

The multipart transfers are also used extensively by filesystems. On a read, the data

is copied directly from the filesystem cache into the application using a message with

n parts for the data. Each part points into the cache and compensates for the fact

that cache blocks aren't contiguous in memory with a read starting or ending within

a block.

For example, with a cache block size of 512 bytes, a read of 1454 bytes can be

satisfied with a five-part message:

Copyright © 2014, QNX Software Systems Limited 71

Message copying

Len Addr

Header

4

0

Five-part IOV
File

system
cache

16

400

512

512

30

4

1

2

3

Figure 22: Scatter/gather of a read of 1454 bytes.

Since message data is explicitly copied between address spaces (rather than by doing

page table manipulations), messages can be easily allocated on the stack instead of

from a special pool of page-aligned memory for MMU “page flipping.” As a result,

many of the library routines that implement the API between client and server processes

can be trivially expressed, without elaborate IPC-specific memory allocation calls.

For example, the code used by a client thread to request that the filesystem manager

execute lseek on its behalf is implemented as follows:

#include <unistd.h>
#include <errno.h>
#include <sys/iomsg.h>

off64_t lseek64(int fd, off64_t offset, int whence) {
 io_lseek_t msg;
 off64_t off;

 msg.i.type = _IO_LSEEK;
 msg.i.combine_len = sizeof msg.i;
 msg.i.offset = offset;
 msg.i.whence = whence;
 msg.i.zero = 0;
 if(MsgSend(fd, &msg.i, sizeof msg.i, &off, sizeof off) == -1) {
 return -1;
 }
 return off;
}

off64_t tell64(int fd) {
 return lseek64(fd, 0, SEEK_CUR);
}

off_t lseek(int fd, off_t offset, int whence) {
 return lseek64(fd, offset, whence);
}

off_t tell(int fd) {
 return lseek64(fd, 0, SEEK_CUR);
}

This code essentially builds a message structure on the stack, populates it with various

constants and passed parameters from the calling thread, and sends it to the filesystem

manager associated with fd. The reply indicates the success or failure of the operation.

72 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

This implementation doesn't prevent the kernel from detecting large message

transfers and choosing to implement “page flipping” for those cases. Since

most messages passed are quite tiny, copying messages is often faster than

manipulating MMU page tables. For bulk data transfer, shared memory between

processes (with message-passing or the other synchronization primitives for

notification) is also a viable option.

Copyright © 2014, QNX Software Systems Limited 73

Message copying

Simple messages

For simple single-part messages, the OS provides functions that take a pointer directly

to a buffer without the need for an IOV (input/output vector). In this case, the number

of parts is replaced by the size of the message directly pointed to.

In the case of the message send primitive—which takes a send and a reply buffer—this

introduces four variations:

Reply messageSend messageFunction

SimpleSimpleMsgSend()

IOVSimpleMsgSendsv()

SimpleIOVMsgSendvs()

IOVIOVMsgSendv()

The other messaging primitives that take a direct message simply drop the trailing “v”

in their names:

Simple directIOV

MsgReceive()MsgReceivev()

MsgReceivePulse()MsgReceivePulsev()

MsgReply()MsgReplyv()

MsgRead()MsgReadv()

MsgWrite()MsgWritev()

74 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

Channels and connections

In the QNX Neutrino RTOS, message passing is directed towards channels and

connections, rather than targeted directly from thread to thread. A thread that wishes

to receive messages first creates a channel; another thread that wishes to send a

message to that thread must first make a connection by “attaching” to that channel.

Channels are required by the message kernel calls and are used by servers to

MsgReceive() messages on. Connections are created by client threads to “connect”

to the channels made available by servers. Once connections are established, clients

can MsgSend() messages over them. If a number of threads in a process all attach to

the same channel, then the connections all map to the same kernel object for

efficiency. Channels and connections are named within a process by a small integer

identifier. Client connections map directly into file descriptors.

Architecturally, this is a key point. By having client connections map directly into FDs,

we have eliminated yet another layer of translation. We don't need to “figure out”

where to send a message based on the file descriptor (e.g., via a read(fd) call).

Instead, we can simply send a message directly to the “file descriptor” (i.e., connection

ID).

DescriptionFunction

Create a channel to receive messages on.ChannelCreate()

Destroy a channel.ChannelDestroy()

Create a connection to send messages on.ConnectAttach()

Detach a connection.ConnectDetach()

Connections

Channel

Channel

Server

Server

Client

Figure 23: Connections map elegantly into file descriptors.

A process acting as a server would implement an event loop to receive and process

messages as follows:

chid = ChannelCreate(flags);
SETIOV(&iov, &msg, sizeof(msg));

Copyright © 2014, QNX Software Systems Limited 75

Channels and connections

for(;;) {
 rcv_id = MsgReceivev(chid, &iov, parts, &info);

 switch(msg.type) {
 /* Perform message processing here */
 }

 MsgReplyv(rcv_id, &iov, rparts);
 }

This loop allows the thread to receive messages from any thread that had a connection

to the channel.

The server can also use name_attach() to create a channel and associate a

name with it. The sender process can then use name_open() to locate that

name and create a connection to it.

The channel has several lists of messages associated with it:

Receive

A LIFO queue of threads waiting for messages.

Send

A priority FIFO queue of threads that have sent messages that haven't yet

been received.

Reply

An unordered list of threads that have sent messages that have been received,

but not yet replied to.

While in any of these lists, the waiting thread is blocked (i.e., RECEIVE-, SEND-, or

REPLY-blocked). Multiple threads and multiple clients may wait on one channel.

Pulses

In addition to the synchronous Send/Receive/Reply services, the OS also supports

fixed-size, nonblocking messages. These are referred to as pulses and carry a small

payload (four bytes of data plus a single byte code).

Pulses pack a relatively small payload—eight bits of code and 32 bits of data. Pulses

are often used as a notification mechanism within interrupt handlers. They also allow

servers to signal clients without blocking on them.

Value

8 bits

32 bits

Code

Figure 24: Pulses pack a small payload.

76 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

Priority inheritance and messages

A server process receives messages and pulses in priority order. As the threads within

the server receive requests, they then inherit the priority (but not the scheduling policy)

of the sending thread. As a result, the relative priorities of the threads requesting work

of the server are preserved, and the server work will be executed at the appropriate

priority. This message-driven priority inheritance avoids priority-inversion problems.

For example, suppose the system includes the following:

• a server thread, at priority 22

• a client thread, T1, at priority 13

• a client thread, T2, at priority 10

Without priority inheritance, if T2 sends a message to the server, it's effectively getting

work done for it at priority 22, so T2's priority has been inverted.

What actually happens is that when the server receives a message, its effective priority

changes to that of the highest-priority sender. In this case, T2's priority is lower than

the server's, so the change in the server's effective priority takes place when the server

receives the message.

Next, suppose that T1 sends a message to the server while it's still at priority 10.

Since T1's priority is higher than the server's current priority, the change in the server's

priority happens when T1 sends the message.

The change happens before the server receives the message to avoid another case of

priority inversion. If the server's priority remains unchanged at 10, and another thread,

T3, starts to run at priority 11, the server has to wait until T3 lets it have some CPU

time so that it can eventually receive T1's message. So, T1 would would be delayed

by a lower-priority thread, T3.

You can turn off priority inheritance by specifying the _NTO_CHF_FIXED_PRIORITY

flag when you call ChannelCreate(). If you're using adaptive partitioning, this flag also

causes the receiving threads not to run in the sending threads' partitions.

Copyright © 2014, QNX Software Systems Limited 77

Channels and connections

Message-passing API

The message-passing API consists of the following functions:

DescriptionFunction

Send a message and block until reply.MsgSend()

Wait for a message.MsgReceive()

Wait for a tiny, nonblocking message

(pulse).

MsgReceivePulse()

Reply to a message.MsgReply()

Reply only with an error status. No

message bytes are transferred.

MsgError()

Read additional data from a received

message.

MsgRead()

Write additional data to a reply message.MsgWrite()

Obtain info on a received message.MsgInfo()

Send a tiny, nonblocking message (pulse).MsgSendPulse()

Deliver an event to a client.MsgDeliverEvent()

Key a message to allow security checks.MsgKeyData()

For information about messages from the programming point of view, see the Message

Passing chapter of Get Programming with the QNX Neutrino RTOS.

78 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

Robust implementations with Send/Receive/Reply

Architecting a QNX Neutrino application as a team of cooperating threads and processes

via Send/Receive/Reply results in a system that uses synchronous notification. IPC

thus occurs at specified transitions within the system, rather than asynchronously.

A significant problem with asynchronous systems is that event notification requires

signal handlers to be run. Asynchronous IPC can make it difficult to thoroughly test

the operation of the system and make sure that no matter when the signal handler

runs, that processing will continue as intended. Applications often try to avoid this

scenario by relying on a “window” explicitly opened and shut, during which signals

will be tolerated.

With a synchronous, nonqueued system architecture built around Send/Receive/Reply,

robust application architectures can be very readily implemented and delivered.

Avoiding deadlock situations is another difficult problem when constructing applications

from various combinations of queued IPC, shared memory, and miscellaneous

synchronization primitives. For example, suppose thread A doesn't release mutex 1

until thread B releases mutex 2. Unfortunately, if thread B is in the state of not

releasing mutex 2 until thread A releases mutex 1, a standoff results. Simulation tools

are often invoked in order to ensure that deadlock won't occur as the system runs.

The Send/Receive/Reply IPC primitives allow the construction of deadlock-free systems

with the observation of only these simple rules:

1. Never have two threads send to each other.

2. Always arrange your threads in a hierarchy, with sends going up the tree.

The first rule is an obvious avoidance of the standoff situation, but the second rule

requires further explanation. The team of cooperating threads and processes is arranged

as follows:

MsgSend()

MsgSend()MsgSend()

A

B C

D E F

Figure 25: Threads should always send up to higher-level threads.

Here the threads at any given level in the hierarchy never send to each other, but send

only upwards instead.

One example of this might be a client application that sends to a database server

process, which in turn sends to a filesystem process. Since the sending threads block

Copyright © 2014, QNX Software Systems Limited 79

Robust implementations with Send/Receive/Reply

and wait for the target thread to reply, and since the target thread isn't send-blocked

on the sending thread, deadlock can't happen.

B ut how does a higher-level thread notify a lower-level thread that it has the results

of a previously requested operation? (Assume the lower-level thread didn't want to

wait for the replied results when it last sent.)

The QNX Neutrino RTOS provides a very flexible architecture with the MsgDeliverEvent()

kernel call to deliver nonblocking events. All of the common asynchronous services

can be implemented with this. For example, the server-side of the select() call is an

API that an application can use to allow a thread to wait for an I/O event to complete

on a set of file descriptors. In addition to an asynchronous notification mechanism

being needed as a “back channel” for notifications from higher-level threads to

lower-level threads, we can also build a reliable notification system for timers, hardware

interrupts, and other event sources around this.

MsgSend()

A

B

MsgSendPulse()
or

MsgDeliverEvent()

Figure 26: A higher-level thread can “send” a pulse event.

A related issue is the problem of how a higher-level thread can request work of a

lower-level thread without sending to it, risking deadlock. The lower-level thread is

present only to serve as a “worker thread” for the higher-level thread, doing work on

request. The lower-level thread would send in order to “report for work,” but the

higher-level thread wouldn't reply then. It would defer the reply until the higher-level

thread had work to be done, and it would reply (which is a nonblocking operation) with

the data describing the work. In effect, the reply is being used to initiate work, not

the send, which neatly side-steps rule #1.

80 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

Events

A significant advance in the kernel design for QNX Neutrino is the event-handling

subsystem. POSIX and its realtime extensions define a number of asynchronous

notification methods (e.g., UNIX signals that don't queue or pass data, POSIX realtime

signals that may queue and pass data, etc.).

The kernel also defines additional, QNX Neutrino-specific notification techniques such

as pulses. Implementing all of these event mechanisms could have consumed

significant code space, so our implementation strategy was to build all of these

notification methods over a single, rich, event subsystem.

A benefit of this approach is that capabilities exclusive to one notification technique

can become available to others. For example, an application can apply the same

queueing services of POSIX realtime signals to UNIX signals. This can simplify the

robust implementation of signal handlers within applications.

The events encountered by an executing thread can come from any of three sources:

• a MsgDeliverEvent() kernel call invoked by a thread

• an interrupt handler

• the expiry of a timer

The event itself can be any of a number of different types: QNX Neutrino pulses,

interrupts, various forms of signals, and forced “unblock” events. “Unblock” is a

means by which a thread can be released from a deliberately blocked state without

any explicit event actually being delivered.

Given this multiplicity of event types, and applications needing the ability to request

whichever asynchronous notification technique best suits their needs, it would be

awkward to require that server processes (the higher-level threads from the previous

section) carry code to support all these options.

Instead, the client thread can give a data structure, or “cookie,” to the server to hang

on to until later. When the server needs to notify the client thread, it will invoke

MsgDeliverEvent() and the microkernel will set the event type encoded within the

cookie upon the client thread.

Server Client

MsgDeliverEvent()

MsgReply()

MsgSend()

sigevent

Figure 27: The client sends a sigevent to the server.

Copyright © 2014, QNX Software Systems Limited 81

Events

I/O notification

The ionotify() function is a means by which a client thread can request asynchronous

event delivery.

Many of the POSIX asynchronous services (e.g., mq_notify() and the client-side of

the select()) are built on top of ionotify(). When performing I/O on a file descriptor

(fd), the thread may choose to wait for an I/O event to complete (for the write() case),

or for data to arrive (for the read() case). Rather than have the thread block on the

resource manager process that's servicing the read/write request, ionotify() can allow

the client thread to post an event to the resource manager that the client thread would

like to receive when the indicated I/O condition occurs. Waiting in this manner allows

the thread to continue executing and responding to event sources other than just the

single I/O request.

The select() call is implemented using I/O notification and allows a thread to block

and wait for a mix of I/O events on multiple fd's while continuing to respond to other

forms of IPC.

Here are the conditions upon which the requested event can be delivered:

• _NOTIFY_COND_OUTPUT—there's room in the output buffer for more data.

• _NOTIFY_COND_INPUT—resource-manager-defined amount of data is available

to read.

• _NOTIFY_COND_OBAND—resource-manager-defined “out of band” data is available.

82 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

Signals

The OS supports the 32 standard POSIX signals (as in UNIX) as well as the POSIX

realtime signals, both numbered from a kernel-implemented set of 64 signals with

uniform functionality. While the POSIX standard defines realtime signals as differing

from UNIX-style signals (in that they may contain four bytes of data and a byte code

and may be queued for delivery), this functionality can be explicitly selected or

deselected on a per-signal basis, allowing this converged implementation to still comply

with the standard.

Incidentally, the UNIX-style signals can select POSIX realtime signal queuing, if the

application wants it. The QNX Neutrino RTOS also extends the signal-delivery

mechanisms of POSIX by allowing signals to be targeted at specific threads, rather

than simply at the process containing the threads. Since signals are an asynchronous

event, they're also implemented with the event-delivery mechanisms.

DescriptionPOSIX callMicrokernel call

Set a signal on a process

group, process, or thread.

kill(), pthread_kill(), raise(),

sigqueue()

SignalKill()

Define action to take on

receipt of a signal.

sigaction()SignalAction()

Change signal blocked

mask of a thread.

sigprocmask(),

pthread_sigmask()

SignalProcmask()

Block until a signal invokes

a signal handler.

sigsuspend(), pause()SignalSuspend()

Wait for signal and return

info on it.

sigwaitinfo()SignalWaitinfo()

The original POSIX specification defined signal operation on processes only. In a

multithreaded process, the following rules are followed:

• The signal actions are maintained at the process level. If a thread ignores or catches

a signal, it affects all threads within the process.

• The signal mask is maintained at the thread level. If a thread blocks a signal, it

affects only that thread.

• An unignored signal targeted at a thread will be delivered to that thread alone.

• An unignored signal targeted at a process is delivered to the first thread that doesn't

have the signal blocked. If all threads have the signal blocked, the signal will be

queued on the process until any thread ignores or unblocks the signal. If ignored,

the signal on the process will be removed. If unblocked, the signal will be moved

from the process to the thread that unblocked it.

Copyright © 2014, QNX Software Systems Limited 83

Signals

When a signal is targeted at a process with a large number of threads, the thread table

must be scanned, looking for a thread with the signal unblocked. Standard practice

for most multithreaded processes is to mask the signal in all threads but one, which

is dedicated to handling them. To increase the efficiency of process-signal delivery,

the kernel will cache the last thread that accepted a signal and will always attempt

to deliver the signal to it first.

Process

Signal
ignore

Signal
queue

64...1

64

64...1

47

Signals queued to this thread.

64...1

Signals delivered to this thread.

Thread
vector

Thread

Signal
blocked

Signal
queue

Thread

Signal
blocked

Signal
queue

33

33

Signals delivered to process
but blocked by all threads.

Figure 28: Signal delivery.

The POSIX standard includes the concept of queued realtime signals. The QNX Neutrino

RTOS supports optional queuing of any signal, not just realtime signals. The queuing

can be specified on a signal-by-signal basis within a process. Each signal can have

an associated 8-bit code and a 32-bit value.

This is very similar to message pulses described earlier. The kernel takes advantage

of this similarity and uses common code for managing both signals and pulses. The

signal number is mapped to a pulse priority using _SIGMAX – signo. As a result, signals

are delivered in priority order with lower signal numbers having higher priority. This

conforms with the POSIX standard, which states that existing signals have priority over

the new realtime signals.

It isn't safe to use floating-point operations in signal handlers.

Special signals

As mentioned earlier, the OS defines a total of 64 signals.

Their range is as follows:

84 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

DescriptionSignal range

57 POSIX signals (including traditional

UNIX signals)

1 ... 57

16 POSIX realtime signals (SIGRTMIN to

SIGRTMAX)

41 ... 56

Eight special-purpose QNX Neutrino

signals

57 ... 64

The eight special signals cannot be ignored or caught. An attempt to call the signal()

or sigaction() functions or the SignalAction() kernel call to change them will fail with

an error of EINVAL.

In addition, these signals are always blocked and have signal queuing enabled. An

attempt to unblock these signals via the sigprocmask() function or SignalProcmask()

kernel call will be quietly ignored.

A regular signal can be programmed to this behavior using the following standard

signal calls. The special signals save the programmer from writing this code and protect

the signal from accidental changes to this behavior.

sigset_t *set;
struct sigaction action;

sigemptyset(&set);
sigaddset(&set, signo);
sigprocmask(SIG_BLOCK, &set, NULL);

action.sa_handler = SIG_DFL;
action.sa_flags = SA_SIGINFO;
sigaction(signo, &action, NULL);

This configuration makes these signals suitable for synchronous notification using the

sigwaitinfo() function or SignalWaitinfo() kernel call. The following code will block

until the eighth special signal is received:

sigset_t *set;
siginfo_t info;

sigemptyset(&set);
sigaddset(&set, SIGRTMAX + 8);
sigwaitinfo(&set, &info);
printf("Received signal %d with code %d and value %d\n",
 info.si_signo,
 info.si_code,
 info.si_value.sival_int);

Since the signals are always blocked, the program cannot be interrupted or killed if

the special signal is delivered outside of the sigwaitinfo() function. Since signal queuing

is always enabled, signals won't be lost—they'll be queued for the next sigwaitinfo()

call.

These signals were designed to solve a common IPC requirement where a server wishes

to notify a client that it has information available for the client. The server will use

Copyright © 2014, QNX Software Systems Limited 85

Signals

the MsgDeliverEvent() call to notify the client. There are two reasonable choices for

the event within the notification: pulses or signals.

A pulse is the preferred method for a client that may also be a server to other clients.

In this case, the client will have created a channel for receiving messages and can

also receive the pulse.

This won't be true for most simple clients. In order to receive a pulse, a simple client

would be forced to create a channel for this express purpose. A signal can be used in

place of a pulse if the signal is configured to be synchronous (i.e., the signal is blocked)

and queued—this is exactly how the special signals are configured. The client would

replace the MsgReceive() call used to wait for a pulse on a channel with a simple

sigwaitinfo() call to wait for the signal.

The eight special signals include named signals for special purposes:

SIGSELECT

Used by select() to wait for I/O from multiple servers.

Summary of signals

This table describes what each signal means.

DescriptionSignal

Abnormal termination signal such as

issued by the abort() function.

SIGABRT

Timeout signal such as issued by the

alarm() function.

SIGALRM

Indicates a memory parity error (QNX

Neutrino-specific interpretation). Note

SIGBUS

that if a second fault occurs while your

process is in a signal handler for this fault,

the process will be terminated.

Child process terminated. The default

action is to ignore the signal.

SIGCHLD (or SIGCLD)

Continue if HELD. The default action is

to ignore the signal if the process isn't

HELD.

SIGCONT

Mutex deadlock occurred. If a process dies

while holding a mutex, and you haven't

SIGDEADLK

called SyncMutexEvent() to set up an

event to be delivered to the mutex's owner

when the mutex dies, the kernel delivers

86 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

DescriptionSignal

a SIGDEADLK instead to all threads that

are waiting on the mutex without a

timeout.

Note that SIGDEADLK and SIGEMT refer

to the same signal. Some utilities (e.g.,

gdb, ksh, slay, and kill) know about

SIGEMT, but not SIGDEADLCK.

EMT instruction (emulator trap).

Note that SIGEMT and SIGDEADLK refer

to the same signal.

SIGEMT

Erroneous arithmetic operation (integer or

floating point), such as division by zero or

SIGFPE

an operation resulting in overflow. Note

that if a second fault occurs while your

process is in a signal handler for this fault,

the process will be terminated.

Death of session leader, or hangup

detected on controlling terminal.

SIGHUP

Detection of an invalid hardware

instruction. Note that if a second fault

SIGILL

occurs while your process is in a signal

handler for this fault, the process will be

terminated.

One possible cause for this signal is trying

to perform an operation that requires I/O

privileges. A thread can request these

privileges by:

1. Enabling the PROCMGR_AID_IO ability

enabled. For more information, see

procmgr_ability().

2. Calling ThreadCtl(), specifying the

_NTO_TCTL_IO flag:

ThreadCtl(_NTO_TCTL_IO, 0);

Interactive attention signal (Break).SIGINT

Copyright © 2014, QNX Software Systems Limited 87

Signals

DescriptionSignal

IOT instruction (not generated on x86

hardware).

SIGIOT

Termination signal—should be used only

for emergency situations. This signal can't

be caught or ignored.

SIGKILL

Attempt to write on a pipe with no readers.SIGPIPE

Pollable event occurred.SIGPOLL (or SIGIO)

Power failure or restart.SIGPWR

Interactive termination signal.SIGQUIT

Detection of an invalid memory reference.

Note that if a second fault occurs while

SIGSEGV

your process is in a signal handler for this

fault, the process will be terminated.

Stop process (the default). This signal

cannot be caught or ignored.

SIGSTOP

Bad argument to system call.SIGSYS

Termination signal.SIGTERM

Unsupported software interrupt.SIGTRAP

Stop signal generated from keyboard.SIGTSTP

Background read attempted from control

terminal.

SIGTTIN

Background write attempted to control

terminal.

SIGTTOU

Urgent condition present on socket.SIGURG

Reserved as application-defined signal 1.SIGUSR1

Reserved as application-defined signal 2.SIGUSR2

Window size changed.SIGWINCH

88 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

POSIX message queues

POSIX defines a set of nonblocking message-passing facilities known as message

queues. Like pipes, message queues are named objects that operate with “readers”

and “writers.” As a priority queue of discrete messages, a message queue has more

structure than a pipe and offers applications more control over communications.

To use POSIX message queues in the QNX Neutrino RTOS, the message queue

server must be running. QNX Neutrino has two implementations of message

queues:

• a “traditional” implementation that uses the mqueue resource manager

(see the Resource Managers (p. 163) chapter in this book)

• an alternate implementation that uses the mq server and asynchronous

messages

For more information about these implementations, see the Utilities Reference.

Unlike our inherent message-passing primitives, the POSIX message queues reside

outside the kernel.

Why use POSIX message queues?

POSIX message queues provide a familiar interface for many realtime programmers.

They are similar to the “mailboxes” found in many realtime executives.

There's a fundamental difference between our messages and POSIX message queues.

Our messages block—they copy their data directly between the address spaces of the

processes sending the messages. POSIX messages queues, on the other hand,

implement a store-and-forward design in which the sender need not block and may

have many outstanding messages queued. POSIX message queues exist independently

of the processes that use them. You would likely use message queues in a design

where a number of named queues will be operated on by a variety of processes over

time.

For raw performance, POSIX message queues will be slower than QNX Neutrino native

messages for transferring data. However, the flexibility of queues may make this small

performance penalty worth the cost.

File-like interface

Message queues resemble files, at least as far as their interface is concerned.

You open a message queue with mq_open(), close it with mq_close(), and destroy it

with mq_unlink(). And to put data into (“write”) and take it out of (“read”) a message

queue, you use mq_send() and mq_receive().

Copyright © 2014, QNX Software Systems Limited 89

POSIX message queues

For strict POSIX conformance, you should create message queues that start with a

single slash (/) and contain no other slashes. But note that we extend the POSIX

standard by supporting pathnames that may contain multiple slashes. This allows, for

example, a company to place all its message queues under its company name and

distribute a product with increased confidence that a queue name will not conflict

with that of another company.

In QNX Neutrino, all message queues created will appear in the filename space under

the directory:

• /dev/mqueue if you're using the traditional (mqueue) implementation

• /dev/mq if you're using the alternate (mq) implementation

For example, with the traditional implementation:

Pathname of message queue:mq_open() name:

/dev/mqueue/data/data

/dev/mqueue/acme/data/acme/data

/dev/mqueue/qnx/data/qnx/data

You can display all message queues in the system using the ls command as follows:

ls -Rl /dev/mqueue

The size printed is the number of messages waiting.

Message-queue functions

POSIX message queues are managed via the following functions:

DescriptionFunction

Open a message queuemq_open()

Close a message queuemq_close()

Remove a message queuemq_unlink()

Add a message to the message queuemq_send()

Receive a message from the message

queue

mq_receive()

Tell the calling process that a message is

available on a message queue

mq_notify()

Set message queue attributesmq_setattr()

Get message queue attributesmq_getattr()

90 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

Shared memory

Shared memory offers the highest bandwidth IPC available.

Once a shared-memory object is created, processes with access to the object can use

pointers to directly read and write into it. This means that access to shared memory

is in itself unsynchronized. If a process is updating an area of shared memory, care

must be taken to prevent another process from reading or updating the same area.

Even in the simple case of a read, the other process may get information that is in

flux and inconsistent.

To solve these problems, shared memory is often used in conjunction with one of the

synchronization primitives to make updates atomic between processes. If the granularity

of updates is small, then the synchronization primitives themselves will limit the

inherently high bandwidth of using shared memory. Shared memory is therefore most

efficient when used for updating large amounts of data as a block.

Both semaphores and mutexes are suitable synchronization primitives for use with

shared memory. Semaphores were introduced with the POSIX realtime standard for

interprocess synchronization. Mutexes were introduced with the POSIX threads standard

for thread synchronization. Mutexes may also be used between threads in different

processes. POSIX considers this an optional capability; we support it. In general,

mutexes are more efficient than semaphores.

Shared memory with message passing

Shared memory and message passing can be combined to provide IPC that offers:

• very high performance (shared memory)

• synchronization (message passing)

• network transparency (message passing)

Using message passing, a client sends a request to a server and blocks. The server

receives the messages in priority order from clients, processes them, and replies when

it can satisfy a request. At this point, the client is unblocked and continues. The very

act of sending messages provides natural synchronization between the client and the

server. Rather than copy all the data through the message pass, the message can

contain a reference to a shared-memory region, so the server could read or write the

data directly. This is best explained with a simple example.

Let's assume a graphics server accepts draw image requests from clients and renders

them into a frame buffer on a graphics card. Using message passing alone, the client

would send a message containing the image data to the server. This would result in a

copy of the image data from the client's address space to the server's address space.

The server would then render the image and issue a short reply.

Copyright © 2014, QNX Software Systems Limited 91

Shared memory

If the client didn't send the image data inline with the message, but instead sent a

reference to a shared-memory region that contained the image data, then the server

could access the client's data directly.

Since the client is blocked on the server as a result of sending it a message, the server

knows that the data in shared memory is stable and will not change until the server

replies. This combination of message passing and shared memory achieves natural

synchronization and very high performance.

This model of operation can also be reversed—the server can generate data and give

it to a client. For example, suppose a client sends a message to a server that will read

video data directly from a CD-ROM into a shared memory buffer provided by the client.

The client will be blocked on the server while the shared memory is being changed.

When the server replies and the client continues, the shared memory will be stable

for the client to access. This type of design can be pipelined using more than one

shared-memory region.

Simple shared memory can't be used between processes on different computers

connected via a network. Message passing, on the other hand, is network transparent.

A server could use shared memory for local clients and full message passing of the

data for remote clients. This allows you to provide a high-performance server that is

also network transparent.

In practice, the message-passing primitives are more than fast enough for the majority

of IPC needs. The added complexity of a combined approach need only be considered

for special applications with very high bandwidth.

Creating a shared-memory object

Multiple threads within a process share the memory of that process. To share memory

between processes, you must first create a shared-memory region and then map that

region into your process's address space. Shared-memory regions are created and

manipulated using the following calls:

ClassificationDescriptionFunction

POSIXOpen (or create) a shared-memory region.shm_open()

POSIXClose a shared-memory region.close()

POSIXMap a shared-memory region into a process's address space.mmap()

POSIXUnmap a shared-memory region from a process's address space.munmap()

QNX

Neutrino

Unmap previously mapped addresses, exercising more control than

possible with munmap()

munmap_flags()

POSIXChange protections on a shared-memory region.mprotect()

POSIXSynchronize memory with physical storage.msync()

92 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

ClassificationDescriptionFunction

QNX

Neutrino

Give special attributes to a shared-memory object.shm_ctl(),

shm_ctl_special()

POSIXRemove a shared-memory region.shm_unlink()

POSIX shared memory is implemented in the QNX Neutrino RTOS via the process

manager (procnto). The above calls are implemented as messages to procnto (see

the Process Manager (p. 125) chapter in this book).

The shm_open() function takes the same arguments as open() and returns a file

descriptor to the object. As with a regular file, this function lets you create a new

shared-memory object or open an existing shared-memory object.

You must open the file descriptor for reading; if you want to write in the memory

object, you also need write access, unless you specify a private (MAP_PRIVATE)

mapping.

When a new shared-memory object is created, the size of the object is set to zero. To

set the size, you use ftruncate()—the very same function used to set the size of a file

—or shm_ctl().

mmap()

Once you have a file descriptor to a shared-memory object, you use the mmap() function

to map the object, or part of it, into your process's address space.

The mmap() function is the cornerstone of memory management within QNX Neutrino

and deserves a detailed discussion of its capabilities.

You can also use mmap() to map files and typed memory objects into your

process's address space.

The mmap() function is defined as follows:

void * mmap(void *where_i_want_it,
 size_t length,
 int memory_protections,
 int mapping_flags,
 int fd,
 off_t offset_within_shared_memory);

In simple terms this says: “Map in length bytes of shared memory at

offset_within_shared_memory in the shared-memory object associated with fd.”

The mmap() function will try to place the memory at the address where_i_want_it in

your address space. The memory will be given the protections specified by

memory_protections and the mapping will be done according to the mapping_flags.

Copyright © 2014, QNX Software Systems Limited 93

Shared memory

The three arguments fd, offset_within_shared_memory, and length define a portion

of a particular shared object to be mapped in. It's common to map in an entire shared

object, in which case the offset will be zero and the length will be the size of the

shared object in bytes. On an Intel processor, the length will be a multiple of the page

size, which is 4096 bytes.

mmap (addr, len, prot, flags, fd, offset);

len

len
addr

offset

Shared memory
object

Process address
space

Figure 29: Mapping memory with mmap().

The return value of mmap() will be the address in your process's address space where

the object was mapped. The argument where_i_want_it is used as a hint by the system

to where you want the object placed. If possible, the object will be placed at the

address requested. Most applications specify an address of zero, which gives the

system free rein to place the object where it wishes.

The following protection types may be specified for memory_protections:

DescriptionManifest

Memory may be executed.PROT_EXEC

Memory should not be cached.PROT_NOCACHE

No access allowed.PROT_NONE

Memory may be read.PROT_READ

Memory may be written.PROT_WRITE

You should use the PROT_NOCACHE manifest when you're using a shared-memory

region to gain access to dual-ported memory that may be modified by hardware (e.g.,

a video frame buffer or a memory-mapped network or communications board). Without

this manifest, the processor may return “stale” data from a previously cached read.

The mapping_flags determine how the memory is mapped. These flags are broken

down into two parts—the first part is a type and must be specified as one of the

following:

94 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

DescriptionMap type

The mapping may be shared by many

processes; changes are propagated back

to the underlying object.

MAP_SHARED

The mapping is private to the calling

process; changes aren't propagated back

MAP_PRIVATE

to the underlying object. The mmap()

function allocates system RAM and makes

a copy of the object.

The MAP_SHARED type is the one to use for setting up shared memory between

processes; MAP_PRIVATE has more specialized uses.

You can OR a number of flags into the above type to further define the mapping. These

are described in detail in the mmap() entry in the QNX Neutrino C Library Reference.

A few of the more interesting flags are:

MAP_ANON

Map anonymous memory that isn't associated with any file descriptor; you

must set the fd parameter to NOFD. The mmap() function allocates the

memory, and by default, fills the allocated memory with zeros; see

“Initializing allocated memory (p. 96).”

You commonly use MAP_ANON with MAP_PRIVATE, but you can use it with

MAP_SHARED to create a shared memory area for forked applications. You

can use MAP_ANON as the basis for a page-level memory allocator.

MAP_FIXED

Map the object to the address specified by where_i_want_it. If a

shared-memory region contains pointers within it, then you may need to

force the region at the same address in all processes that map it. This can

be avoided by using offsets within the region in place of direct pointers.

MAP_PHYS

This flag indicates that you wish to deal with physical memory. The fd

parameter should be set to NOFD. When used without MAP_ANON, the

offset_within_shared_memory specifies the exact physical address to map

(e.g., for video frame buffers). If used with MAP_ANON, then physically

contiguous memory is allocated (e.g., for a DMA buffer).

You can use MAP_NOX64K and MAP_BELOW16M to further define the

MAP_ANON allocated memory and address limitations present in some forms

of DMA.

Copyright © 2014, QNX Software Systems Limited 95

Shared memory

You should use mmap_device_memory() instead of MAP_PHYS,

unless you're allocating physically contiguous memory.

MAP_NOX64K

Used with MAP_PHYS | MAP_ANON. The allocated memory area will not

cross a 64-KB boundary. This is required for the old 16-bit PC DMA.

MAP_BELOW16M

Used with MAP_PHYS | MAP_ANON. The allocated memory area will reside

in physical memory below 16 MB. This is necessary when using DMA with

ISA bus devices.

MAP_NOINIT

Relax the POSIX requirement to zero the allocated memory; see “Initializing

allocated memory (p. 96),” below.

Using the mapping flags described above, a process can easily share memory between

processes:

/* Map in a shared memory region */
fd = shm_open("datapoints", O_RDWR);
addr = mmap(0, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

or allocate a DMA buffer for a bus-mastering PCI network card:

/* Allocate a physically contiguous buffer */
addr = mmap(0, 262144, PROT_READ|PROT_WRITE|PROT_NOCACHE,
 MAP_PHYS|MAP_ANON, NOFD, 0);

You can unmap all or part of a shared-memory object from your address space using

munmap(). This primitive isn't restricted to unmapping shared memory—it can be

used to unmap any region of memory within your process. When used in conjunction

with the MAP_ANON flag to mmap(), you can easily implement a private page-level

allocator/deallocator.

You can change the protections on a mapped region of memory using mprotect(). Like

munmap(), mprotect() isn't restricted to shared-memory regions—it can change the

protection on any region of memory within your process.

Initializing allocated memory

POSIX requires that mmap() zero any memory that it allocates. It can take a while to

initialize the memory, so QNX Neutrino provides a way to relax the POSIX requirement.

This allows for faster starting, but can be a security problem.

This feature was added in the QNX Neutrino Core OS

6.3.2.

96 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

Avoiding initializing the memory requires the cooperation of the process doing the

unmapping and the one doing the mapping:

• The munmap_flags() function is a non-POSIX function that's similar to munmap()

but lets you control what happens when the memory is next mapped:

int munmap_flags(void *addr, size_t len,
 unsigned flags);

If you specify a flags argument of 0, munmap_flags() behaves the same as

munmap() does.

The following bits control the clearing of memory on allocation:

UNMAP_INIT_REQUIRED

POSIX initialization of the page to all zeroes is required the next time

the underlying physical memory is allocated.

UNMAP_INIT_OPTIONAL

Initialization of the underlying physical memory to zeroes on its next

allocation is optional.

• If you specify the MAP_NOINIT flag to mmap(), and the physical memory being

mapped was previously unmapped with UNMAP_INIT_OPTIONAL, the POSIX

requirement that the memory be zeroed is relaxed.

By default, the kernel initializes the memory, but you can control this by using the -m

option to procnto. The argument to this option is a string that lets you enable or

disable aspects of the memory manager:

i

munmap() acts as if UNMAP_INIT_REQUIRED were specified.

~i

munmap() acts as if UNMAP_INIT_OPTIONAL were specified.

By default when memory is freed for later reuse, the contents of that memory remain

untouched; whatever the application that owned the memory left behind is left intact

until the next time that memory is allocated by another process. In QNX Neutrino 6.6

and later, the -m option to procnto lets you control the default behavior when

unmapping:

-mc

Clear memory when it's freed.

-m~c

Copyright © 2014, QNX Software Systems Limited 97

Shared memory

Don't clear memory when it's freed (the default). When memory is freed for

later reuse, the contents of that memory remain untouched; whatever the

application that owned the memory left behind is left intact until the next

time that memory is allocated by another process. At that point, before the

memory is handed to the next process, it's zeroed.

98 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

Typed memory

Typed memory is POSIX functionality defined in the 1003.1 specification. It's part of

the advanced realtime extensions, and the manifests are located in the <sys/mman.h>

header file.

Typed memory adds the following functions to the C library:

posix_typed_mem_open()

Open a typed memory object. This function returns a file descriptor, which

you can then pass to mmap() to establish a memory mapping of the typed

memory object.

posix_typed_mem_get_info()

Get information (currently the amount of available memory) about a typed

memory object.

POSIX typed memory provides an interface to open memory objects (which are defined

in an OS-specific fashion) and perform mapping operations on them. It's useful in

providing an abstraction between BSP- or board-specific address layouts and device

drivers or user code.

Implementation-defined behavior

POSIX specifies that typed memory pools (or objects) are created and defined in an

implementation-specific fashion.

This section describes the following for QNX Neutrino:

• Seeding of typed memory regions (p. 99)

• Naming of typed memory regions (p. 100)

• Pathname space and typed memory (p. 101)

• mmap() allocation flags and typed memory objects (p. 101)

• Permissions and typed memory objects (p. 102)

• Object length and offset definitions (p. 102)

• Interaction with other POSIX APIs (p. 102)

Seeding of typed memory regions

Under QNX Neutrino, typed memory objects are defined from the memory regions

specified in the asinfo section of the system page. Thus, typed memory objects map

directly to the address space hierarchy (asinfo segments) define by startup. The typed

memory objects also inherit the properties defined in asinfo, namely the physical

address (or bounds) of the memory segments.

Copyright © 2014, QNX Software Systems Limited 99

Typed memory

In general, the naming and properties of the asinfo entries is arbitrary and is completely

under the user's control. There are, however, some mandatory entries:

memory

Physical addressability of the processor, typically 4 GB on a 32-bit CPU

(more with physical addressing extensions).

ram

All of the RAM on the system. This may consist of multiple entries.

sysram

System RAM, i.e., memory that has been given to the OS to manage. This

may also consist of multiple entries.

Since by convention sysram is the memory that has been given to the OS, this pool

is the same as that used by the OS to satisfy anonymous mmap() and malloc() requests.

You can create additional entries, but only in startup, using the as_add() function.

Naming of typed memory regions

The names of typed memory regions are derived directly from the names of the asinfo

segments. The asinfo section itself describes a hierarchy, and so the naming of typed

memory object is a hierarchy.

Here's a sample system configuration:

Range (start, end)Name

0, 0xFFFFFFFF/memory

0, 0x1FFFFFF/memory/ram

0x1000, 0x1FFFFFF/memory/ram/sysram

0x1000, 0xFFFFFF/memory/isa/ram/dma

0x1000, 0x1FFFFFF/memory/ram/dma

The name you pass to posix_typed_mem_open() follows the above naming convention.

POSIX allows an implementation to define what happens when the name doesn't start

with a leading slash (/). The resolution rules on opening are as follows:

1. If the name starts with a leading /, an exact match is done.

2. The name may contain intermediate / characters. These are considered as path

component separators. If multiple path components are specified, they're matched

from the bottom up (the opposite of the way filenames are resolved).

3. If the name doesn't start with a leading /, a tail match is done on the pathname

components specified.

100 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

Here are some examples of how posix_typed_mem_open() resolves names, using the

above sample configuration:

See:Resolves to:This name:

Rule 1/memory/memory

Rule 2/memory/ram/memory/ram

Fails/sysram

Rule 3/memory/ram/sysramsysram

Pathname space and typed memory

The typed memory name hierarchy is exported through the process manager namespace

under /dev/tymem. Applications can list this hierarchy, and look at the asinfo entries

in the system page to get information about the typed memory.

Unlike for shared memory objects, you can't open typed memory through the

namespace interface, because posix_typed_mem_open() takes the additional

parameter tflag, which is required and isn't provided in the open() API.

mmap() allocation flags and typed memory objects

The following general cases of allocations and mapping are considered for typed

memory:

• The typed memory pool is explicitly allocated from (POSIX_TYPED_MEM_ALLOCATE

and POSIX_TYPED_MEM_ALLOCATE_CONTIG). This case is just like a normal

MAP_SHARED of a anonymous object:

mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANON,
 NOFD, 0);

The memory is allocated and not available for other allocations, but if you fork the

process, the child processes can access it as well. The memory is released when

the last mapping to it is removed.

Note that like somebody doing mem_offset() and then a MAP_PHYS to gain access

to previously allocated memory, somebody else could open the typed memory object

with POSIX_TYPED_MEM_MAP_ALLOCATABLE (or with no flags) and gain access

to the same physical memory that way.

POSIX_TYPED_MEM_ALLOCATE_CONTIG is like MAP_ANON | MAP_SHARED, in

that it causes a contiguous allocation.

• The POSIX_TYPED_MEM_MAP_ALLOCATABLE case, which is used to create a

mapping to an object without allocation or deallocation. This is equivalent to a

shared mapping to physical memory.

Copyright © 2014, QNX Software Systems Limited 101

Typed memory

You should use only MAP_SHAREDmappings, since a write to a MAP_PRIVATEmapping

will (as normal) create a private copy for the process in normal anonymous memory.

If you specify no flag, or you specify POSIX_TYPED_MEM_MAP_ALLOCATABLE, the

offset parameter to mmap() specifies the starting physical address in the typed memory

region; if the typed memory region is discontiguous (multiple asinfo entries), the

allowed offset values are also discontiguous and don't start at zero as they do for shared

memory objects. If you specify a [paddr, paddr + size) region that falls outside the

allowed addresses for the typed memory object, mmap() fails with ENXIO.

Permissions and typed memory objects

Permissions on a typed memory object are governed by UNIX permissions.

The oflags argument to posix_typed_mem_open() specifies the desired access privilege,

and these flags are checked against the permission mask of the typed memory object.

POSIX doesn't specify how permissions are assigned to the typed memory objects.

Under QNX Neutrino, default permissions are assigned at system boot-up. By default,

root is the owner and group, and has read-write permissions; no one else has any

permissions.

Currently, there's no mechanism to change the permissions of an object. In the future,

the implementation may be extended to allow chmod() and chown() to modify the

permissions.

Object length and offset definitions

You can retrieve the size of an object by using posix_typed_mem_get_info().

The posix_typed_mem_get_info() call fills in a posix_typed_mem_info structure,

which includes the posix_tmi_length field, which contains the size of the typed memory

object.

As specified by POSIX, the length field is dynamic and contains the current allocatable

size for that object (in effect, the free size of the object for

POSIX_TYPED_MEM_ALLOCATE and POSIX_TYPED_MEM_ALLOCATE_CONTIG). If

you opened the object with a tflag of 0 or POSIX_TYPED_MEM_MAP_ALLOCATABLE,

the length field is set to zero.

When you map in a typed memory object, you usually pass an offset to mmap(). The

offset is the physical address of the location in the object where the mapping should

commence. The offset is appropriate only when opening the object with a tflag of 0

or POSIX_TYPED_MEM_MAP_ALLOCATABLE. If you opened the typed memory object

with POSIX_TYPED_MEM_ALLOCATE or POSIX_TYPED_MEM_ALLOCATE_CONTIG,

a nonzero offset causes the call to mmap() to fail with an error of EINVAL.

Interaction with other POSIX APIs

Typed memory can interact with other POSIX APIs.

102 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

rlimits

The POSIX setrlimit() APIs provide the ability to set limits on the virtual and

physical memory that a process can consume. Since typed memory operations

may operate on normal RAM (sysram) and will create mappings in the

process's address space, they need to be taken into account when doing the

rlimit accounting. In particular, the following rules apply:

• Any mapping created by mmap() for typed memory objects is counted in

the process's RLIMIT_VMEM or RLIMIT_AS limit.

• Typed memory never counts against RLIMIT_DATA.

POSIX file-descriptor functions

You can use the file descriptor that posix_typed_memory_open() returns with

selected POSIX fd-based calls, as follows:

• fstat(fd,..), which fills in the stat structure as it does for a shared

memory object, except that the size field doesn't hold the size of the

typed memory object.

• close(fd) closes the file descriptor.

• dup() and dup2() duplicate the file handle.

• posix_mem_offset() behaves as documented in the POSIX specification.

Practical examples

Here are some examples of how you could use typed memory.

Allocating contiguous memory from system RAM

Here's a code snippet that allocates contiguous memory from system RAM:

int fd = posix_typed_mem_open("/memory/ram/sysram", O_RDWR,
 POSIX_TYPED_MEM_ALLOCATE_CONTIG);

void *vaddr = mmap(NULL, size, PROT_READ | PROT_WRITE,
 MAP_PRIVATE, fd, 0);

Defining packet memory and allocating from it

Assume you have special memory (say fast SRAM) that you want to use for packet

memory. This SRAM isn't put in the global system RAM pool. Instead, in startup, we

use as_add() (see the Customizing Image Startup Programs chapter of Building

Embedded Systems) to add an asinfo entry for the packet memory:

as_add(phys_addr, phys_addr + size - 1, AS_ATTR_NONE,
 "packet_memory", mem_id);

where phys_addr is the physical address of the SRAM, size is the SRAM size, and

mem_id is the ID of the parent (typically memory, which is returned by as_default()).

Copyright © 2014, QNX Software Systems Limited 103

Typed memory

This code creates an asinfo entry for packet_memory, which you can then use as

POSIX typed memory. The following code allows different applications to allocate

pages from packet_memory:

int fd = posix_typed_mem_open("packet_memory", O_RDWR,
 POSIX_TYPED_MEM_ALLOCATE);
void *vaddr = mmap(NULL, size, PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, 0);

Alternatively, you may want to use the packet memory as direct shared, physical

buffers. In this case, applications would use it as follows:

int fd = posix_typed_mem_open("packet_memory", O_RDWR,
 POSIX_TYPED_MEM_MAP_ALLOCATABLE);
void *vaddr = mmap(NULL, size, PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, offset);

Defining a DMA-safe region

On some hardware, due to limitations of the chipset or memory controller, it may not

be possible to perform DMA to arbitrary addresses in the system. In some cases, the

chipset has only the ability to DMA to a subset of all physical RAM. This has

traditionally been difficult to solve without statically reserving some portion of RAM

of driver DMA buffers (which is potentially wasteful). Typed memory provides a clean

abstraction to solve this issue. Here's an example:

In startup, use as_add_containing() (see the Customizing Image Startup Programs

chapter of Building Embedded Systems) to define an asinfo entry for DMA-safe

memory. Make this entry be a child of ram:

as_add_containing(dma_addr, dma_addr + size - 1,
 AS_ATTR_RAM, "dma", "ram");

where dma_addr is the start of the DMA-safe RAM, and size is the size of the DMA-safe

region.

This code creates an asinfo entry for dma, which is a child of ram. Drivers can then

use it to allocate DMA-safe buffers:

int fd = posix_typed_mem_open("ram/dma", O_RDWR,
 POSIX_TYPED_MEM_ALLOCATE_CONTIG);
void *vaddr = mmap(NULL, size, PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, 0);

104 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

Pipes and FIFOs

Pipes and FIFOs are boths forms of queues that connect processes.

In order for you to use pipes or FIFOs in the QNX Neutrino RTOS, the pipe

resource manager (pipe) must be running.

Pipes

A pipe is an unnamed file that serves as an I/O channel between two or more

cooperating processes: one process writes into the pipe, the other reads from

the pipe.

The pipe manager takes care of buffering the data. The buffer size is defined

as PIPE_BUF in the <limits.h> file. A pipe is removed once both of its

ends have closed. The function pathconf() returns the value of the limit.

Pipes are normally used when two processes want to run in parallel, with

data moving from one process to the other in a single direction. (If

bidirectional communication is required, messages should be used instead.)

A typical application for a pipe is connecting the output of one program to

the input of another program. This connection is often made by the shell.

For example:

ls | more

directs the standard output from the ls utility through a pipe to the standard

input of the more utility.

Use the:If you want to:

pipe symbol (“|”)Create pipes from within the shell

pipe() or popen() functionsCreate pipes from within programs

FIFOs

FIFOs are essentially the same as pipes, except that FIFOs are named

permanent files that are stored in filesystem directories.

Use the:If you want to:

mkfifo utilityCreate FIFOs from within the shell

mkfifo() functionCreate FIFOs from within programs

rm utilityRemove FIFOs from within the shell

Copyright © 2014, QNX Software Systems Limited 105

Pipes and FIFOs

Use the:If you want to:

remove() or unlink() functionRemove FIFOs from within programs

106 Copyright © 2014, QNX Software Systems Limited

Interprocess Communication (IPC)

Chapter 4
The Instrumented Microkernel

An instrumented version of the microkernel (procnto-instr) is equipped with a

sophisticated tracing and profiling mechanism that lets you monitor your system's

execution in real time. The procnto-instr module works on both single-CPU and SMP

systems.

The procnto-instr module uses very little overhead and gives exceptionally good

performance—it's typically about 98% as fast as the noninstrumented kernel (when

it isn't logging). The additional amount of code (about 30 KB on an x86 system) in

the instrumented kernel is a relatively small price to pay for the added power and

flexibility of this useful tool. Depending on the footprint requirements of your final

system, you may choose to use this special kernel as a development/prototyping tool

or as the actual kernel in your final product.

The instrumented module is nonintrusive—you don't have to modify a program's source

code in order to monitor how that program interacts with the kernel. You can trace as

many or as few interactions (e.g., kernel calls, state changes, and other system

activities) as you want between the kernel and any running thread or process in your

system. You can even monitor interrupts. In this context, all such activities are known

as events.

For more details, see the System Analysis Toolkit User's Guide.

Copyright © 2014, QNX Software Systems Limited 107

Instrumentation at a glance

Here are the essential tasks involved in kernel instrumentation:

1. The instrumented microkernel (procnto-instr) emits trace events as a result

of various system activities. These events are automatically copied to a set of buffers

grouped into a circular linked list.

2. As soon as the number of events inside a buffer reaches the high-water mark, the

kernel notifies a data-capture utility.

3. The data-capture utility then writes the trace events from the buffer to an output

device (e.g., a serial port, an event file, etc.).

4. A data-interpretation facility then interprets the events and presents this data to

the user.

Data filter/
interpretation

Instrumented
microkernel

Data-capture
utility

Event buffers

Process and thread activity

Figure 30: Instrumentation at a glance.

108 Copyright © 2014, QNX Software Systems Limited

The Instrumented Microkernel

Event control

Given the large number of activities occurring in a live system, the number of events

that the kernel emits can be overwhelming (in terms of the amount of data, the

processing requirements, and the resources needed to store it). But you can easily

control the amount of data emitted.

Specifically, you can:

• control the initial conditions that trigger event emissions

• apply predefined kernel filters to dynamically control emissions

• implement your own event handlers for even more filtering.

Once the data has been collected by the data-capture utility (tracelogger), it can

then be analyzed. You can analyze the data in real time or offline after the relevant

events have been gathered. The System Analysis tool within the IDE presents this data

graphically so you can “see” what's going on in your system.

Modes of emission

Apart from applying the various filters to control the event stream, you can also specify

one of two modes the kernel can use to emit events:

fast mode

Emits only the most pertinent information (e.g., only two kernel call

arguments) about an event.

wide mode

Generates more information (e.g., all kernel call arguments) for the same

event.

The trade-off here is one of speed vs knowledge: fast mode delivers less data, while

wide mode packs much more information for each event. Either way, you can easily

tune your system, because these modes work on a per-event basis.

As an example of the difference between the fast and wide emission modes, let's look

at the kinds of information we might see for a MsgSendv() call entry:

Number of bytes for the eventFast mode data

4 bytesConnection ID

4 bytes (the first 4 bytes usually comprise

the header)

Message data

Total emitted: 8 bytes

Copyright © 2014, QNX Software Systems Limited 109

Event control

Number of bytes for the eventWide mode data

4 bytesConnection ID

4 bytes# of parts to send

4 bytes# of parts to receive

4 bytes (the first 4 bytes usually comprise

the header)

Message data

4 bytesMessage data

4 bytesMessage data

Total emitted: 24 bytes

Ring buffer

Rather than always emit events to an external device, the kernel can keep all of the

trace events in an internal circular buffer.

This buffer can be programmatically dumped to an external device on demand when

a certain triggering condition is met, making this a very powerful tool for identifying

elusive bugs that crop up under certain runtime conditions.

110 Copyright © 2014, QNX Software Systems Limited

The Instrumented Microkernel

Data interpretation

The data of an event includes a high-precision timestamp as well as the ID number

of the CPU on which the event was generated. This information helps you easily

diagnose difficult timing problems, which are more likely to occur on multiprocessor

systems.

The event format also includes the CPU platform (e.g., x86, ARM, etc.) and endian

type, which facilitates remote analysis (whether in real time or offline). Using a data

interpreter, you can view the data output in various ways, such as:

• a timestamp-based linear presentation of the entire system

• a “running” view of only the active threads/processes

• a state-based view of events per process/thread.

The linear output from the data interpreter might look something like this:

TRACEPRINTER version 0.94
 -- HEADER FILE INFORMATION --
 TRACE_FILE_NAME:: /dev/shmem/tracebuffer
 TRACE_DATE:: Fri Jun 8 13:14:40 2001
 TRACE_VER_MAJOR:: 0
 TRACE_VER_MINOR:: 96
 TRACE_LITTLE_ENDIAN:: TRUE
 TRACE_ENCODING:: 16 byte events
 TRACE_BOOT_DATE:: Fri Jun 8 04:31:05 2001
 TRACE_CYCLES_PER_SEC:: 400181900
 TRACE_CPU_NUM:: 4
 TRACE_SYSNAME:: QNX
 TRACE_NODENAME:: x86quad.gp.qa
 TRACE_SYS_RELEASE:: 6.1.0
 TRACE_SYS_VERSION:: 2001/06/04-14:07:56
 TRACE_MACHINE:: x86pc
 TRACE_SYSPAGE_LEN:: 2440
 -- KERNEL EVENTS --
t:0x1310da15 CPU:01 CONTROL :TIME msb:0x0000000f, lsb(offset):0x1310d81c
t:0x1310e89d CPU:01 PROCESS :PROCCREATE_NAME
 ppid:0
 pid:1
 name:./procnto-smp-instr
t:0x1310eee4 CPU:00 THREAD :THCREATE pid:1 tid:1
t:0x1310f052 CPU:00 THREAD :THRUNNING pid:1 tid:1
t:0x1310f144 CPU:01 THREAD :THCREATE pid:1 tid:2
t:0x1310f201 CPU:01 THREAD :THREADY pid:1 tid:2
t:0x1310f32f CPU:02 THREAD :THCREATE pid:1 tid:3
t:0x1310f3ec CPU:02 THREAD :THREADY pid:1 tid:3
t:0x1310f52d CPU:03 THREAD :THCREATE pid:1 tid:4
t:0x1310f5ea CPU:03 THREAD :THRUNNING pid:1 tid:4
t:0x1310f731 CPU:02 THREAD :THCREATE pid:1 tid:5
.
.
.

To help you fine-tune your interpretation of the event data stream, we provide a library

(traceparser) so you can write your own custom event interpreters.

System analysis with the IDE

The IDE module of the System Analysis Toolkit (SAT) can serve as a comprehensive

instrumentation control and post-processing visualization tool.

From within the IDE, developers can configure all trace events and modes, and then

transfer log files automatically to a remote system for analysis. As a visualization tool,

the IDE provides a rich set of event and process filters designed to help developers

quickly prune down massive event sets in order to see only those events of interest.

Copyright © 2014, QNX Software Systems Limited 111

Data interpretation

Figure 31: The IDE helps you visualize system activity.

For more information, see the IDE User's Guide.

112 Copyright © 2014, QNX Software Systems Limited

The Instrumented Microkernel

Proactive tracing

While the instrumented kernel provides an excellent unobtrusive method for

instrumenting and monitoring processes, threads, and the state of your system in

general, you can also have your applications proactively influence the event-collection

process.

Using the TraceEvent() library call, applications themselves can inject custom events

into the trace stream. This facility is especially useful when building large, tightly

coupled, multicomponent systems.

For example, the following simple call would inject the integer values of eventcode,

first, and second into the event stream:

TraceEvent(_NTO_TRACE_INSERTSUSEREVENT, eventcode, first,
 second);

You can also inject a string (e.g., “My Event”) into the event stream, as shown in the

following code:

#include <stdio.h>
#include <sys/trace.h>

/* Code to associate with emitted events */
#define MYEVENTCODE 12

int main(int argc, char **argv) {
 printf("My pid is %d \n", getpid());

 /* Inject two integer events (26, 1975) */
 TraceEvent(_NTO_TRACE_INSERTSUSEREVENT, MYEVENTCODE,
 26, 1975);

 /* Inject a string event (My Event) */
 TraceEvent(_NTO_TRACE_INSERTUSRSTREVENT, MYEVENTCODE,
 "My Event");

 return 0;
}

The output, as gathered by the traceprinter data interpreter, would then look

something like this:

.

.

.
t:0x38ea737e CPU:00 USREVENT:EVENT:12, d0:26 d1:1975
.
.
.
t:0x38ea7cb0 CPU:00 USREVENT:EVENT:12 STR:"My Event"

Note that 12 was specified as the trace user eventcode for these events.

Copyright © 2014, QNX Software Systems Limited 113

Proactive tracing

Chapter 5
Multicore Processing

Two heads are better than one goes the old saying, and the same is true for computer

systems, where two—or more—processors can greatly improve performance.

Multiprocessing systems can be in these forms:

Discrete or traditional

A system that has separate physical processors hooked up in multiprocessing

mode over a board-level bus.

Multicore

A chip that has one physical processor with multiple CPUs interconnected

over a chip-level bus.

Multicore processors deliver greater computing power through concurrency,

offer greater system density, and run at lower clock speeds than uniprocessor

chips. Multicore processors also reduce thermal dissipation, power

consumption, and board area (and hence the cost of the system).

Multiprocessing includes several operating modes:

Asymmetric multiprocessing (AMP) (p. 116)

A separate OS, or a separate instantiation of the same OS, runs on each

CPU.

Symmetric multiprocessing (SMP) (p. 117)

A single instantiation of an OS manages all CPUs simultaneously, and

applications can float to any of them.

Bound multiprocessing (BMP) (p. 122)

A single instantiation of an OS manages all CPUs simultaneously, but each

application is locked to a specific CPU.

To determine how many processors there are on your system, look at the

num_cpu entry of the system page. For more information, see “Structure of

the system page” in the Customizing Image Startup Programs chapter of

Building Embedded Systems.

Copyright © 2014, QNX Software Systems Limited 115

Asymmetric multiprocessing (AMP)

Asymmetric multiprocessing provides an execution environment that's similar to

conventional uniprocessor systems. It offers a relatively straightforward path for porting

legacy code and provides a direct mechanism for controlling how the CPUs are used.

In most cases, it lets you work with standard debugging tools and techniques.

AMP can be:

• homogeneous—each CPU runs the same type and version of the OS

• heterogeneous—each CPU runs either a different OS or a different version of the

same OS

QNX Neutrino's distributed programming model lets you make the best use of the

multiple CPUs in a homogeneous environment. Applications running on one CPU can

communicate transparently with applications and system services (e.g., device drivers,

protocol stacks) on other CPUs, without the high CPU utilization imposed by traditional

forms of interprocessor communication.

In heterogeneous systems, you must either implement a proprietary communications

scheme or choose two OSs that share a common infrastructure (likely IP based) for

interprocessor communications. To help avoid resource conflicts, the OSs should also

provide standardized mechanisms for accessing shared hardware components.

With AMP, you decide how the shared hardware resources used by applications are

divided up between the CPUs. Normally, this resource allocation occurs statically

during boot time and includes physical memory allocation, peripheral usage, and

interrupt handling. While the system could allocate the resources dynamically, doing

so would entail complex coordination between the CPUs.

In an AMP system, a process always runs on the same CPU, even when other CPUs

run idle. As a result, one CPU can end up being under- or overutilized. To address the

problem, the system could allow applications to migrate dynamically from CPU to

another. Doing so, however, can involve complex checkpointing of state information

or a possible service interruption as the application is stopped on one CPU and restarted

on another. Also, such migration is difficult, if not impossible, if the CPUs run different

OSs.

116 Copyright © 2014, QNX Software Systems Limited

Multicore Processing

Symmetric multiprocessing (SMP)

Allocating resources in a multicore design can be difficult, especially when multiple

software components are unaware of how other components are employing those

resources.

Symmetric multiprocessing addresses the issue by running only one copy of the QNX

Neutrino RTOS on all of the system's CPUs. Because the OS has insight into all system

elements at all times, it can allocate resources on the multiple CPUs with little or no

input from the application designer. Moreover, QNX Neutrino provides built-in

standardized primitives, such as pthread_mutex_lock(), pthread_mutex_unlock(),

pthread_spin_lock(), and pthread_spin_unlock(), that let multiple applications share

these resources safely and easily.

By running only one copy of QNX Neutrino, SMP can dynamically allocate resources

to specific applications rather than to CPUs, thereby enabling greater utilization of

available processing power. It also lets system tracing tools gather operating statistics

and application interactions for the multiprocessing system as a whole, giving you

valuable insight into how to optimize and debug applications.

For instance, the System Profiler in the IDE can track thread migration from one CPU

to another, as well as OS primitive usage, scheduling events, application-to-application

messaging, and other events, all with high-resolution timestamping. Application

synchronization also becomes much easier since you use standard OS primitives rather

than complex IPC mechanisms.

QNX Neutrino lets the threads of execution within an application run concurrently on

any CPU, making the entire computing power of the chip available to applications at

all times. QNX Neutrino's preemption and thread prioritization capabilities help you

ensure that CPU cycles go to the application that needs them the most.

The QNX Neutrino RTOS's microkernel approach

SMP is typically associated with high-end operating systems such as Unix and Windows

NT running on high-end servers. These large monolithic systems tend to be quite

complex, the result of many person-years of development. Since these large kernels

contain the bulk of all OS services, the changes to support SMP are extensive, usually

requiring large numbers of modifications and the use of specialized spinlocks

throughout the code.

QNX Neutrino, on the other hand, contains a very small microkernel surrounded by

processes that act as resource managers, providing services such as filesystems,

character I/O, and networking. By modifying the microkernel alone, all other OS services

will gain full advantage of SMP without the need for coding changes. If these

service-providing processes are multithreaded, their many threads will be scheduled

among the available processors. Even a single-threaded server would also benefit from

Copyright © 2014, QNX Software Systems Limited 117

Symmetric multiprocessing (SMP)

an SMP system, because its thread would be scheduled on the available processors

beside other servers and client processes.

As a testament to this microkernel approach, the SMP-enabled QNX Neutrino

kernel/process manager adds only a few kilobytes of additional code. The SMP versions

are designed for these main processor families:

• ARM (procnto-smp)

• x86 (procnto-smp)

The x86 version can boot on any system that conforms to the Intel MultiProcessor

Specification (MP Spec) with up to 32 Pentium (or better) processors. QNX Neutrino

also supports Intel's Hyper-Threading Technology found in P4 and Xeon processors.

The procnto-smp manager will also function on a single non-SMP system. With the

cost of building a dual-processor Pentium motherboard very nearly the same as that

for a single-processor motherboard, it's possible to deliver cost-effective solutions that

can be scaled in the field by the simple addition of a second CPU. The fact that the

OS itself is only a few kilobytes larger also allows SMP to be seriously considered for

small CPU-intensive embedded systems, not just high-end servers.

Booting an x86 SMP system

The microkernel itself contains very little hardware- or system-specific code. The code

that determines the capabilities of the system is isolated in a startup program, which

is responsible for initializing the system, determining available memory, etc. Information

gathered is placed into a memory table available to the microkernel and to all processes

(on a read-only basis).

The startup-bios program is designed to work on systems compatible with the

Intel MP Spec (version 1.4 or later). This startup program is responsible for:

• determining the number of processors

• determining the address of the local and I/O APIC

• initializing each additional processor

After a reset, only one processor will be executing the reset code. This processor is

called the boot processor (BP). For each additional processor found, the BP running

the startup-bios code will:

• initialize the processor

• switch it to 32-bit protected mode

• allocate the processor its own page directory

• set the processor spinning with interrupts disabled, waiting to be released by the

kernel

118 Copyright © 2014, QNX Software Systems Limited

Multicore Processing

How the SMP microkernel works

Once the additional processors have been released and are running, all processors are

considered peers for the scheduling of threads.

Scheduling

The scheduling policy follows the same rules as on a uniprocessor system.

That is, the highest-priority thread will be running on an available processor.

If a new thread becomes ready to run as the highest-priority thread in the

system, it will be dispatched to the appropriate processor. If more than one

processor is selected as a potential target, then the microkernel will try to

dispatch the thread to the processor where it last ran. This affinity is used

as an attempt to reduce thread migration from one processor to another,

which can affect cache performance.

In an SMP system, the scheduler has some flexibility in deciding exactly

how to schedule the other threads, with an eye towards optimizing cache

usage and minimizing thread migration. This could mean that some

processors will be running lower-priority threads while a higher-priority thread

is waiting to run on the processor it last ran on. The next time a processor

that's running a lower-priority thread makes a scheduling decision, it will

choose the higher-priority one.

In any case, the realtime scheduling rules that were in place on a

uniprocessor system are guaranteed to be upheld on an SMP system.

Kernel locking

In a uniprocessor system, only one thread is allowed to execute within the

microkernel at a time. Most kernel operations are short in duration (typically

a few microseconds on a Pentium-class processor). The microkernel is also

designed to be completely preemptible and restartable for those operations

that take more time. This design keeps the microkernel lean and fast without

the need for large numbers of fine-grained locks. It is interesting to note

that placing many locks in the main code path through a kernel will

noticeably slow the kernel down. Each lock typically involves processor bus

transactions, which can cause processor stalls.

In an SMP system, QNX Neutrino maintains this philosophy of only one

thread in a preemptible and restartable kernel. The microkernel may be

entered on any processor, but only one processor will be granted access at

a time.

For most systems, the time spent in the microkernel represents only a small

fraction of the processor's workload. Therefore, while conflicts will occur,

they should be more the exception than the norm. This is especially true for

Copyright © 2014, QNX Software Systems Limited 119

Symmetric multiprocessing (SMP)

a microkernel where traditional OS services like filesystems are separate

processes and not part of the kernel itself.

Interprocessor interrupts (IPIs)

The processors communicate with each other through IPIs (interprocessor

interrupts). IPIs can effectively schedule and control threads over multiple

processors. For example, an IPI to another processor is often needed when:

• a higher-priority thread becomes ready

• a thread running on another processor is hit with a signal

• a thread running on another processor is canceled

• a thread running on another processor is destroyed

Critical sections

To control access to data structures that are shared between them, threads and

processes use the standard POSIX primitives of mutexes, condvars, and semaphores.

These work without change in an SMP system.

Many realtime systems also need to protect access to shared data structures between

an interrupt handler and the thread that owns the handler. The traditional POSIX

primitives used between threads aren't available for use by an interrupt handler. There

are two solutions here:

• One is to remove all work from the interrupt handler and do all the work at thread

time instead. Given our fast thread scheduling, this is a very viable solution.

• In a uniprocessor system running the QNX Neutrino RTOS, an interrupt handler

may preempt a thread, but a thread will never preempt an interrupt handler. This

allows the thread to protect itself from the interrupt handler by disabling and

enabling interrupts for very brief periods of time.

The thread on a non-SMP system protects itself with code of the form:

InterruptDisable()
// critical section
InterruptEnable()

Or:

InterruptMask(intr)
// critical section
InterruptUnmask(intr)

Unfortunately, this code will fail on an SMP system since the thread may be running

on one processor while the interrupt handler is concurrently running on another

processor!

One solution would be to lock the thread to a particular processor (see “Bound

Multiprocessing (BMP) (p. 122),” later in this chapter).

120 Copyright © 2014, QNX Software Systems Limited

Multicore Processing

A better solution would be to use a new exclusion lock available to both the thread

and the interrupt handler. This is provided by the following primitives, which work on

both uniprocessor and SMP machines:

InterruptLock(intrspin_t* spinlock)

Attempt to acquire a spinlock, a variable shared between the interrupt handler

and thread. The code will spin in a tight loop until the lock is acquired. After

disabling interrupts, the code will acquire the lock (if it was acquired by a

thread). The lock must be released as soon as possible (typically within a

few lines of C code without any loops).

InterruptUnlock(intrspin_t* spinlock)

Release a lock and reenable interrupts.

On a non-SMP system, there's no need for a spinlock.

For more information, see the Multicore Processing User's Guide.

Copyright © 2014, QNX Software Systems Limited 121

Symmetric multiprocessing (SMP)

Bound multiprocessing (BMP)

Bound multiprocessing provides the scheduling control of an asymmetric

multiprocessing model, while preserving the hardware abstraction and management

of symmetric multiprocessing.

BMP is similar to SMP, but you can specify which processors a thread can run on.

You can use both SMP and BMP on the same system, allowing some threads to migrate

from one processor to another, while other threads are restricted to one or more

processors.

As with SMP, a single copy of the OS maintains an overall view of all system resources,

allowing them to be dynamically allocated and shared among applications. But, during

application initialization, a setting determined by the system designer forces all of an

application's threads to execute only on a specified CPU.

Compared to full, floating SMP operation, this approach offers several advantages:

• It eliminates the cache thrashing that can reduce performance in an SMP system

by allowing applications that share the same data set to run exclusively on the

same CPU.

• It offers simpler application debugging than SMP since all execution threads within

an application run on a single CPU.

• It helps legacy applications that use poor techniques for synchronizing shared data

to run correctly, again by letting them run on a single CPU.

With BMP, an application locked to one CPU can't use other CPUs, even if they're

idle. However, the QNX Neutrino RTOS lets you dynamically change the designated

CPU, without having to checkpoint, and then stop and restart the application.

QNX Neutrino supports the concept of hard processor affinity through a runmask. Each

bit that's set in the runmask represents a processor that a thread can run on. By

default, a thread's runmask is set to all ones, allowing it to run on any processor. A

value of 0x01 would allow a thread to execute only on the first processor.

By default, a process's or thread's children don't inherit the runmask; there's a separate

inherit mask.

By careful use of these masks, a systems designer can further optimize the runtime

performance of a system (e.g., by relegating nonrealtime processes to a specific

processor). In general, however, this shouldn't be necessary, because our realtime

scheduler will always preempt a lower-priority thread immediately when a higher-priority

thread becomes ready. Processor locking will likely affect only the efficiency of the

cache, since threads can be prevented from migrating.

You can specify the runmask for a new thread or process by:

122 Copyright © 2014, QNX Software Systems Limited

Multicore Processing

• setting the runmask member of the inheritance structure and specifying the

SPAWN_EXPLICIT_CPU flag when you call spawn()

Or:

• using the -C or -R option to the on utility when you launch a program. This also

sets the process's inherit mask to the same value.

You can change the runmask for an existing thread or process by:

• using the _NTO_TCTL_RUNMASK or

_NTO_TCTL_RUNMASK_GET_AND_SET_INHERIT command to the ThreadCtl()

kernel call

Or:

• using the -C or -R option to the slay utility. If you also use the -i option, slay

sets the inherit mask to the same value.

For more information, see the Multicore Processing User's Guide.

A viable migration strategy

As a midway point between AMP and SMP, BMP offers a viable migration strategy if

you wish to move towards full SMP, but you're concerned that your existing code may

operate incorrectly in a truly concurrent execution model.

You can port legacy code to a multicore system and initially bind it to a single CPU

to ensure correct operation. By judiciously binding applications (and possibly single

threads) to specific CPUs, you can isolate potential concurrency issues down to the

application and thread level. Resolving these issues will allow the application to run

fully concurrently, thereby maximizing the performance gains provided by the multiple

processors.

Copyright © 2014, QNX Software Systems Limited 123

Bound multiprocessing (BMP)

Choosing between AMP, SMP, and BMP

The choice between AMP, SMP, and BMP depends on the problem you're trying to

solve:

• AMP works well with legacy applications, but has limited scalability beyond two

CPUs.

• SMP offers transparent resource management, but software that hasn't been properly

designed for concurrency might have problems.

• BMP offers many of the same benefits as SMP, but guarantees that uniprocessor

applications will behave correctly, greatly simplifying the migration of legacy

software.

As the following table illustrates, the flexibility to choose from any of these models

lets you strike the optimal balance between performance, scalability, and ease of

migration.

AMPBMPSMPFeature

—YesYesSeamless resource sharing

LimitedYesYesScalable beyond dual CPU

YesYesIn most casesLegacy application operation

Yes——Mixed OS environment (e.g., QNX Neutrino and Linux)

YesYes—Dedicated processor by function

Slower

(application)

Fast (OS

primitives)

Fast (OS

primitives)

Intercore messaging

—YesYesThread synchronization between CPUs

—YesYesLoad balancing

—YesYesSystem-wide debugging and optimization

124 Copyright © 2014, QNX Software Systems Limited

Multicore Processing

Chapter 6
Process Manager

The process manager is capable of creating multiple POSIX processes (each of which

may contain multiple POSIX threads).

In the QNX Neutrino RTOS, the microkernel is paired with the Process Manager in a

single module (procnto). This module is required for all runtime systems. Its main

areas of responsibility include:

• process management—manages process creation, destruction, and process attributes

such as user ID (uid) and group ID (gid).

• memory management—manages a range of memory-protection capabilities, shared

libraries, and interprocess POSIX shared-memory primitives.

• pathname management—manages the pathname space into which resource

managers may attach.

User processes can access microkernel functions directly via kernel calls and process

manager functions by sending messages to procnto. Note that a user process sends

a message by invoking the MsgSend*() kernel call.

It's important to note that threads executing within procnto invoke the microkernel

in exactly the same way as threads in other processes. The fact that the process

manager code and the microkernel share the same process address space doesn't

imply a “special” or “private” interface. All threads in the system share the same

consistent kernel interface and all perform a privilege switch when invoking the

microkernel.

Copyright © 2014, QNX Software Systems Limited 125

Process management

The first responsibility of procnto is to dynamically create new processes. These

processes will then depend on procnto's other responsibilities of memory management

and pathname management.

Process management consists of both process creation and destruction as well as the

management of process attributes such as process IDs, process groups, user IDs, etc.

Process primitives

The process primitives include:

posix_spawn()

POSIX

spawn()

QNX Neutrino

fork()

POSIX

vfork()

UNIX BSD extension

exec*()

POSIX

posix_spawn()

The posix_spawn() function creates a child process by directly specifying an executable

to load.

To those familiar with UNIX systems, the posix_spawn() call is modeled after a fork()

followed by an exec*(). However, it operates much more efficiently in that there's no

need to duplicate address spaces as in a fork(), only to destroy and replace it when

the exec*() is called.

In a UNIX system, one of the main advantages of using the fork()-then-exec*() method

of creating a child process is the flexibility in changing the default environment

inherited by the new child process. This is done in the forked child just before the

126 Copyright © 2014, QNX Software Systems Limited

Process Manager

exec*(). For example, the following simple shell command would close and reopen

the standard output before exec*()'ing:

ls >file

You can do the same with posix_spawn(); it gives you control over the following classes

of environment inheritance, which are often adjusted when creating a new child

process:

• file descriptors

• process user and group IDs

• signal mask

• ignored signals

• adaptive partitioning (scheduler) attributes

There's also a companion function, posix_spawnp(), that doesn't require the absolute

path to the program to spawn, but instead searches for the executable using the caller's

PATH.

Using the posix_spawn() functions is the preferred way to create a new child process.

spawn()

The QNX Neutrino spawn() function is similar to posix_spawn().

The spawn() function gives you control over the following:

• file descriptors

• process group ID

• signal mask

• ignored signals

• the node to create the process on

• scheduling policy

• scheduling parameters (priority)

• maximum stack size

• runmask (for SMP systems)

The basic forms of the spawn() function are:

spawn()

Spawn with the explicitly specified path.

spawnp()

Search the current PATH and invoke spawn() with the first matching

executable.

Copyright © 2014, QNX Software Systems Limited 127

Process management

There's also a set of convenience functions that are built on top of spawn() and

spawnp() as follows:

spawnl()

Spawn with the command line provided as inline arguments.

spawnle()

spawnl() with explicitly passed environment variables.

spawnlp()

spawnp() that follows the command search path.

spawnlpe()

spawnlp() with explicitly passed environment variables.

spawnv()

Spawn with the command line pointed to by an array of pointers.

spawnve()

spawnv() with explicitly passed environment variables.

spawnvp()

spawnv() that follows the command search path.

spawnvpe()

spawnvp() with explicitly passed environment variables.

When a process is spawn()'ed, the child process inherits the following attributes of its

parent:

• process group ID (unless SPAWN_SETGROUP is set in inherit.flags)

• session membership

• real user ID and real group ID

• supplementary group IDs

• priority and scheduling policy

• current working directory and root directory

• file creation mask

• signal mask (unless SPAWN_SETSIGMASK is set in inherit.flags)

• signal actions specified as SIG_DFL

• signal actions specified as SIG_IGN (except the ones modified by inherit.sigdefault

when SPAWN_SETSIGDEF is set in inherit.flags)

128 Copyright © 2014, QNX Software Systems Limited

Process Manager

The child process has several differences from the parent process:

• Signals set to be caught by the parent process are set to the default action

(SIG_DFL).

• The child process's tms_utime, tms_stime, tms_cutime, and tms_cstime are tracked

separately from the parent's.

• The number of seconds left until a SIGALRM signal would be generated is set to

zero for the child process.

• The set of pending signals for the child process is empty.

• File locks set by the parent aren't inherited.

• Per-process timers created by the parent aren't inherited.

• Memory locks and mappings set by the parent aren't inherited.

If the child process is spawned on a remote node, the process group ID and the session

membership aren't set; the child process is put into a new session and a new process

group.

The child process can access the parent process's environment by using the environ

global variable (found in <unistd.h>).

For more information, see the spawn() function in the QNX Neutrino C Library

Reference.

fork()

The fork() function creates a new child process by sharing the same code as the calling

process and duplicating the calling process's data to give the child process an exact

copy. Most process resources are inherited.

The following resources are explicitly not inherited:

• process ID

• parent process ID

• file locks

• pending signals and alarms

• timers

The fork() function is typically used for one of two reasons:

• to create a new instance of the current execution environment

• to create a new process running a different program

When creating a new thread, common data is placed in an explicitly created shared

memory region. Prior to the POSIX thread standard, this was the only way to accomplish

this. With POSIX threads, this use of fork() is better accomplished by creating threads

within a single process using pthread_create().

When creating a new process running a different program, the call to fork() is soon

followed by a call to one of the exec*() functions. This too is better accomplished by

Copyright © 2014, QNX Software Systems Limited 129

Process management

a single call to the posix_spawn() function or the QNX Neutrino spawn() function,

which combine both operations with far greater efficiency.

Since QNX Neutrino provides better POSIX solutions than using fork(), its use is

probably best suited for porting existing code and for writing portable code that must

run on a UNIX system that doesn't support the POSIX pthread_create() or posix_spawn()

API.

vfork()

The vfork() function (which should be called only from a single-threaded process) is

useful when the purpose of fork() would have been to create a new system context for

a call to one of the exec*() functions.

The vfork() function differs from fork() in that the child doesn't get a copy of the calling

process's data. Instead, it borrows the calling process's memory and thread of control

until a call to one of the exec*() functions is made. The calling process is suspended

while the child is using its resources.

The vfork() child can't return from the procedure that called vfork(), since the eventual

return from the parent vfork() would then return to a stack frame that no longer existed.

exec*()

The exec*() family of functions replaces the current process with a new process, loaded

from an executable file. Since the calling process is replaced, there can be no

successful return.

The following exec*() functions are defined:

execl()

Exec with the command line provided as inline arguments.

execle()

execl() with explicitly passed environment variables.

execlp()

execl() that follows the command search path.

execlpe()

execlp()with explicitly passed environment variables.

execv()

execl() with the command line pointed to by an array of pointers.

execve()

130 Copyright © 2014, QNX Software Systems Limited

Process Manager

execv() with explicitly passed environment variables.

execvp()

execv() that follows the command search path.

execvpe()

execvp() with explicitly passed environment variables.

The exec*() functions usually follow a fork() or vfork() in order to load a new child

process. This is better achieved by using the posix_spawn() call.

Process loading

Processes loaded from a filesystem using the exec*(), posix_spawn() or spawn() calls

are in ELF (Executable and Linking Format).

If the filesystem is on a block-oriented device, the code and data are loaded into main

memory. By default, the memory pages containing the binaries are demand-loaded,

but you can use the procnto -m option to change this; for more information, see

“Locking memory (p. 136),” later in this chapter.

If the filesystem is memory mapped (e.g., ROM/flash image), the code needn't be

loaded into RAM, but may be executed in place. This approach makes all RAM available

for data and stack, leaving the code in ROM or flash. In all cases, if the same process

is loaded more than once, its code will be shared.

Copyright © 2014, QNX Software Systems Limited 131

Process management

Memory management

While some realtime kernels or executives provide support for memory protection in

the development environment, few provide protected memory support for the runtime

configuration, citing penalties in memory and performance as reasons. But with memory

protection becoming common on many embedded processors, the benefits of memory

protection far outweigh the very small penalties in performance for enabling it.

The key advantage gained by adding memory protection to embedded applications,

especially for mission-critical systems, is improved robustness.

With memory protection, if one of the processes executing in a multitasking environment

attempts to access memory that hasn't been explicitly declared or allocated for the

type of access attempted, the MMU hardware can notify the OS, which can then abort

the thread (at the failing/offending instruction).

This “protects” process address spaces from each other, preventing coding errors in

a thread in one process from “damaging” memory used by threads in other processes

or even in the OS. This protection is useful both for development and for the installed

runtime system, because it makes postmortem analysis possible.

During development, common coding errors (e.g., stray pointers and indexing beyond

array bounds) can result in one process/thread accidentally overwriting the data space

of another process. If the overwriting touches memory that isn't referenced again until

much later, you can spend hours of debugging—often using in-circuit emulators and

logic analyzers—in an attempt to find the “guilty party.”

With an MMU enabled, the OS can abort the process the instant the memory-access

violation occurs, providing immediate feedback to the programmer instead of

mysteriously crashing the system some time later. The OS can then provide the location

of the errant instruction in the failed process, or position a symbolic debugger directly

on this instruction.

Memory Management Units (MMUs)

A typical MMU operates by dividing physical memory into a number of 4-KB pages.

The hardware within the processor then uses a set of page tables stored in system

memory that define the mapping of virtual addresses (i.e., the memory addresses used

within the application program) to the addresses emitted by the CPU to access physical

memory.

While the thread executes, the page tables managed by the OS control how the memory

addresses that the thread is using are “mapped” onto the physical memory attached

to the processor.

132 Copyright © 2014, QNX Software Systems Limited

Process Manager

Physical
memoryPage

tables
1023

0

1023

0

4G

0

Linear
space

Page
directory

1023

0

Figure 32: Virtual address mapping (on an x86).

For a large address space with many processes and threads, the number of page-table

entries needed to describe these mappings can be significant—more than can be

stored within the processor. To maintain performance, the processor caches frequently

used portions of the external page tables within a TLB (translation look-aside buffer).

The servicing of “misses” on the TLB cache is part of the overhead imposed by enabling

the MMU. Our OS uses various clever page-table arrangements to minimize this

overhead.

Associated with these page tables are bits that define the attributes of each page of

memory. Pages can be marked as read-only, read-write, etc. Typically, the memory of

an executing process would be described with read-only pages for code, and read-write

pages for the data and stack.

When the OS performs a context switch (i.e., suspends the execution of one thread

and resumes another), it will manipulate the MMU to use a potentially different set

of page tables for the newly resumed thread. If the OS is switching between threads

within a single process, no MMU manipulations are necessary.

When the new thread resumes execution, any addresses generated as the thread runs

are mapped to physical memory through the assigned page tables. If the thread tries

to use an address not mapped to it, or it tries to use an address in a way that violates

the defined attributes (e.g., writing to a read-only page), the CPU will receive a “fault”

(similar to a divide-by-zero error), typically implemented as a special type of interrupt.

By examining the instruction pointer pushed on the stack by the interrupt, the OS can

determine the address of the instruction that caused the memory-access fault within

the thread/process and can act accordingly.

Memory protection at run time

While memory protection is useful during development, it can also provide greater

reliability for embedded systems installed in the field. Many embedded systems already

Copyright © 2014, QNX Software Systems Limited 133

Memory management

employ a hardware “watchdog timer” to detect if the software or hardware has “lost

its mind,” but this approach lacks the finesse of an MMU-assisted watchdog.

Hardware watchdog timers are usually implemented as a retriggerable monostable

timer attached to the processor reset line. If the system software doesn't strobe the

hardware timer regularly, the timer will expire and force a processor reset. Typically,

some component of the system software will check for system integrity and strobe the

timer hardware to indicate the system is “sane.”

Although this approach enables recovery from a lockup related to a software or hardware

glitch, it results in a complete system restart and perhaps significant “downtime”

while this restart occurs.

Software watchdog

When an intermittent software error occurs in a memory-protected system, the OS can

catch the event and pass control to a user-written thread instead of the memory dump

facilities. This thread can make an intelligent decision about how best to recover from

the failure, instead of forcing a full reset as the hardware watchdog timer would do.

The software watchdog could:

• Abort the process that failed due to a memory access violation and simply restart

that process without shutting down the rest of the system.

• Abort the failed process and any related processes, initialize the hardware to a

“safe” state, and then restart the related processes in a coordinated manner.

• If the failure is very critical, perform a coordinated shutdown of the entire system

and sound an audible alarm.

The important distinction here is that we retain intelligent, programmed control of the

embedded system, even though various processes and threads within the control

software may have failed for various reasons. A hardware watchdog timer is still of use

to recover from hardware “latch-ups,” but for software failures we now have much

better control.

While performing some variation of these recovery strategies, the system can also

collect information about the nature of the software failure. For example, if the

embedded system contains or has access to some mass storage (flash memory, hard

drive, a network link to another computer with disk storage), the software watchdog

can generate a chronologically archived sequence of dump files. These dump files

could then be used for postmortem diagnostics.

Embedded control systems often employ these “partial restart” approaches to surviving

intermittent software failures without the operators experiencing any system “downtime”

or even being aware of these quick-recovery software failures. Since the dump files

are available, the developers of the software can detect and correct software problems

without having to deal with the emergencies that result when critical systems fail at

inconvenient times. If we compare this to the hardware watchdog timer approach and

the prolonged interruptions in service that result, it's obvious what our preference is!

134 Copyright © 2014, QNX Software Systems Limited

Process Manager

Postmortem dump-file analysis is especially important for mission-critical embedded

systems. Whenever a critical system fails in the field, significant effort should be made

to identify the cause of the failure so that a “fix” can be engineered and applied to

other systems before they experience similar failures.

Dump files give programmers the information they need to fix the problem—without

them, programmers may have little more to go on than a customer's cryptic complaint

that “the system crashed.”

Quality control

By dividing embedded software into a team of cooperating, memory-protected processes

(containing threads), we can readily treat these processes as “components” to be used

again in new projects. Because of the explicitly defined (and hardware-enforced)

interfaces, these processes can be integrated into applications with confidence that

they won't disrupt the system's overall reliability. In addition, because the exact binary

image (not just the source code) of the process is being reused, we can better control

changes and instabilities that might have resulted from recompilation of source code,

relinking, new versions of development tools, header files, library routines, etc.

Since the binary image of the process is reused (with its behavior perhaps modified

by command-line options), the confidence we have in that binary module from acquired

experience in the field more easily carries over to new applications than if the binary

image of the process were changed.

As much as we strive to produce error-free code for the systems we deploy, the reality

of software-intensive embedded systems is that programming errors will end up in

released products. Rather than pretend these bugs don't exist (until the customer calls

to report them), we should adopt a “mission-critical” mindset. Systems should be

designed to be tolerant of, and able to recover from, software faults. Making use of

the memory protection delivered by integrated MMUs in the embedded systems we

build is a good step in that direction.

Full-protection model

Our full-protection model relocates all code in the image into a new virtual space,

enabling the MMU hardware and setting up the initial page-table mappings. This

allows procnto to start in a correct, MMU-enabled environment. The process manager

will then take over this environment, changing the mapping tables as needed by the

processes it starts.

Private virtual memory

In the full-protection model, each process is given its own private virtual memory,

which spans to 2 or 3.5 gigabytes (depending on the CPU). This is accomplished by

using the CPU's MMU. The performance cost for a process switch and a message pass

Copyright © 2014, QNX Software Systems Limited 135

Memory management

will increase due to the increased complexity of obtaining addressability between two

completely private address spaces.

Private memory space starts at 0 on x86 and ARM

processors.

3.5G 4G0 3.5G 0 3.5G 0 3.5G

User
process 1

User
process 2

User
process 3

System process

procnto

Figure 33: Full protection VM (on an x86).

The memory cost per process may increase by 4 KB to 8 KB for each process's page

tables. Note that this memory model supports the POSIX fork() call.

Variable page size

The virtual memory manager may use variable page sizes if the processor supports

them and there's a benefit to doing so.

Using a variable page size can improve performance because:

• You can increase the page size beyond 4 KB. As a result, the system uses fewer

TLB entries.

• There are fewer TLB misses.

If you want to disable the variable page size feature, specify the -m~v option to

procnto in your buildfile. The -mv option enables it.

Locking memory

The QNX Neutrino RTOS supports POSIX memory locking, so that a process can avoid

the latency of fetching a page of memory, by locking the memory so that the page is

memory-resident (i.e., it remains in physical memory).

The levels of locking are as follows:

Unlocked

Unlocked memory can be paged in and out. Memory is allocated when it's

mapped, but page table entries aren't created. The first attempt to access

the memory fails, and the thread stays in the WAITPAGE state while the

memory manager initializes the memory and creates the page table entries.

Failure to initialize the page results in the receipt of a SIGBUS signal.

136 Copyright © 2014, QNX Software Systems Limited

Process Manager

Locked

Locked memory may not be paged in or out. Page faults can still occur on

access or reference, to maintain usage and modification statistics. Pages

that you think are PROT_WRITE are still actually PROT_READ. This is so

that, on the first write, the kernel may be alerted that a MAP_PRIVATE page

now is different from the shared backing store, and must be privatized.

To lock and unlock a portion of a thread's memory, call mlock() and

munlock(); to lock and unlock all of a thread's memory, call mlockall() and

munlockall(). The memory remains locked until the process unlocks it, exits,

or calls an exec*() function. If the process calls fork(), a posix_spawn*()

function, or a spawn*() function, the memory locks are released in the child

process.

More than one process can lock the same (or overlapping) region; the memory

remains locked until all the processes have unlocked it. Memory locks don't

stack; if a process locks the same region more than once, unlocking it once

undoes all of the process's locks on that region.

To lock all memory for all applications, specify the -ml option for procnto.

Thus all pages are at least initialized (if still set only to PROT_READ).

Superlocked

(A QNX Neutrino extension) No faulting is allowed at all; all memory must

be initialized and privatized, and the permissions set, as soon as the memory

is mapped. Superlocking covers the thread's whole address space.

To superlock memory, obtain I/O privileges by:

1. Enabling the PROCMGR_AID_IO ability. For more information, see

procmgr_ability().

2. Calling ThreadCtl(), specifying the _NTO_TCTL_IO flag:

ThreadCtl(_NTO_TCTL_IO, 0);

To superlock all memory for all applications, specify the -mL option for

procnto.

For MAP_LAZY mappings, memory isn't allocated or mapped until the memory is first

referenced for any of the above types. Once it's been referenced, it obeys the above

rules—it's a programmer error to touch a MAP_LAZY area in a critical region (where

interrupts are disabled or in an ISR) that hasn't already been referenced.

Copyright © 2014, QNX Software Systems Limited 137

Memory management

Defragmenting physical memory

Most computer users are familiar with the concept of disk fragmentation, whereby

over time, the free space on the disk is split into small blocks scattered among the

in-use blocks. A similar problem occurs as the OS allocates and frees pieces of physical

memory; as time passes, the system's physical memory can become fragmented.

Eventually, even though there might be a significant amount of memory free in total,

it's fragmented so that a request for a large piece of contiguous memory will fail.

Contiguous memory is often required for device drivers if the device uses DMA. The

normal workaround is to ensure that all device drivers are initialized early (before

memory is fragmented) and that they hold onto their memory. This is a harsh restriction,

particularly for embedded systems that might want to use different drivers depending

on the actions of the user; starting all possible device drivers simultaneously may not

be feasible.

The algorithms that QNX Neutrino uses to allocate physical memory help to significantly

reduce the amount of fragmentation that occurs. However, no matter how smart these

algorithms might be, specific application behavior can result in fragmented free

memory. Consider a completely degenerate application that routinely allocates 8 KB

of memory and then frees half of it. If such an application runs long enough, it will

reach a point where half of the system memory is free, but no free block is larger than

4 KB.

Thus, no matter how good our allocation routines are at avoiding fragmentation, in

order to satisfy a request for contiguous memory, it may be necessary to run some

form of defragmentation algorithm.

The term “fragmentation” can apply to both in-use memory and free memory:

• Memory that's in use by an application is considered to be fragmented if it's

discontiguous (that is, a large allocation is satisfied with a number of smaller blocks

of memory from different locations in the physical address map).

• Free memory is considered to be fragmented if it consists of small blocks separated

by blocks of memory that are in use.

In disk-based filesystems, fragmentation of in-use blocks is most important, as it

impacts the read and write performance of the device. Fragmentation of free blocks

is important only in that it leads to fragmentation of in-use blocks as new blocks are

allocated. In general, users of disk-based systems don't care about allocating contiguous

blocks, except as it impacts performance.

For the QNX Neutrino memory system, both forms of fragmentation are important but

for different reasons:

• If in-use memory is fragmented, it prevents the memory subsystem from using

large page sizes to map the memory, which in turn leads to poorer performance

138 Copyright © 2014, QNX Software Systems Limited

Process Manager

than might otherwise occur. (Some architectures don't support large page sizes;

on these architectures, fragmentation of in-use memory is irrelevant.)

• If free memory is fragmented, it prevents an application from allocating contiguous

memory, which in turn might lead to complete failure of the application.

To defragment free memory, the memory manager swaps memory that's in use for

memory that's free, in such a way that the free memory blocks coalesce into larger

blocks that are sufficient to satisfy a request for contiguous memory.

When an application allocates memory, it's provided by the operating system in

quantums, 4-KB blocks of memory that exist on 4-KB boundaries. The operating

system programs the MMU so that the application can reference the physical block

of memory through a virtual address; during operation, the MMU translates a virtual

address into a physical address.

For example, a request for 16 KB of memory is satisfied by allocating four 4-KB

quantums. The operating system sets aside the four physical blocks for the application

and configures the MMU to ensure that the application can reference them through

a 16-KB contiguous virtual address. However, these blocks might not be physically

contiguous; the operating system can arrange the MMU configuration (the virtual to

physical mapping) so that non-contiguous physical addresses are accessed through

contiguous virtual addresses.

The task of defragmentation consists of changing existing memory allocations and

mappings to use different underlying physical pages. By swapping around the underlying

physical quantums, the OS can consolidate the fragmented free blocks into contiguous

runs. However, it's careful to avoid moving certain types of memory where the

virtual-to-physical mapping can't safely be changed:

• Memory allocated by the kernel and addressed through the one-to-one mapping

area can't be moved, because the one-to-one mapping area defines the mapping

of virtual to physical addresses, and the OS can't change the physical address

without also changing the virtual address.

• Memory that's locked by the application (see mlock() and mlockall()) can't be

moved: by locking the memory, the application is indicating that moving the memory

isn't acceptable.

• An application that runs with I/O privileges (see the _NTO_TCTL_IO flag for

ThreadCtl()) has all pages locked by default, because device drivers often require

physical addresses.

• Pages of memory that have mutex objects on them aren't currently moved. While

it's possible to move these pages, mutex objects are registered with the kernel

through their physical addresses, so moving a page with a mutex on it would require

rehashing the mutex object in the kernel.

There are other times when memory can't be moved; see “Automatically marking

memory as unmovable,” below.

Copyright © 2014, QNX Software Systems Limited 139

Memory management

Defragmentation is done, if necessary, when an application allocates a piece of

contiguous memory. The application does this through the mmap() call, providing

MAP_PHYS | MAP_ANON flags. If it isn't possible to satisfy a MAP_PHYS allocation

with contiguous memory, what happens depends on whether defragmentation is

disabled or enabled:

• If it's disabled, mmap() fails.

• If it's enabled, the memory manager runs a memory-defragmentation algorithm

that attempts to rearrange memory mappings across the system in order to allow

the MAP_PHYS allocation to be satisfied.

During the memory defragmentation, the thread calling mmap() is blocked.

Compaction can take a significant amount of time (particularly on systems

with large amounts of memory), but other system activities are mostly

unaffected.

Since other system tasks are running simultaneously, the defragmentation

algorithm takes into account that memory mappings can change while the

algorithm is running.

Defragmenting is enabled by default. You can disable it by using the procnto

command-line option -m~d, and enable it by using the -md option.

Automatically marking memory as unmovable

Memory that's allocated to be physically contiguous is marked as “unmovable” for the

compaction algorithm.

This is done because specifying that a memory allocation must be contiguous implies

that it will be used in a situation where its physical address is important, and moving

such memory could break an application that depends on this characteristic.

In addition, memory that has a mem_offset() performed on it—to report the physical

address that backs a virtual address—might need to be protected from being moved

by the compaction algorithm. However, the OS doesn't want to always mark such

memory as unmovable, because programs can call mem_offset() out of curiosity (as,

for example, the IDE's memory profiler does). We don't want to lock down memory

from being moved in all such cases.

On the other hand, if an application depends on the results of the mem_offset() call,

and the OS later moves the memory allocation, that might break the application. Such

an application should lock its memory (with the mlock() call), but since the QNX

Neutrino RTOS hasn't always moved memory in the past, it can't assume that all

applications behave correctly.

To this end, procnto supports a -ma command-line option. If you specify this option,

any calls to mem_offset() automatically mark the memory block as unmovable. Note

that memory that was allocated contiguously or has been locked through mlock() is

140 Copyright © 2014, QNX Software Systems Limited

Process Manager

already unmovable, so this option is irrelevant. It's also relevant only if the memory

defragmentation feature is enabled.

This option is disabled by default. If you find an application that behaves poorly, you

can enable automatic marking as a workaround until the application is corrected.

Copyright © 2014, QNX Software Systems Limited 141

Memory management

Pathname management

I/O resources aren't built into the microkernel, but are instead provided by resource

manager processes that may be started dynamically at runtime. The procnto manager

allows resource managers, through a standard API, to adopt a subset of the pathname

space as a “domain of authority” to administer.

As other resource managers adopt their respective domains of authority, procnto

becomes responsible for maintaining a pathname tree to track the processes that own

portions of the pathname space. An adopted pathname is sometimes referred to as a

“prefix” because it prefixes any pathnames that lie beneath it; prefixes can be arranged

in a hierarchy called a prefix tree. The adopted pathname is also called a mountpoint,

because that's where a server mounts into the pathname.

This approach to pathname space management is what allows QNX Neutrino to preserve

the POSIX semantics for device and file access, while making the presence of those

services optional for small embedded systems.

At startup, procnto populates the pathname space with the following pathname

prefixes:

DescriptionPrefix

Root of the filesystem./

Some of the files from the boot image

presented as a flat filesystem.

/proc/boot/

The running processes, each represented

by its process ID (PID). For more

/proc/pid

information, see “Controlling processes

via the /proc filesystem” in the

Processes chapter of the QNX Neutrino

Programmer's Guide.

A device that always returns zero. Used

for allocating zero-filled pages using the

mmap() function.

/dev/zero

A device that represents all physical

memory.

/dev/mem

142 Copyright © 2014, QNX Software Systems Limited

Process Manager

Resolving pathnames

When a process opens a file, the POSIX-compliant open() library routine first sends

the pathname to procnto, where the pathname is compared against the prefix tree

to determine which resource managers should be sent the open() message.

The prefix tree may contain identical or partially overlapping regions of

authority—multiple servers can register the same prefix. If the regions are identical,

the order of resolution can be specified (see “Ordering mountpoints (p. 143)”). If the

regions are overlapping, the responses from the path manager are ordered with the

longest prefixes first; for prefixes of equal length, the same specified order of resolution

applies as for identical regions.

For example, suppose we have these prefixes registered:

DescriptionPrefix

QNX 4 disk-based filesystem

(fs-qnx4.so)

/

Serial device manager (devc-ser*)/dev/ser1

Serial device manager (devc-ser*)/dev/ser2

Raw disk volume (devb-eide)/dev/hd0

The filesystem manager has registered a prefix for a mounted QNX 4 filesystem (i.e.,

/). The block device driver has registered a prefix for a block special file that represents

an entire physical hard drive (i.e., /dev/hd0). The serial device manager has registered

two prefixes for the two PC serial ports.

The following table illustrates the longest-match rule for pathname resolution:

and resolves to:matches:This pathname:

devc-ser*/dev/ser1/dev/ser1

devc-ser*/dev/ser2/dev/ser2

fs-qnx4.so//dev/ser

devb-eide.so/dev/hd0/dev/hd0

fs-qnx4.so//usr/jhsmith/test

Ordering mountpoints

Generally the order of resolving a filename is the order in which you mounted the

filesystems at the same mountpoint (i.e., new mounts go on top of or in front of any

Copyright © 2014, QNX Software Systems Limited 143

Pathname management

existing ones). You can specify the order of resolution when you mount the filesystem.

For example, you can use:

• the before and after keywords for block I/O (devb-*) drivers, in the blk options

• the -Z b and -Z a options to fs-cifs, fs-nfs2, and fs-nfs3

You can also use the -o option to mount with these keywords:

before

Mount the filesystem so that it's resolved before any other filesystems

mounted at the same pathname (in other words, it's placed in front of any

existing mount). When you access a file, the system looks on this filesystem

first.

after

Mount the filesystem so that it's resolved after any other filesystems mounted

at the same pathname (in other words, it's placed behind any existing

mounts). When you access a file, the system looks on this filesystem last,

and only if the file wasn't found on any other filesystems.

If you specify the appropriate before option, the filesystem floats in front of any other

filesystems mounted at the same mountpoint, except those that you later mount with

before. If you specify after, the filesystem goes behind any any other filesystems

mounted at the same mountpoint, except those that are already mounted with after.

So, the search order for these filesystems is:

1. those mounted with before

2. those mounted with no flags

3. those mounted with after

with each list searched in order of mount requests. The first server to claim the name

gets it. You would typically use after to have a filesystem wait at the back and pick

up things the no one else is handling, and before to make sure a filesystems looks

first at filenames.

Single-device mountpoints

Consider an example involving three servers:

Server A

A QNX 4 filesystem. Its mountpoint is /. It contains the files bin/true

and bin/false.

Server B

A flash filesystem. Its mountpoint is /bin. It contains the files ls and

echo.

144 Copyright © 2014, QNX Software Systems Limited

Process Manager

Server C

A single device that generates numbers. Its mountpoint is /dev/random.

At this point, the process manager's internal mount table would look like this:

ServerMountpoint

Server A (QNX 4 filesystem)/

Server B (flash filesystem)/bin

Server C (device)/dev/random

Of course, each “Server” name is actually an abbreviation for the nd,pid,chid for that

particular server channel.

Now suppose a client wants to send a message to Server C. The client's code might

look like this:

int fd;
fd = open("/dev/random", ...);
read(fd, ...);
close(fd);

In this case, the C library will ask the process manager for the servers that could

potentially handle the path /dev/random. The process manager would return a list

of servers:

• Server C (most likely; longest path match)

• Server A (least likely; shortest path match)

From this information, the library will then contact each server in turn and send it an

open message, including the component of the path that the server should validate:

1. Server C receives a null path, since the request came in on the same path as the

mountpoint.

2. Server A receives the path dev/random, since its mountpoint was /.

As soon as one server positively acknowledges the request, the library won't contact

the remaining servers. This means Server A is contacted only if Server C denies the

request.

This process is fairly straightforward with single device entries, where the first server

is generally the server that will handle the request. Where it becomes interesting is in

the case of unioned filesystem mountpoints.

Unioned filesystem mountpoints

Let's assume we have two servers set up as before:

Server A

Copyright © 2014, QNX Software Systems Limited 145

Pathname management

A QNX 4 filesystem. Its mountpoint is /. It contains the files bin/true

and bin/false.

Server B

A flash filesystem. Its mountpoint is /bin. It contains the files ls and

echo.

Note that each server has a /bin directory, but with different contents.

Once both servers are mounted, you would see the following due to the unioning of

the mountpoints:

/

Server A

/bin

Servers A and B

/bin/echo

Server B

/bin/false

Server A

/bin/ls

Server B

/bin/true

Server A

What's happening here is that the resolution for the path /bin takes place as before,

but rather than limit the return to just one connection ID, all the servers are contacted

and asked about their handling for the path:

DIR *dirp;
dirp = opendir("/bin", ...);
closedir(dirp);

which results in:

1. Server B receives a null path, since the request came in on the same path as the

mountpoint.

2. Server A receives the path "bin", since its mountpoint was "/".

The result now is that we have a collection of file descriptors to servers who handle

the path /bin (in this case two servers); the actual directory name entries are read

in turn when a readdir() is called. If any of the names in the directory are accessed

146 Copyright © 2014, QNX Software Systems Limited

Process Manager

with a regular open, then the normal resolution procedure takes place and only one

server is accessed.

Why overlay mountpoints?

This overlaying of mountpoints is a very handy feature when doing field updates,

servicing, etc. It also makes for a more unified system, where pathnames result in

connections to servers regardless of what services they're providing, thus resulting in

a more unified API.

Symbolic prefixes

We've discussed prefixes that map to a resource manager. A second form of prefix,

known as a symbolic prefix, is a simple string substitution for a matched prefix.

You create symbolic prefixes using the POSIX ln (link) command. This command is

typically used to create hard or symbolic links on a filesystem by using the -s option.

If you also specify the -P option, then a symbolic link is created in the in-memory

prefix space of procnto.

DescriptionCommand

Create a filesystem symbolic link.ln -s existing_file symbolic_link

Create a prefix tree symbolic link.ln -Ps existing_file symbolic_link

Note that a prefix tree symbolic link will always take precedence over a filesystem

symbolic link.

For example, assume you're running on a machine that doesn't have a local filesystem.

However, there's a filesystem on another node (say neutron) that you wish to access

as “/bin”. You accomplish this using the following symbolic prefix:

ln -Ps /net/neutron/bin /bin

This will cause /bin to be mapped into /net/neutron/bin. For example, /bin/ls

will be replaced with the following:

/net/neutron/bin/ls

This new pathname will again be applied against the prefix tree, but this time the

prefix matched will be /net, which will point to lsm-qnet. The lsm-qnet resource

manager will then resolve the neutron component, and redirect further resolution

requests to the node called neutron. On node neutron, the rest of the pathname

(i.e. /bin/ls) will be resolved against the prefix space on that node. This will resolve

to the filesystem manager on node neutron, where the open() request will be directed.

With just a few characters, this symbolic prefix has allowed us to access a remote

filesystem as though it were local.

Copyright © 2014, QNX Software Systems Limited 147

Pathname management

It's not necessary to run a local filesystem process to perform the redirection. A diskless

workstation's prefix tree might look something like this:

/

dev

ser2

ser1

console

devc-ser...

lsm-qnet.so

devc-con

With this prefix tree, local devices such as /dev/ser1 or /dev/console will be

routed to the local character device manager, while requests for other pathnames will

be routed to the remote filesystem.

Creating special device names

You can also use symbolic prefixes to create special device names. For example, if

your modem was on /dev/ser1, you could create a symbolic prefix of /dev/modem

as follows:

ln -Ps /dev/ser1 /dev/modem

Any request to open /dev/modem will be replaced with /dev/ser1. This mapping

would allow the modem to be changed to a different serial port simply by changing

the symbolic prefix and without affecting any applications.

Relative pathnames

Pathnames need not start with slash. In such cases, the path is considered relative

to the current working directory.

The OS maintains the current working directory as a character string. Relative

pathnames are always converted to full network pathnames by prepending the current

working directory string to the relative pathname.

Note that different behaviors result when your current working directory starts with a

slash versus starting with a network root.

148 Copyright © 2014, QNX Software Systems Limited

Process Manager

Network root

If the current working directory begins with a network root in the form

/net/node_name, it's said to be specific and locked to the pathname space of the

specified node. If you don't specify a network root, the default one is prepended.

For example, this command:

cd /net/percy

is an example of the first (specific) form, and would lock future relative pathname

evaluation to be on node percy, no matter what your default network root happens

to be. Subsequently entering cd dev would put you in /net/percy/dev.

On the other hand, this command:

cd /

would be of the second form, where the default network root would affect the relative

pathname resolution. For example, if your default network root were /net/florence,

then entering cd dev would put you in /net/florence/dev. Since the current

working directory doesn't start with a node override, the default network root is

prepended to create a fully specified network pathname.

To run a command with a specific network root, use the on command, specifying the

-f option:

on -f /net/percy command

This runs the given command with /net/percy as the network root; that is, it searches

for the command—and any files with relative paths specified as arguments—on

/net/percy and runs the command on /net/percy. In contrast, this:

on -n /net/percy command

searches for the given command—and any files with relative paths—on your local

node and runs the command on /net/percy.

In a program, you can specify a network root when you call chroot().

This really isn't as complicated as it may seem. Most of the time, you don't specify a

network root, and everything you do will simply work within your namespace (defined

by your default network root). Most users will log in, accept the normal default network

root (i.e., the namespace of their own node), and work within that environment.

Copyright © 2014, QNX Software Systems Limited 149

Pathname management

A note about cd

In some traditional UNIX systems, the cd (change directory) command modifies the

pathname given to it if that pathname contains symbolic links. As a result, the

pathname of the new current working directory may differ from the one given to cd.

In QNX Neutrino, however, cd doesn't modify the pathname—aside from collapsing

.. references. For example:

cd /usr/home/dan/test/../doc

would result in a current working directory—which you can display with pwd—of

/usr/home/dan/doc, even if some of the elements in the pathname were symbolic

links.

For more information about symbolic links and .. references, see “QNX 4 filesystem”

in the Working with Filesystems chapter of the QNX Neutrino User's Guide.

File descriptor namespace

Once an I/O resource has been opened, a different namespace comes into play. The

open() returns an integer referred to as a file descriptor (FD), which is used to direct

all further I/O requests to that resource manager.

Unlike the pathname space, the file descriptor namespace is completely local to each

process. The resource manager uses the combination of a SCOID (server connection

ID) and FD (file descriptor/connection ID) to identify the control structure associated

with the previous open() call. This structure is referred to as an open control block

(OCB) and is contained within the resource manager.

The following diagram shows an I/O manager taking some SCOID, FD pairs and mapping

them to OCBs.

I/O Manager
space

FD

SCOID

System space

Open
control
block

Open
control
block

Sparse array

Figure 34: The SCOID and FD map to an OCB of an I/O Manager.

150 Copyright © 2014, QNX Software Systems Limited

Process Manager

Open control blocks

The open control block (OCB) contains active information about the open resource.

For example, the filesystem keeps the current seek point within the file here. Each

open() creates a new OCB. Therefore, if a process opens the same file twice, any calls

to lseek() using one FD will not affect the seek point of the other FD. The same is true

for different processes opening the same file.

The following diagram shows two processes, in which one opens the same file twice,

and the other opens it once. There are no shared FDs.

/tmp/file

1

0

0

Process A

Process B

Server process

Open
control blocks

File
descriptors

File
descriptors

Figure 35: Two processes open the same file.

FDs are a process resource, not a thread

resource.

Several file descriptors in one or more processes can refer to the same OCB. This is

accomplished by two means:

• A process may use the dup(), dup2(), or fcntl() functions to create a duplicate file

descriptor that refers to the same OCB.

• When a new process is created via vfork(), fork(), posix_spawn(), or spawn(), all

open file descriptors are by default inherited by the new process; these inherited

descriptors refer to the same OCBs as the corresponding file descriptors in the

parent process.

When several FDs refer to the same OCB, then any change in the state of the OCB is

immediately seen by all processes that have file descriptors linked to the same OCB.

For example, if one process uses the lseek() function to change the position of the

seek point, then reading or writing takes place from the new position no matter which

linked file descriptor is used.

The following diagram shows two processes in which one opens a file twice, then does

a dup() to get a third FD. The process then creates a child that inherits all open files.

Copyright © 2014, QNX Software Systems Limited 151

Pathname management

/tmp/file

1

2

0

0

1

2

Server process

Parent
process

Child
process

Open
control blocks

File
descriptors

File
descriptors

Figure 36: A process opens a file twice.

You can prevent a file descriptor from being inherited when you posix_spawn(), spawn(),

or exec*() by calling the fcntl() function and setting the FD_CLOEXEC flag.

152 Copyright © 2014, QNX Software Systems Limited

Process Manager

Chapter 7
Dynamic Linking

In a typical system, a number of programs will be running. Each program relies on a

number of functions, some of which will be standard C library functions, like printf(),

malloc(), write(), etc.

If every program uses the standard C library, it follows that each program would normally

have a unique copy of this particular library present within it. Unfortunately, this

results in wasted resources. Since the C library is common, it makes more sense to

have each program reference the common instance of that library, instead of having

each program contain a copy of the library. This approach yields several advantages,

not the least of which is the savings in terms of total system memory required.

Copyright © 2014, QNX Software Systems Limited 153

Statically linked

The term statically linked means that the program and the particular library that it's

linked against are combined together by the linker at linktime.

This means that the binding between the program and the particular library is fixed

and known at linktime—well in advance of the program's ever running. It also means

that we can't change this binding, unless we relink the program with a new version of

the library.

You might consider linking a program statically in cases where you weren't sure whether

the correct version of a library will be available at runtime, or if you were testing a new

version of a library that you don't yet want to install as shared.

Programs that are linked statically are linked against archives of objects (libraries)

that typically have the extension of .a. An example of such a collection of objects is

the standard C library, libc.a.

154 Copyright © 2014, QNX Software Systems Limited

Dynamic Linking

Dynamically linked

The term dynamically linked means that the program and the particular library it

references aren't combined together by the linker at linktime.

Instead, the linker places information into the executable that tells the loader which

shared object module the code is in and which runtime linker should be used to find

and bind the references. This means that the binding between the program and the

shared object is done at runtime—before the program starts, the appropriate shared

objects are found and bound.

This type of program is called a partially bound executable, because it isn't fully

resolved—the linker, at linktime, didn't cause all the referenced symbols in the program

to be associated with specific code from the library. Instead, the linker simply said:

“This program calls some functions within a particular shared object, so I'll just make

a note of which shared object these functions are in, and continue on.” Effectively,

this defers the binding until runtime.

Programs that are linked dynamically are linked against shared objects that have the

extension .so. An example of such an object is the shared object version of the

standard C library, libc.so.

You use a command-line option to the compiler driver qcc to tell the tool chain whether

you're linking statically or dynamically. This command-line option then determines

the extension used (either .a or .so).

Copyright © 2014, QNX Software Systems Limited 155

Dynamically linked

Augmenting code at runtime

Taking this one step further, a program may not know which functions it needs to call

until it's running. While this may seem a little strange initially (after all, how could a

program not know what functions it's going to call?), it really can be a very powerful

feature. Here's why.

Consider a “generic” disk driver. It starts, probes the hardware, and detects a hard

disk. The driver would then dynamically load the io-blk code to handle the disk

blocks, because it found a block-oriented device. Now that the driver has access to

the disk at the block level, it finds two partitions present on the disk: a DOS partition

and a Power-Safe partition. Rather than force the disk driver to contain filesystem

drivers for all possible partition types it may encounter, we kept it simple: it doesn't

have any filesystem drivers! At runtime, it detects the two partitions and then knows

that it should load the fs-dos.so and fs-qnx6.so filesystem code to handle

those partitions.

By deferring the decision of which functions to call, we've enhanced the flexibility of

the disk driver (and also reduced its size).

156 Copyright © 2014, QNX Software Systems Limited

Dynamic Linking

How shared objects are used

To understand how a program makes use of shared objects, let's first see the format

of an executable and then examine the steps that occur when the program starts.

ELF format

The QNX Neutrino RTOS uses the ELF (Executable and Linking Format)

binary format, which is currently used in SVR4 Unix systems. ELF not only

simplifies the task of making shared libraries, but also enhances dynamic

loading of modules at runtime.

In the following diagram, we show two views of an ELF file: the linking view

and the execution view. The linking view, which is used when the program

or library is linked, deals with sections within an object file. Sections contain

the bulk of the object file information: data, instructions, relocation

information, symbols, debugging information, etc. The execution view, which

is used when the program runs, deals with segments.

At linktime, the program or library is built by merging together sections with

similar attributes into segments. Typically, all the executable and read-only

data sections are combined into a single “text” segment, while the data

and “BSS”s are combined into the “data” segment. These segments are

called load segments, because they need to be loaded in memory at process

creation. Other sections such as symbol information and debugging sections

are merged into other, nonload segments.

Linking view:

ELF header

Program header table
(optional)

Section 1

...

Section n

...

...

Section header table

Execution view:

ELF header

Program header table

Segment 1

Segment 2

...

Section header table
(optional)

Figure 37: Object file format: linking view and execution view.

ELF without COFF

Most implementations of ELF loaders are derived from COFF (Common

Object File Format) loaders; they use the linking view of the ELF objects at

load time. This is inefficient because the program loader must load the

executable using sections. A typical program could contain a large number

of sections, each of which would have to be located in the program and

loaded into memory separately.

Copyright © 2014, QNX Software Systems Limited 157

How shared objects are used

QNX Neutrino, however, doesn't rely at all on the COFF technique of loading

sections. When developing our ELF implementation, we worked directly from

the ELF spec and kept efficiency paramount. The ELF loader uses the

“execution view” of the program. By using the execution view, the task of

the loader is greatly simplified: all it has to do is copy to memory the load

segments (usually two) of the program or library. As a result, process creation

and library loading operations are much faster.

Memory layout for a typical process

The diagram below shows the memory layout of a typical process. The process load

segments (corresponding to “text” and“data” in the diagram) are loaded at the

process's base address. The main stack is located just below and grows downwards.

Any additional threads that are created will have their own stacks, located below the

main stack. Each of the stacks is separated by a guard page to detect stack overflows.

The heap is located above the process and grows upwards.

Reserved

Shared libraries

Shared memory

Heap

Data

Text

Stack

Stack

Process base address

0xFFFFFFFF

0

Guard page

Figure 38: Process memory layout on an x86.

In the middle of the process's address space, a large region is reserved for shared

objects. Shared libraries are located at the top of the address space and grow

downwards.

When a new process is created, the process manager first maps the two segments

from the executable into memory. It then decodes the program's ELF header. If the

program header indicates that the executable was linked against a shared library, the

process manager will extract the name of the dynamic interpreter from the program

header. The dynamic interpreter points to a shared library that contains the runtime

linker code. The process manager will load this shared library in memory and will then

pass control to the runtime linker code in this library.

158 Copyright © 2014, QNX Software Systems Limited

Dynamic Linking

Runtime linker

The runtime linker is invoked when a program that was linked against a shared object

is started or when a program requests that a shared object be dynamically loaded. The

runtime linker is contained within the C runtime library.

The runtime linker performs several tasks when loading a shared library (.so file):

1. If the requested shared library isn't already loaded in memory, the runtime linker

loads it:

• If the shared library name is fully qualified (i.e., begins with a slash), it's loaded

directly from the specified location. If it can't be found there, no further searches

are performed.

• If it's not a fully qualified pathname, the runtime linker searches for it as follows:

1. If the executable's dynamic section contains a DT_RPATH tag, then the path

specified by DT_RPATH is searched.

2. If the shared library isn't found, the runtime linker searches for it in the

directories specified by LD_LIBRARY_PATH only if the program isn't marked

as setuid.

3. If the shared library still isn't found, then the runtime linker searches for

the default library search path as specified by the LD_LIBRARY_PATH

environment variable to procnto (i.e., the CS_LIBPATH configuration

string). If none has been specified, then the default library path is set to the

image filesystem's path.

2. Once the requested shared library is found, it's loaded into memory. For ELF shared

libraries, this is a very efficient operation: the runtime linker simply needs to use

the mmap() call twice to map the two load segments into memory.

3. The shared library is then added to the internal list of all libraries that the process

has loaded. The runtime linker maintains this list.

4. The runtime linker then decodes the dynamic section of the shared object.

This dynamic section provides information to the linker about other libraries that this

library was linked against. It also gives information about the relocations that need to

be applied and the external symbols that need to be resolved. The runtime linker will

first load any other required shared libraries (which may themselves reference other

shared libraries). It will then process the relocations for each library. Some of these

relocations are local to the library, while others require the runtime linker to resolve

a global symbol. In the latter case, the runtime linker will search through the list of

libraries for this symbol. In ELF files, hash tables are used for the symbol lookup, so

they're very fast. The order in which libraries are searched for symbols is very important,

as we'll see in the section on “Symbol name resolution” (p. 160) below.

Copyright © 2014, QNX Software Systems Limited 159

How shared objects are used

Once all relocations have been applied, any initialization functions that have been

registered in the shared library's init section are called. This is used in some

implementations of C++ to call global constructors.

Loading a shared library at runtime

A process can load a shared library at runtime by using the dlopen() call, which

instructs the runtime linker to load this library. Once the library is loaded, the program

can call any function within that library by using the dlsym() call to determine its

address.

Remember: shared libraries are available only to processes that are dynamically

linked.

The program can also determine the symbol associated with a given address by using

the dladdr() call. Finally, when the process no longer needs the shared library, it can

call dlclose() to unload the library from memory.

Symbol name resolution

When the runtime linker loads a shared library, the symbols within that library have

to be resolved. The order and the scope of the symbol resolution are important. If a

shared library calls a function that happens to exist by the same name in several

libraries that the program has loaded, the order in which these libraries are searched

for this symbol is critical. This is why the OS defines several options that can be used

when loading libraries.

All the objects (executables and libraries) that have global scope are stored on an

internal list (the global list). Any global-scope object, by default, makes available all

of its symbols to any shared library that gets loaded. The global list initially contains

the executable and any libraries that are loaded at the program's startup.

By default, when a new shared library is loaded by using the dlopen() call, symbols

within that library are resolved by searching in this order through:

1. the shared library

2. the list of libraries specified by the LD_PRELOAD environment variable. You can

use this environment variable to add or change functionality when you run a

program. For setuid or setgid ELF binaries, only libraries in the standard search

directories that are also setuid will be loaded.

3. the global list

4. any dependent objects that the shared library references (i.e., any other libraries

that the shared library was linked against)

The runtime linker's scoping behavior can be changed in two ways when dlopen()'ing

a shared library:

160 Copyright © 2014, QNX Software Systems Limited

Dynamic Linking

• When the program loads a new library, it may instruct the runtime linker to place

the library's symbols on the global list by passing the RTLD_GLOBAL flag to the

dlopen() call. This will make the library's symbols available to any libraries that are

subsequently loaded.

• The list of objects that are searched when resolving the symbols within the shared

library can be modified. If the RTLD_GROUP flag is passed to dlopen(), then only

objects that the library directly references will be searched for symbols. If the

RTLD_WORLD flag is passed, only the objects on the global list will be searched.

Copyright © 2014, QNX Software Systems Limited 161

How shared objects are used

Chapter 8
Resource Managers

To give the QNX Neutrino RTOS a great degree of flexibility, to minimize the runtime

memory requirements of the final system, and to cope with the wide variety of devices

that may be found in a custom embedded system, the OS allows user-written processes

to act as resource managers that can be started and stopped dynamically.

Resource managers are typically responsible for presenting an interface to various

types of devices. This may involve managing actual hardware devices (like serial ports,

parallel ports, network cards, and disk drives) or virtual devices (like /dev/null, a

network filesystem, and pseudo-ttys).

In other operating systems, this functionality is traditionally associated with device

drivers. But unlike device drivers, resource managers don't require any special

arrangements with the kernel. In fact, a resource manager looks just like any other

user-level program.

Copyright © 2014, QNX Software Systems Limited 163

What is a resource manager?

Since the QNX Neutrino RTOS is a distributed, microkernel OS with virtually all

nonkernel functionality provided by user-installable programs, a clean and well-defined

interface is required between client programs and resource managers. All resource

manager functions are documented; there's no “magic” or private interface between

the kernel and a resource manager.

In fact, a resource manager is basically a user-level server program that accepts

messages from other programs and, optionally, communicates with hardware. Again,

the power and flexibility of our native IPC services allow the resource manager to be

decoupled from the OS.

The binding between the resource manager and the client programs that use the

associated resource is done through a flexible mechanism called pathname space

mapping.

In pathname space mapping, an association is made between a pathname and a

resource manager. The resource manager sets up this pathname space mapping by

informing the process manager that it is the one responsible for handling requests at

(or below, in the case of filesystems), a certain mountpoint. This allows the process

manager to associate services (i.e., functions provided by resource managers) with

pathnames.

For example, a serial port may be managed by a resource manager called devc-ser*,

but the actual resource may be called /dev/ser1 in the pathname space. Therefore,

when a program requests serial port services, it typically does so by opening a serial

port—in this case /dev/ser1.

Why write a resource manager?

Here are a few reasons why you may want to write a resource manager:

• The client API is POSIX.

The API for communicating with the resource manager is for the most part, POSIX.

All C programmers are familiar with the open(), read(), and write() functions.

Training costs are minimized, and so is the need to document the interface to your

server.

• You can reduce the number of interface types.

If you have many server processes, writing each server as a resource manager keeps

the number of different interfaces that clients need to use to a minimum.

For example, suppose you have a team of programmers building your overall

application, and each programmer is writing one or more servers for that application.

164 Copyright © 2014, QNX Software Systems Limited

Resource Managers

These programmers may work directly for your company, or they may belong to

partner companies who are developing addon hardware for your modular platform.

If the servers are resource managers, then the interface to all of those servers is

the POSIX functions: open(), read(), write(), and whatever else makes sense. For

control-type messages that don't fit into a read/write model, there's devctl() (although

devctl() isn't POSIX).

• Command-line utilities can communicate with resource managers.

Since the API for communicating with a resource manager is the POSIX set of

functions, and since standard POSIX utilities use this API, you can use the utilities

for communicating with the resource managers.

For instance, suppose a resource manager registers the name /proc/my_stats.

If you open this name and read from it, the resource manager responds with a body

of text that describes its statistics.

The cat utility takes the name of a file and opens the file, reads from it, and

displays whatever it reads to standard output (typically the screen). As a result,

you could type:

cat /proc/my_stats

and the resource manager would respond with the appropriate statistics.

You could also use command-line utilities for a robot-arm driver. The driver could

register the name, /dev/robot/arm/angle, and interpret any writes to this

device as the angle to set the robot arm to. To test the driver from the command

line, you'd type:

echo 87 >/dev/robot/arm/angle

The echo utility opens /dev/robot/arm/angle and writes the string (“87”) to

it. The driver handles the write by setting the robot arm to 87 degrees. Note that

this was accomplished without writing a special tester program.

Another example would be names such as /dev/robot/registers/r1, r2,....

Reading from these names returns the contents of the corresponding registers;

writing to these names sets the corresponding registers to the given values.

Even if all of your other IPC is done via some non-POSIX API, it's still worth having

one thread written as a resource manager for responding to reads and writes for

doing things as shown above.

Copyright © 2014, QNX Software Systems Limited 165

What is a resource manager?

The types of resource managers

Depending on how much work you want to do yourself in order to present a proper

POSIX filesystem to the client, you can break resource managers into two types:

• Device resource managers (p. 166)

• Filesystem resource managers (p. 166)

Device resource managers

Device resource managers create only single-file entries in the filesystem, each of

which is registered with the process manager. Each name usually represents a single

device. These resource managers typically rely on the resource-manager library to do

most of the work in presenting a POSIX device to the user.

For example, a serial port driver registers names such as /dev/ser1 and /dev/ser2.

When the user does ls -l /dev, the library does the necessary handling to respond

to the resulting _IO_STAT messages with the proper information. The person who

writes the serial port driver can concentrate instead on the details of managing the

serial port hardware.

Filesystem resource managers

Filesystem resource managers register a mountpoint with the process manager. A

mountpoint is the portion of the path that's registered with the process manager. The

remaining parts of the path are managed by the filesystem resource manager. For

example, when a filesystem resource manager attaches a mountpoint at /mount, and

the path /mount/home/thomasf is examined:

/mount/

Identifies the mountpoint that's managed by the process manager.

home/thomasf

Identifies the remaining part that's to be managed by the filesystem resource

manager.

Here are some examples of using filesystem resource managers:

• flash filesystem drivers (although the source code for flash drivers takes care of

these details)

• a tar filesystem process that presents the contents of a tar file as a filesystem

that the user can cd into and ls from

• a mailbox-management process that registers the name /mailboxes and manages

individual mailboxes that look like directories, and files that contain the actual

messages.

166 Copyright © 2014, QNX Software Systems Limited

Resource Managers

Communication via native IPC

Once a resource manager has established its pathname prefix, it will receive messages

whenever any client program tries to do an open(), read(), write(), etc. on that

pathname.

For example, after devc-ser* has taken over the pathname /dev/ser1, and a client

program executes:

fd = open ("/dev/ser1", O_RDONLY);

the client's C library will construct an io_open message, which it then sends to the

devc-ser* resource manager via IPC.

Some time later, when the client program executes:

read (fd, buf, BUFSIZ);

the client's C library constructs an io_read message, which is then sent to the

resource manager.

A key point is that all communications between the client program and the resource

manager are done through native IPC messaging. This allows for a number of unique

features:

• A well-defined interface to application programs. In a development environment,

this allows a very clean division of labor for the implementation of the client side

and the resource manager side.

• A simple interface to the resource manager. Since all interactions with the resource

manager go through native IPC, and there are no special “back door” hooks or

arrangements with the OS, the writer of a resource manager can focus on the task

at hand, rather than worry about all the special considerations needed in other

operating systems.

• Free network transparency. Since the underlying native IPC messaging mechanism

is inherently network-distributed without any additional effort required by the client

or server (resource manager), programs can seamlessly access resources on other

nodes in the network without even being aware that they're going over a network.

All QNX Neutrino device drivers and filesystems are implemented as resource

managers. This means that everything that a “native” QNX Neutrino device

driver or filesystem can do, a user-written resource manager can do as well.

Consider FTP filesystems, for instance. Here a resource manager would take over a

portion of the pathname space (e.g., /ftp) and allow users to cd into FTP sites to

get files. For example, cd /ftp/rtfm.mit.edu/pub would connect to the FTP

site rtfm.mit.edu and change directory to /pub. After that point, the user could

open, edit, or copy files.

Copyright © 2014, QNX Software Systems Limited 167

What is a resource manager?

Application-specific filesystems would be another example of a user-written resource

manager. Given an application that makes extensive use of disk-based files, a custom

tailored filesystem can be written that works with that application and delivers superior

performance.

The possibilities for custom resource managers are limited only by the application

developer's imagination.

168 Copyright © 2014, QNX Software Systems Limited

Resource Managers

Resource manager architecture

Here is the heart of a resource manager:

initialize the dispatch interface
register the pathname with the process manager
DO forever
 receive a message
 SWITCH on the type of message
 CASE io_open:
 perform io_open processing
 ENDCASE
 CASE io_read:
 perform io_read processing
 ENDCASE
 CASE io_write:
 perform io_write processing
 ENDCASE
 . // etc. handle all other messages
 . // that may occur, performing
 . // processing as appropriate
 ENDSWITCH
ENDDO

The architecture contains three parts:

1. A channel is created so that client programs can connect to the resource manager

to send it messages.

2. The pathname (or pathnames) that the resource manager is going to be responsible

for is registered with the process manager, so that it can resolve open requests for

that particular pathname to this resource manager.

3. Messages are received and processed.

This message-processing structure (the switch/case, above) is required for each and

every resource manager. However, we provide a set of convenient library functions to

handle this functionality (and other key functionality as well).

Message types

Architecturally, there are two categories of messages that a resource manager will

receive:

• connect messages

• I/O messages

A connect message is issued by the client to perform an operation based on a pathname

(e.g., an io_open message). This may involve performing operations such as

permission checks (does the client have the correct permission to open this device?)

and setting up a context for that request.

Copyright © 2014, QNX Software Systems Limited 169

Resource manager architecture

An I/O message is one that relies upon this context (created between the client and

the resource manager) to perform subsequent processing of I/O messages (e.g.,

io_read).

There are good reasons for this design. It would be inefficient to pass the full pathname

for each and every read() request, for example. The io_open handler can also perform

tasks that we want done only once (e.g., permission checks), rather than with each

I/O message. Also, when the read() has read 4096 bytes from a disk file, there may

be another 20 megabytes still waiting to be read. Therefore, the read() function would

need to have some context information telling it the position within the file it's reading

from.

The resource manager shared library

In a custom embedded system, part of the design effort may be spent writing a resource

manager, because there may not be an off-the-shelf driver available for the custom

hardware component in the system.

Our resource manager shared library makes this task relatively simple.

Automatic default message handling

If there are functions that the resource manager doesn't want to handle for some reason

(e.g., a digital-to-analog converter doesn't support a function such as lseek(), or the

software doesn't require it), the shared library will conveniently supply default actions.

There are two levels of default actions:

• The first level simply returns ENOSYS to the client application, informing it that

that particular function is not supported.

• The second level (i.e., the iofunc_*() shared library) allows a resource manager to

automatically handle various functions.

For more information on default actions, see the section on “Second-level default

message handling (p. 172)” in this chapter.

open(), dup(), and close()

Another convenient service that the resource manager shared library provides is the

automatic handling of dup() messages.

Suppose that the client program executed code that eventually ended up performing:

fd = open ("/dev/device", O_RDONLY);
...
fd2 = dup (fd);
...
fd3 = dup (fd);
...
close (fd3);
...
close (fd2);

170 Copyright © 2014, QNX Software Systems Limited

Resource Managers

...
close (fd);

The client would generate an io_open message for the first open(), and then two

io_dup messages for the two dup() calls. Then, when the client executed the close()

calls, three io_close messages would be generated.

Since the dup() functions generate duplicates of the file descriptors, new context

information should not be allocated for each one. When the io_close messages

arrive, because no new context has been allocated for each dup(), no release of the

memory by each io_close message should occur either! (If it did, the first close

would wipe out the context.)

The resource manager shared library provides default handlers that keep track of the

open(), dup(), and close() messages and perform work only for the last close (i.e., the

third io_close message in the example above).

Multiple thread handling

One of the salient features of the QNX Neutrino RTOS is the ability to use threads. By

using multiple threads, a resource manager can be structured so that several threads

are waiting for messages and then simultaneously handling them.

This thread management is another convenient function provided by the resource

manager shared library. Besides keeping track of both the number of threads created

and the number of threads waiting, the library also takes care of maintaining the

optimal number of threads.

Dispatch functions

The OS provides a set of dispatch_* functions that:

• allow a common blocking point for managers and clients that need to support

multiple message types (e.g., a resource manager could handle its own private

message range).

• provide a flexible interface for message types that isn't tied to the resource manager

(for clean handling of private messages and pulse codes)

• decouple the blocking and handler code from threads. You can implement the

resource manager event loop in your main code. This decoupling also makes for

easier debugging, because you can put a breakpoint between the block function

and the handler function.

For more information, see the Resource Managers chapter of Get Programming with

the QNX Neutrino RTOS, and the Writing a Resource Manager guide.

Combine messages

In order to conserve network bandwidth and to provide support for atomic operations,

the OS supports combine messages. A combine message is constructed by the client's

Copyright © 2014, QNX Software Systems Limited 171

Resource manager architecture

C library and consists of a number of I/O and/or connect messages packaged together

into one.

For example, the function readblock() allows a thread to atomically perform an lseek()

and read() operation. This is done in the client library by combining the io_lseek

and io_read messages into one. When the resource manager shared library receives

the message, it will process both the io_lseek and io_read messages, effectively

making that readblock() function behave atomically.

Combine messages are also useful for the stat() function. A stat() call can be

implemented in the client's library as an open(), fstat(), and close(). Instead of

generating three separate messages (one for each of the component functions), the

library puts them together into one contiguous combine message. This boosts

performance, especially over a networked connection, and also simplifies the resource

manager, which doesn't need a connect function to handle stat().

The resource manager shared library takes care of the issues associated with breaking

out the individual components of the combine message and passing them to the various

handler functions supplied. Again, this minimizes the effort associated with writing a

resource manager.

Second-level default message handling

Since a large number of the messages received by a resource manager deal with a

common set of attributes, the OS provides another level of default handling.

This second level, called the iofunc_*() shared library, allows a resource manager to

handle functions like stat(), chmod(), chown(), lseek(), etc. automatically, without the

programmer having to write additional code. As an added benefit, these iofunc_*()

default handlers implement the POSIX semantics for the messages, again offloading

work from the programmer.

Three main structures need to be considered:

• context

• attributes structure

• mount structure

Context
structure

Attribute
structure

Mount
structure

(optional)

Figure 39: A resource manager is responsible for three data structures.

The first data structure, the context, has already been discussed (see the section on

“Message types (p. 169)”). It holds data used on a per-open basis, such as the current

position into a file (the lseek() offset).

172 Copyright © 2014, QNX Software Systems Limited

Resource Managers

Since a resource manager may be responsible for more than one device (e.g.,

devc-ser* may be responsible for /dev/ser1, /dev/ser2, /dev/ser3, etc.),

the attributes structure holds data on a per-device basis. The attributes structure

contains such items as the user and group ID of the owner of the device, the last

modification time, etc.

For filesystem (block I/O device) managers, one more structure is used. This is the

mount structure, which contains data items that are global to the entire mount device.

When a number of client programs have opened various devices on a particular resource,

the data structures may look like this:

Process
A

Process
B

Process
C

Clients
OCB A

OCB B

OCB C

Attribute
structure for
/dev/path1

Attribute
structure for
/dev/path2

Mount
structure
describing

/dev/path*

resmgr library
Resource manager

process

One per
open

One per
name

One per
mountpoint
(optional)

Channel

Resource
manager
threads

Figure 40: Multiple clients opening various devices.

The iofunc_*() default functions operate on the assumption that the programmer has

used the default definitions for the context block and the attributes structures. This

is a safe assumption for two reasons:

1. The default context and attribute structures contain sufficient information for most

applications.

2. If the default structures don't hold enough information, they can be encapsulated

within the structures that you've defined.

By definition, the default structures must be the first members of their respective

superstructures, allowing clean and simple access to the requisite base members by

the iofunc_*() default functions:

Copyright © 2014, QNX Software Systems Limited 173

Resource manager architecture

(iofunc_attr_t *)

Attribute
superstructure

Default
members

Extensions

Figure 41: Encapsulating the default data structures used by resource managers.

The library contains iofunc_*() default handlers for these client functions:

• chmod()

• chown()

• close()

• devctl()

• fpathconf()

• fseek()

• fstat()

• lock()

• lseek()

• mmap()

• open()

• pathconf()

• stat()

• utime()

174 Copyright © 2014, QNX Software Systems Limited

Resource Managers

Summary

By supporting pathname space mapping, by having a well-defined interface to resource

managers, and by providing a set of libraries for common resource manager functions,

the QNX Neutrino RTOS offers the developer unprecedented flexibility and simplicity

in developing “drivers” for new hardware—a critical feature for many embedded

systems.

For more details on developing a resource manager, see the Resource Managers chapter

of Get Programming with the QNX Neutrino RTOS, and the Writing a Resource Manager

guide.

Copyright © 2014, QNX Software Systems Limited 175

Summary

Chapter 9
Filesystems

The QNX Neutrino RTOS provides a rich variety of filesystems. Like most

service-providing processes in the OS, these filesystems execute outside the kernel;

applications use them by communicating via messages generated by the shared-library

implementation of the POSIX API.

Most of these filesystems are resource managers as described in this book. Each

filesystem adopts a portion of the pathname space (called a mountpoint) and provides

filesystem services through the standard POSIX API (open(), close(), read(), write(),

lseek(), etc.). Filesystem resource managers take over a mountpoint and manage the

directory structure below it. They also check the individual pathname components for

permissions and for access authorizations.

This implementation means that:

• Filesystems may be started and stopped dynamically.

• Multiple filesystems may run concurrently.

• Applications are presented with a single unified pathname space and interface,

regardless of the configuration and number of underlying filesystems.

• A filesystem running on one node is transparently accessible from any other node.

Copyright © 2014, QNX Software Systems Limited 177

Filesystems and pathname resolution

You can seamlessly locate and connect to any service or filesystem that's been

registered with the process manager. When a filesystem resource manager registers a

mountpoint, the process manager creates an entry in the internal mount table for that

mountpoint and its corresponding server ID (i.e., the nd, pid, chid identifiers).

This table effectively joins multiple filesystem directories into what users perceive as

a single directory. The process manager handles the mountpoint portion of the

pathname; the individual filesystem resource managers take care of the remaining

parts of the pathname. Filesystems can be registered (i.e., mounted) in any order.

When a pathname is resolved, the process manager contacts all the filesystem resource

managers that can handle some component of that path. The result is a collection of

file descriptors that can resolve the pathname.

If the pathname represents a directory, the process manager asks all the filesystems

that can resolve the pathname for a listing of files in that directory when readdir() is

called. If the pathname isn't a directory, then the first filesystem that resolves the

pathname is accessed.

For more information on pathname resolution, see the section “Pathname management

(p. 142)” in the chapter on the Process Manager in this guide.

178 Copyright © 2014, QNX Software Systems Limited

Filesystems

Filesystem classes

The many filesystems available can be categorized into the following classes:

Image (p. 185)

A special filesystem that presents the modules in the image and is always

present. Note that the procnto process automatically provides an image

filesystem and a RAM filesystem.

Block

Traditional filesystems that operate on block devices like hard disks and

CD-ROM drives. This includes the Power-Safe filesystem (p. 192), QNX 4

(p. 191), DOS (p. 201), and CD-ROM (p. 204) filesystems.

Flash

Nonblock-oriented filesystems designed explicitly for the characteristics of

flash memory devices. For NOR devices, use the FFS3 (p. 205) filesystem;

for NAND, use ETFS (p. 187).

Network

Filesystems that provide network file access to the filesystems on remote

host computers. This includes the NFS (p. 210) and CIFS (p. 211) (SMB)

filesystems.

Virtual (p. 216)

QNX Neutrino provides an Inflator virtual filesystem, a resource manager

that sits in front of other filesystems and uncompresses files that were

previously compressed (using the deflate utility).

Filesystems as shared libraries

Since it's common to run many filesystems under the QNX Neutrino RTOS, they have

been designed as a family of drivers and shared libraries to maximize code reuse. This

means the cost of adding an additional filesystem is typically smaller than might

otherwise be expected.

Once an initial filesystem is running, the incremental memory cost for additional

filesystems is minimal, since only the code to implement the new filesystem protocol

would be added to the system.

The various filesystems are layered as follows:

Copyright © 2014, QNX Software Systems Limited 179

Filesystem classes

procnto

devf-*

devb-*

fs-cifsfs-nfs2

fs-qnx4.so fs-dos.so fs-cd.so

io_blk.so

cam-cdrom.so cam-disk.so

io-pkt

devn-*.so

Figure 42: QNX Neutrino filesystem layering.

As shown in this diagram, the filesystems and io-blk are implemented as shared

libraries (essentially passive blocks of code resident in memory), while the devb-*

driver is the executing process that calls into the libraries. In operation, the driver

process starts first and invokes the block-level shared library (io-blk.so). The

filesystem shared libraries may be dynamically loaded later to provide filesystem

interfaces and services.

A “filesystem” shared library implements a filesystem protocol or “personality” on a

set of blocks on a physical disk device. The filesystems aren't built into the OS kernel;

rather, they're dynamic entities that can be loaded or unloaded on demand.

For example, a removable storage device (PCCard flash card, floppy disk, removable

cartridge disk, etc.) may be inserted at any time, with any of a number of filesystems

stored on it. While the hardware the driver interfaces to is unlikely to change

dynamically, the on-disk data structure could vary widely. The dynamic nature of the

filesystem copes with this very naturally.

io-blk

Most of the filesystem shared libraries ride on top of the Block I/O module.

The io-blk.so module also acts as a resource manager and exports a block-special

file for each physical device. For a system with two hard disks the default files would

be:

/dev/hd0

First hard disk.

/dev/hd1

Second hard disk.

180 Copyright © 2014, QNX Software Systems Limited

Filesystems

These files represent each raw disk and may be accessed using all the normal POSIX

file primitives (open(), close(), read(), write(), lseek(), etc.). Although the io-blk

module can support a 64-bit offset on seek, the driver interface is 32-bit, allowing

access to 2-terabyte disks.

Builtin RAM disk

The io-blk module supports an internal RAM-disk device that can be created via a

command-line option (blk ramdisk=size).

Since this RAM disk is internal to the io-blk module (rather than created and

maintained by an additional device driver such as devb-ram), performance is

significantly better than that of a dedicated RAM-disk driver.

By incorporating the RAM-disk device directly at the io-blk layer, the device's data

memory parallels the main cache, so I/O operations to this device can bypass the

buffer cache, eliminating a memory copy yet still retaining coherency. Contrast this

with a driver-level implementation (e.g., devb-ram) where transparently presenting

the RAM as a block device involves additional memory copies and duplicates data in

the buffer cache. Inter-DLL callouts are also eliminated. In addition, there are benefits

in terms of installation footprint for systems that have a hard disk and also want a

RAM disk: only the single driver is needed.

Partitions

The QNX Neutrino RTOS complies with the de facto industry standard for partitioning

a disk.

This allows a number of filesystems to share the same physical disk. Each partition

is also represented as a block-special file, with the partition type appended to the

filename of the disk it's located on. In the above “two-disk” example, if the first disk

had a QNX 4 partition and a DOS partition, while the second disk had only a QNX 4

partition, then the default files would be:

/dev/hd0

First hard disk

/dev/hd0t6

DOS partition on first hard disk

/dev/hd0t79

QNX 4 partition on first hard disk

/dev/hd1

Second hard disk

/dev/hd1t79

Copyright © 2014, QNX Software Systems Limited 181

Filesystem classes

QNX 4 partition on second hard disk

The following list shows some typical assigned partition types:

FilesystemType

DOS (12-bit FAT)1

DOS (16-bit FAT; partitions <32M)4

DOS Extended Partition (enumerated but

not presented)

5

DOS 4.0 (16-bit FAT; partitions �32M)6

OS/2 HPFS7

Previous QNX OS version 2 (pre-1988)7

Windows NT7

QNX 1.x and 2.x (“qny”)8

QNX 1.x and 2.x (“qnz”)9

DOS 32-bit FAT; partitions up to 2047G11

Same as Type 11, but uses Logical Block

Address Int 13h extensions

12

Same as Type 6, but uses Logical Block

Address Int 13h extensions

14

Same as Type 5, but uses Logical Block

Address Int 13h extensions

15

QNX 4 POSIX partition (secondary)77

QNX 4 POSIX partition (secondary)78

QNX 4 POSIX partition79

UNIX99

Linux (Ext2)131

Apple Macintosh HFS or HFS Plus175

QNX Power-Safe POSIX partition

(secondary)

177

QNX Power-Safe POSIX partition

(secondary)

178

QNX Power-Safe POSIX partition179

182 Copyright © 2014, QNX Software Systems Limited

Filesystems

Buffer cache

The io-blk shared library implements a buffer cache that all filesystems inherit. The

buffer cache attempts to store frequently accessed filesystem blocks in order to

minimize the number of times a system has to perform a physical I/O to the disk.

Read operations are synchronous; write operations are usually asynchronous. When

an application writes to a file, the data enters the cache, and the filesystem manager

immediately replies to the client process to indicate that the data has been written.

The data is then written to the disk.

Critical filesystem blocks such as bitmap blocks, directory blocks, extent blocks, and

inode blocks are written immediately and synchronously to disk.

Applications can modify write behavior on a file-by-file basis. For example, a database

application can cause all writes for a given file to be performed synchronously. This

would ensure a high level of file integrity in the face of potential hardware or power

problems that might otherwise leave a database in an inconsistent state.

Filesystem limitations

POSIX defines the set of services a filesystem must provide. However, not all filesystems

are capable of delivering all those services.

Decompression

on read

Soft

links

Hard

links

DirectoriesPermissionsFilename

lengtha
Status

change

date

Modification

date

Access

date

Filesystem

NoNoNoNoYes255NoNoNoImage

NoNoNoNoYes255YesYesYesRAM

NoYesNoYesYes91YesYesYesETFS

NoYesYesYesYes48bYesYesYesQNX 4

NoYesYesYesYes510YesYesYesPower-Safe

NoNoNoYesNo8.3dNoYesYescDOS

YesNoNoYesNo255NoYesYesNTFS

NoYeseNoYesYese207fYeseYeseYeseCD-ROM

NoNoNoYesYes254YesYesYesUDF

NoNoNoYesYes255gYesYesYesHFS

YesYesNoYesYes255YesYesNoFFS3

NoYeshYeshYesYesh—hYesYesYesNFS

NoNoNoYesYesh—hNoYesNoCIFS

Copyright © 2014, QNX Software Systems Limited 183

Filesystem classes

Decompression

on read

Soft

links

Hard

links

DirectoriesPermissionsFilename

lengtha
Status

change

date

Modification

date

Access

date

Filesystem

NoYesYesYesYes255YesYesYesExt2

a Our internal representation for file names is UTF-8, which uses a variable number

of bytes per character. Many on-disk formats instead use UCS2, which is a fixed

number (2 bytes). Thus a length limit in characters may be 1, 2, or 3 times that

number in bytes, as we convert from on-disk to OS representation. The lengths for

the QNX 4, Power-Safe, and EXT2 filesystems are in bytes; those for UDF, CD/Joliet,

and DOS/VFAT are in characters.

b 505 if .longfilenames is enabled; otherwise, 48.

c VFAT or FAT32 (e.g., Windows 95).

d 255-character filename lengths used by VFAT or FAT32 (e.g., Windows 95).

e With Rock Ridge extensions.

f 103 characters with Joliet extensions; 255 with Rock Ridge extensions.

g 31 on HFS.

h Limited by the remote filesystem.

184 Copyright © 2014, QNX Software Systems Limited

Filesystems

Image filesystem

Every QNX Neutrino system image provides a simple read-only filesystem that presents

the set of files built into the OS image.

Since this image may include both executables and data files, this filesystem is

sufficient for many embedded systems. If additional filesystems are required, they

would be placed as modules within the image where they can be started as needed.

Copyright © 2014, QNX Software Systems Limited 185

Image filesystem

RAM “filesystem”

Every QNX Neutrino system also provides a simple RAM-based “filesystem” that allows

read/write files to be placed under /dev/shmem.

Note that /dev/shmem isn't actually a filesystem. It's a window onto the

shared memory names that happens to have some filesystem-like

characteristics.

This RAM filesystem finds the most use in tiny embedded systems where persistent

storage across reboots isn't required, yet where a small, fast, temporary-storage

filesystem with limited features is called for.

The filesystem comes for free with procnto and doesn't require any setup. You can

simply create files under /dev/shmem and grow them to any size (depending on RAM

resources).

Although the RAM filesystem itself doesn't support hard or soft links or directories,

you can create a link to it by using process-manager links. For example, you could

create a link to a RAM-based /tmp directory:

ln -sP /dev/shmem /tmp

This tells procnto to create a process manager link to /dev/shmem known as “/tmp.”

Application programs can then open files under /tmp as if it were a normal filesystem.

In order to minimize the size of the RAM filesystem code inside the process

manager, this filesystem specifically doesn't include “big filesystem” features

such as file locking and directory creation.

186 Copyright © 2014, QNX Software Systems Limited

Filesystems

Embedded transaction filesystem (ETFS)

ETFS implements a high-reliability filesystem for use with embedded solid-state

memory devices, particularly NAND flash memory.

The filesystem supports a fully hierarchical directory structure with POSIX semantics

as shown in the table above.

ETFS is a filesystem composed entirely of transactions. Every write operation, whether

of user data or filesystem metadata, consists of a transaction. A transaction either

succeeds or is treated as if it never occurred.

Transactions never overwrite live data. A write in the middle of a file or a directory

update always writes to a new unused area. In this way, if the operation fails part way

through (due to a crash or power failure), the old data is still intact.

Some log-based filesystems also operate under the principle that live data is never

overwritten. But ETFS takes this to the extreme by turning everything into a log of

transactions. The filesystem hierarchy is built on the fly by processing the log of

transactions in the device. This scan occurs at startup, but is designed such that only

a small subset of the data is read and CRC-checked, resulting in faster startup times

without sacrificing reliability.

Transactions are position-independent in the device and may occur in any order. You

could read the transactions from one device and write them in a different order to

another device. This is important because it allows bulk programming of devices

containing bad blocks that may be at arbitrary locations.

This design is well-suited for NAND flash memory. NAND flash is shipped with

factory-marked bad blocks that may occur in any location.

Header Data DataHeader Header ...

FID
Offset
Size

Sequence
CRCs
ECCs
Other

Required;
device-independent

Optional;
device-dependent

Transaction

Figure 43: ETFS is a filesystem composed entirely of transactions.

Inside a transaction

Each transaction consists of a header followed by data. The header contains the

following:

Copyright © 2014, QNX Software Systems Limited 187

Embedded transaction filesystem (ETFS)

FID

A unique file ID that identifies which file the transaction belongs to.

Offset

The offset of the data portion within the file.

Size

The size of the data portion.

Sequence

A monotonically increasing number (to enable time ordering).

CRCs

Data integrity checks (for NAND, NOR, SRAM).

ECCs

Error correction (for NAND).

Other

Reserved for future expansion.

Types of storage media

Although best for NAND devices, ETFS also supports other types of embedded storage

media through the use of driver classes as follows:

Cluster sizeWear-leveling

read

Wear-leveling

erase

ECCCRCClass

1KYesYesYesYesNAND

512+16

2KYesYesYesYesNAND

2048+64

1KNoNoNoNoRAM

1KNoNoNoYesSRAM

1KNoYesNoYesNOR

Although ETFS can support NOR flash, we recommend instead the FFS3 (p.

205) filesystem (devf-*), which is designed explicitly for NOR flash devices.

188 Copyright © 2014, QNX Software Systems Limited

Filesystems

Reliability features

ETFS is designed to survive across a power failure, even during an active flash write

or block erase. The following features contribute to its reliability:

• dynamic wear-leveling

• static wear-leveling

• CRC error detection

• ECC error correction

• read degradation monitoring with automatic refresh

• transaction rollback

• atomic file operations

• automatic file defragmentation.

Dynamic wear-leveling

Flash memory allows a limited number of erase cycles on a flash block before the

block will fail. This number can be as low as 100,000. ETFS tracks the number of

erases on each block. When selecting a block to use, ETFS attempts to spread the

erase cycles evenly over the device, dramatically increasing its life. The difference

can be extreme: from usage scenarios of failure within a few days without wear-leveling

to over 40 years with wear-leveling.

Static wear-leveling

Filesystems often consist of a large number of static files that are read but not written.

These files will occupy flash blocks that have no reason to be erased. If the majority

of the files in flash are static, this will cause the remaining blocks containing dynamic

data to wear at a dramatically increased rate.

ETFS notices these under-worked static blocks and forces them into service by copying

their data to an over-worked block. This solves two problems: It gives the over-worked

block a rest, since it now contains static data, and it forces the under-worked static

block into the dynamic pool of blocks.

CRC error detection

Each transaction is protected by a cyclic redundancy check (CRC). This ensures quick

detection of corrupted data, and forms the basis for the rollback operation of damaged

or incomplete transactions at startup. The CRC can detect multiple bit errors that may

occur during a power failure.

ECC error correction

On a CRC error, ETFS can apply error correction coding (ECC) to attempt to recover

the data. This is suitable for NAND flash memory, in which single-bit errors may occur

Copyright © 2014, QNX Software Systems Limited 189

Embedded transaction filesystem (ETFS)

during normal usage. An ECC error is a warning signal that the flash block the error

occurred in may be getting weak, i.e. losing charge.

ETFS will mark the weak block for a refresh operation, which copies the data to a new

flash block and erases the weak block. The erase recharges the flash block.

Read degradation monitoring with automatic refresh

Each read operation within a NAND flash block weakens the charge maintaining the

data bits. Most devices support about 100,000 reads before there's danger of losing

a bit. The ECC will recover a single-bit error, but may not be able to recover multi-bit

errors.

ETFS solves this by tracking reads and marking blocks for refresh before the 100,000

read limit is reached.

Transaction rollback

When ETFS starts, it processes all transactions and rolls back (discards) the last partial

or damaged transaction. The rollback code is designed to handle a power failure during

a rollback operation, thus allowing the system to recover from multiple nested faults.

The validity of a transaction is protected by CRC codes on each transaction.

Atomic file operations

ETFS implements a very simple directory structure on the device, allowing significant

modifications with a single flash write. For example, the move of a file or directory to

another directory is often a multistage operation in most filesystems. In ETFS, a move

is accomplished with a single flash write.

Automatic file defragmentation

Log-based filesystems often suffer from fragmentation, since each update or write to

an existing file causes a new transaction to be created. ETFS uses write-buffering to

combine small writes into larger write transactions in an attempt to minimize

fragmentation caused by lots of very small transactions. ETFS also monitors the

fragmentation level of each file and will do a background defrag operation on files that

do become badly fragmented. Note that this background activity will always be

preempted by a user data request in order to ensure immediate access to the file being

defragmented.

190 Copyright © 2014, QNX Software Systems Limited

Filesystems

QNX 4 filesystem

The QNX 4 filesystem (fs-qnx4.so) is a high-performance filesystem that shares

the same on-disk structure as in the QNX 4 RTOS.

The QNX 4 filesystem implements an extremely robust design, utilizing an extent-based,

bitmap allocation scheme with fingerprint control structures to safeguard against data

loss and to provide easy recovery. Features include:

• extent-based POSIX filesystem

• robustness: all sensitive filesystem info is written through to disk

• on-disk “signatures” and special key information to allow fast data recovery in the

event of disk damage

• 505-character filenames

• multi-threaded design

• client-driven priority

• same disk format as the filesystem under QNX 4

In QNX Neutrino 6.2.1 and later, the 48-character filename limit has increased

to 505 characters via a backwards-compatible extension. The same on-disk

format is retained, but new systems will see the longer name, while old ones

will see a truncated 48-character name.

For more information, see “QNX 4 filesystem” in the Working with Filesystems chapter

of the QNX Neutrino User's Guide.

Copyright © 2014, QNX Software Systems Limited 191

QNX 4 filesystem

Power-Safe filesystem

The Power-Safe filesystem is a reliable disk filesystem that can withstand power failures

without losing or corrupting data. It was designed for and is intended for traditional

rotating hard disk drive media.

This filesystem is supported by the fs-qnx6.so shared object.

Problems with existing disk filesystems

Although existing disk filesystems are designed to be robust and reliable, there's still

the possibility of losing data, depending on what the filesystem is doing when a

catastrophic failure (such as a power failure) occurs.

For example:

• Each sector on a hard disk includes a 4-byte error-correcting code (ECC) that the

drive uses to catch hardware errors and so on. If the driver is writing the disk when

the power fails, then the heads are removed to prevent them from crashing on the

surface, leaving the sector half-written with the new content. The next time you

try to read that block—or sector—the inconsistent ECC causes the read to fail, so

you lose both the old and new content.

You can get hard drives that offer atomic sector upgrades and promise you that

either all of the old or new data in the sector will be readable, but these drives are

rare and expensive.

• Some filesystem operations require updating multiple on-disk data structures. For

example, if a program calls unlink(), the filesystem has to update a bitmap block,

a directory block, and an inode, which means it has to write three separate blocks.

If the power fails between writing these blocks, the filesystem will be in an

inconsistent state on the disk. Critical filesystem data, such as updates to

directories, inodes, extent blocks, and the bitmap are written synchronously to the

disk in a carefully chosen order to reduce—but not eliminate—this risk.

• You can use chkfsys to check for consistency on a QNX 4 filesystem, but it checks

only the filesystem's structure and metadata, not the user's file data, and it can

be slow if the disk is large or there are many directories on it.

• If the root directory, the bitmap, or inode file (all in the first few blocks of the disk)

gets corrupted, you wouldn't be able to mount the filesystem at all. You might be

able to manually repair the system, but you need to be very familiar with the details

of the filesystem structure.

Copy-on-write filesystem

To address the problems associated with existing disk filesystems, the Power-Safe

filesystem never overwrites live data; it does all updates using copy-on-write (COW),

192 Copyright © 2014, QNX Software Systems Limited

Filesystems

assembling a new view of the filesystem in unused blocks on the disk. The new view

of the filesystem becomes “live” only when all the updates are safely written on the

disk. Everything is COW: both metadata and user data are protected.

To see how this works, let's consider how the data is stored. A Power-Safe filesystem

is divided into logical blocks, the size of which you can specify when you use mkqnx6fs

to format the filesystem. Each inode includes 16 pointers to blocks. If the file is

smaller than 16 blocks, the inode points to the data blocks directly. If the file is any

bigger, those 16 blocks become pointers to more blocks, and so on.

The final block pointers to the real data are all in the leaves and are all at the same

level. In some other filesystems—such as EXT2—a file always has some direct blocks,

some indirect ones, and some double indirect, so you go to different levels to get to

different parts of the file. With the Power-Safe filesystem, all the user data for a file

is at the same level.

...

...

...

...

Inode

Indirect block
pointers

User data

If you change some data, it's written in one or more unused blocks, and the original

data remains unchanged. The list of indirect block pointers must be modified to refer

to the newly used blocks, but again the filesystem copies the existing block of pointers

and modifies the copy. The filesystem then updates the inode—once again by modifying

a copy—to refer to the new block of indirect pointers. When the operation is complete,

the original data and the pointers to it remain intact, but there's a new set of blocks,

indirect pointers, and inode for the modified data:

...

...

...

...

Inode

Indirect block
pointers

User data

...

...

This has several implications for the COW filesystem:

• The bitmap and inodes are treated in the same way as user files.

• Any filesystem block can be relocated, so there aren't any fixed locations, such as

those for the root block or bitmap in the QNX 4 filesystem

• The filesystem must be completely self-referential.

Copyright © 2014, QNX Software Systems Limited 193

Power-Safe filesystem

A superblock is a global root block that contains the inodes for the system bitmap and

inodes files. A Power-Safe filesystem maintains two superblocks:

• a stable superblock that reflects the original version of all the blocks

• a working superblock that reflects the modified data

The working superblock can include pointers to blocks in the stable superblock. These

blocks contain data that hasn't yet been modified. The inodes and bitmap for the

working superblock grow from it.

... ...

...

... ...

...

Stable superblock Working superblock

A snapshot is a consistent view of the filesystem (simply a committed superblock). To

take a snapshot, the filesystem:

1. Locks the filesystem to make sure that it's in a stable state; all client activity is

suspended, and there must be no active operations.

2. Writes all the copied blocks to disk. The order isn't important (as it is for the QNX 4

filesystem), so it can be optimized.

3. Forces the data to be synchronized to disk, including flushing any hardware track

cache.

4. Constructs the superblock, recording the new location of the bitmap and inodes,

incrementing its sequence number, and calculating a CRC.

5. Writes the superblock to disk.

6. Switches between the working and committed views. The old versions of the copied

blocks are freed and become available for use.

To mount the disk at startup, the filesystem simply reads the superblocks from disk,

validates their CRCs, and then chooses the one with the higher sequence number.

There's no need to run chkfsys or replay a transaction log. The time it takes to mount

the filesystem is the time it takes to read a couple of blocks.

If the drive doesn't support synchronizing, fs-qnx6.so can't guarantee that

the filesystem is power-safe. Before using this filesystem on devices—such as

USB/Flash devices—other than traditional rotating hard disk drive media, check

to make sure that your device meets the filesystem's requirements. For more

information, see “Required properties of the device” in the entry for

fs-qnx6.so in the Utilities Reference.

194 Copyright © 2014, QNX Software Systems Limited

Filesystems

Performance

The Copy on Write (COW) method has some drawbacks:

• Each change to user data can cause up to a dozen blocks to be copied and modified,

because the filesystem never modifies the inode and indirect block pointers in

place; it has to copy the blocks to a new location and modify the copies. Thus,

write operations are longer.

• When taking a snapshot, the filesystem must force all blocks fully to disk before

it commits the superblock.

However:

• There's no constraint on the order in which the blocks (aside from the superblock)

can be written.

• The new blocks can be allocated from any free, contiguous space.

The performance of the filesystem depends on how much buffer cache is available,

and on the frequency of the snapshots. Snapshots occur periodically (every 10 seconds,

or as specified by the snapshot option to fs-qnx6.so), and also when you call sync()

for the entire filesystem, or fsync() for a single file.

Synchronization is at the filesystem level, not at that of individual files, so

fsync() is potentially an expensive operation; the Power-Safe filesystem ignores

the O_SYNC flag.

You can also turn snapshots off if you're doing some long operation, and the

intermediate states aren't useful to you. For example, suppose you're copying a very

large file into a Power-Safe filesystem. The cp utility is really just a sequence of basic

operations:

• an open(O_CREAT|O_TRUNC) to make the file

• a bunch of write() operations to copy the data

• a close(), chmod(), and chown() to copy the metadata

If the file is big enough so that copying it spans snapshots, you have on-disk views

that include the file not existing, the file existing at a variety of sizes, and finally the

complete file copied and its IDs and permissions set:

Time

open() write() write() write() close(),
chmod(),
chown()

...

Snapshot Snapshot Snapshot Snapshot...

Each snapshot is a valid point-in-time view of the filesystem (i.e., if you've copied 50

MB, the size is 50 MB, and all data up to 50 MB is also correctly copied and available).

Copyright © 2014, QNX Software Systems Limited 195

Power-Safe filesystem

If there's a power failure, the filesystem is restored to the most recent snapshot. But

the filesystem has no concept that the sequence of open(), write(), and close()

operations is really one higher-level operation, cp. If you want the higher-level

semantics, disable the snapshots around the cp, and then the middle snapshots won't

happen, and if a power failure occurs, the file will either be complete, or not there at

all.

For information about using this filesystem, see “Power-Safe filesystem” in the Working

with Filesystems chapter of the QNX Neutrino User's Guide.

Encryption

You can encrypt all or part of the contents of a Power-Safe filesystem by dividing it

into encryption domains.

A domain can contain any number of files or directories. After a domain has been

assigned to a directory, all files created within that directory are encrypted and inherit

that same domain. By default, assigning a domain key to a directory with existing files

or directories doesn't introduce encryption to those files. You can create files and

assign them to a domain, but you must do so before adding any data to them.

During operation, files that are assigned to a domain are encrypted, and the files'

contents are available only when the associated domain is unlocked. When a domain

is unlocked, all the files and directories under that domain are unlocked as well, and

therefore accessible (as per basic file permissions). When a domain is locked, any

access to files belonging to that domain is denied.

Locking and unlocking operations apply to an entire domain, not to specific

files or directories.

Domain 0 (FS_CRYPTO_UNASSIGNED_DOMAIN) is always unlocked, and its contents

are unencrypted. The system reserves domains 1–9 and 100 and above; you can design

your system to use any other domains.

In order to use encryption, you must first format the filesystem with the -E option for

mkqnx6fs, and then specify crypto=enable for fs-qnx6.so. You can then use

fsencrypt to manage the encryption. The chkqnx6fs utility automatically identifies

the encryption format and verifies the integrity of the encryption data.

Key types

DescriptionKey type

Private and randomly generated at the

time the file is created (if the file is

File key

assigned to a domain). Holds some

information about the file to ensure

integrity between a file and its key. Used

196 Copyright © 2014, QNX Software Systems Limited

Filesystems

DescriptionKey type

to encrypt file data, and is encrypted by

a domain key. Keys are managed by the

filesystem and are hidden from the user.

Private and randomly generated at the

time the domain is created. Used to

Domain key

encrypt all the file keys that belong to its

domain, and is encrypted by a domain

master key. Keys are managed by the

filesystem and are hidden from the user.

Optionally public, as it is supplied and

managed by a third party (not the

Master key

filesystem). Used to encrypt the domain

key, required on domain creation and

subsequent unlock requests.

Private and randomly generated only once.

Used to encrypt all the domain master

keys.

System key

Encryption types

The Power-Safe filesystem supports the following types of encryption:

DescriptionConstantDomain-encryption type

No encryptionFS_CRYPTO_TYPE_NONE0

AES-256, in XTS mode.

The two keys are randomly

generated.

FS_CRYPTO_TYPE_XTS1

AES-256, in CBC modeFS_CRYPTO_TYPE_CBC2

Reserved for future use—3–99

Interface usage

To manage encryption from the command line, use fsencrypt; its -c lets you specify

the command to run. From your code, use the fscrypto library. You need to include

both the <fs_crypto_api.h> and <sys/fs_crypto.h> header files. Many of

the APIs return EOK on success and also have a reply argument that provides more

information.

Copyright © 2014, QNX Software Systems Limited 197

Power-Safe filesystem

Descriptionfsencrypt

command

API

Determine if the underlying filesystem supports encryptioncheckfs_crypto_check()

Create the given domain/type if it doesn't already exist.

You need to provide a 64-bit encryption key. From a

createfs_crypto_domain_add()

program, you can create a locked or unlocked domain;

fsencrypt always creates an unlocked domain.

Change the master domain key used to encrypt the domain

key

change-keyfs_crypto_domain_key_change()

Determine if a given domain key is validcheck-keyfs_crypto_domain_key_check()

Return the size of keys needed for filesystem encryption—fs_crypto_domain_key_size()

Lock a domain, preventing access to the original contents

of any file belonging to the given domain

lockfs_crypto_domain_lock()

Get status information for a domainquery,

query-all

fs_crypto_domain_query()

Destroy a domain. You must be in the group that owns the

filesystem's mountpoint, and the domain must be unlocked.

destroyfs_crypto_domain_remove()

It isn't possible to retrieve any files in the domain after it's

been destroyed.

Unlock a domain, given the appropriate key dataunlockfs_crypto_domain_unlock()

Enable encryption support on a volume that wasn't set up

for it at formatting time

enablefs_crypto_enable(),

fs_crypto_enable_option()

Return the domain of a file or directory, if assignedgetfs_crypto_file_get_domain()

Assign the path (a regular file or a directory) to a given

domain. Regular files must have a length of zero.

setfs_crypto_file_set_domain()

Generate an encryption key from a password-K or -k optionfs_crypto_key_gen()

Set the logging destination and verbosity-l and -v optionsfs_crypto_set_logging()

The library also includes some functions that you can use to move existing files and

directories into an encryption domain. You first tag files and directories that you want

to move, and then you start the migration, which the filesystem does in the background.

These functions include:

198 Copyright © 2014, QNX Software Systems Limited

Filesystems

Descriptionfsencrypt commandAPI

Control encryption

migration within the

filesystem

migrate-start,

migrate-stop,

migrate-delay,

migrate-units

fs_crypto_migrate_control()

Mark an entire directory for

migration into an

encryption domain

migrate-pathfs_crypto_migrate_path()

Get the status of migration

in the filesystem

migrate-statusfs_crypto_migrate_status()

Mark a file for migration

into an encryption domain

migrate-tag, tagfs_crypto_migrate_tag()

Examples

Here are some examples of the way you can use fsencrypt to manage filesystem

encryption:

• Determine if encryption is supported or enabled:

$ fsencrypt -vc check -p /
ENCRYPTION_CHECK(Path:'/') FAILED: (18) - 'No support'

• Enable encryption on an existing filesystem:

$ fsencrypt -vc enable -p /
ENCRYPTION_CHECK(Path:'/') SUCCESS
$ fsencrypt -vc check -p /
ENCRYPTION_CHECK(Path:'/') NOTICE: Encryption is SUPPORTED)

This change is irreversible and forces two consecutive disk transactions to

rewrite some data in the superblocks.

• Determine if a file is encrypted. Files with the domain number of 0 aren't encrypted.

A nonzero value of 1–100 means the file is assigned to a domain. Access to the

file's original contents is determined by the status of the domain. The example

below shows that the named file is assigned to domain 10:

$ fsencrypt -vcget -p /accounts/1000/secure/testfile
GET_DOMAIN(Path:'/accounts/1000/secure/testfile') = 10 SUCCESS

• Determine if a domain is locked. If a domain is locked, reading the files within

that domain yields encrypted data; unlocked domains yield the original file contents.

Copyright © 2014, QNX Software Systems Limited 199

Power-Safe filesystem

“Unused” domains are ones that haven't yet been created. In the example below,

domain 11 hasn't yet been created, and domain 10 is currently unlocked:

$ fsencrypt -vcquery -p/ -d11
QUERY_DOMAIN(Path:'/', Domain:11) NOTICE: Domain is UNUSED
$ fsencrypt -vcquery -p/ -d10
QUERY_DOMAIN(Path:'/', Domain:10) NOTICE: Domain is UNLOCKED

200 Copyright © 2014, QNX Software Systems Limited

Filesystems

DOS Filesystem

The DOS Filesystem, fs-dos.so, provides transparent access to DOS disks, so you

can treat DOS filesystems as though they were POSIX filesystems. This transparency

allows processes to operate on DOS files without any special knowledge or work on

their part.

The structure of the DOS filesystem on disk is old and inefficient, and lacks many

desirable features. Its only major virtue is its portability to DOS and Windows

environments. You should choose this filesystem only if you need to transport DOS

files to other machines that require it. Consider using the Power-Safe or QNX 4

filesystem alone if DOS file portability isn't an issue or in conjunction with the DOS

filesystem if it is.

If there's no DOS equivalent to a POSIX feature, fs-dos.so, with either return an

error or a reasonable default. For example, an attempt to create a link() will result in

the appropriate errno being returned. On the other hand, if there's an attempt to read

the POSIX times on a file, fs-dos.so will treat any of the unsupported times the

same as the last write time.

DOS version support

The fs-dos.so program supports both floppies and hard disk partitions

from DOS version 2.1 to Windows 98 with long filenames.

DOS text files

DOS terminates each line in a text file with two characters (CR/LF), while

POSIX (and most other) systems terminate each line with a single character

(LF). Note that fs-dos.so makes no attempt to translate text files being

read. Most utilities and programs aren't affected by this difference.

Note also that some very old DOS programs may use a Ctrl–Z (^Z) as a file

terminator. This character is also passed through without modification.

QNX-to-DOS filename mapping

In DOS, a filename can't contain any of the following characters:

/ \ [] : * | + = ; , ?

An attempt to create a file that contains one of these invalid characters will

return an error. DOS (8.3 format) also expects all alphabetical characters

to be uppercase, so fs-dos.so maps these characters to uppercase when

creating a filename on disk. But it maps a filename to lowercase by default

when returning a filename to a QNX Neutrino application, so that QNX

Copyright © 2014, QNX Software Systems Limited 201

DOS Filesystem

Neutrino users and programs can always see and type lowercase (via the

sfn=sfn_mode option).

Handling filenames

You can specify how you want fs-dos.so to handle long filenames (via

the lfn=lfn_mode option):

• Ignore them—display/create only 8.3 filenames.

• Show them—if filenames are longer than 8.3 or if mixed case is used.

• Always create both short and long filenames.

If you use the ignore option, you can specify whether or not to silently

truncate filename characters beyond the 8.3 limit.

International filenames

The DOS filesystem supports DOS “code pages” (international character

sets) for locale filenames. Short 8.3 names are stored using a particular

character set (typically the most common extended characters for a locale

are encoded in the 8th-bit character range). All the common American as

well as Western and Eastern European code pages (437, 850, 852, 866,

1250, 1251, 1252) are supported. If you produce software that must access

a variety of DOS/Windows hard disks, or operate in non-US-English countries,

this feature offers important portability—filenames will be created with both

a Unicode and locale name and are accessible via either name.

The DOS filesystem supports international text in filenames only.

No attempt is made to be aware of data contents, with the sole

exception of Windows “shortcut” (.LNK) files, which will be parsed

and translated into symbolic links if you've specified that option

(lnk=lnk_mode).

DOS volume labels

DOS uses the concept of a volume label, which is an actual directory entry

in the root of the DOS filesystem. To distinguish between the volume label

and an actual DOS directory, fs-dos.so reports the volume label according

to the way you specify its vollabel option. You can choose to:

• Ignore the volume label.

• Display the volume label as a name-special file.

• Display the volume label as a name-special file with an equal sign (=)

as the first character of the volume name (the default).

DOS-QNX permission mapping

202 Copyright © 2014, QNX Software Systems Limited

Filesystems

DOS doesn't support all the permission bits specified by POSIX. It has a

READ_ONLY bit in place of separate READ and WRITE bits; it doesn't have

an EXECUTE bit. When a DOS file is created, the DOS READ_ONLY bit is

set if all the POSIX WRITE bits are off. When a DOS file is accessed, the

POSIX READ bit is always assumed to be set for user, group, and other.

Since you can't execute a file that doesn't have EXECUTE permission,

fs-dos.so has an option (exe=exec_mode) that lets you specify how to

handle the POSIX EXECUTE bit for executables.

File ownership

Although the DOS file structure doesn't support user IDs and group IDs,

fs-dos.so (by default) doesn't return an error code if an attempt is made

to change them. An error isn't returned because a number of utilities attempt

to do this and failure would result in unexpected errors. The approach taken

is “you can change anything to anything since it isn't written to disk anyway.”

The posix= options let you set stricter POSIX checks and enable POSIX

emulation. For example, in POSIX mode, an error of EINVAL is flagged for

attempts to do any of the following:

• Set the user ID or group ID to something other than the default (root).

• Remove an r (read) permission.

• Set an s (set ID on execution) permission.

If you set the posix option to emulate (the default) or strict, you get the

following benefits:

• The . and .. directory entries are created in the root directory.

• The directory size is calculated.

• The number of links in a directory is calculated, based on its

subdirectories.

Copyright © 2014, QNX Software Systems Limited 203

DOS Filesystem

CD-ROM filesystem

The CD-ROM filesystem provides transparent access to CD-ROM media, so you can

treat CD-ROM filesystems as though they were POSIX filesystems. This transparency

allows processes to operate on CD-ROM files without any special knowledge or work

on their part.

The fs-cd.so manager implements the ISO 9660 standard as well as a number of

extensions, including Rock Ridge (RRIP), Joliet (Microsoft), and multisession (Kodak

Photo CD, enhanced audio).

We've deprecated fs-cd.so in favor of fs-udf.so, which now supports

ISO-9660 filesystems in addition to UDF. For information about UDF, see

“Universal Disk Format (UDF) filesystem (p. 213),” later in this chapter.

204 Copyright © 2014, QNX Software Systems Limited

Filesystems

FFS3 filesystem

The FFS3 filesystem drivers implement a POSIX-like filesystem on NOR flash memory

devices. The drivers are standalone executables that contain both the flash filesystem

code and the flash device code. There are versions of the FFS3 filesystem driver for

different embedded systems hardware as well as PCMCIA memory cards.

The naming convention for the drivers is devf-system, where system describes the

embedded system.

To find out what flash devices we currently support, refer to the following sources:

• the boards and mtd-flash directories under

bsp_working_dir/src/hardware/flash

• QNX Neutrino RTOS docs (devf-* entries in the Utilities Reference)

• the QNX Software Systems website (www.qnx.com)

Customization

Along with the prebuilt flash filesystem drivers, including the “generic” driver

(devf-generic), we provide the libraries and source code that you'll need to build

custom flash filesystem drivers for different embedded systems. For information on

how to do this, see the Customizing the Flash Filesystem chapter in Building Embedded

Systems.

Organization

The FFS3 filesystem drivers support one or more logical flash drives. Each logical

drive is called a socket, which consists of a contiguous and homogeneous region of

flash memory. For example, in a system containing two different types of flash device

at different addresses, where one flash device is used for the boot image and the other

for the flash filesystem, each flash device would appear in a different socket.

Each socket may be divided into one or more partitions. Two types of partitions are

supported: raw partitions and flash filesystem partitions.

Raw partitions

A raw partition in the socket is any partition that doesn't contain a flash filesystem.

The driver doesn't recognize any filesystem types other than the flash filesystem. A

raw partition may contain an image filesystem or some application-specific data.

The filesystem will make accessible through a raw mountpoint (see below) any partitions

on the flash that aren't flash filesystem partitions. Note that the flash filesystem

partitions are available as raw partitions as well.

Copyright © 2014, QNX Software Systems Limited 205

FFS3 filesystem

http://www.qnx.com/

Filesystem partitions

A flash filesystem partition contains the POSIX-like flash filesystem, which uses a

QNX Software Systems proprietary format to store the filesystem data on the flash

devices. This format isn't compatible with either the Microsoft FFS2 or PCMCIA FTL

specification.

The filesystem allows files and directories to be freely created and deleted. It recovers

space from deleted files using a reclaim mechanism similar to garbage collection.

Mountpoints

When you start the flash filesystem driver, it will by default mount any partitions it

finds in the socket.

Note that you can specify the mountpoint using mkefs or flashctl (e.g., /flash).

DescriptionMountpoint

raw mountpoint socket X/dev/fsX

raw mountpoint socket X partition Y/dev/fsXpY

filesystem mountpoint socket X partition

Y

/fsXpY

filesystem compressed mountpoint socket

X partition Y

/fsXpY/.cmp

Features

The FFS3 filesystem supports many advanced features, such as POSIX compatibility,

multiple threads, background reclaim, fault recovery, transparent decompression,

endian-awareness, wear-leveling, and error-handling.

POSIX

The filesystem supports the standard POSIX functionality (including long filenames,

access privileges, random writes, truncation, and symbolic links) with the following

exceptions:

• You can't create hard links.

• Access times aren't supported (but file modification times and attribute change

times are).

These design compromises allow this filesystem to remain small and simple, yet include

most features normally found with block device filesystems.

206 Copyright © 2014, QNX Software Systems Limited

Filesystems

Background reclaim

The FFS3 filesystem stores files and directories as a linked list of extents, which are

marked for deletion as they're deleted or updated. Blocks to be reclaimed are chosen

using a simple algorithm that finds the block with the most space to be reclaimed

while keeping level the amount of wear of each individual block. This wear-leveling

increases the MTBF (mean time between failures) of the flash devices, thus increasing

their longevity.

The background reclaim process is performed when there isn't enough free space. The

reclaim process first copies the contents of the reclaim block to an empty spare block,

which then replaces the reclaim block. The reclaim block is then erased. Unlike rotating

media with a mechanical head, proximity of data isn't a factor with a flash filesystem,

so data can be scattered on the media without loss of performance.

Fault recovery

The filesystem has been designed to minimize corruption due to accidental

loss-of-power faults. Updates to extent headers and erase block headers are always

executed in carefully scheduled sequences. These sequences allow the recovery of

the filesystem's integrity in the case of data corruption.

Note that properly designed flash hardware is essential for effective fault-recovery

systems. In particular, special reset circuitry must be in place to hold the system in

“reset” before power levels drop below critical. Otherwise, spurious or random bus

activity can form write/erase commands and corrupt the flash beyond recovery.

Rename operations are guaranteed atomic, even through loss-of-power faults. This

means, for example, that if you lost power while giving an image or executable a new

name, you would still be able to access the file via its old name upon recovery.

When the FFS3 filesystem driver is started, it scans the state of every extent header

on the media (in order to validate its integrity) and takes appropriate action, ranging

from a simple block reclamation to the erasure of dangling extent links. This process

is merged with the filesystem's normal mount procedure in order to achieve optimal

bootstrap timings.

Compression/decompression

For fast and efficient compression/decompression, you can use the deflate and

inflator utilities, which rely on popular deflate/inflate algorithms.

The deflate algorithm combines two algorithms. The first takes care of removing data

duplication in files; the second algorithm handles data sequences that appear the

most often by giving them shorter symbols. Those two algorithms provide excellent

lossless compression of data and executable files. The inflate algorithm simply reverses

what the deflate algorithm does.

Copyright © 2014, QNX Software Systems Limited 207

FFS3 filesystem

The deflate utility is intended for use with the filter attribute for mkefs. You

can also use it to precompress files intended for a flash filesystem.

The inflator resource manager sits in front of the other filesystems that were

previously compressed using the deflate utility. It can almost double the effective

size of the flash memory.

Compressed files can be manipulated with standard utilities such as cp or ftp—they

can display their compressed and uncompressed size with the ls utility if used with

the proper mountpoint. These features make the management of a compressed flash

filesystem seamless to a systems designer.

Flash errors

As flash hardware wears out, its write state-machine may find that it can't write or

erase a particular bit cell. When this happens, the error status is propagated to the

flash driver so it can take proper action (i.e., mark the bad area and try to write/erase

in another place).

This error-handling mechanism is transparent. Note that after several flash errors, all

writes and erases that fail will eventually render the flash read-only. Fortunately, this

situation shouldn't happen before several years of flash operation. Check your flash

specification and analyze your application's data flow to flash in order to calculate its

potential longevity or MTBF.

Endian awareness

The FFS3 filesystem is endian-aware, making it portable across different platforms.

The optimal approach is to use the mkefs utility to select the target's endian-ness.

Utilities

The filesystem supports all the standard POSIX utilities such as ls, mkdir, rm, ln,

mv, and cp.

There are also some QNX Neutrino utilities for managing the flash:

flashctl

Erase, format, and mount flash partitions.

deflate

Compress files for flash filesystems.

mkefs

Create flash filesystem image files.

208 Copyright © 2014, QNX Software Systems Limited

Filesystems

System calls

The filesystem supports all the standard POSIX I/O functions such as open(), close(),

read(), and write(). Special functions such as erasing are supported using the devctl()

function.

Copyright © 2014, QNX Software Systems Limited 209

FFS3 filesystem

NFS filesystem

The Network File System (NFS) allows a client workstation to perform transparent file

access over a network. It allows a client workstation to operate on files that reside on

a server across a variety of operating systems. Client file access calls are converted to

NFS protocol requests, and are sent to the server over the network. The server receives

the request, performs the actual filesystem operation, and sends a response back to

the client.

The Network File System operates in a stateless fashion by using remote procedure

calls (RPC) and TCP/IP for its transport. Therefore, to use fs-nfs2 or fs-nfs3,

you'll also need to run the TCP/IP client for QNX Neutrino.

Any POSIX limitations in the remote server filesystem will be passed through to the

client. For example, the length of filenames may vary across servers from different

operating systems. NFS (versions 2 and 3) limits filenames to 255 characters; mountd

(versions 1 and 3) limits pathnames to 1024 characters.

Although NFS (version 2) is older than POSIX, it was designed to emulate UNIX

filesystem semantics and happens to be relatively close to POSIX. If possible,

you should use fs-nfs3 instead of fs-nfs2.

210 Copyright © 2014, QNX Software Systems Limited

Filesystems

CIFS filesystem

Formerly known as SMB, the Common Internet File System (CIFS) allows a client

workstation to perform transparent file access over a network to a Windows 98 or NT

system, or a UNIX system running an SMB server. Client file access calls are converted

to CIFS protocol requests and are sent to the server over the network. The server

receives the request, performs the actual filesystem operation, and sends a response

back to the client.

The CIFS protocol makes no attempt to conform to

POSIX.

The fs-cifs manager uses TCP/IP for its transport. Therefore, to use fs-cifs

(SMBfsys in QNX 4), you'll also need to run the TCP/IP client for the QNX Neutrino

RTOS.

Copyright © 2014, QNX Software Systems Limited 211

CIFS filesystem

Linux Ext2 filesystem

The Ext2 filesystem provides transparent access to Linux disk partitions.

The fs-ext2.so implementation supports the standard set of features found in Ext2

versions 0 and 1.

Sparse file support is included in order to be compatible with existing Linux partitions.

Other filesystems can only be “stacked” read-only on top of sparse files. There are no

such restrictions on normal files.

If an Ext2 filesystem isn't unmounted properly, a filesystem checker is usually

responsible for cleaning up the next time the filesystem is mounted. Although the

fs-ext2.so module is equipped to perform a quick test, it automatically mounts

the filesystem as read-only if it detects any significant problems (which should be

fixed using a filesystem checker).

212 Copyright © 2014, QNX Software Systems Limited

Filesystems

Universal Disk Format (UDF) filesystem

The Universal Disk Format (UDF) filesystem provides access to recordable media, such

as CD, CD-R, CD-RW, and DVD. It's used for DVD video, but can also be used for

backups to CD, and so on. For more information, see

http://osta.org/specs/index.htm.

The UDF filesystem is supported by the fs-udf.so shared object.

In our implementation, UDF filesystems are

read-only.

Copyright © 2014, QNX Software Systems Limited 213

Universal Disk Format (UDF) filesystem

http://osta.org/specs/index.htm

Apple Macintosh HFS and HFS Plus

The Apple Macintosh HFS (Hierarchical File System) and HFS Plus are the filesystems

on Apple Macintosh systems.

The fs-mac.so shared object provides read-only access to HFS and HFS Plus disks

on a QNX Neutrino system. The following variants are recognized: HFS, HFS Plus,

HFS Plus in an HFS wrapper, HFSX, and HFS/ISO-9660 hybrid. It also recognizes

HFSJ (HFS Plus with journal), but only when the journal is clean, not when it's dirty

from an unclean shutdown.

214 Copyright © 2014, QNX Software Systems Limited

Filesystems

Windows NT filesystem

The NT filesystem is used on Microsoft Windows NT and later.

The fs-nt.so shared object provides read-only access to NTFS disks on a QNX

Neutrino system.

Copyright © 2014, QNX Software Systems Limited 215

Windows NT filesystem

Virtual inflator filesystem

QNX Neutrino provides an Inflator virtual filesystem, which is a resource manager that

sits in front of other filesystems and inflates files that were previously deflated (using

the deflate utility).

The inflator utility is typically used when the underlying filesystem is a flash

filesystem. Using it can almost double the effective size of the flash memory.

If a file is being opened for a read, inflator attempts to open the file itself on an

underlying filesystem. It reads the first 16 bytes and checks for the signature of a

deflated file. If the file was deflated, inflator places itself between the application

and the underlying filesystem. All reads return the original file data before it was

deflated.

From the application's point of view, the file appears to be uncompressed. Random

seeks are also supported. If the application does a stat() on the file, the size of the

inflated file (the original size before it was deflated) is returned.

216 Copyright © 2014, QNX Software Systems Limited

Filesystems

Chapter 10
PPS

The QNX Neutrino Persistent Publish/Subscribe (PPS) service is a small, extensible

publish/subscribe service that offers persistence across reboots. It's designed to provide

a simple and easy-to-use solution for both publish/subscribe and persistence in

embedded systems, answering a need for building loosely connected systems using

asynchronous publications and notifications.

With PPS, publishing is asynchronous: the subscriber need not be waiting for the

publisher. In fact, the publisher and subscriber rarely know each other; their only

connection is an object which has a meaning and purpose for both publisher and

subscriber.

The PPS design is in many ways similar to many process control systems where the

objects are control values updated by hardware or software. Subscribers can be alarm

handling code, displays, and so on. Since there is a single instance of an object,

persistence is a natural property that can be applied to it.

Copyright © 2014, QNX Software Systems Limited 217

Persistence

PPS maintains its objects in memory while it's running.

It will, as required:

• save its objects to persistent storage, either on demand while it's running, or at

shutdown

• restore its objects on startup, either immediately, or on first access (deferred

loading)

The underlying persistent storage used by PPS relies on a reliable filesystem, such

as:

• disk—Power-Safe filesystem

• NAND Flash—ETFS filesystem

• Nor Flash—FFS3 filesystem

• other—a customer-generated filesystem

When PPS starts up, it immediately builds the directory hierarchy from the encoded

filenames on the persistent filesystem. It defers loading the objects in the directories

until first access to one of the files. This access could be an open() call on a PPS

object, or a readdir() call on the PPS directory.

On shutdown, PPS always saves any modified objects to a persistent filesystem. You

can also force PPS to save an object at any time by calling fsync() on the object. When

PPS saves to a persistent filesystem, it saves all objects to a single directory.

You can set PPS object and attribute qualifiers to have PPS not save specific

objects or attributes.

218 Copyright © 2014, QNX Software Systems Limited

PPS

PPS objects

PPS uses an object-based system; that is, a system with objects whose properties a

publisher can modify. Clients that subscribe to an object receive updates when that

object changes—when the publisher has modified it.

PPS objects exist as files with attributes in a special PPS filesystem. By default, PPS

objects appear under /fs/pps. You can:

• Create directories and populate them with PPS objects by creating files in the

directories.

• Use the open(), then the read() and write() functions to query and change PPS

objects.

• Use standard utilities as simple debugging tools.

PPS directories can include special objects, such as .all and .notify, which

applications can open to facilitate subscription behavior.

When PPS creates, deletes, or truncates an object (a file or a directory), it places a

notification string into the queue of any subscriber or publisher that has open either

that object or the .all special object for the directory with the modified object. This

file can be open in either full or delta mode.

PPS supports pathname open options, and objects and attribute qualifiers. PPS uses

pathname open options to apply open options on the file descriptor used to open an

object. Object and attribute qualifiers set specific actions to take with an object or

attribute; for example, make an object non-persistent, or delete an attribute.

Pathname open options

PPS objects support an extended syntax on the pathnames used to open

them. Open options are added as suffixes to the pathname, following a

question mark (“?”). That is, the PPS service uses any data that follows a

question mark in a pathname to apply open options on the file descriptor

used to access the object. Multiple options are separated by question marks.

Object and attribute qualifiers

You can set qualifiers to read() and write() calls by starting a line containing

an object or attribute name with an opening square bracket, followed by a

list of single-letter or single-numeral qualifiers and terminated by a closing

square bracket.

Copyright © 2014, QNX Software Systems Limited 219

PPS objects

Publishing

To publish to a PPS object, a publisher simply calls open() for the object file with

O_WRONLY to publish only, or O_RDWR to publish and subscribe. The publisher can

then call write() to modify the object's attributes. This operation is non-blocking.

PPS supports multiple publishers that publish to the same PPS object. This capability

is required because different publishers may have access to data that applies to

different attributes for the same object.

In a multimedia system, for instance, the renderer may be the source of a time::value

attribute, while the HMI may be the source of a duration::value attribute. A

publisher that changes only the time attribute will update only that attribute when

it writes to the object. It will leave the other attributes unchanged.

220 Copyright © 2014, QNX Software Systems Limited

PPS

Subscribing

PPS clients can subscribe to multiple objects, and PPS objects can have multiple

subscribers. When a publisher changes an object, all clients subscribed to that object

are informed of the change.

To subscribe to an object, a client simply calls open() for the object with O_RDONLY

to subscribe only, or O_RDWR to publish and subscribe. The subscriber can then query

the object with a read() call.

A subscriber can open an object in full mode, in delta mode, or in full and delta modes

at the same time. The figure below illustrates the different information sent to

subscribers who open a PPS object in full mode and in delta mode.

Delta Delta mode

Full mode

Delta Delta Subscriber

Subscriber

PPS
object

Figure 44: PPS full and delta subscription modes.

In all cases, PPS maintains persistent objects with states—there's always an

object. The mode used to open an object doesn't change the object; it

determines only the subscriber's view of the object.

Full mode

In full mode (the default), the subscriber always receives a single, consistent

version of the entire object as it exists at the moment when it is requested.

If a publisher changes an object several times before a subscriber asks for

it, the subscriber receive s the state of the object at the time of asking only.

If the object changes again, the subscriber is notified again of the change.

Thus, in full mode, the subscriber may miss multiple changes to an

object—changes to the object that occur before the subscriber asks for it.

Delta mode

In delta mode, a subscriber receives only the changes (but all the changes)

to an object's attributes. On the first read, since a subscriber knows nothing

about the state of an object, PPS assumes everything has changed. Therefore,

a subscriber's first read in delta mode returns all attributes for an object,

while subsequent reads return only the changes since that subscriber's

previous read. Thus, in delta mode, the subscriber always receives all changes

to an object.

Copyright © 2014, QNX Software Systems Limited 221

Subscribing

PPS uses directories as a natural grouping mechanism to simplify and make more

efficient the task of subscribing to multiple objects. Subscribers can open multiple

objects, either by calling open() then select() on the objects, or, more easily, by opening

the special .all object which merges all objects in its directory.

PPS provides a mechanism to associate a set of file descriptors with a notification

group. This mechanism allows you to read only the PPS special notification object to

receive notification of changes to all objects associated with a notification group.

222 Copyright © 2014, QNX Software Systems Limited

PPS

Chapter 11
Character I/O

A key requirement of any realtime operating system is high-performance character

I/O.

Character devices can be described as devices to which I/O consists of a sequence of

bytes transferred serially, as opposed to block-oriented devices (e.g., disk drives).

As in the POSIX and UNIX tradition, these character devices are located in the OS

pathname space under the /dev directory. For example, a serial port to which a modem

or terminal could be connected might appear in the system as:

/dev/ser1

Typical character devices found on PC hardware include:

• serial ports

• parallel ports

• text-mode consoles

• pseudo terminals (ptys)

Programs access character devices using the standard open(), close(), read(), and

write() API functions. Additional functions are available for manipulating other aspects

of the character device, such as baud rate, parity, flow control, etc.

Since it's common to run multiple character devices, they have been designed as a

family of drivers and a library called io-char to maximize code reuse.

Serial
driver

Parallel
driver

Console
driver

Pty
driver

io-char

Figure 45: The io-char module is implemented as a library.

As shown in this diagram, io-char is implemented as a library. The io-char module

contains all the code to support POSIX semantics on the device. It also contains a

significant amount of code to implement character I/O features beyond POSIX but

desirable in a realtime system. Since this code is in the common library, all drivers

inherit these capabilities.

The driver is the executing process that calls into the library. In operation, the driver

starts first and invokes io-char. The drivers themselves are just like any other QNX

Copyright © 2014, QNX Software Systems Limited 223

Neutrino process and can run at different priorities according to the nature of the

hardware being controlled and the client's requesting service.

Once a single character device is running, the memory cost of adding additional devices

is minimal, since only the code to implement the new driver structure would be new.

224 Copyright © 2014, QNX Software Systems Limited

Character I/O

Driver/io-char communication

The io-char library manages the flow of data between an application and the device

driver. Data flows between io-char and the driver through a set of memory queues

associated with each character device.

Three queues are used for each device. Each queue is implemented using a first-in,

first-out (FIFO) mechanism.

Driver interface

Application
processes

Console
driver

Parallel
driver

out in canon

Serial
driver

System console

Parallel printer

Serial
communication

ports

Process
A

Process
B

Process
C

io-char

Figure 46: Device I/O in the QNX Neutrino RTOS.

Received data is placed into the raw input queue by the driver and is consumed by

io-char only when application processes request data. (For details on raw versus

edited or canonical input, see the section “Input modes (p. 228)” later in this chapter.)

Interrupt handlers within drivers typically call a trusted library routine within io-char

to add data to this queue—this ensures a consistent input discipline and minimizes

the responsibility of the driver (and effort required to create new drivers).

The io-char module places output data into the output queue to be consumed by

the driver as characters are physically transmitted to the device. The module calls a

trusted routine within the driver each time new data is added so it can “kick” the

driver into operation (in the event that it was idle). Since output queues are used,

io-char implements write-behind for all character devices. Only when the output

buffers are full will io-char cause a process to block while writing.

Copyright © 2014, QNX Software Systems Limited 225

Driver/io-char communication

The canonical queue is managed entirely by io-char and is used while processing

input data in edited mode. The size of this queue determines the maximum edited

input line that can be processed for a particular device.

The sizes of these queues are configurable using command-line options. Default values

are usually more than adequate to handle most hardware configurations, but you can

“tune” these to reduce overall system memory requirements, to accommodate unusual

hardware situations, or to handle unique protocol requirements.

Device drivers simply add received data to the raw input queue or consume and transmit

data from the output queue. The io-char module decides when (and if) output

transmission is to be suspended, how (and if) received data is echoed, etc.

226 Copyright © 2014, QNX Software Systems Limited

Character I/O

Device control

Low-level device control is implemented using the devctl() call.

The POSIX terminal control functions are layered on top of devctl() as follows:

tcgetattr()

Get terminal attributes.

tcsetattr()

Set terminal attributes.

tcgetpgrp()

Get ID of process group leader for a terminal.

tcsetpgrp()

Set ID of process group leader for a terminal.

tcsendbreak()

Send a break condition.

tcflow()

Suspend or restart data transmission/reception.

QNX Neutrino extensions

The QNX Neutrino extensions to the terminal control API are as follows:

tcdropline()

Initiate a disconnect. For a serial device, this will pulse the DTR line.

tcinject()

Inject characters into the canonical buffer.

The io-char module acts directly on a common set of devctl() commands supported

by most drivers. Applications send device-specific devctl() commands through io-char

to the drivers.

Copyright © 2014, QNX Software Systems Limited 227

Device control

Input modes

Each device can be in a raw or edited input mode.

Raw input mode

In raw mode, io-char performs no editing on received characters. This reduces the

processing done on each character to a minimum and provides the highest performance

interface for reading data.

Fullscreen programs and serial communications programs are examples of applications

that use a character device in raw mode.

In raw mode, each character is received into the raw input buffer by the interrupt

handler. When an application requests data from the device, it can specify under what

conditions an input request is to be satisfied. Until the conditions are satisfied, the

interrupt handler won't signal the driver to run, and the driver won't return any data

to the application. The normal case of a simple read by an application would block

until at least one character was available.

The following diagram shows the full set of available conditions:

MIN
TIME

TIMEOUT
FORWARD

Respond when at least this number of characters arrives.
Respond if a pause in the character stream occurs.
Respond if an overall amount of time passes.
Respond if a framing character arrives.

MIN
TIME

TIMEOUT
FORWARD

OR io-char reads n bytes

Figure 47: Conditions for satisfying an input request.

In the case where multiple conditions are specified, the read will be satisfied when

any one of them is satisfied.

MIN

The qualifier MIN is useful when an application has knowledge of the number

of characters it expects to receive.

Any protocol that knows the character count for a frame of data can use MIN

to wait for the entire frame to arrive. This significantly reduces IPC and

process scheduling. MIN is often used in conjunction with TIME or TIMEOUT.

MIN is part of the POSIX standard.

TIME

The qualifier TIME is useful when an application is receiving streaming data

and wishes to be notified when the data stops or pauses. The pause time is

specified in 1/10ths of a second. TIME is part of the POSIX standard.

228 Copyright © 2014, QNX Software Systems Limited

Character I/O

TIMEOUT

The qualifier TIMEOUT is useful when an application has knowledge of how

long it should wait for data before timing out. The timeout is specified in

1/10ths of a second.

Any protocol that knows the character count for a frame of data it expects

to receive can use TIMEOUT. This in combination with the baud rate allows

a reasonable guess to be made when data should be available. It acts as a

deadman timer to detect dropped characters. It can also be used in

interactive programs with user input to time out a read if no response is

available within a given time.

TIMEOUT is a QNX Neutrino extension and is not part of the POSIX standard.

FORWARD

The qualifier FORWARD is useful when a protocol is delimited by a special

framing character. For example, the PPP protocol used for TCP/IP over a

serial link starts and ends its packets with a framing character. When used

in conjunction with TIMEOUT, the FORWARD character can greatly improve

the efficiency of a protocol implementation. The protocol process will receive

complete frames, rather than character by character. In the case of a dropped

framing character, TIMEOUT or TIME can be used to quickly recover.

This greatly minimizes the amount of IPC work for the OS and results in a

much lower processor utilization for a given TCP/IP data rate. It's interesting

to note that PPP doesn't contain a character count for its frames. Without

the data-forwarding character, an implementation might be forced to read

the data one character at a time.

FORWARD is a QNX Neutrino extension and is not part of the POSIX

standard.

The ability to “push” the processing for application notification into the

service-providing components of the OS reduces the frequency with which

user-level processing must occur. This minimizes the IPC work to be done

in the system and frees CPU cycles for application processing. In addition,

if the application implementing the protocol is executing on a different

network node than the communications port, the number of network

transactions is also minimized.

For intelligent, multiport serial cards, the data-forwarding character

recognition can also be implemented within the intelligent serial card itself,

thereby significantly reducing the number of times the card must interrupt

the host processor for interrupt servicing.

Copyright © 2014, QNX Software Systems Limited 229

Input modes

Edited input mode

In edited mode, io-char performs line-editing operations on each received character.

Only when a line is “completely entered”—typically when a carriage return (CR) is

received—will the line of data be made available to application processes. This mode

of operation is often referred to as canonical or sometimes “cooked” mode.

Most nonfullscreen applications run in edited mode, because this allows the application

to deal with the data a line at a time, rather than have to examine each character

received, scanning for an end-of-line character.

In edited mode, each character is received into the raw input buffer by the interrupt

handler. Unlike raw mode where the driver is scheduled to run only when some input

conditions are met, the interrupt handler will schedule the driver on every received

character.

There are two reasons for this. First, edited input mode is rarely used for

high-performance communication protocols. Second, the work of editing is significant

and not suitable for an interrupt handler.

When the driver runs, code in io-char will examine the character and apply it to the

canonical buffer in which it's building a line. When a line is complete and an

application requests input, the line will be transferred from the canonical buffer to

the application—the transfer is direct from the canonical buffer to the application

buffer without any intervening copies.

The editing code correctly handles multiple pending input lines in the canonical buffer

and allows partial lines to be read. This can happen, for example, if an application

asked only for 1 character when a 10-character line was available. In this case, the

next read will continue where the last one left off.

The io-char module provides a rich set of editing capabilities, including full support

for moving over the line with cursor keys and for changing, inserting, or deleting

characters. Here are some of the more common capabilities:

LEFT

Move the cursor one character to the left.

RIGHT

Move the cursor one character to the right.

HOME

Move the cursor to the beginning of the line.

END

Move the cursor to the end of the line.

230 Copyright © 2014, QNX Software Systems Limited

Character I/O

ERASE

Erase the character to the left of the cursor.

DEL

Erase the character at the current cursor position.

KILL

Erase the entire input line.

UP

Erase the current line and recall a previous line.

DOWN

Erase the current line and recall the next line.

INS

Toggle between insert mode and typeover mode (every new line starts in

insert mode).

Line-editing characters vary from terminal to terminal. The console always starts out

with a full set of editing keys defined.

If a terminal is connected via a serial channel, you need to define the editing characters

that apply to that particular terminal. To do this, you can use the stty utility. For

example, if you have an ANSI terminal connected to a serial port (called /dev/ser1),

you would use the following command to extract the appropriate editing keys from the

terminfo database and apply them to /dev/ser1:

stty term=ansi </dev/ser1

Copyright © 2014, QNX Software Systems Limited 231

Input modes

Device subsystem performance

The flow of events within the device subsystem is engineered to minimize overhead

and maximize throughput when a device is in raw mode. To accomplish this, the

following rules are used:

• Interrupt handlers place received data directly into a memory queue. Only when a

read operation is pending, and that read operation can be satisfied, will the interrupt

handler schedule the driver to run. In all other cases, the interrupt simply returns.

Moreover, if io-char is already running, no scheduling takes place, since the

availability of data will be noticed without further notification.

• When a read operation is satisfied, the driver replies to the application process

directly from the raw input buffer into the application's receive buffer. The net

result is that the data is copied only once.

These rules—coupled with the extremely small interrupt and scheduling latencies

inherent within the OS—result in a very lean input model that provides POSIX

conformance together with extensions suitable to the realtime requirements of protocol

implementations.

232 Copyright © 2014, QNX Software Systems Limited

Character I/O

Console devices

System consoles (with VGA-compatible graphics chips in text mode) are managed by

the devc-con or devc-con-hid driver. The video display card/screen and the system

keyboard are collectively referred to as the physical console.

The devc-con or devc-con-hid driver permits multiple sessions to be run

concurrently on a physical console by means of virtual consoles. The devc-con

console driver process typically manages more than one set of I/O queues to io-char,

which are made available to user processes as a set of character devices with names

like /dev/con1, /dev/con2, etc. From the application's point of view, there “really

are” multiple consoles available to be used.

Of course, there's only one physical console (screen and keyboard), so only one of

these virtual consoles is actually displayed at any one time. The keyboard is “attached”

to whichever virtual console is currently visible.

Terminal emulation

The console drivers emulate an ANSI terminal.

Copyright © 2014, QNX Software Systems Limited 233

Console devices

Serial devices

Serial communication channels are managed by the devc-ser* family of driver

processes. These drivers can manage more than one physical channel and provide

character devices with names such as /dev/ser1, /dev/ser2, etc.

When devc-ser* is started, command-line arguments can specify which—and how

many—serial ports are installed. On a PC-compatible system, this will typically be the

two standard serial ports often referred to as com1 and com2. The devc-ser* driver

directly supports most nonintelligent multiport serial cards.

QNX Neutrino includes various serial drivers (e.g., devc-ser8250). For details, see

the devc-ser* entries in the Utilities Reference.

The devc-ser* drivers support hardware flow control (except under edited mode)

provided that the hardware supports it. Loss of carrier on a modem can be programmed

to deliver a SIGHUP signal to an application process (as defined by POSIX).

234 Copyright © 2014, QNX Software Systems Limited

Character I/O

Parallel devices

Parallel printer ports are managed by the devc-par driver. When devc-par is started,

command-line arguments can specify which parallel port is installed.

The devc-par driver is an output-only driver, so it has no raw input or canonical

input queues. The size of the output buffer can be configured with a command-line

argument. If configured to a large size, this creates the effect of a software print buffer.

Copyright © 2014, QNX Software Systems Limited 235

Parallel devices

Pseudo terminal devices (ptys)

Pseudo terminals are managed by the devc-pty driver.

Command-line arguments to devc-pty specify the number of pseudo terminals to

create.

A pseudo terminal (pty) is a pair of character devices: a master device and a slave

device. The slave device provides an interface identical to that of a tty device as defined

by POSIX. However, while other tty devices represent hardware devices, the slave

device instead has another process manipulating it through the master half of the

pseudo terminal. That is, anything written on the master device is given to the slave

device as input; anything written on the slave device is presented as input to the

master device. As a result, pseudo-ttys can be used to connect processes that would

otherwise expect to be communicating with a character device.

Serial line devc-ser* Application
process

Process devc-pty Application
process

Figure 48: Pseudo-ttys.

Ptys are routinely used to create pseudo-terminal interfaces for programs such as

telnet, which uses TCP/IP to provide a terminal session to a remote system.

236 Copyright © 2014, QNX Software Systems Limited

Character I/O

Chapter 12
Networking Architecture

As with other service-providing processes in the QNX Neutrino RTOS, the networking

services execute outside the kernel. Developers are presented with a single unified

interface, regardless of the configuration and number of networks involved.

This architecture allows:

• network drivers to be started and stopped dynamically

• Qnet and other protocols to run together in any combination

Our native network subsystem consists of the network manager executable (io-pkt-v4,

io-pkt-v4-hc, or io-pkt-v6-hc), plus one or more shared library modules. These

modules can include protocols (e.g. lsm-qnet.so) and drivers (e.g.

devnp-speedo.so).

Copyright © 2014, QNX Software Systems Limited 237

Network manager (io-pkt*)

The io-pkt* component is the active executable within the network subsystem.

Acting as a kind of packet redirector/multiplexer, io-pkt* is responsible for loading

protocol and driver modules based on the configuration given to it on its command

line (or via the mount command after it's started).

Employing a zero-copy architecture, the io-pkt* executable efficiently loads multiple

networking protocols or drivers (e.g., lsm-qnet.so) on the fly— these modules are

shared objects that install into io-pkt*.

The io-pkt stack is very similar in architecture to other component subsystems inside

the operating system. At the bottom layer, are drivers that provide the mechanism for

passing data to and receiving data from the hardware. The drivers hook into a

multi-threaded layer-2 component (that also provides fast forwarding and bridging

capability) that ties them together and provides a unified interface for directing packets

into the protocol-processing components of the stack. This includes, for example,

handling individual IP and upper-layer protocols such as TCP and UDP.

In QNX Neutrino, a resource manager forms a layer on top of the stack. The resource

manager acts as the message-passing intermediary between the stack and user

applications. It provides a standardized type of interface involving open(), read(),

write(), and ioctl() that uses a message stream to communicate with networking

applications. Networking applications written by the user link with the socket library.

The socket library converts the message-passing interface exposed by the stack into

a standard BSD-style socket layer API, which is the standard for most networking code

today.

Ether input

IP input

BPF

Packet Filtering

802.11
framework

Resource
Manager

A

Message-passing API

Function calls

Stack

WiFi drivers
(.so)

Drivers
(.so)

Protocols
(.so)

Stack
Resource Manager

Net application Stack utilities

libsocket

libc

Legend:

io-pkt

libc
libprotocol A

Application

Figure 49: A detailed view of the io-pkt architecture.

238 Copyright © 2014, QNX Software Systems Limited

Networking Architecture

At the driver layer, there are interfaces for Ethernet traffic (used by all Ethernet drivers),

and an interface into the stack for 802.11 management frames from wireless drivers.

The hc variants of the stack also include a separate hardware crypto API that allows

the stack to use a crypto offload engine when it's encrypting or decrypting data for

secure links. You can load drivers (built as DLLs for dynamic linking and prefixed with

devnp- for new-style drivers, and devn- for legacy drivers) into the stack using the

-d option to io-pkt.

APIs providing connection into the data flow at either the Ethernet or IP layer allow

protocols to coexist within the stack process. Protocols (such as Qnet) are also built

as DLLs. A protocol links directly into either the IP or Ethernet layer and runs within

the stack context. They're prefixed with lsm (loadable shared module) and you load

them into the stack using the -p option. The tcpip protocol (-ptcpip) is a special

option that the stack recognizes, but doesn't link a protocol module for (since the IP

stack is already built in). You still use the -ptcpip option to pass additional parameters

to the stack that apply to the IP protocol layer (e.g., -ptcpip prefix=/alt to get the IP

stack to register /alt/dev/socket as the name of its resource manager).

A protocol requiring interaction from an application sitting outside of the stack process

may include its own resource manager infrastructure (this is what Qnet does) to allow

communication and configuration to occur.

In addition to drivers and protocols, the stack also includes hooks for packet filtering.

The main interfaces supported for filtering are:

Berkeley Packet Filter (BPF) interface

A socket-level interface that lets you read and write, but not modify or block,

packets, and that you access by using a socket interface at the application

layer (see

http://en.wikipedia.org/wiki/Berkeley_Packet_Filter). This

is the interface of choice for basic, raw packet interception and transmission

and gives applications outside of the stack process domain access to raw

data streams.

Packet Filter (PF) interface

A read/write/modify/block interface that gives complete control over which

packets are received by or transmitted from the upper layers and is more

closely related to the io-net filter API.

For more information, see the Packet Filtering and Firewalling chapter of the QNX

Neutrino Core Networking User's Guide.

Copyright © 2014, QNX Software Systems Limited 239

Network manager (io-pkt*)

http://en.wikipedia.org/wiki/Berkeley_Packet_Filter

Threading model

The default mode of operation is for io-pkt to create one thread per CPU.

The io-pkt stack is fully multithreaded at layer 2. However, only one thread may

acquire the “stack context” for upper-layer packet processing. If multiple interrupt

sources require servicing at the same time, these may be serviced by multiple threads.

Only one thread will be servicing a particular interrupt source at any point in time.

Typically an interrupt on a network device indicates that there are packets to be

received. The same thread that handles the receive processing may later transmit the

received packets out another interface. Examples of this are layer-2 bridging and the

“ipflow” fastforwarding of IP packets.

The stack uses a thread pool to service events that are generated from other parts of

the system. These events may be:

• time outs

• ISR events

• other things generated by the stack or protocol modules

You can use a command-line option to the driver to control the priority at which the

thread is run to receive packets. Client connection requests are handled in a floating

priority mode (i.e., the thread priority matches that of the client application thread

accessing the stack resource manager).

Once a thread receives an event, it examines the event type to see if it's a hardware

event, stack event, or “other” event:

• If the event is a hardware event, the hardware is serviced and, for a receive packet,

the thread determines whether bridging or fast-forwarding is required. If so, the

thread performs the appropriate lookup to determine which interface the packet

should be queued for, and then takes care of transmitting it, after which it goes

back to check and see if the hardware needs to be serviced again.

• If the packet is meant for the local stack, the thread queues the packet on the

stack queue. The thread then goes back and continues checking and servicing

hardware events until there are no more events.

• Once a thread has completed servicing the hardware, it checks to see if there's

currently a stack thread running to service stack events that may have been

generated as a result of its actions. If there's no stack thread running, the thread

becomes the stack thread and loops, processing stack events until there are none

remaining. It then returns to the “wait for event” state in the thread pool.

This capability of having a thread change directly from being a hardware-servicing

thread to being the stack thread eliminates context switching and greatly improves

the receive performance for locally terminated IP flows.

240 Copyright © 2014, QNX Software Systems Limited

Networking Architecture

Protocol module

The networking protocol module is responsible for implementing the details of a

particular protocol (e.g., Qnet).

Each protocol component is packaged as a shared object (e.g., lsm-qnet.so). One

or more protocol components may run concurrently.

For example, the following line from a buildfile shows io-pkt-v4 loading the Qnet

protocol via its -p protocol command-line option:

io-pkt-v4 -dne2000 -pqnet

The io-pkt* managers include the TCP/IP

stack.

Qnet is the QNX Neutrino native networking protocol. Its main purpose is to extend

the OS's powerful message-passing IPC transparently over a network of microkernels.

Qnet also provides Quality of Service policies to help ensure reliable network

transactions.

For more information on the Qnet and TCP/IP protocols, see the following chapters in

this book:

• Native Networking (Qnet) (p. 243)

• TCP/IP Networking (p. 257)

Copyright © 2014, QNX Software Systems Limited 241

Protocol module

Driver module

The network driver module is responsible for managing the details of a particular

network adaptor (e.g., an NE-2000 compatible Ethernet controller). Each driver is

packaged as a shared object and installs into the io-pkt* component.

Once io-pkt* is running, you can dynamically load drivers at the command line

using the mount command.

For example, the following commands start io-pkt-v6-hc and then mount the

driver for the Broadcom 57xx chip set adapter:

io-pkt-v6-hc &
mount -T io-pkt devnp-bge.so

All network device drivers are shared objects whose names are of the form

devnp-driver.so.

The io-pkt* manager can also load legacy io-net drivers. The names of

these drivers start with devn-.

Once the shared object is loaded, io-pkt* will then initialize it. The driver and

io-pkt* are then effectively bound together—the driver will call into io-pkt* (for

example when packets arrive from the interface) and io-pkt* will call into the driver

(for example when packets need to be sent from an application to the interface).

To unload a legacy io-net driver, you can use the umount command. For example:

umount /dev/io-net/en0

To unload a new-style driver or a legacy io-net driver, use the ifconfig destroy

command:

ifconfig bge0 destroy

For more information on network device drivers, see their individual utility pages

(devn-*, devnp-*) in the Utilities Reference.

242 Copyright © 2014, QNX Software Systems Limited

Networking Architecture

Chapter 13
Native Networking (Qnet)

In the Interprocess Communication (IPC) chapter earlier in this manual, we described

message passing in the context of a single node. But the true power of the QNX

Neutrino RTOS lies in its ability to take the message-passing paradigm and extend it

transparently over a network of microkernels. This chapter describes QNX Neutrino

native networking (via the Qnet protocol).

Copyright © 2014, QNX Software Systems Limited 243

QNX Neutrino distributed

At the heart of QNX Neutrino native networking is the Qnet protocol, which is deployed

as a network of tightly coupled trusted machines.

Qnet lets these machines share their resources efficiently with little overhead. Using

Qnet, you can use the standard OS utilities (cp, mv, and so on) to manipulate files

anywhere on the Qnet network as if they were on your machine. In addition, the Qnet

protocol doesn't do any authentication of remote requests; files are protected by the

normal permissions that apply to users and groups. Besides files, you can also access

and start/stop processes, including managers, that reside on any machine on the Qnet

network.

The distributed processing power of Qnet lets you do the following tasks efficiently:

• Access your remote filesystem.

• Scale your application with unprecedented ease.

• Write applications using a collection of cooperating processes that communicate

transparently with each other using QNX Neutrino message-passing.

• Extend your application easily beyond a single processor or SMP machine to several

single-processor machines and distribute your processes among those CPUs.

• Divide your large application into several processes, where each process can perform

different functions. These processes coordinate their work using message passing.

• Take advantage of Qnet's inherent remote procedure call functionality.

Moreover, since Qnet extends QNX Neutrino message passing over the network, other

forms of IPC (e.g., signals, message queues, named semaphores) also work over the

network.

To understand how network-wide IPC works, consider two processes that wish to

communicate with each other: a client process and a server process (in this case, the

serial port manager process). In the single-node case, the client simply calls open(),

read(), write(), etc. As we'll see shortly, a high-level POSIX call such as open() actually

entails message-passing kernel calls “underneath” (ConnectAttach(), MsgSend(), etc.).

But the client doesn't need to concern itself with those functions; it simply calls open().

fd = open("/dev/ser1",O_RDWR....); /*Open a serial device*/

Now consider the case of a simple network with two machines—one contains the client

process, the other contains the server process.

244 Copyright © 2014, QNX Software Systems Limited

Native Networking (Qnet)

lab1 lab2

Client Server

Figure 50: A simple network where the client and server reside on separate machines.

The code required for client-server communication is identical to the code in the

single-node case, but with one important exception: the pathname. The pathname will

contain a prefix that specifies the node that the service (/dev/ser1) resides on. As

we'll see later, this prefix will be translated into a node descriptor for the lower-level

ConnectAttach() kernel call that will take place. Each node in the network is assigned

a node descriptor, which serves as the only visible means to determine whether the

OS is running as a network or standalone.

For more information on node descriptors, see the Transparent Distributed Processing

with Qnet chapter of the QNX Neutrino Programmer's Guide.

Copyright © 2014, QNX Software Systems Limited 245

QNX Neutrino distributed

Name resolution and lookup

When you run Qnet, the pathname space of all the nodes in your Qnet network is added

to yours. Recall that a pathname is a symbolic name that tells a program where to

find a file within the directory hierarchy based at root (/).

The pathname space of remote nodes will appear under the prefix /net (the directory

created by the Qnet protocol manager, lsm-qnet.so, by default).

For example, remote node1 would appear as:

/net/node1/dev/socket
/net/node1/dev/ser1
/net/node1/home
/net/node1/bin
....

So with Qnet running, you can now open pathnames (files or managers) on other remote

Qnet nodes, just as you open files locally on your own node. This means you can access

regular files or manager processes on other Qnet nodes as if they were executing on

your local node.

Recall our open() example above. If you wanted to open a serial device on node1

instead of on your local machine, you simply specify the path:

fd = open("/net/node1/dev/ser1",O_RDWR...); /*Open a serial device on node1*/

For client-server communications, how does the client know what node descriptor to

use for the server?

The client uses the filesystem's pathname space to “look up” the server's address. In

the single-machine case, the result of that lookup will be a node descriptor, a process

ID, and a channel ID. In the networked case, the results are the same—the only

difference will be the value of the node descriptor.

Then the server is:If node descriptor is:

Local (i.e., “this node”)0 (or ND_LOCAL_NODE)

RemoteNonzero

File descriptor (connection ID)

The practical result in both the local and networked case is that when the client

connects to the server, the client gets a file descriptor (or connection ID in the case

of kernel calls such as ConnectAttach()). This file descriptor is then used for all

subsequent message-passing operations. Note that from the client's perspective, the

file descriptor is identical for both the local and networked case.

246 Copyright © 2014, QNX Software Systems Limited

Native Networking (Qnet)

Behind a simple open()

Let's return to our open() example. Suppose a client on one node (lab1) wishes to

use the serial port (/dev/ser1) on another node (lab2). The client will effectively

perform an open() on the pathname /net/lab2/dev/ser1.

The following diagram shows the steps involved when the client open()'s

/net/lab2/dev/ser1:

3

4

Process
manager

Serial
driver

Qnet

3

4

Qnet

Process
manager

Client

1
2

3

4

lab1 lab2

Figure 51: A client-server message pass across the network.

Here are the interactions:

1. A message is sent from the client to its local process manager, effectively asking

who should be contacted to resolve the pathname /net/lab2/dev/ser1.

Since the native network manager (lsm-qnet.so) has taken over the entire /net

namespace, the process manager returns a redirect message, saying that the client

should contact the local network manager for more information.

2. The client then sends a message to the local network manager, again asking who

should be contacted to resolve the pathname.

The local network manager then replies with another redirect message, giving the

node descriptor, process ID, and channel ID of the process manager on node

lab2—effectively deferring the resolution of the request to node lab2.

3. The client then creates a connection to the process manager on node lab2, once

again asking who should be contacted to resolve the pathname.

The process manager on node lab2 returns another redirect, this time with the

node descriptor, channel ID, and process ID of the serial driver on its own node.

4. The client creates a connection to the serial driver on node lab2, and finally gets

a connection ID that it can then use for subsequent message-passing operations.

After this point, from the client's perspective, message passing to the connection

ID is identical to the local case. Note that all further message operations are now

direct between the client and server.

Copyright © 2014, QNX Software Systems Limited 247

Name resolution and lookup

The key thing to keep in mind here is that the client isn't aware of the operations

taking place; these are all handled by the POSIX open() call. As far as the client is

concerned, it performs an open() and gets back a file descriptor (or an error indication).

In each subsequent name-resolution step, the request from the client is stripped

of already-resolved name components; this occurs automagically within the

resource manager framework. This means that in step 2 above, the relevant

part of the request is lab2/dev/ser1 from the perspective of the local

network manager. In step 3, the relevant part of the request has been stripped

to just dev/ser1, because that's all that lab2's process manager needs to

know. Finally, in step 4, the relevant part of the request is simply ser1,

because that's all the serial driver needs to know.

Global Name Service (GNS)

In the examples shown so far, remote services or files are located on known nodes or

at known pathnames. For example, the serial port on lab1 is found at

/net/lab1/dev/ser1.

GNS allows you to locate services via an arbitrary name wherever the service is located,

whether on the local system or on a remote node. For example, if you wanted to locate

a modem on the network, you could simply look for the name “modem.” This would

cause the GNS server to locate the “modem” service, instead of using a static path

such as /net/lab1/dev/ser1. The GNS server can be deployed such that it services

all or a portion of your Qnet nodes. And you can have redundant GNS servers.

Network naming

As mentioned earlier, the pathname prefix /net is the most common name that

lsm-qnet.so uses.

In resolving names in a network-wide pathname space, the following terms come into

play:

node name

A character string that identifies the node you're talking to. Note that a node

name can't contain slashes or dots. In the example above, we used lab2

as one of our node names. The default is fetched via confstr() with the

_CS_HOSTNAME parameter.

node domain

A character string that's “tacked” onto the node name by lsm-qnet.so.

Together the node name and node domain must form a string that's unique

for all nodes that are talking to each other. The default is fetched via confstr()

with the _CS_DOMAIN parameter.

248 Copyright © 2014, QNX Software Systems Limited

Native Networking (Qnet)

fully qualified node name (FQNN)

The string formed by tacking the node name and node domain together. For

example, if the node name is lab2 and the node domain name is qnx.com,

the resulting FQNN would be lab2.qnx.com.

network directory

A directory in the pathname space implemented by lsm-qnet.so. Each

network directory (there can be more than one on a node) has an associated

node domain. The default is /net, as used in the examples in this chapter.

name resolution

The process by which lsm-qnet.so converts an FQNN to a list of

destination addresses that the transport layer knows how to get to.

name resolver

A piece of code that implements one method of converting an FQNN to a

list of destination addresses. Each network directory has a list of name

resolvers that are applied in turn to attempt to resolve the FQNN. The default

is en_ionet (see the next section).

Quality of Service (QoS)

A definition of connectivity between two nodes. The default QoS is load

balance (see the section on QoS (p. 250) later in this chapter.)

Resolvers

The following resolvers are built into the network manager:

• en_ionet—broadcast requests for name resolution on the LAN (similar to the

TCP/IP ARP protocol). This is the default.

• dns—take the node name, add a dot (.) followed by the node domain, and send

the result to the TCP/IP gethostbyname() function.

• file—search for accessible nodes, including the relevant network address, in a

static file.

Copyright © 2014, QNX Software Systems Limited 249

Name resolution and lookup

Redundant Qnet: Quality of Service (QoS) and multiple paths

Quality of Service (QoS) is an issue that often arises in high-availability networks as

well as realtime control systems.

In the Qnet context, QoS really boils down to transmission media selection—in a

system with two or more network interfaces, Qnet will choose which one to use

according to the policy you specify.

If you have only a single network interface, the QoS policies don't apply at

all.

QoS policies

Qnet supports transmission over multiple networks and provides several policies for

specifying how Qnet should select a network interface for transmission.

These Quality of Service policies include:

loadbalance (the default)

Qnet is free to use all available network links, and will share transmission

equally among them.

preferred

Qnet uses one specified link, ignoring all other networks (unless the preferred

one fails).

exclusive

Qnet uses one—and only one—link, ignoring all others, even if the exclusive

link fails.

To fully benefit from Qnet's QoS, you need to have physically separate networks. For

example, consider a network with two nodes and a hub, where each node has two

connections to the hub:

Hub

Node 1 Node 2

Figure 52: Qnet and a single network.

250 Copyright © 2014, QNX Software Systems Limited

Native Networking (Qnet)

If the link that's currently in use fails, Qnet detects the failure, but doesn't switch to

the other link because both links go to the same hub. It's up to the application to

recover from the error; when the application reestablishes the connection, Qnet switches

to the working link.

Now, consider the same network, but with two hubs:

Hub

Node 1 Node 2

Hub

Figure 53: Qnet and physically separate networks.

If the networks are physically separate and a link fails, Qnet automatically switches

to another link, depending on the QoS that you chose. The application isn't aware that

the first link failed.

You can use the tx_retries option to lsm-qnet.so to limit the number of times that

Qnet retries a transmission, and hence control how long Qnet waits before deciding

that a link has failed. Note that if the number of retries is too low, Qnet won't tolerate

any lost packets and may prematurely decide that a link is down.

Let's look in more detail at the QoS policies:

loadbalance

Qnet decides which links to use for sending packets, depending on current

load and link speeds as determined by io-pkt*. A packet is queued on

the link that can deliver the packet the soonest to the remote end. This

effectively provides greater bandwidth between nodes when the links are up

(the bandwidth is the sum of the bandwidths of all available links), and

allows a graceful degradation of service when links fail.

If a link does fail, Qnet will switch to the next available link. This switch

takes a few seconds the first time, because the network driver on the bad

link will have timed out, retried, and finally died. But once Qnet “knows”

that a link is down, it will not send user data over that link. (This is a

significant improvement over the QNX 4 implementation.)

While load-balancing among the live links, Qnet will send periodic

maintenance packets on the failed link in order to detect recovery. When

the link recovers, Qnet places it back into the pool of available links.

Copyright © 2014, QNX Software Systems Limited 251

Redundant Qnet: Quality of Service (QoS) and multiple paths

preferred

With this policy, you specify a preferred link to use for transmissions. Qnet

will use only that one link until it fails. If your preferred link fails, Qnet will

then turn to the other available links and resume transmission, using the

loadbalance policy.

Once your preferred link is available again, Qnet will again use only that

link, ignoring all others (unless the preferred link fails).

exclusive

You use this policy when you want to lock transmissions to only one link.

Regardless of how many other links are available, Qnet will latch onto the

one interface you specify. And if that exclusive link fails, Qnet will NOT use

any other link.

Why would you want to use the exclusive policy? Suppose you have two

networks, one much faster than the other, and you have an application that

moves large amounts of data. You might want to restrict transmissions to

only the fast network in order to avoid swamping the slow network under

failure conditions.

The loadbalance QoS policy is the

default.

Specifying QoS policies

You specify the QoS policy as part of the pathname. For example, to access

/net/lab2/dev/ser1 with a QoS of exclusive, you could use the following

pathname:

/net/lab2~exclusive:en0/dev/ser1

The QoS parameter always begins with a tilde (~) character. Here we're telling Qnet

to lock onto the en0 interface exclusively, even if it fails.

Symbolic links

You can set up symbolic links to the various “QoS-qualified” pathnames:

ln -sP /net/lab2~preferred:en1 /remote/sql_server

This assigns an “abstracted” name of /remote/sql_server to the node lab2 with

a preferred QoS (i.e., over the en1 link).

252 Copyright © 2014, QNX Software Systems Limited

Native Networking (Qnet)

You can't create symbolic links inside /net because Qnet takes over that

namespace.

Abstracting the pathnames by one level of indirection gives you multiple servers

available in a network, all providing the same service. When one server fails, the

abstract pathname can be “remapped” to point to the pathname of a different server.

For example, if lab2 failed, then a monitoring program could detect this and effectively

issue:

rm /remote/sql_server
ln -sP /net/lab1 /remote/sql_server

This would remove lab2 and reassign the service to lab1. The real advantage here

is that applications can be coded based on the abstract “service name” rather than

be bound to a specific node name.

Copyright © 2014, QNX Software Systems Limited 253

Redundant Qnet: Quality of Service (QoS) and multiple paths

Examples

Let's look at a few examples of how you'd use the network manager.

The QNX Neutrino native network manager lsm-qnet.so is actually a shared

object that installs into the executable io-pkt*.

Local networks

If you're using the QNX Neutrino RTOS on a small LAN, you can use just

the default en_ionet resolver. When a node name that's currently unknown

is being resolved, the resolver will broadcast the name request over the LAN,

and the node that has the name will respond with an identification message.

Once the name's been resolved, it's cached for future reference.

Since en_ionet is the default resolver when you start lsm-qnet.so, you

can simply issue commands like:

ls /net/lab2/

If you have a machine called “lab2” on your LAN, you'll see the contents

of its root directory.

Remote networks

Qnet uses DNS (Domain Name System) when resolving remote names. To

use lsm-qnet.so with DNS, you specify this resolver on mount's command

line:

For security reasons, you should have a firewall set up on

your network before connecting to the Internet. For more

information, see pf-faq at

ftp://ftp3.usa.openbsd.org/pub/OpenBSD/doc/

in the OpenBSD documentation.

mount -Tio-pkt -o"mount=:,resolve=dns,mount=.com:.net:.edu" /lib/dll/lsm-qnet.so

In this example, Qnet will use both its native en_ionet resolver (indicated

by the first mount= command) and DNS for resolving remote names.

Note that we've specified several types of domain names

(mount=.com:.net:.edu) as mountpoints, simply to ensure better remote

name resolution.

254 Copyright © 2014, QNX Software Systems Limited

Native Networking (Qnet)

ftp://ftp3.usa.openbsd.org/pub/OpenBSD/doc/

Now you could enter a command such as:

ls /net/qnet.qnx.com/repository

and you'd get a listing of the repository directory at the qnet.qnx.com

site.

Copyright © 2014, QNX Software Systems Limited 255

Examples

Chapter 14
TCP/IP Networking

As the Internet has grown to become more and more visible in our daily lives, the

protocol it's based on—IP (Internet Protocol)—has become increasingly important.

The IP protocol and tools that go with it are ubiquitous, making IP the de facto choice

for many private networks.

IP is used for everything from simple tasks (e.g., remote login) to more complicated

tasks (e.g., delivering realtime stock quotes). Most businesses are turning to the World

Wide Web, which commonly rides on IP, for communication with their customers,

advertising, and other business connectivity. The QNX Neutrino RTOS is well-suited

for a variety of roles in this global network, from embedded devices connected to the

Internet, to the routers that are used to implement the Internet itself.

Given these and many other user requirements, we've made our TCP/IP stack (included

in io-pkt*) relatively light on resources, while using the common BSD API.

We provide the following stack configurations:

NetBSD TCP/IP stack

Based on the latest RFCs, including UDP, IP, and TCP. Also supports

forwarding, broadcast and multicast, hardware checksum support, routing

sockets, Unix domain sockets, multilink PPP, PPPoE, supernetting (CIDR),

NAT/IP filtering, ARP, ICMP, and IGMP, as well as CIFS, DHCP, AutoIP,

DNS, NFS (v2 and v3 server/client), NTP, RIP, RIPv2, and an embedded

web server.

To create applications for this stack, you use the industry-standard BSD

socket API. This stack also includes optimized forwarding code for additional

performance and efficient packet routing when the stack is functioning as

a network gateway.

Enhanced NetBSD stack with IPsec and IPv6

Includes all the features in the standard stack, plus the functionality targeted

at the new generation of mobile and secure communications. This stack

provides full IPv6 and IPsec (both IPv4 and IPv6) support through KAME

extensions, as well as support for VPNs over IPsec tunnels.

This dual-mode stack supports IPv4 and IPv6 simultaneously and includes

IPv6 support for autoconfiguration, which allows device configuration in

plug-and-play network environments. IPv6 support includes IPv6-aware

utilities and RIP/RIPng to support dynamic routing. An Advanced Socket

Copyright © 2014, QNX Software Systems Limited 257

API is also provided to supplement the standard socket API to take advantage

of IPv6 extended-development capabilities.

IPsec support allows secure communication between hosts or networks,

providing data confidentiality via strong encryption algorithms and data

authentication features. IPsec support also includes the IKE (ISAKMP/Oakley)

key management protocol for establishing secure host associations.

The QNX Neutrino TCP/IP suite is also modular. For example, it provides NFS as

separate modules. With this kind of modularity, together with small-sized modules,

embedded systems developers can more easily and quickly build small TCP/IP-capable

systems.

258 Copyright © 2014, QNX Software Systems Limited

TCP/IP Networking

Structure of the TCP/IP manager

As a resource manager, io-pkt-* benefits from the code savings and standard

interface that all native resource managers enjoy. Due to the natural priority inheritance

of QNX Neutrino IPC, clients will be dealt with in priority and time order, which leads

to a more natural allocation of CPU resources.

ntpd

snmpd

devc-ser*

pppd

telnetd

User
applications

devnp-*.so
devn-*.so

io-pkt

fs-nfs2

syslogd

fs-cifs

routed

ftpd
inetd

pppoed

lsm-pf-*.so

Figure 54: The io-pkt suite and its dependents.

PPP is implemented as part of io-pkt*. Since io-pkt* handles the transmission

of PPP packets, there's no need for a memory copy of the packet data. This approach

allows for high-performance PPPoE connections.

Other components of the TCP/IP suite (such as the NFS, etc.) are implemented outside

of io-pkt*. This leads to better modularity and fault-tolerance.

Copyright © 2014, QNX Software Systems Limited 259

Structure of the TCP/IP manager

Socket API

The BSD Socket API was the obvious choice for the QNX Neutrino RTOS. The Socket

API is the standard API for TCP/IP programming in the UNIX world. In the Windows

world, the Winsock API is based on and shares a lot with the BSD Socket API. This

makes conversion between the two fairly easy.

All the routines that application programmers would expect are available, including

(but not limited to):

• accept()

• bind()

• bindresvport()

• connect()

• dn_comp()

• dn_expand()

• endprotoent()

• endservent()

• gethostbyaddr()

• gethostbyname()

• getpeername()

• getprotobyname()

• getprotobynumber()

• getprotoent()

• getservbyname()

• getservent()

• getsockname()

• getsockopt()

• herror()

• hstrerror()

• htonl()

• htons()

• h_errlist()

• h_errno()

• h_nerr()

• inet_addr()

• inet_aton()

• inet_lnaof()

• inet_makeaddr()

• inet_netof()

260 Copyright © 2014, QNX Software Systems Limited

TCP/IP Networking

• inet_network()

• inet_ntoa()

• ioctl()

• listen()

• ntohl()

• ntohs()

• recv()

• recvfrom()

• res_init()

• res_mkquery()

• res_query()

• res_querydomain()

• res_search()

• res_send()

• select()

• send()

• sendto()

• setprotoent()

• setservent()

• setsockopt()

• shutdown()

• socket()

For more information, see the QNX Neutrino C Library Reference.

The common daemons and utilities from the Internet will easily port or just compile

in this environment. This makes it easy to leverage what already exists for your

applications.

Database routines

The database routines listed below have been modified to better suit embedded

systems.

/etc/resolv.conf

You can use configuration strings (via the confstr() function) to override the

data usually contained in the /etc/resolv.conf file. You can also use

the RESCONF environment variable to do this. Either method lets you use a

nameserver without /etc/resolv.conf. This affects gethostbyname()

and other resolver routines.

/etc/protocols

Copyright © 2014, QNX Software Systems Limited 261

Socket API

The getprotobyname() and getprotobynumber() functions have been modified

to contain a small number of builtin protocols, including IP, ICNP, UDP,

and TCP. For many applications, this means that the /etc/protocols

file doesn't need to exist.

/etc/services

The getservbyname() function has been modified to contain a small number

of builtin services, including ftp, telnet, smtp, domain, nntp,

netbios-ns, netbios-ssn, sunrpc, and nfsd. For many applications,

this means that the /etc/services file doesn't need to exist.

262 Copyright © 2014, QNX Software Systems Limited

TCP/IP Networking

Multiple stacks

The QNX Neutrino network manager (io-pkt) lets you load multiple protocol shared

objects. You can even run multiple, independent instances of the network manager

(io-pkt*) itself. As with all QNX Neutrino system components, each io-pkt*

naturally benefits from complete memory protection thanks to our microkernel

architecture.

Copyright © 2014, QNX Software Systems Limited 263

Multiple stacks

IP filtering and NAT

The IP filtering and NAT (Network Address Translation) io-pkt* module is a

dynamically loadable TCP/IP stack module.

The lsm-pf-*.so module provides high-efficiency firewall services and includes

such features as:

• rule grouping—to apply different groups of rules to different packets

• stateful filtering—an optional configuration to allow packets related to an already

authorized connection to bypass the filter rules

• NAT—for mapping several internal addresses into a public (Internet) address,

allowing several internal systems to share a single Internet IP address.

• proxy services—to allow ftp, netbios, and H.323 to use NAT

• port redirection—for redirecting incoming traffic to an internal server or to a pool

of servers.

The IP filtering and NAT rules can be added or deleted dynamically to a running

system. Logging services are also provided with the suite of utilities to monitor and

control this module.

264 Copyright © 2014, QNX Software Systems Limited

TCP/IP Networking

NTP

NTP (Network Time Protocol) allows you to keep the time of day for the devices in

your network synchronized with the Internet standard time servers. The QNX Neutrino

NTP daemon supports both server and client modes.

In server mode, a daemon on the local network synchronizes with the standard time

servers. It will then broadcast or multicast what it learned to the clients on the local

network, or wait for client requests. The client NTP systems will then be synchronized

with the server NTP system. The NTP suite implements NTP v4 while maintaining

compatibility with v3, v2, and v1.

Copyright © 2014, QNX Software Systems Limited 265

NTP

Dynamic host configuration

We support DHCP (Dynamic Host Configuration Protocol), which is used to obtain

TCP/IP configuration parameters.

Our DHCP client (dhcp.client) will obtain its configuration parameters from the

DHCP server and configure the TCP/IP host for the user. This allows the user to add

a host to the network without knowing what parameters (IP address, gateway, etc.)

are required for the host. DHCP also allows a system administrator to control how

hosts are added to the network. A DHCP server daemon (dhcpd) and relay agent

(dhcrelay) are also provided to manage these clients.

For more information, see the entries for dhcp.client, dhcrelay, and dhcpd in

the Utilities Reference.

AutoIP

Developed from the Zeroconf IETF draft, lsm-autoip.so is an io-pkt* module

that automatically configures the IPv4 address of your interface without the need of

a server (as per DHCP) by negotiating with its peers on the network. This module can

also coexist with DHCP (dhcp.client), allowing your interface to be assigned both

a link-local IP address and a DHCP-assigned IP address at the same time.

266 Copyright © 2014, QNX Software Systems Limited

TCP/IP Networking

PPP over Ethernet

We support the Point-to-Point Protocol over Ethernet (PPPoE), which is commonly

deployed by broadband service providers.

Our PPPoE support consists of the io-pkt-* stack. Once the PPPoE session is

established, the pppd daemon creates a PPP connection.

When you use PPPoE, you don't need to specify any configuration parameters—our

modules will automatically obtain the appropriate configuration data from your ISP

and set everything up for you.

For more information, see the following in the Utilities Reference:

io-pkt

Networking manager.

Copyright © 2014, QNX Software Systems Limited 267

PPP over Ethernet

/etc/autoconnect

Our autoconnect feature automatically sets up a connection to your ISP whenever a

TCP/IP application is started. For example, suppose you want to start a dialup

connection to the Internet. When your Web browser is started, it will pause and the

/etc/autoconnect script will automatically dial your ISP. The browser will resume

when the PPP session is established.

For more information, see the entry for /etc/autoconnect in the Utilities Reference.

268 Copyright © 2014, QNX Software Systems Limited

TCP/IP Networking

Chapter 15
High Availability

The term High Availability (HA) is commonly used in telecommunications and other

industries to describe a system's ability to remain up and running without interruption

for extended periods of time.

The celebrated “five nines” availability metric refers to the percentage of uptime a

system can sustain in a year—99.999% uptime amounts to about five minutes

downtime per year.

Obviously, an effective HA solution involves various hardware and software components

that conspire to form a stable, working system. Assuming reliable hardware components

with sufficient redundancy, how can an OS best remain stable and responsive when

a particular component or application program fails? And in cases where redundant

hardware may not be an option (e.g., consumer appliances), how can the OS itself

support HA?

Copyright © 2014, QNX Software Systems Limited 269

An OS for HA

If you had to design an HA-capable OS from the ground up, would you start with a

single executable environment? In this simple, high-performance design, all OS

components, device drivers, applications, the works, would all run without memory

protection in kernel mode.

On second thought, maybe such an OS wouldn't be suited for HA, simply because if

a single software component were to fail, the entire system would crash. And if you

wanted to add a software component or otherwise modify the HA system, you'd have

to take the system out of service to do so. In other words, the conventional realtime

executive architecture wasn't built with HA in mind.

Suppose, then, that you base your HA-enabled OS on a separation of kernel space and

user space, so that all applications would run in user mode and enjoy memory

protection. You'd even be able to upgrade an application without incurring any

downtime.

So far so good, but what would happen if a device driver, filesystem manager, or other

essential OS component were to crash? Or what if you needed to add a new driver to

a live system? You'd have to rebuild and restart the kernel. Based on such a monolithic

kernel architecture, your HA system wouldn't be as available as it should be.

Inherent HA

A true microkernel that provides full memory protection is inherently the most stable

OS architecture.

Very little code is running in kernel mode that could cause the kernel itself to fail.

And individual processes, whether applications or OS services, can be started and

stopped dynamically, without jeopardizing system uptime.

QNX Neutrino inherently provides several key features that are well-suited for HA

systems:

• System stability through full memory protection for all OS and user processes.

• Dynamic loading and unloading of system components (device drivers, filesystem

managers, etc.).

• Separation of all software components for simpler development and maintenance.

While any claims regarding “five nines” availability on the part of an OS must be

viewed only in the context of the entire hardware/software HA system, one can always

ask whether an OS truly has the appropriate underlying architecture capable of

supporting HA.

270 Copyright © 2014, QNX Software Systems Limited

High Availability

HA-specific modules

Apart from its inherently robust architecture, QNX Neutrino also provides several

components to help developers simplify the task of building and maintaining effective

HA systems:

• HA client-side library (p. 273)—cover functions that allow for automatic and

transparent recovery mechanisms for failed server connections.

• HA Manager (p. 275)—a “smart watchdog” that can perform multistage recovery

whenever system services or processes fail.

Copyright © 2014, QNX Software Systems Limited 271

An OS for HA

Custom hardware support

While many operating systems provide HA support in a hardware-specific way (e.g.,

via PCI Hot Plug), QNX Neutrino isn't tied to PCI. Your particular HA system may be

built on a custom chassis, in which case an OS that offers a PCI-based HA “solution”

may not address your needs at all.

QNX Software Systems is an actively contributing member of the Service

Availability Forum (www.saforum.org), an industry body dedicated to

developing open, industry-standard specifications for building HA systems.

272 Copyright © 2014, QNX Software Systems Limited

High Availability

http://www.saforum.org

Client library

The High Availability client-side library provides a drop-in enhancement solution for

many standard C Library I/O operations.

The HA library's cover functions allow for automatic and transparent recovery

mechanisms for failed connections that can be recovered from in an HA scenario.

Note that the HA library is both thread-safe and cancellation-safe.

The main principle of the client library is to provide drop-in replacements for all the

message-delivery functions (i.e., MsgSend*). A client can select which particular

connections it would like to make highly available, thereby allowing all other

connections to operate as ordinary connections (i.e., in a non-HA environment).

Normally, when a server that the client is talking to fails, or if there's a transient

network fault, the MsgSend* functions return an error indicating that the connection

ID (or file descriptor) is stale or invalid (e.g., EBADF). But in an HA-aware scenario,

these transient faults are recovered from almost immediately, thus making the services

available again.

Recovery example

The following example demonstrates a simple recovery scenario, where a client opens

a file across a network filesystem.

If the NFS server were to die, the HA Manager would restart it and remount the

filesystem. Normally, any clients that previously had files open across the old

connection would now have a stale connection handle. But if the client uses the

ha_attach functions, it can recover from the lost connection.

The ha_attach functions allow the client to provide a custom recovery function that's

automatically invoked by the cover-function library. This recovery function could simply

reopen the connection (thereby getting a connection to the new server), or it could

perform a more complex recovery (e.g., adjusting the file position offsets and

reconstructing its state with respect to the connection). This mechanism thus lets you

develop arbitrarily complex recovery scenarios, while the cover-function library takes

care of the details (detecting a failure, invoking recovery functions, and retransmitting

state information).

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <ha/cover.h>

#define TESTFILE "/net/machine99/home/test/testfile"

typedef struct handle {
 int nr;

Copyright © 2014, QNX Software Systems Limited 273

Client library

 int curr_offset;
} Handle ;

int recover_conn(int oldfd, void *hdl)
{
 int newfd;
 Handle *thdl;
 thdl = (Handle *)hdl;
 newfd = ha_reopen(oldfd, TESTFILE, O_RDONLY);
 if (newfd >= 0) {
 // adjust file offset to previously known point
 lseek(newfd, thdl->curr_offset, SEEK_SET);
 // increment our count of successful recoveries
 (thdl->nr)++;
 }
 return(newfd);
}

int main(int argc, char *argv[])
{
 int status;
 int fd;
 int fd2;
 Handle hdl;
 char buf[80];

 hdl.nr = 0;
 hdl.curr_offset = 0;
 // open a connection
 // recovery will be using "recovery_conn", and "hdl" will
 // be passed to it as a parameter
 fd = ha_open(TESTFILE, O_RDONLY, recover_conn, (void *)&hdl, 0);
 if (fd < 0) {
 printf("could not open file\n");
 exit(-1);
 }
 status = read(fd,buf,15);
 if (status < 0) {
 printf("error: %s\n",strerror(errno));
 exit(-1);
 }
 else {
 hdl.curr_offset += status;
 }
 fd2 = ha_dup(fd);
 // fs-nfs3 fails, and is restarted, the network mounts
 // are re-instated at this point.
 // Our previous "fd" to the file is stale
 sleep(18);
 // reading from dup-ped fd
 // will fail, and will recover via recover_conn
 status = read(fd,buf,15);
 if (status < 0) {
 printf("error: %s\n",strerror(errno));
 exit(-1);
 }
 else {
 hdl.curr_offset += status;
 }
 printf("total recoveries, %d\n",hdl.nr);
 ha_close(fd);
 ha_close(fd2);
 exit(0);
}

Since the cover-function library takes over the lowest MsgSend*() calls, most standard

library functions (read(), write(), printf(), scanf(), etc.) are also automatically HA-aware.

The library also provides an ha-dup() function, which is semantically equivalent to the

standard dup() function in the context of HA-aware connections. You can replace

recovery functions during the lifetime of a connection, which greatly simplifies the

task of developing highly customized recovery mechanisms.

274 Copyright © 2014, QNX Software Systems Limited

High Availability

High Availability Manager

The High Availability Manager (HAM) provides a mechanism for monitoring processes

and services on your system.

The goal is to provide a resilient manager (or “smart watchdog”) that can perform

multistage recovery whenever system services or processes fail, no longer respond, or

are detected to be in a state where they cease to provide acceptable levels of service.

The HA framework, including the HAM, uses a simple publish/subscribe mechanism

to communicate interesting system events between interested components in the

system. By automatically integrating itself into the native networking mechanism

(Qnet), this framework transparently extends a local monitoring mechanism to a

network-distributed one.

The HAM acts as a conduit through which the rest of the system can both obtain and

deliver information regarding the state of the system as a whole. Again, the system

could be simply a single node or a collection of nodes connected via Qnet. The HAM

can monitor specific processes and can control the behavior of the system when

specific components fail and need to be recovered. The HAM also allows external

detectors to detect and report interesting events to the system, and can associate

actions with the occurrence of those events.

In many HA systems, each single points of failure (SPOF) must be identified and dealt

with carefully. Since the HAM maintains information about the health of the system

and also provides the basic recovery framework, the HAM itself must never become a

SPOF.

HAM and the Guardian

As a self-monitoring manager, the HAM is resilient to internal failures. If, for whatever

reason, the HAM itself is stopped abnormally, it can immediately and completely

reconstruct its own state. A mirror process called the Guardian perpetually stands

ready and waiting to take over the HAM's role. Since all state information is maintained

in shared memory, the Guardian can assume the exact same state that the original

HAM was in before the failure.

But what happens if the Guardian terminates abnormally? The Guardian (now the new

HAM) creates a new Guardian for itself before taking the place of the original HAM.

Practically speaking, therefore, one can't exist without the other.

Since the HAM/Guardian pair monitor each other, the failure of either one can be

completely recovered from. The only way to stop the HAM is to explicitly instruct it to

terminate the Guardian and then to terminate itself.

Copyright © 2014, QNX Software Systems Limited 275

High Availability Manager

HAM hierarchy

The High Availability Manager consists of three main components.

• Entities (p. 276)

• Conditions (p. 277)

• Actions (p. 278)

Entities

Entities are the fundamental units of observation/monitoring in the system.

Essentially, an entity is a process (pid). As processes, all entities are uniquely

identifiable by their pids. Associated with each entity is a symbolic name that can be

used to refer to that specific entity. Again, the names associated with entities are

unique across the system. Managers are currently associated with a node, so uniqueness

rules apply to a node. As we'll see later, this uniqueness requirement is very similar

to the naming scheme used in a hierarchical filesystem.

There are three fundamental entity types:

• Self-attached entities (HA-aware components)—processes that choose to send

heartbeats to the HAM, which will then monitor them for failure. Self-attached

entities can, on their own, decide at exactly what point in their lifespan they want

to be monitored, what conditions they want acted upon, and when they want to

stop the monitoring. In other words, this is a situation where a process says, “Do

the following if I die.”

• Externally attached entities (HA-unaware components)—generic processes (including

legacy components) in the system that are being monitored. These could be arbitrary

daemons/service providers whose health is deemed important. This method is useful

for the case where Process A says, “Tell me when Process B dies” but Process B

needn't know about this at all.

• Global entity—a place holder for matching any entity. The global entity can be

used to associate actions that will be triggered when an interesting event is detected

with respect to any entity on the system. The term “global” refers to the set of

entities being monitored in the system, and allows a process to say things like,

“When any process dies or misses a heartbeat, do the following.” The global entity

is never added or removed, but only referred to. Conditions can be added to or

removed from the global entity, of course, and actions can be added to or removed

from any of the conditions.

276 Copyright © 2014, QNX Software Systems Limited

High Availability

Conditions

Conditions are associated with entities; a condition represents the entity's state.

DescriptionCondition

The entity has died.CONDDEATH

The entity has died an abnormal death.

Whenever an entity dies, this condition is

CONDABNORMALDEATH

triggered by a mechanism that results in

the generation of a core dump file.

The entity that was being monitored is

detaching. This ends the HAM's

monitoring of that entity.

CONDDETACH

An entity for whom a place holder was

previously created (i.e., some process has

CONDATTACH

subscribed to events relating to this entity)

has joined the system. This is also the

start of the HAM's monitoring of the

entity.

The entity missed sending a “heartbeat”

message specified for a condition of

“high” severity.

CONDBEATMISSEDHIGH

The entity missed sending a “heartbeat”

message specified for a condition of “low”

CONDBEATMISSEDLOW

The entity was restarted. This condition

is true after the entity is successfully

restarted.

CONDRESTART

An externally detected condition is

reported to the HAM. Subscribers can

CONDRAISE

associate actions with these externally

detected conditions.

An entity reports a state transition to the

HAM. Subscribers can associate actions

with specific state transitions.

CONDSTATE

This condition type matches any condition

type. It can be used to associate the same

actions with one of many conditions.

CONDANY

Copyright © 2014, QNX Software Systems Limited 277

High Availability Manager

For the conditions listed above (except CONDSTATE, CONDRAISE, and CONDANY),

the HAM is the publisher—it automatically detects and/or triggers the conditions. For

the CONDSTATE and CONDRAISE conditions, external detectors publish the conditions

to the HAM.

For all conditions, subscribers can associate with lists of actions that will be performed

in sequence when the condition is triggered. Both the CONDSTATE and CONDRAISE

conditions provide filtering capabilities, so subscribers can selectively associate actions

with individual conditions based on the information published.

Any condition can be associated as a wild card with any entity, so a process can

associate actions with any condition in a specific entity, or even in any entity. Note

that conditions are also associated with symbolic names, which also need to be unique

within an entity.

Actions

Actions are associated with conditions. Actions are executed when the appropriate

conditions are true with respect to a specific entity.

The HAM API includes several functions for different kinds of actions:

DescriptionAction

This action restarts the entityham_action_restart()

Executes an arbitrary command (e.g., to

start a process)

ham_action_execute()

Notifies some process that this condition

has occurred. This notification is sent

ham_action_notify_pulse()

using a specific pulse with a value

specified by the process that wished to

receive this notify message.

Notifies some process that this condition

has occurred. This notification is sent

ham_action_notify_signal()

using a specific realtime signal with a

value specified by the process that wished

to receive this notify message.

This is the same as

ham_action_notify_pulse() above, except

ham_action_notify_pulse_node()

that the node name specified for the

recipient of the pulse can be the fully

qualified node name.

This is the same as

ham_action_notify_signal() above, except

ham_action_notify_signal_node()

278 Copyright © 2014, QNX Software Systems Limited

High Availability

DescriptionAction

that the node name specified for the

recipient of the signal can be the fully

qualified node name.

Lets you insert delays between

consecutive actions in a sequence. You

ham_action_waitfor()

can also wait for certain names to appear

in the namespace.

Resets the heartbeat mechanism for an

entity that had previously missed sending

ham_action_heartbeat_healthy()

heartbeats and had triggered a missed

heartbeat condition, but has now

recovered.

Reports this condition to a logging

mechanism.

ham_action_log()

Actions are also associated with symbolic names, which are unique within a specific

condition.

What happens if an action itself fails? You can specify an alternate list of actions to

be performed to recover from that failure. These alternate actions are associated with

the primary actions through several ham_action_fail* functions:

• ham_action_fail_execute()

• ham_action_fail_notify_pulse()

• ham_action_fail_notify_signal()

• ham_action_fail_notify_pulse_node()

• ham_action_fail_notify_signal_node()

• ham_action_fail_waitfor()

• ham_action_fail_log()

Publishing autonomously detected conditions

Entities or other components in the system can inform the HAM about conditions

(events) that they deem interesting, and the HAM in turn can deliver these conditions

(events) to other components in the system that have expressed interest in (subscribed

to) them.

This publishing feature allows arbitrary components that are capable of detecting error

conditions (or potentially erroneous conditions) to report these to the HAM, which in

turn can notify other components to start corrective and/or preventive action.

Copyright © 2014, QNX Software Systems Limited 279

High Availability Manager

There are currently two different ways of publishing information to the HAM; both of

these are designed to be general enough to permit clients to build more complex

information exchange mechanisms:

• publishing state transitions

• publishing other conditions.

State transitions

An entity can report its state transitions to the HAM, which maintains every entity's

current state (as reported by the entity). The HAM doesn't interpret the meaning of

the state value itself, nor does it try to validate the state transitions, but it can generate

events based on transitions from one state to another.

Components can publish transitions that they want the external world to know about.

These states needn't necessarily represent a specific state the application uses

internally for decision making.

To notify the HAM of a state transition, components can use the

ham_entity_condition_state() function. Since the HAM is interested only in the next

state in the transition, this is the only information that's transmitted to the HAM. The

HAM then triggers a condition state-change event internally, which other components

can subscribe to using the ham_condition_state() API call (see below (p. 281)).

Other conditions

In addition to the above, components on the system can also publish autonomously

detected conditions by using the ham_entity_condition_raise() API call. The component

raising the condition can also specify a type, class, and severity of its choice, to allow

subscribers further granularity in filtering out specific conditions to subscribe to. As

a result of this call, the HAM triggers a condition-raise event internally, which other

components can subscribe to using the ham_condition_raise() API call (see below (p.

281)).

Subscribing to autonomously published conditions

To express their interest in events published by other components, subscribers can

use the ham_condition_state() and ham_condition_raise() API calls.

These are similar to the ham_condition() API call (e.g., they return a handle to a

condition), but they allow the subscriber customize which of several possible published

conditions they're interested in.

Trigger based on state transition

When an entity publishes a state transition, a state transition condition is

raised for that entity, based on the two states involved in the transition (the

from state and the to state). Subscribers indicate which states they're

280 Copyright © 2014, QNX Software Systems Limited

High Availability

interested in by specifying values for the fromstate and tostate parameters

in the ham_condition_state API call.

Trigger based on specific published condition

To express interest in conditions raised by entities, subscribers can use the

API call ham_condition_raise(), indicating as parameters to the call what

sort of conditions they're interested in.

For more information, see the API reference documentation in the High Availability

Framework Developer's Guide.

HAM as a “filesystem”

Effectively, HAM's internal state is like a hierarchical filesystem, where entities are

like directories, conditions associated with those entities are like subdirectories, and

actions inside those conditions are like leaf nodes of this tree structure.

HAM also presents this state as a read-only filesystem under /proc/ham. As a result,

arbitrary processes can also view the current state (e.g., you can do ls /proc/ham).

The /proc/ham filesystem presents a lot of information about the current state of

the system's entities. It also provides useful statistics on heartbeats, restarts, and

deaths, giving you a snapshot in time of the system's various entities, conditions, and

actions.

Multistage recovery

HAM can perform a multistage recovery, executing several actions in a certain order.

This technique is useful whenever strict dependencies exist between various actions

in a sequence. In most cases, recovery requires more than a single restart mechanism

in order to properly restore the system's state to what it was before a failure.

For example, suppose you've started fs-nfs3 (the NFS filesystem) and then mounted

a few directories from multiple sources. You can instruct HAM to restart fs-nfs3

upon failure, and also to remount the appropriate directories as required after restarting

the NFS process.

As another example, suppose io-pkt* (the network I/O manager) were to die. We

can tell HAM to restart it and also to load the appropriate network drivers (and maybe

a few more services that essentially depend on network services in order to function).

HAM API

The basic mechanism to talk to HAM is to use its API. This API is implemented as a

library that you can link against. The library is thread-safe as well as cancellation-safe.

To control exactly what/how you're monitoring, the HAM API provides a collection of

functions, including:

Copyright © 2014, QNX Software Systems Limited 281

High Availability Manager

DescriptionFunction

Perform control operations on an action

object.

ham_action_control()

Add an execute action to a condition.ham_action_execute()

Add to an action an execute action that

will be executed if the corresponding

action fails.

ham_action_fail_execute()

Insert a log message into the activity log.ham_action_fail_log()

Add to an action a notify pulse action that

will be executed if the corresponding

action fails.

ham_action_fail_notify_pulse()

Add to an action a node-specific notify

pulse action that will be executed if the

corresponding action fails.

ham_action_fail_notify_pulse_node()

Add to an action a notify signal action that

will be executed if the corresponding

action fails.

ham_action_fail_notify_signal()

Add to an action a node-specific notify

signal action that will be executed if the

corresponding action fails.

ham_action_fail_notify_signal_node()

Add to an action a waitfor action that will

be executed if the corresponding action

fails.

ham_action_fail_waitfor()

Get a handle to an action in a condition

in an entity.

ham_action_handle()

Get a handle to an action in a condition

in an entity, using a nodename.

ham_action_handle_node()

Free a previously obtained handle to an

action in a condition in an entity.

ham_action_handle_free()

Reset a heartbeat's state to healthy.ham_action_heartbeat_healthy()

Insert a log message into the activity log.ham_action_log()

Add a notify-pulse action to a condition.ham_action_notify_pulse()

Add a notify-pulse action to a condition,

using a nodename.

ham_action_notify_pulse_node()

Add a notify-signal action to a condition.ham_action_notify_signal()

282 Copyright © 2014, QNX Software Systems Limited

High Availability

DescriptionFunction

Add a notify-signal action to a condition,

using a nodename.

ham_action_notify_signal_node()

Remove an action from a condition.ham_action_remove()

Add a restart action to a condition.ham_action_restart()

Add a waitfor action to a condition.ham_action_waitfor()

Attach an entity.ham_attach()

Attach an entity, using a nodename.ham_attach_node()

Attach an application as a self-attached

entity.

ham_attach_self()

Set up a condition to be triggered when a

certain event occurs.

ham_condition()

Perform control operations on a condition

object.

ham_condition_control()

Get a handle to a condition in an entity.ham_condition_handle()

Get a handle to a condition in an entity,

using a nodename.

ham_condition_handle_node()

Free a previously obtained handle to a

condition in an entity.

ham_condition_handle_free()

Attach a condition associated with a

condition raise condition that's triggered

by an entity raising a condition.

ham_condition_raise()

Remove a condition from an entity.ham_condition_remove()

Attach a condition associated with a state

transition condition that's triggered by an

entity reporting a state change.

ham_condition_state()

Connect to a HAM.ham_connect()

Connect to a remote HAM.ham_connect_nd()

Connect to a remote HAM, using a

nodename.

ham_connect_node()

Detach an entity from a HAM.ham_detach()

Detach an entity from a HAM, using an

entity name.

ham_detach_name()

Copyright © 2014, QNX Software Systems Limited 283

High Availability Manager

DescriptionFunction

Detach an entity from a HAM, using an

entity name and a nodename.

ham_detach_name_node()

Detach a self-attached entity from a HAM.ham_detach_self()

Disconnect from a HAM.ham_disconnect()

Disconnect from a remote HAM.ham_disconnect_nd()

Disconnect from a remote HAM, using a

nodename.

ham_disconnect_node()

Create entity placeholder objects in a

HAM.

ham_entity()

Raise a condition.ham_entity_condition_raise()

Notify the HAM of a state transition.ham_entity_condition_state()

Perform control operations on an entity

object in a HAM.

ham_entity_control()

Get a handle to an entity.ham_entity_handle()

Get a handle to an entity, using a

nodename.

ham_entity_handle_node()

Free a previously obtained handle to an

entity.

ham_entity_handle_free()

Create entity placeholder objects in a

HAM, using a nodename.

ham_entity_node()

Send a heartbeat to a HAM.ham_heartbeat()

Stop a HAM.ham_stop()

Stop a remote HAM.ham_stop_nd()

Stop a remote HAM, using a nodename.ham_stop_node()

Modify the verbosity of a HAM.ham_verbose()

284 Copyright © 2014, QNX Software Systems Limited

High Availability

Chapter 16
Adaptive Partitioning

The QNX Neutrino RTOS supports adaptive partitioning to let you control the allocation

of resources among competing processes.

Copyright © 2014, QNX Software Systems Limited 285

What are partitions?

In many computer systems, it's important to protect different applications or groups

of applications from others. You don't want one application—whether defective or

malicious—to corrupt another or prevent it from running.

To address this issue, some systems use virtual walls, called partitions, around a set

of applications to ensure that each partition is given an engineered set of resources.

The primary resource considered is CPU time, but can also include any shared resource,

such as memory and file space (disk or flash).

Partition 2 Partition 3Partition 1

Partition scheduler

50% 20% 30%

Figure 55: Static partitions guarantee that processes get the resources specified by

the system designer.

Typically, the main objective of competing resource partitioning systems is to divide

a computer into a set of smaller computers that interact as little as possible; however,

this approach isn't very flexible. Adaptive partitioning takes a much more flexible view.

QNX Neutrino partitions are adaptive because:

• you can change configurations at run time

• they're typically fixed at one configuration time

• the partition behavior auto-adapts to conditions at run time. For example:

• free time is redistributed to other scheduler partitions

• filesystems can bill time to clients with a mechanism that temporarily moves

threads between time partitions

As a result, adaptive partitions are less restrictive and much more powerful. In addition

to being adaptive, time partitions allow you to easily model the fundamentally different

behavior of CPU time when viewed as a resource.

286 Copyright © 2014, QNX Software Systems Limited

Adaptive Partitioning

If adaptive partitions aren't “boxes,” what are they?

An adaptive partition is a named set of rules. The rules are selected to control the

global resource behavior of the system.

When a process or thread is associated with a particular partition, then its actions are

governed by the rules of that partition at that time.

For example, adaptive partitioning is similar to people who belong to clubs. Each

person can join several different clubs. They can even move from club to club at times.

But while they are at a particular club, they agree to abide by the rules of that particular

club.

Partitions provide:

• memory protection—each partition is discrete and controlled by the Memory

Management Unit (MMU)

• overload protection—each partition is guaranteed a slice of execution time, as

specified by the system designer

By using multiple partitions, you can avoid having a single point of failure. For example,

a runaway process can't occupy the entire system's resources; processes in other

partitions still receive their allocated share of system resources.

Currently, QNX Neutrino's process model provides significantly more protection than

some other operating systems do, including:

• full memory protection between processes

• message-passing to provide uniform and controlled IPC

• priority inheritance with a clean client-server model

• hard realtime deterministic scheduling

• a detailed permission model for devices, files, and memory

• memory, file-descriptor, CPU, and priority limits, using the POSIX setrlimit() function

to constrain runaway processes

Copyright © 2014, QNX Software Systems Limited 287

What are partitions?

Why adaptive?

To provide realtime performance with guarantees against overloading, QNX Neutrino

introduced adaptive partitioning. Rigid partitions work best in fairly static systems

with little or no dynamic deployment of software. In dynamic systems, static partitions

can be inefficient. For example, the static division of execution time between partitions

can waste CPU time and introduce delays:

• If most of the partitions are idle, and one is very busy, the busy partition doesn't

receive any additional execution time, while background threads in the other

partitions waste CPU time.

• If an interrupt is scheduled for a partition, it has to wait until the partition runs.

This can cause unacceptable latency, especially if bursts of interrupts occur.

You can introduce adaptive partitioning without changing—or even

recompiling—your application code, although you do have to rebuild your

system's OS image.

An adaptive partition is a set of threads that work on a common or related goal or

activity. Like a static partition, an adaptive partition has a budget allocated to it that

guarantees its minimum share of the CPU's resources. Unlike a static partition, an

adaptive partition:

• isn't locked to a fixed set of code in a static partition; you can dynamically add

and configure adaptive partitions, as required

There's a limit to the number of partitions. For the thread scheduler, there's

a maximum of eight scheduler partitions because for every scheduling

operation, the thread scheduler must examine every partition before it can

pick a thread on which to run. That may occur 50000 times per second on

a 700 MHz x86 (i.e., a slow machine). So it's important to limit the number

of scheduler partitions to keep the scheduler overhead to a minimum.

• behaves as a global hard realtime thread scheduler under normal load, but can

still provide minimal interrupt latencies even under overload conditions

• maximizes the usage of the CPU's resources. In the case of the thread scheduler,

it distributes a partition's unused budget among partitions that require extra

resources when the system isn't loaded.

288 Copyright © 2014, QNX Software Systems Limited

Adaptive Partitioning

Benefits of adaptive partitioning

Adaptive partitioning provides a number of benefits to the design, development,

running, and debugging of your system.

Engineering product performance

Adaptive partitioning lets you design your system so as to optimize its performance.

Partitioning

Partitions divide resources so that they can be used by a collection of programs. A

partition represents a fraction of a resource and includes few rules that define the

resource usage. The resources include basic objects, such as processor cycles, program

store or high-level objects, such as buffers, page tables, or file descriptors.

With respect to the thread scheduler, adaptive partitioning ensures that any free time

available in the system (i.e., CPU time in a partition's budget that the partition doesn't

need) is made available to other partitions. This lets the system handle sudden

processing demands that occur during normal system operation. With a cyclic thread

scheduler, there's a “use it or lose it” approach where unused CPU time is spent

running an idler thread in partitions that don't use their full budget.

Partition inheritance

Another important feature of adaptive partitioning is the concept of partition

inheritance.

For the thread scheduler, this feature lets designers develop server processes that run

with no (or minimal) budget. When the server performs requests from clients, the

client partition is billed for the time. Without this feature, CPU budget would be

allocated to a server regardless of how much or often it's used. The benefits of these

features include:

• You don't have to over-engineer the system, so the overall cost decreases.

• If you add an application, you don't have to re-engineer the budget of common

services, such as filesystems or servers.

• The system is faster and more responsive to the user.

• The system guarantees time for important tasks.

• You can use priorities to specify a process's urgency, and a partition's CPU budget

to specify its importance.

Dealing with design complexity

Designing large-scale distributed systems is inherently complex. Typical systems have

a large number of subsystems, processes, and threads developed in isolation from

Copyright © 2014, QNX Software Systems Limited 289

Benefits of adaptive partitioning

each other. The design is divided among groups with differing system performance

goals, different schemes for determining priorities, and different approaches to runtime

optimization.

This can be further compounded by product development in different geographic

locations and time zones. Once all of these disparate subsystems are integrated into

a common runtime environment, all parts of the system need to provide adequate

response under all operating scenarios, such as:

• normal system loading

• peak periods

• failure conditions

Given the parallel development paths, system issues invariably arise when integrating

the product. Typically, once a system is running, unforeseen interactions that cause

serious performance degradations are uncovered. When situations such as this arise,

there are usually very few designers or architects who can diagnose and solve these

problems at a system level. Solutions often take considerable modifications (frequently,

by trial and error) to get it right. This extends system integration, impacting the time

to market.

Problems of this nature can take a week or more to troubleshoot, and several weeks

to adjust priorities across the system, retest, and refine. If these problems can't be

solved effectively, product scalability is limited.

This is largely due to the fact that there's no effective way to “budget” CPU use across

these groups. Thread priorities provide a way to ensure that critical tasks run, but don't

provide guaranteed CPU time for important, noncritical tasks, which can be starved

in normal operations. In addition, a common approach to establishing thread priorities

is difficult to scale across a large development team.

Adaptive partitioning using the thread scheduler lets architects maintain a reserve of

resources for emergency purposes, such as a disaster-recovery system, or a

field-debugging shell, and define high-level CPU budgets per subsystem, allowing

development groups to implement their own priority schemes and optimizations within

a given budget. This approach lets design groups develop subsystems independently

and eases the integration effort. The net effect is to improve time-to-market and

facilitate product scaling.

Providing security

Many systems are vulnerable to Denial of Service (DOS) attacks. For example, a

malicious user could bombard a system with requests that need to be processed by

290 Copyright © 2014, QNX Software Systems Limited

Adaptive Partitioning

one process. When under attack, this process overloads the CPU and effectively starves

the rest of the system.

99%

0%

Operating
System

1%

DOS
attack!

0%

0% 0%

0%

0%

Figure 56: Without adaptive partitioning, a DOS attack on one process can starve other

critical functions.

Some systems try to overcome this problem by implementing a monitor process that

detects CPU utilization and invokes corrective actions when it deems that a process

is using too much CPU. This approach has a number of drawbacks, including:

• Response time is typically slow.

• This approach caps the CPU usage in times when legitimate processing is required.

• It isn't infallible or reliable; it depends on appropriate thread priorities to ensure

that the monitor process obtains sufficient CPU time.

The thread scheduler can solve this problem. The thread scheduler can provide separate

budgets to the system's various functions. This ensures that the system always has

some CPU capacity for important tasks. Threads can change their own priorities, which

can be a security hole, but you can configure the thread scheduler to prevent code

running in a partition from changing its own budget.

60% 20%

5%

15%

Operating
System

DOS
attack!

Figure 57: With scheduler partitions, a DOS attack is contained.

Copyright © 2014, QNX Software Systems Limited 291

Benefits of adaptive partitioning

Since adaptive partitioning can allocate any unused CPU time to partitions that require

it, it doesn't unnecessarily cap control-plane activity when there's a legitimate need

for increased processing.

Debugging

Adaptive partitioning can even make debugging an embedded system easier—during

development or deployment—by providing an “emergency door” into the system.

Simply create a partition that you can run diagnostic tools in; if you don't need to use

the partition, the thread scheduler allocates its budget among the other partitions.

This provides you with access to the system without compromising its performance.

For more information, see the Testing and Debugging chapter of the Adaptive

Partitioning User's Guide.

292 Copyright © 2014, QNX Software Systems Limited

Adaptive Partitioning

Adaptive partitioning thread scheduler

The thread scheduler is an optional scheduler that lets you guarantee minimum

percentages of the CPU's throughput to groups of threads, processes, or applications.

The percentage of the CPU time allotted to a partition is called a budget.

The thread scheduler has been designed on top of the core QNX Neutrino architecture

primarily to solve these problems in embedded systems design:

• guaranteeing a specified minimum share of CPU time when the system is overloaded

• preventing unimportant or untrusted applications from monopolizing the system

For more information, see the Adaptive Partitioning User's Guide.

Copyright © 2014, QNX Software Systems Limited 293

Adaptive partitioning thread scheduler

Glossary

A20 gate

On x86-based systems, a hardware component that forces the A20 address

line on the bus to zero, regardless of the actual setting of the A20 address

line on the processor. This component is in place to support legacy systems,

but the QNX Neutrino RTOS doesn't require any such hardware. Note that

some processors, such as the 386EX, have the A20 gate hardware built right

into the processor itself — our IPL will disable the A20 gate as soon as

possible after startup.

adaptive

Scheduling policy whereby a thread's priority is decayed by 1. See also FIFO,

round robin, and sporadic.

adaptive partitioning

A method of dividing, in a flexible manner, CPU time, memory, file resources,

or kernel resources with some policy of minimum guaranteed usage.

application ID

A number that identifies all processes that are part of an application. Like

process group IDs, the application ID value is the same as the process id of

the first process in the application. A new application is created by spawning

with the POSIX_SPAWN_NEWAPP or SPAWN_NEWAPP flag. A process created

without one of those inherits the application ID of its parent. A process needs

the PROCMGR_AID_CHILD_NEWAPP ability in order to set those flags.

The SignalKill() kernel call accepts a SIG_APPID flag ORed into the signal

number parameter. This tells it to send the signal to all the processes with

an application ID that matches the pid argument. The DCMD_PROC_INFO

devctl() returns the application ID in a structure field.

asymmetric multiprocessing (AMP)

A multiprocessing system where a separate OS, or a separate instantiation

of the same OS, runs on each CPU.

atomic

Of or relating to atoms. :-)

In operating systems, this refers to the requirement that an operation, or

sequence of operations, be considered indivisible. For example, a thread

may need to move a file position to a given location and read data. These

operations must be performed in an atomic manner; otherwise, another

Copyright © 2014, QNX Software Systems Limited 295

thread could preempt the original thread and move the file position to a

different location, thus causing the original thread to read data from the

second thread's position.

attributes structure

Structure containing information used on a per-resource basis (as opposed

to the OCB, which is used on a per-open basis).

This structure is also known as a handle. The structure definition is fixed

(iofunc_attr_t), but may be extended. See also mount structure.

bank-switched

A term indicating that a certain memory component (usually the device

holding an image) isn't entirely addressable by the processor. In this case,

a hardware component manifests a small portion (or “window”) of the device

onto the processor's address bus. Special commands have to be issued to

the hardware to move the window to different locations in the device. See

also linearly mapped.

base layer calls

Convenient set of library calls for writing resource managers. These calls all

start with resmgr_*(). Note that while some base layer calls are unavoidable

(e.g. resmgr_pathname_attach()), we recommend that you use the POSIX

layer calls where possible.

BIOS/ROM Monitor extension signature

A certain sequence of bytes indicating to the BIOS or ROM Monitor that the

device is to be considered an “extension” to the BIOS or ROM Monitor —

control is to be transferred to the device by the BIOS or ROM Monitor, with

the expectation that the device will perform additional initializations.

On the x86 architecture, the two bytes 0x55 and 0xAA must be present (in

that order) as the first two bytes in the device, with control being transferred

to offset 0x0003.

block-integral

The requirement that data be transferred such that individual structure

components are transferred in their entirety — no partial structure component

transfers are allowed.

In a resource manager, directory data must be returned to a client as

block-integral data. This means that only complete struct dirent

structures can be returned — it's inappropriate to return partial structures,

296 Copyright © 2014, QNX Software Systems Limited

Glossary

assuming that the next _IO_READ request will “pick up” where the previous

one left off.

bootable

An image can be either bootable or nonbootable. A bootable image is one

that contains the startup code that the IPL can transfer control to.

bootfile

The part of an OS image that runs the startup code and the microkernel.

bound multiprocessing (BMP)

A multiprocessing system where a single instantiation of an OS manages all

CPUs simultaneously, but you can lock individual applications or threads to

a specific CPU.

budget

In sporadic scheduling, the amount of time a thread is permitted to execute

at its normal priority before being dropped to its low priority.

buildfile

A text file containing instructions for mkifs specifying the contents and

other details of an image, or for mkefs specifying the contents and other

details of an embedded filesystem image.

canonical mode

Also called edited mode or “cooked” mode. In this mode the character device

library performs line-editing operations on each received character. Only

when a line is “completely entered” — typically when a carriage return (CR)

is received — will the line of data be made available to application processes.

Contrast raw mode.

channel

A kernel object used with message passing.

In QNX Neutrino, message passing is directed towards a connection (made

to a channel); threads can receive messages from channels. A thread that

wishes to receive messages creates a channel (using ChannelCreate()), and

then receives messages from that channel (using MsgReceive()). Another

thread that wishes to send a message to the first thread must make a

connection to that channel by “attaching” to the channel (using

ConnectAttach()) and then sending data (using MsgSend()).

chid

Copyright © 2014, QNX Software Systems Limited 297

An abbreviation for channel ID.

CIFS

Common Internet File System (also known as SMB) — a protocol that allows

a client workstation to perform transparent file access over a network to a

Windows 95/98/NT server. Client file access calls are converted to CIFS

protocol requests and are sent to the server over the network. The server

receives the request, performs the actual filesystem operation, and sends a

response back to the client.

CIS

Card Information Structure — a data block that maintains information about

flash configuration. The CIS description includes the types of memory devices

in the regions, the physical geometry of these devices, and the partitions

located on the flash.

coid

An abbreviation for connection ID.

combine message

A resource manager message that consists of two or more messages. The

messages are constructed as combine messages by the client's C library

(e.g. stat(), readblock()), and then handled as individual messages by the

resource manager.

The purpose of combine messages is to conserve network bandwidth and/or

to provide support for atomic operations. See also connect message and I/O

message.

connect message

In a resource manager, a message issued by the client to perform an

operation based on a pathname (e.g. an io_open message). Depending on

the type of connect message sent, a context block (see OCB) may be

associated with the request and will be passed to subsequent I/O messages.

See also combine message and I/O message.

connection

A kernel object used with message passing.

Connections are created by client threads to “connect” to the channels made

available by servers. Once connections are established, clients can

MsgSendv() messages over them. If a number of threads in a process all

attach to the same channel, then the one connection is shared among all

298 Copyright © 2014, QNX Software Systems Limited

Glossary

the threads. Channels and connections are identified within a process by a

small integer.

The key thing to note is that connections and file descriptors (FD) are one

and the same object. See also channel and FD.

context

Information retained between invocations of functionality.

When using a resource manager, the client sets up an association or context

within the resource manager by issuing an open() call and getting back a

file descriptor. The resource manager is responsible for storing the

information required by the context (see OCB). When the client issues further

file-descriptor based messages, the resource manager uses the OCB to

determine the context for interpretation of the client's messages.

cooked mode

See canonical mode.

core dump

A file describing the state of a process that terminated abnormally.

critical section

A code passage that must be executed “serially” (i.e. by only one thread at

a time). The simplest from of critical section enforcement is via a mutex.

deadlock

A condition in which one or more threads are unable to continue due to

resource contention. A common form of deadlock can occur when one thread

sends a message to another, while the other thread sends a message to the

first. Both threads are now waiting for each other to reply to the message.

Deadlock can be avoided by good design practices or massive kludges —

we recommend the good design approach.

device driver

A process that allows the OS and application programs to make use of the

underlying hardware in a generic way (e.g. a disk drive, a network interface).

Unlike OSs that require device drivers to be tightly bound into the OS itself,

device drivers for the QNX Neutrino RTOS are standard processes that can

be started and stopped dynamically. As a result, adding device drivers doesn't

affect any other part of the OS — drivers can be developed and debugged

like any other application. Also, device drivers are in their own protected

address space, so a bug in a device driver won't cause the entire OS to shut

down.

Copyright © 2014, QNX Software Systems Limited 299

discrete (or traditional) multiprocessor system

A system that has separate physical processors hooked up in multiprocessing

mode over a board-level bus.

DNS

Domain Name Service — an Internet protocol used to convert ASCII domain

names into IP addresses. In QNX Neutrino native networking, dns is one of

Qnet's builtin resolvers.

dynamic bootfile

An OS image built on the fly. Contrast static bootfile.

dynamic linking

The process whereby you link your modules in such a way that the Process

Manager will link them to the library modules before your program runs. The

word “dynamic” here means that the association between your program and

the library modules that it uses is done at load time, not at linktime. Contrast

static linking. See also runtime loading.

edge-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller) can be

programmed to respond to interrupts. In edge-sensitive mode, the interrupt

is “noticed” upon a transition to/from the rising/falling edge of a pulse.

Contrast level-sensitive.

edited mode

See canonical mode.

EOI

End Of Interrupt — a command that the OS sends to the PIC after processing

all Interrupt Service Routines (ISR) for that particular interrupt source so

that the PIC can reset the processor's In Service Register. See also PIC and

ISR.

EPROM

Erasable Programmable Read-Only Memory — a memory technology that

allows the device to be programmed (typically with higher-than-operating

voltages, e.g. 12V), with the characteristic that any bit (or bits) may be

individually programmed from a 1 state to a 0 state. To change a bit from

a 0 state into a 1 state can only be accomplished by erasing the entire

device, setting all of the bits to a 1 state. Erasing is accomplished by shining

an ultraviolet light through the erase window of the device for a fixed period

300 Copyright © 2014, QNX Software Systems Limited

Glossary

of time (typically 10-20 minutes). The device is further characterized by

having a limited number of erase cycles (typically 10e5 - 10e6). Contrast

flash and RAM.

event

A notification scheme used to inform a thread that a particular condition

has occurred. Events can be signals or pulses in the general case; they can

also be unblocking events or interrupt events in the case of kernel timeouts

and interrupt service routines. An event is delivered by a thread, a timer,

the kernel, or an interrupt service routine when appropriate to the requestor

of the event.

FD

File Descriptor — a client must open a file descriptor to a resource manager

via the open() function call. The file descriptor then serves as a handle for

the client to use in subsequent messages. Note that a file descriptor is the

exact same object as a connection ID (coid, returned by ConnectAttach()).

FIFO

First In First Out — a scheduling policy whereby a thread is able to consume

CPU at its priority level without bounds. See also adaptive, round robin, and

sporadic.

flash memory

A memory technology similar in characteristics to EPROM memory, with the

exception that erasing is performed electrically instead of via ultraviolet

light, and, depending upon the organization of the flash memory device,

erasing may be accomplished in blocks (typically 64 KB at a time) instead

of the entire device. Contrast EPROM and RAM.

FQNN

Fully Qualified Node Name — a unique name that identifies a QNX Neutrino

node on a network. The FQNN consists of the nodename plus the node

domain tacked together.

garbage collection

Also known as space reclamation, the process whereby a filesystem manager

recovers the space occupied by deleted files and directories.

HA

High Availability — in telecommunications and other industries, HA describes

a system's ability to remain up and running without interruption for extended

periods of time.

Copyright © 2014, QNX Software Systems Limited 301

handle

A pointer that the resource manager base library binds to the pathname

registered via resmgr_attach(). This handle is typically used to associate

some kind of per-device information. Note that if you use the iofunc_*()

POSIX layer calls, you must use a particular type of handle — in this case

called an attributes structure.

hard thread affinity

A user-specified binding of a thread to a set of processors, done by means

of a runmask. Contrast soft thread affinity.

image

In the context of embedded QNX Neutrino systems, an “image” can mean

either a structure that contains files (i.e. an OS image) or a structure that

can be used in a read-only, read/write, or read/write/reclaim FFS-2-compatible

filesystem (i.e. a flash filesystem image).

inherit mask

A bitmask that specifies which processors a thread's children can run on.

Contrast runmask.

interrupt

An event (usually caused by hardware) that interrupts whatever the processor

was doing and asks it do something else. The hardware will generate an

interrupt whenever it has reached some state where software intervention is

required.

interrupt handler

See ISR.

interrupt latency

The amount of elapsed time between the generation of a hardware interrupt

and the first instruction executed by the relevant interrupt service routine.

Also designated as “Til”. Contrast scheduling latency.

interrupt service routine

See ISR.

interrupt service thread

A thread that is responsible for performing thread-level servicing of an

interrupt.

302 Copyright © 2014, QNX Software Systems Limited

Glossary

Since an ISR can call only a very limited number of functions, and since

the amount of time spent in an ISR should be kept to a minimum, generally

the bulk of the interrupt servicing work should be done by a thread. The

thread attaches the interrupt (via InterruptAttach() or InterruptAttachEvent())

and then blocks (via InterruptWait()), waiting for the ISR to tell it to do

something (by returning an event of type SIGEV_INTR). To aid in minimizing

scheduling latency, the interrupt service thread should raise its priority

appropriately.

I/O message

A message that relies on an existing binding between the client and the

resource manager. For example, an _IO_READ message depends on the

client's having previously established an association (or context) with the

resource manager by issuing an open() and getting back a file descriptor.

See also connect message, context, combine message, and message.

I/O privileges

A particular right, that, if enabled for a given thread, allows the thread to

perform I/O instructions (such as the x86 assembler in and out

instructions). By default, I/O privileges are disabled, because a program with

it enabled can wreak havoc on a system. To enable I/O privileges, the thread

must be running as root, and call ThreadCtl().

IPC

Interprocess Communication — the ability for two processes (or threads) to

communicate. The QNX Neutrino RTOS offers several forms of IPC, most

notably native messaging (synchronous, client/server relationship), POSIX

message queues and pipes (asynchronous), as well as signals.

IPL

Initial Program Loader — the software component that either takes control

at the processor's reset vector (e.g. location 0xFFFFFFF0 on the x86), or

is a BIOS extension. This component is responsible for setting up the

machine into a usable state, such that the startup program can then perform

further initializations. The IPL is written in assembler and C. See also BIOS

extension signature and startup code.

IRQ

Interrupt Request — a hardware request line asserted by a peripheral to

indicate that it requires servicing by software. The IRQ is handled by the

PIC, which then interrupts the processor, usually causing the processor to

execute an Interrupt Service Routine (ISR).

Copyright © 2014, QNX Software Systems Limited 303

ISR

Interrupt Service Routine — a routine responsible for servicing hardware

(e.g. reading and/or writing some device ports), for updating some data

structures shared between the ISR and the thread(s) running in the

application, and for signalling the thread that some kind of event has

occurred.

kernel

See microkernel.

level-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller) can be

programmed to respond to interrupts. If the PIC is operating in level-sensitive

mode, the IRQ is considered active whenever the corresponding hardware

line is active. Contrast edge-sensitive.

linearly mapped

A term indicating that a certain memory component is entirely addressable

by the processor. Contrast bank-switched.

message

A parcel of bytes passed from one process to another. The OS attaches no

special meaning to the content of a message — the data in a message has

meaning for the sender of the message and for its receiver, but for no one

else.

Message passing not only allows processes to pass data to each other, but

also provides a means of synchronizing the execution of several processes.

As they send, receive, and reply to messages, processes undergo various

“changes of state” that affect when, and for how long, they may run.

microkernel

A part of the operating system that provides the minimal services used by

a team of optional cooperating processes, which in turn provide the

higher-level OS functionality. The microkernel itself lacks filesystems and

many other services normally expected of an OS; those services are provided

by optional processes.

mount structure

An optional, well-defined data structure (of type iofunc_mount_t) within

an iofunc_*() structure, which contains information used on a per-mountpoint

basis (generally used only for filesystem resource managers). See also

attributes structure and OCB.

304 Copyright © 2014, QNX Software Systems Limited

Glossary

mountpoint

The location in the pathname space where a resource manager has

“registered” itself. For example, the serial port resource manager registers

mountpoints for each serial device (/dev/ser1, /dev/ser2, etc.), and a

CD-ROM filesystem may register a single mountpoint of /cdrom.

multicore system

A chip that has one physical processor with multiple CPUs interconnected

over a chip-level bus.

mutex

Mutual exclusion lock, a simple synchronization service used to ensure

exclusive access to data shared between threads. It is typically acquired

(pthread_mutex_lock()) and released (pthread_mutex_unlock()) around the

code that accesses the shared data (usually a critical section). See also

critical section.

name resolution

In a QNX Neutrino network, the process by which the Qnet network manager

converts an FQNN to a list of destination addresses that the transport layer

knows how to get to.

name resolver

Program code that attempts to convert an FQNN to a destination address.

nd

An abbreviation for node descriptor, a numerical identifier for a node relative

to the current node. Each node's node descriptor for itself is 0

(ND_LOCAL_NODE).

NDP

Node Discovery Protocol — proprietary QNX Software Systems protocol for

broadcasting name resolution requests on a QNX Neutrino LAN.

network directory

A directory in the pathname space that's implemented by the Qnet network

manager.

NFS

Network FileSystem — a TCP/IP application that lets you graft remote

filesystems (or portions of them) onto your local namespace. Directories on

the remote systems appear as part of your local filesystem and all the utilities

Copyright © 2014, QNX Software Systems Limited 305

you use for listing and managing files (e.g. ls, cp, mv) operate on the remote

files exactly as they do on your local files.

NMI

Nonmaskable Interrupt — an interrupt that can't be masked by the processor.

We don't recommend using an NMI!

Node Discovery Protocol

See NDP.

node domain

A character string that the Qnet network manager tacks onto the nodename

to form an FQNN.

nodename

A unique name consisting of a character string that identifies a node on a

network.

nonbootable

A nonbootable OS image is usually provided for larger embedded systems

or for small embedded systems where a separate, configuration-dependent

setup may be required. Think of it as a second “filesystem” that has some

additional files on it. Since it's nonbootable, it typically won't contain the

OS, startup file, etc. Contrast bootable.

OCB

Open Control Block (or Open Context Block) — a block of data established

by a resource manager during its handling of the client's open() function.

This context block is bound by the resource manager to this particular

request, and is then automatically passed to all subsequent I/O functions

generated by the client on the file descriptor returned by the client's open().

package filesystem

A virtual filesystem manager that presents a customized view of a set of files

and directories to a client. The “real” files are present on some medium;

the package filesystem presents a virtual view of selected files to the client.

partition

A division of CPU time, memory, file resources, or kernel resources with

some policy of minimum guaranteed usage.

pathname prefix

See mountpoint.

306 Copyright © 2014, QNX Software Systems Limited

Glossary

pathname space mapping

The process whereby the Process Manager maintains an association between

resource managers and entries in the pathname space.

persistent

When applied to storage media, the ability for the medium to retain

information across a power-cycle. For example, a hard disk is a persistent

storage medium, whereas a ramdisk is not, because the data is lost when

power is lost.

PIC

Programmable Interrupt Controller — hardware component that handles

IRQs. See also edge-sensitive, level-sensitive, and ISR.

PID

Process ID. Also often pid (e.g. as an argument in a function call).

POSIX

An IEEE/ISO standard. The term is an acronym (of sorts) for Portable

Operating System Interface — the “X” alludes to “UNIX”, on which the

interface is based.

POSIX layer calls

Convenient set of library calls for writing resource managers. The POSIX

layer calls can handle even more of the common-case messages and functions

than the base layer calls. These calls are identified by the iofunc_*() prefix.

In order to use these (and we strongly recommend that you do), you must

also use the well-defined POSIX-layer attributes (iofunc_attr_t), OCB

(iofunc_ocb_t), and (optionally) mount (iofunc_mount_t) structures.

preemption

The act of suspending the execution of one thread and starting (or resuming)

another. The suspended thread is said to have been “preempted” by the

new thread. Whenever a lower-priority thread is actively consuming the CPU,

and a higher-priority thread becomes READY, the lower-priority thread is

immediately preempted by the higher-priority thread.

prefix tree

The internal representation used by the Process Manager to store the

pathname table.

priority inheritance

Copyright © 2014, QNX Software Systems Limited 307

The characteristic of a thread that causes its priority to be raised or lowered

to that of the thread that sent it a message. Also used with mutexes. Priority

inheritance is a method used to prevent priority inversion.

priority inversion

A condition that can occur when a low-priority thread consumes CPU at a

higher priority than it should. This can be caused by not supporting priority

inheritance, such that when the lower-priority thread sends a message to a

higher-priority thread, the higher-priority thread consumes CPU on behalf

of the lower-priority thread. This is solved by having the higher-priority thread

inherit the priority of the thread on whose behalf it's working.

process

A nonschedulable entity, which defines the address space and a few data

areas. A process must have at least one thread running in it — this thread

is then called the first thread.

process group

A collection of processes that permits the signalling of related processes.

Each process in the system is a member of a process group identified by a

process group ID. A newly created process joins the process group of its

creator.

process group ID

The unique identifier representing a process group during its lifetime. A

process group ID is a positive integer. The system may reuse a process group

ID after the process group dies.

process group leader

A process whose ID is the same as its process group ID.

process ID (PID)

The unique identifier representing a process. A PID is a positive integer.

The system may reuse a process ID after the process dies, provided no

existing process group has the same ID. Only the Process Manager can have

a process ID of 1.

pty

Pseudo-TTY — a character-based device that has two “ends”: a master end

and a slave end. Data written to the master end shows up on the slave end,

and vice versa. These devices are typically used to interface between a

program that expects a character device and another program that wishes

308 Copyright © 2014, QNX Software Systems Limited

Glossary

to use that device (e.g. the shell and the telnet daemon process, used for

logging in to a system over the Internet).

pulses

In addition to the synchronous Send/Receive/Reply services, QNX Neutrino

also supports fixed-size, nonblocking messages known as pulses. These carry

a small payload (four bytes of data plus a single byte code). A pulse is also

one form of event that can be returned from an ISR or a timer. See

MsgDeliverEvent() for more information.

Qnet

The native network manager in the QNX Neutrino RTOS.

QoS

Quality of Service — a policy (e.g. loadbalance) used to connect nodes

in a network in order to ensure highly dependable transmission. QoS is an

issue that often arises in high-availability (HA) networks as well as realtime

control systems.

RAM

Random Access Memory — a memory technology characterized by the ability

to read and write any location in the device without limitation. Contrast flash

and EPROM.

raw mode

In raw input mode, the character device library performs no editing on

received characters. This reduces the processing done on each character to

a minimum and provides the highest performance interface for reading data.

Also, raw mode is used with devices that typically generate binary data —

you don't want any translations of the raw binary stream between the device

and the application. Contrast canonical mode.

replenishment

In sporadic scheduling, the period of time during which a thread is allowed

to consume its execution budget.

reset vector

The address at which the processor begins executing instructions after the

processor's reset line has been activated. On the x86, for example, this is

the address 0xFFFFFFF0.

resource manager

Copyright © 2014, QNX Software Systems Limited 309

A user-level server program that accepts messages from other programs and,

optionally, communicates with hardware. QNX Neutrino resource managers

are responsible for presenting an interface to various types of devices,

whether actual (e.g. serial ports, parallel ports, network cards, disk drives)

or virtual (e.g. /dev/null, a network filesystem, and pseudo-ttys).

In other operating systems, this functionality is traditionally associated with

device drivers. But unlike device drivers, QNX Neutrino resource managers

don't require any special arrangements with the kernel. In fact, a resource

manager looks just like any other user-level program. See also device driver.

RMA

Rate Monotonic Analysis — a set of methods used to specify, analyze, and

predict the timing behavior of realtime systems.

round robin

A scheduling policy whereby a thread is given a certain period of time to

run. Should the thread consume CPU for the entire period of its timeslice,

the thread will be placed at the end of the ready queue for its priority, and

the next available thread will be made READY. If a thread is the only thread

READY at its priority level, it will be able to consume CPU again immediately.

See also adaptive, FIFO, and sporadic.

runmask

A bitmask that indicates which processors a thread can run on. Contrast

inherit mask.

runtime loading

The process whereby a program decides while it's actually running that it

wishes to load a particular function from a library. Contrast static linking.

scheduling latency

The amount of time that elapses between the point when one thread makes

another thread READY and when the other thread actually gets some CPU

time. Note that this latency is almost always at the control of the system

designer.

Also designated as “Tsl”. Contrast interrupt latency.

scoid

An abbreviation for server connection ID.

session

310 Copyright © 2014, QNX Software Systems Limited

Glossary

A collection of process groups established for job control purposes. Each

process group is a member of a session. A process belongs to the session

that its process group belongs to. A newly created process joins the session

of its creator. A process can alter its session membership via setsid(). A

session can contain multiple process groups.

session leader

A process whose death causes all processes within its process group to

receive a SIGHUP signal.

soft thread affinity

The scheme whereby the microkernel tries to dispatch a thread to the

processor where it last ran, in an attempt to reduce thread migration from

one processor to another, which can affect cache performance. Contrast

hard thread affinity.

software interrupts

Similar to a hardware interrupt (see interrupt), except that the source of the

interrupt is software.

sporadic

A scheduling policy whereby a thread's priority can oscillate dynamically

between a “foreground” or normal priority and a “background” or low priority.

A thread is given an execution budget of time to be consumed within a

certain replenishment period. See also adaptive, FIFO, and round robin.

startup code

The software component that gains control after the IPL code has performed

the minimum necessary amount of initialization. After gathering information

about the system, the startup code transfers control to the OS.

static bootfile

An image created at one time and then transmitted whenever a node boots.

Contrast dynamic bootfile.

static linking

The process whereby you combine your modules with the modules from the

library to form a single executable that's entirely self-contained. The word

“static” implies that it's not going to change — all the required modules

are already combined into one.

symmetric multiprocessing (SMP)

Copyright © 2014, QNX Software Systems Limited 311

A multiprocessor system where a single instantiation of an OS manages all

CPUs simultaneously, and applications can float to any of them.

system page area

An area in the kernel that is filled by the startup code and contains

information about the system (number of bytes of memory, location of serial

ports, etc.) This is also called the SYSPAGE area.

thread

The schedulable entity under the QNX Neutrino RTOS. A thread is a flow of

execution; it exists within the context of a process.

tid

An abbreviation for thread ID.

timer

A kernel object used in conjunction with time-based functions. A timer is

created via timer_create() and armed via timer_settime(). A timer can then

deliver an event, either periodically or on a one-shot basis.

timeslice

A period of time assigned to a round-robin or adaptive scheduled thread.

This period of time is small (on the order of tens of milliseconds); the actual

value shouldn't be relied upon by any program (it's considered bad design).

TLB

An abbreviation for translation look-aside buffer. To maintain performance,

the processor caches frequently used portions of the external memory page

tables in the TLB.

TLS

An abbreviation for thread local storage.

312 Copyright © 2014, QNX Software Systems Limited

Glossary

Index

_CS_DOMAIN 248
_CS_HOSTNAME 248
_IO_STAT 166
_NOTIFY_COND_INPUT 82
_NOTIFY_COND_OBAND 82
_NOTIFY_COND_OUTPUT 82
_NTO_CHF_FIXED_PRIORITY 77
_NTO_TCTL_IO 86, 137, 139
_NTO_TCTL_RUNMASK 123
_NTO_TCTL_RUNMASK_GET_AND_SET_INHERIT 123
.longfilenames 184
/ directory 142
/dev 90, 142, 180, 186, 223

hd* 180
mem 142
mq and mqueue 90
ser* 223
shmem 186
zero 142

/net directory 246
/proc 142, 281

boot 142
ham 281
pid 142

/tmp directory 186

A

abort() 86
accept() 261
actions (HA) 278
adaptive partitioning 286, 288, 292, 293

debugging with 292
partitions 288
thread scheduler 293

affinity, processor 119, 122
alarm() 58
anonymous memory 95
Apple Macintosh HFS and HFS Plus 214
as_add_containing() 104
as_add() 103
Asymmetric Multiprocessing (AMP) 115, 116
asynchronous publishing 217
atomic operations 47, 54
attributes structure (resource manager) 172
autoconnect 268
AutoIP 266

B

background priority (sporadic scheduling) 42
barriers 29, 47, 50

and threads 50
bind() 261
bindresvport() 261
block-oriented devices 223

boot processor 118
Bound Multiprocessing (BMP) 115, 122
budgets 286, 293

CPU 286, 293
file space (not implemented) 286
memory (not implemented) 286

C

canonical input mode 230
cd command 149, 150

See also directories
CD-ROM filesystem 204
ChannelCreate() 75, 77
ChannelDestroy() 75
channels 75, 76
character devices 223
chmod() 174
chown() 174
chroot() 149
CIFS filesystem 211
clock services 56
clock_getcpuclockid() 56
clock_getres() 56
clock_gettime() 56
clock_settime() 56
ClockAdjust() 56, 57
ClockCycles() 56, 57
ClockId() 56
ClockPeriod() 56
ClockTime() 56
close() 92, 103, 174
COFF (Common Object File Format) 158
combine messages 172
conditions (HA entity states) 277
CONDVAR (thread state) 36
condvars 29, 45, 47, 49, 120

example 49
operations 49
SMP 120

confstr() 248
connect messages 169
connect() 261
ConnectAttach() 75
ConnectDetach() 75
consoles 233

physical 233
virtual 233

cooked input mode 230
cooperating processes 105

FIFOs 105
pipes 105

copy-on-write (COW) 193
CPU 119, 122, 286, 293

affinity 119, 122
usage, budgeting 286, 293

Copyright © 2014, QNX Software Systems Limited 313

QNX® Neutrino® RTOS

CRC 189
critical section 45, 48, 49, 54, 60, 120

defined 45
SMP 120

current working directory 149, 150

D

dates, valid range of 56
DEAD (thread state) 36
deadlock-free systems, rules for 79
debugging, using adaptive partitions for 292
defragmentation of physical memory 138
design goals for QNX Neutrino 28
design goals for the QNX Neutrino RTOS 13
devc-con, devc-con-hid 233
devctl() 174, 227
device control 227
device drivers 22, 64, 163

See also resource managers
no need to link into kernel 64
similarity to standard processes 22

See also resource managers
device names, creating 148
directories 149, 150

changing 149
current working directory 149, 150

directories, changing 150
discrete multiprocessors 115
disks 181, 192, 201

corruption, avoiding 192
DOS disks, accessing 201
partitions 181

dladdr() 160
dlclose() 160
dlopen() 160
dlsym() 160
DMA-safe region, defining 104
dn_comp() 261
dn_expand() 261
domains of authority 142
domains, encryption 196
DOS filesystem manager 201
DT_RPATH 159
dumper 33
dup() 103, 151, 170, 171
dup2() 103, 151
dynamic interpreter 158
dynamic linker, See runtime linker
dynamic linking 155

E

edited input mode 230
editing capabilities (io-char) 230
ELF 131, 157
Embedded Transaction Filesystem (ETFS) 187
encryption 196
endprotoent() 261
endservent() 261
entities (HA process) 276

environment variables 159, 160
LD_LIBRARY_PATH 159
LD_PRELOAD 160

ETFS 187
events 81, 107

"unblock" 81
instrumented kernel 107

exclusive (QoS policy) 250
exec*() functions 126, 130, 137

memory locks 137
Executable and Linking Format, See ELF
executable, partially bound 155
Ext2 filesystem 212
extensibility of OS 22
extensions to OS 19

user-written, won't affect reliability of core OS 19

F

fast emitting mode (instrumented kernel) 109
fcntl() 151
FIFO (scheduling method) 40, 41, 47
FIFOs 105

See also pipes
creating 105
removing 105

See also pipes
file descriptors (FDs) 103, 150, 151, 152

duplicating 151
inheritance 151, 152
open control blocks (OCBs) 150
several FDs referring to the same OCB 151
typed memory and 103

files 105, 151, 201, 286
DOS files, operating on 201
FIFOs 105
opened by different processes 151
opened twice by same process 151
pipes 105
space, budgeting (not implemented) 286

filesystems 143, 147, 151, 185, 186, 187, 191, 192, 196,
201, 204, 210, 211, 212, 213, 214, 215, 281

accessing a filesystem on another node 147
Apple Macintosh HFS and HFS Plus 214
CD-ROM 204
CIFS 211
DOS 201
Embedded Transaction (ETFS) 187
HAM 281
Image 185
Linux Ext2 212
NFS 210
NTFS (fs-nt.so) 215
Power-Safe (fs-qnx6) 192, 196

encryption 196
QNX 4 143, 191
RAM 186
seek points 151
Universal Disk Format (UDF) 213

five nines (HA metric) 269
Flash 131

314 Copyright © 2014, QNX Software Systems Limited

Index

floating-point operations 63, 84
not safe to use in ISRs 63
not safe to use in signal handlers 84

foreground priority (sporadic scheduling) 42
fork() 19, 126, 129, 130, 137

memory locks 137
POSIX process model and 19

fpathconf() 174
FQNN (fully qualified node name) 249
fs_crypto_check() 198
fs_crypto_domain_add() 198
fs_crypto_domain_key_change() 198
fs_crypto_domain_key_check() 198
fs_crypto_domain_key_size() 198
fs_crypto_domain_lock() 198
fs_crypto_domain_query() 198
fs_crypto_domain_remove() 198
fs_crypto_domain_unlock() 198
fs_crypto_enable_option() 198
fs_crypto_enable() 198
fs_crypto_file_get_domain() 198
fs_crypto_file_set_domain() 198
fs_crypto_key_gen() 198
fs_crypto_migrate_control() 199
fs_crypto_migrate_path() 199
fs_crypto_migrate_status() 199
fs_crypto_migrate_tag() 199
fs_crypto_set_logging() 198
FS_CRYPTO_TYPE_CBC 197
FS_CRYPTO_TYPE_NONE 197
FS_CRYPTO_TYPE_XTS 197
fs-cd.so 204
fs-cifs 211
fs-dos.so 201
fs-ext2.so 212
fs-mac.so 214
fs-nfs2, fs-nfs3 210
fs-nt.so 215
fs-qnx4.so 143, 191
fs-qnx6.so 192, 196

encryption 196
fs-udf.so 213
fseek() 174
fsencrypt 196
fstat() 103, 174
fsync() (expensive on Power-Safe filesystems) 195
ftruncate() 93

G

gethostbyaddr() 261
gethostbyname() 261
getpeername() 261
getprotobyname() 261
getprotobynumber() 261
getprotoent() 261
getservbyname() 261
getservent() 261
getsockname() 261
getsockopt() 261
global list 160
GNS (Global Name Service) 248

Guardian (HAM "stand-in") 275

H

h_errlist() 261
h_errno() 261
h_nerr() 261
HA 269, 270, 273

client-side library 273
microkernel architecture inherently suited for 270
recovery example 273

HAM 275, 276, 281
API 281
hierarchy 276

ham_action_control() 281
ham_action_execute() 278, 281
ham_action_fail_execute() 279, 281
ham_action_fail_log() 279, 281
ham_action_fail_notify_pulse_node() 279, 281
ham_action_fail_notify_pulse() 279, 281
ham_action_fail_notify_signal_node() 279, 281
ham_action_fail_notify_signal() 279, 281
ham_action_fail_waitfor() 279, 281
ham_action_handle_free() 281
ham_action_handle_node() 281
ham_action_handle() 281
ham_action_heartbeat_healthy() 278, 281
ham_action_log() 278, 281
ham_action_notify_pulse_node() 278, 281
ham_action_notify_pulse() 278, 281
ham_action_notify_signal_node() 278, 281
ham_action_notify_signal() 278, 281
ham_action_remove() 281
ham_action_restart() 278, 281
ham_action_waitfor() 278, 281
ham_attach_node() 281
ham_attach_self() 281
ham_attach() 281
ham_condition_control() 281
ham_condition_handle_free() 281
ham_condition_handle_node() 281
ham_condition_handle() 281
ham_condition_raise() 280, 281
ham_condition_remove() 281
ham_condition_state() 280, 281
ham_condition() 281
ham_connect_nd() 281
ham_connect_node() 281
ham_connect() 281
ham_detach_name_node() 281
ham_detach_name() 281
ham_detach_self() 281
ham_detach() 281
ham_disconnect_nd() 281
ham_disconnect_node() 281
ham_disconnect() 281
ham_entity_condition_raise() 280, 281
ham_entity_condition_state() 280, 281
ham_entity_control() 281
ham_entity_handle_free() 281
ham_entity_handle_node() 281
ham_entity_handle() 281

Copyright © 2014, QNX Software Systems Limited 315

QNX® Neutrino® RTOS

ham_entity_node() 281
ham_entity() 281
ham_heartbeat() 281
ham_stop_nd() 281
ham_stop_node() 281
ham_stop() 281
ham_verbose() 281
herror() 261
HFS and HFS Plus 214
high availability, See HA
High Availability Manager, See HAM
hstrerror() 261
htonl() 261
htons() 261
Hyper-Threading 118

I

I/O messages 169
I/O privileges 86, 137, 139
I/O resources 142
i8259 interrupt control hardware 64
idle thread 39, 65
ifconfig 242
Image filesystem 185
inet_addr() 261
inet_aton() 261
inet_lnaof() 261
inet_makeaddr() 261
inet_netof() 261
inet_network() 261
inet_ntoa() 261
inheritance structure 123
initial budget (sporadic scheduling) 42
inodes 192
input mode 228, 230

edited 230
raw 228

input, redirecting 105
instrumentation 107

interrupts can be traced 107
kernel can be used in prototypes or final products 107
works on SMP systems 107

interprocess communication, See IPC
interprocessor interrupts (IPIs) 120
INTERRUPT (thread state) 36
interrupt control hardware (i8259 on a PC) 64
interrupt handlers 29, 60, 120

See also ISR
SMP 120

See also ISR
interrupt latency 60
Interrupt Service Routine, See ISR
InterruptAttach() 62
InterruptAttachEvent() 62
InterruptDetach() 62
InterruptDisable() 62, 120

problem on SMP systems 120
InterruptEnable() 62, 120

problem on on SMP systems 120
InterruptHookIdle() 65
InterruptHookTrace() 65

InterruptLock() 62, 121
InterruptMask() 62, 120

problem on SMP systems 120
interrupts 61, 63

masking, automatically by the kernel 63
nested 61
priorities 61

InterruptUnlock() 62, 121
InterruptUnmask() 62, 120

problem on SMP systems 120
InterruptWait() 36, 62
intr_timed_wait() 58
io-blk 180
io-pkt* 237
ioctl() 261
iofunc_*() shared library 172
ionotify() 82
IP filtering 264
IPC 24, 33, 67

forms of 67
term qualified to apply to "threads" 33

ISR 60, 63, 65
See also interrupt handlers
attaching to PC timer interrupt 63
floating-point operations aren't safe to use in 63

See also interrupt handlers

J

JOIN (thread state) 36

K

kernel, See microkernel, Process Manager,
kill() 83

L

latency 60, 61, 64
interrupt 60, 64
scheduling 61, 64

LD_LIBRARY_PATH 159
LD_PRELOAD 160
libraries 160

loading before others 160
link() 201
linking 154, 155, 157

dynamically 155
sections 157
statically 154

Linux Ext2 filesystem 212
listen() 261
loadbalance (QoS policy) 250
lock() 174
locking memory 136
lseek() 174
lsm-pf-*.so 264
lsm-qnet.so 246, 247, 248, 249, 251

tx_retries option 251

316 Copyright © 2014, QNX Software Systems Limited

Index

M

Macintosh HFS and HFS Plus 214
malloc() 153
MAP_ANON 95, 140
MAP_BELOW16M 96
MAP_FIXED 95
MAP_LAZY 137
MAP_NOINIT 96, 97
MAP_NOX64K 96
MAP_PHYS 95, 140
MAP_PRIVATE 94, 137
MAP_SHARED 94
mem_offset() 140
memory 46, 54, 73, 91, 93, 95, 96, 99, 104, 132, 136,

137, 138, 139, 140
anonymous 95
DMA-safe region, defining 104
initializing 96
locking 136, 139
mapping 93, 140
physical, defragmenting 138
protection, advantage of for embedded systems 132
quantums 139
shared 46, 54, 73
superlocking 137
typed 99
unmovable 139, 140

Memory Management Units (MMUs) 132
memory-resident 136
message copying 71
message passing 24, 29, 68, 78, 243

API 78
as means of synchronization 24
network-wide 243

message queues 89
messages 24, 46, 71

contents of 24
multipart 71
tend to be tiny 46

metadata 193
microkernel 19, 20, 21, 27, 40, 107, 113, 117, 119

See also microkernel
comparable to a realtime executive 19
defined 19
general responsibilities 21
instrumentation 107–113
instrumented 107
locking 119
managing team of cooperating processes 20
modularity as key aspect 19
priority of 40
services 21
SMP 117, 119
version of, determining 27

See also microkernel
mkfifo 105
mkfifo() 105
mkqnx6fs 193, 196

encryption 196
mlock() 137, 139
mlockall() 137

mmap_device_memory() 96
mmap() 92, 93, 97, 99, 140, 174
MMU 72, 73, 132
mount structure (resource manager) 172
mountpoints 142, 144, 177

order of resolution 144
mprotect() 92, 96
mq server 89
mq_close() 89, 90
mq_getattr() 90
mq_notify() 82, 90
mq_open() 89, 90
mq_receive() 89, 90
mq_send() 89, 90
mq_setattr() 90
mq_unlink() 89, 90
mqueue resource manager 89
MsgDeliverEvent() 36, 78, 81
MsgError() 69, 70
MsgInfo() 78
MsgKeyData() 78
MsgRead() 78
MsgReadv() 74
MsgReceive() 36, 40, 67, 78
MsgReceivePulse() 78
MsgReceivePulsev() 74
MsgReceivev() 74
MsgReply() 67, 70, 74, 78
MsgReply*() 36
MsgReplyv() 74
MsgSend() 36, 37, 40, 67, 70, 74, 78

non-cancellation point variants 40
MsgSendPulse() 36, 78
MsgSendsv() 74
MsgSendv() 74, 125
MsgSendvs() 74
MsgWrite() 78
msync() 92
multicore processors 115
multiprocessing 115
munlock() 137
munlockall() 137
munmap_flags() 92, 97
munmap() 92, 97
MUTEX (thread state) 36
mutexes 29, 45, 47, 48, 49, 50, 120, 139

attributes 48
not currently moved when defragmenting physical memory
139
priority inheritance 48
recursive 49, 50
SMP 120

N

name resolution 246
network 246

name resolver 249
name_attach() 76
name_open() 76
NAND flash 187
NANOSLEEP (thread state) 36

Copyright © 2014, QNX Software Systems Limited 317

QNX® Neutrino® RTOS

nanosleep() 36, 58
NAT 264
ND_LOCAL_NODE 246
nested interrupts 61
NET_REPLY (thread state) 36
NET_SEND (thread state) 36
network 25, 148, 149, 167, 243, 246

as homogeneous set of resources 25
flexibility 25
message passing 243
name resolution 246
pathnames 148
root 149
transparency 25, 167

NFS filesystem 210
NMI 65
node descriptor 246

network 246
node domain 248
node name 248
NTFS (fs-nt.so) 215
ntohl() 261
ntohs() 261
NTP 265

O

O_SYNC(ignored by Power-Safe filesystems) 195
object files, sections of 157
on 123
on command 149
open control blocks (OCBs) 150, 151
open resources 151

active information contained in OCBs 151
open() 93, 174
operations, atomic 54
output, redirecting 105

P

pages 132
parallel devices 235
partially bound executable 155
partitions 286, 288

adaptive 288
static 286
thread scheduler 286

partitions (disk) 181
partitions (thread scheduler) 286
pathconf() 174
pathname 148

converting relative to network 148
pathname space 142, 164, 246

mapping 164
pause() 83
performance 46, 60

context-switch 46
realtime 60

Persistent Publish/Subscribe, See PPS
physical memory, defragmenting 138
pidin 33
pipe manager 105

pipe() 105
pipes 105

creating 105
Point-to-Point Protocol (PPP) 259
Point-to-Point Protocol over Ethernet (PPPoE) 267
popen() 105
POSIX 14, 16, 17, 31, 32, 89

defines interface, not implementation 14
message queues 89
profiles 16
realtime extensions 16
standards of interest to embedded systems developers 16
suitable for embedded systems 16, 17
threads 16, 31, 32

library calls not involving kernel calls 31
library calls with corresponding kernel calls 32

UNIX and 14
posix_mem_offset() 103
posix_spawn*() family of functions 126, 137

memory locks 137
posix_typed_mem_get_info() 99
posix_typed_mem_open() 99
Power-Safe (fs-qnx6) filesystem 192, 196

encryption 196
PPP (Point-to-Point Protocol) 259
PPPoE (Point-to-Point Protocol over Ethernet) 267
PPS 217, 218, 219, 220, 221, 222

files 219
filesystem 219
modes 221
notification groups 222
objects 219
options 219
persistence 218
publishing 220
qualifiers 219
subscribing 221

preferred (QoS policy) 250
prefix 142
prefix tree 142
printf() 153
priority 38, 39, 40, 42, 48, 77, 129, 217

background and foreground (sporadic scheduling) 42
inheritance 48, 77, 129, 217

messages 77
mutexes 48

inversion 40, 48
of microkernel 40
range 39

process groups 128, 129
membership, inheriting 128
remote node 129

Process Manager 125
See also microkernel,
capabilities of 125
required when creating multiple POSIX processes 125

See also microkernel,
processes 20, 22, 28, 31, 105, 126, 131, 136, 137, 151

as container for threads 31
cooperating 105

via pipes and FIFOs 105
I/O privileges, requesting 137

318 Copyright © 2014, QNX Software Systems Limited

Index

processes (continued)
loading 131
locking memory 136
management 126
model, required for POSIX compliance 28
opening the same file twice 151
OS as team of cooperating 20
primitives 126
system 22

processors 115, 119, 122
locking processes to 119, 122
multiple 115
number of, determining 115

procmgr_ability() 39
PROCMGR_AID_IO 87, 137
PROCMGR_AID_PRIORITY 39
procnto* 27, 40, 107, 118, 137, 140, 179, 186

See also microkernel, Process Manager
enabling the defragmentation of physical memory 140
image filesystem 179
instrumented 107
locking memory 137
marking memory blocks as unmovable 140
priority of 40
RAM filesystem 186
SMP 118

See also microkernel, Process Manager
product line, using a single OS for 15
PROT_EXEC 94
PROT_NOCACHE 94
PROT_NONE 94
PROT_READ 94, 137
PROT_WRITE 94, 137
pthread_attr_destroy() 31
pthread_attr_getdetachstate() 31
pthread_attr_getinheritsched() 31
pthread_attr_getschedparam() 31
pthread_attr_getschedpolicy() 31
pthread_attr_getscope() 31
pthread_attr_getstackaddr() 31
pthread_attr_getstacksize() 31
pthread_attr_init() 31
pthread_attr_setdetachstate() 31
pthread_attr_setinheritsched() 31
pthread_attr_setschedparam() 31
pthread_attr_setschedpolicy() 31
pthread_attr_setscope() 31
pthread_attr_setstackaddr() 31
pthread_attr_setstacksize() 31
pthread_barrier_destroy() 52
pthread_barrier_init() 50
pthread_barrier_wait() 50
pthread_barrierattr_destroy() 52
pthread_barrierattr_getpshared() 52
pthread_barrierattr_init() 52
pthread_barrierattr_setpshared() 52
pthread_cancel() 32
pthread_cleanup_pop() 31
pthread_cleanup_push() 31
pthread_cond_broadcast() 32, 49, 55
pthread_cond_destroy() 32, 55
pthread_cond_init() 32, 55

pthread_cond_signal() 32, 49, 55
pthread_cond_timedwait() 50, 55, 58
pthread_cond_wait() 32, 36, 49, 50, 55
pthread_create() 32
pthread_detach() 32
pthread_equal() 31
pthread_exit() 32
pthread_getcpuclockid() 56
pthread_getname_np() 33
pthread_getschedparam() 32, 45
pthread_getspecific() 31, 34
pthread_join() 32, 36
pthread_key_create() 32, 34
pthread_key_delete() 32
pthread_kill() 32, 83
pthread_mutex_destroy() 32, 55
pthread_mutex_init() 32, 55
pthread_mutex_lock() 32, 36, 48, 55, 117
PTHREAD_MUTEX_RECURSIVE 50
pthread_mutex_timedlock() 48
pthread_mutex_trylock() 32, 48, 55, 58
pthread_mutex_unlock() 32, 48, 55, 117
pthread_mutexattr_init() 48
pthread_mutexattr_setprotocol() 48
pthread_mutexattr_settype() 49
PTHREAD_PRIO_INHERIT 48
pthread_rwlock_rdlock() 52
pthread_rwlock_tryrdlock() 53
pthread_rwlock_trywrlock() 53
pthread_rwlock_unlock() 52
pthread_rwlock_wrlock() 52
pthread_self() 32
pthread_setname_np() 33
pthread_setschedparam() 32, 45
pthread_setschedprio() 32, 45
pthread_setspecific() 31
pthread_sigmask() 32
pthread_sleepon_lock() 52
pthread_spin_lock() 117
pthread_spin_unlock() 117
pty (pseudo terminal) 236

as pair of character devices 236
Publish/Subscribe, Persistent, See PPS
publisher, connection to subscriber 217
publishing, asynchronous 217
pulses 76, 81

Q

Qnet 241, 243–255, 250, 251
limiting transmission retries 251
redundant 250

QNX 4 filesystem 143, 191
QNX 6 filesystem, See Power-Safe filesystem
QNX Neutrino 13, 18, 19, 22, 25, 28, 29

design goals 13, 28
extensibility 22
flexibility 18
microkernel 19
network as homogeneous set of resources 25
network flexibility 25
network transparency 25

Copyright © 2014, QNX Software Systems Limited 319

QNX® Neutrino® RTOS

QNX Neutrino (continued)
preemptible even during message pass 29
realtime applications, suitability for 18
services 29
single-computer model 25

QoS (Quality of Service) 249, 250
policies 250

quantums 139

R

raise() 83
RAM 131
RAM "filesystem" 186
RAM disk 181
rate monotonic analysis (RMA) 42
raw input mode 228, 229

conditions for input request 228
FORWARD qualifier 229
MIN qualifier 228
TIME qualifier 228
TIMEOUT qualifier 229

read() 82
readblock() 172
readdir() 147, 178
reader/writer locks 47, 52
READY (thread state) 36
realtime performance 60, 61

interrupt latency and 60
nested interrupts and 61
scheduling latency and 61

RECEIVE (thread state) 36
recv() 261
recvfrom() 261
redirecting 105

input 105
output 105

redundant Qnet 250
relative pathnames, converting to network pathnames 148
remove() 105
replenishment period (sporadic scheduling) 43
REPLY (thread state) 36
res_init() 261
res_mkquery() 261
res_query() 261
res_querydomain() 261
res_search() 261
res_send() 261
resource managers 163, 164, 167, 169, 170, 171, 172, 177

atomic operations 172
attributes structure 172
can be started and stopped dynamically 163
communicate with clients via IPC 167
context for client requests 169
defined 164
don't require any special arrangements with the kernel 163
iofunc_*() shared library 172
message types 169
mount structure 172
shared library 170
similarity to traditional device drivers 163
similarity to user-level servers 164

resource managers (continued)
thread management 171
unique features of 167

resources 25, 151
accessing on other machines 25
no real difference between local and remote 25
open 151

RLIMIT_AS 103
RLIMIT_DATA 103
RLIMIT_VMEM 103
rm 105
robustness 67, 79, 81, 132

improved via memory protection 132
of application architectures via Send/Receive/Reply 79
of implementations with Send/Receive/Reply 79
of IPC 67
of signal handlers 81

ROM 131
root, default network 149
round-robin scheduling 40, 41
RTLD_GLOBAL 161
RTLD_GROUP 161
RTLD_WORLD 161
runmask 122

inheriting 122
RUNNING (thread state) 36
runtime linker 158, 159

S

scaling 15
advantages of 15
of applications 15

scatter/gather DMA 71
SCHED_PRIO_LIMIT_ERROR() 39
SCHED_PRIO_LIMIT_SATURATE() 39
sched_yield() 38
SchedGet() 32
SchedSet() 32
scheduling 38, 40, 41, 42, 61, 119

FIFO 40, 41
latency 61
method 41

determining 41
setting 41

round-robin 40, 41
SMP systems 119
sporadic 40, 42
threads 38

seek points 151
segments 157
select() 82, 261
SEM (thread state) 37
sem_destroy() 55
sem_init() 55
sem_post() 55
sem_trywait() 55
sem_wait() 55
semaphores 29, 45, 47, 53, 120

named 53
SMP 120

SEND (thread state) 37

320 Copyright © 2014, QNX Software Systems Limited

Index

send() 261
sendto() 261
serial 234

devices 234
drivers 234

services, handled by system processes 22
sessions, remote node 129
setprotoent() 261
setrlimit() 103
setservent() 261
setsockopt() 261
shared libraries (.so files) 27, 125, 159
shared memory 46, 54, 73, 91–96
shm_ctl_special() 92
shm_ctl() 92, 93
shm_open() 92, 93
shm_unlink() 92
shutdown() 261
SIGABRT 86
sigaction() 83
SIGALRM 86
SIGBUS 86, 136
SIGCHLD 86
SIGCLD 86
SIGCONT 86
SIGDEADLK 86
SIGEMT 86
SIGFPE 86
SIGHUP 86
SIGILL 86
SIGINT 86
SIGIO 86
SIGIOT 86
SIGKILL 86
signal() 85
SignalAction() 83
SignalKill() 32, 36, 83
SignalProcmask() 32, 83
signals 29, 83, 84

floating-point operations aren't safe to use in handlers 84
POSIX and UNIX 83
queuing of 84
rules for a multithreaded process 83
similarity to pulses 84
targeted at specific threads 83

SignalSuspend() 83
SignalWaitinfo() 83
SIGPIPE 86
SIGPOLL 86
sigprocmask() 83
SIGPWR 86
sigqueue() 83
SIGQUIT 86
SIGSEGV 86
SIGSELECT 86
SIGSTOP 86
SIGSUSPEND (thread state) 37
sigsuspend() 37, 83
SIGSYS 86
SIGTERM 86
sigtimedwait() 58
SIGTRAP 86

SIGTSTP 86
SIGTTIN 86
SIGTTOU 86
SIGURG 86
SIGUSR1 86
SIGUSR2 86
SIGWAITINFO (thread state) 37
sigwaitinfo() 37, 83
SIGWINCH 86
single-computer model 25
slay 123
sleep() 58
sleepon locks 47, 52
SMP (Symmetric Multiprocessing) 115, 117
snapshot (Power-Safe filesystem) 194
socket() 261
sockets (logical flash drives) 205
software interrupt, See signals
SPAWN_EXPLICIT_CPU 123
SPAWN_SETGROUP 128
SPAWN_SETSIGDEF 128
SPAWN_SETSIGMASK 128
spawn() 123, 126, 127, 128, 137

family of functions 126, 127, 128, 137
memory locks 137

spinlocks 121
SPOF 275
sporadic scheduling 40, 42
STACK (thread state) 37
startup code (startup-*) 57, 118

tickless operation 57
stat() 174
states 36, 37, 136

CONDVAR 36
DEAD 36
INTERRUPT 36
JOIN 36
MUTEX 36
NANOSLEEP 36
NET_REPLY 36
NET_SEND 36
READY 36
RECEIVE 36
REPLY 36
RUNNING 36
SEM 37
SEND 37
SIGSUSPEND 37
SIGWAITINFO 37
STACK 37
STOPPED 37
WAITCTX 37
WAITPAGE 37, 136
WAITTHREAD 37

static linking 154
static partitions 286
STOPPED (thread state) 37
stty 231
subscriber, connection to publisher 217
superblocks 194
superlocking memory 137
symbol names, resolving 160

Copyright © 2014, QNX Software Systems Limited 321

QNX® Neutrino® RTOS

symbolic links 150
cd command and 150

symbolic prefixes 147
Symmetric Multiprocessing, See SMP
SyncCondvarSignal() 32, 55
SyncCondvarWait() 32, 55
SyncDestroy() 32, 55
synchronization services 47, 55
SyncMutexEvent() 86
SyncMutexLock() 32, 55
SyncMutexUnlock() 32, 55
SyncSemPost() 55
SyncSemWait() 37, 55
SyncTypeCreate() 32, 55
system 22, 56, 292

emergency access to 292
page 56
processes 22

similarity to user-written processes 22

T

tcdropline() 227
tcgetattr() 227
tcgetpgrp() 227
tcinject() 227
TCP/IP 257, 259

resource manager (io-pkt*) 259
stack configurations 257

tcsendbreak() 227
tcsetattr() 227
tcsetpgrp() 227
Technical support 12
terminal emulation 233
textto 201
thread scheduler 286
ThreadCancel() 32
ThreadCreate() 32, 37
ThreadCtl() 32, 86, 123, 137, 139
ThreadDestroy() 32
ThreadDetach() 32
ThreadJoin() 32
threads 29, 31, 33, 35, 38, 40, 41, 42, 45, 46, 50, 86,

119, 125, 171
all share same kernel interface 125
and barriers 50
attributes of 33
cancellation handlers 33
concurrency advantages 46
defined 31
I/O privileges, requesting 86
life cycle 35
migration, reducing 119
names 33
priority 33, 38
priority inversion 40
process must contain one or more 31
register set 33
scheduling 38, 41, 42

FIFO 41
round-robin 41
sporadic 42

threads (continued)
signal mask 33
stack 33
states 35
synchronization 45
tid 33
TLS (thread local storage) 33

tickless operation 57
time_t 56
timeout service 58
timer_create() 58
timer_delete() 58
timer_getoverrun() 58
timer_gettime() 58
timer_settime() 58
TimerAlarm() 58
TimerCreate() 58
TimerDestroy() 58
TimerInfo() 58
timers 29, 57, 58

cyclical mode 58
tickless operation 57

TimerSettime() 58
TimerTimeout() 58
timeslice 41
TLB (translation look-aside buffer) 133, 136
TLS (thread local storage) 34
TraceEvent() 113
transactions 187
transparency of network 25
typed memory 99
Typographical conventions 10

U

UART 65
UDF (Universal Disk Format) filesystem 213
umount 242
uname 27
Universal Disk Format (UDF) filesystem 213
unlink() 105
UNMAP_INIT_OPTIONAL 97
UNMAP_INIT_REQUIRED 97
utime() 174

V

variable page size 136
vfork() 126, 130
virtual addresses 132
virtual consoles 233

W

WAITCTX (thread state) 37
WAITPAGE (thread state) 37, 136
WAITTHREAD (thread state) 37
watchdog 134
wide emitting mode (instrumented kernel) 109
Windows (Microsoft) 215

NTFS (fs-nt.so) 215

322 Copyright © 2014, QNX Software Systems Limited

Index

write() 82, 153 Z

zero-copy architecture (io-pkt*) 238

Copyright © 2014, QNX Software Systems Limited 323

QNX® Neutrino® RTOS

324 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	The Philosophy of the QNX Neutrino RTOS
	An embeddable POSIX OS?
	Product scaling
	Why POSIX for embedded systems?
	Why QNX Neutrino for embedded systems?
	Microkernel architecture
	The OS as a team of processes
	A true kernel
	System processes
	System processes vs user-written processes
	Device drivers

	Interprocess communication
	QNX Neutrino as a message-passing operating system

	Network distribution of kernels
	Single-computer model
	Flexible networking

	The QNX Neutrino Microkernel
	The implementation of the QNX Neutrino RTOS
	POSIX realtime and thread extensions

	System services
	Threads and processes
	Thread attributes
	Thread life cycle

	Thread scheduling
	Scheduling priority
	Scheduling policies
	FIFO scheduling
	Round-robin scheduling
	Sporadic scheduling
	Manipulating priority and scheduling policies

	IPC issues
	Thread complexity issues

	Synchronization services
	Mutexes: mutual exclusion locks
	Priority inheritance and mutexes

	Condvars: condition variables
	Barriers
	Sleepon locks
	Reader/writer locks
	Semaphores
	Synchronization via scheduling policy
	Synchronization via message passing
	Synchronization via atomic operations
	Synchronization services implementation

	Clock and timer services
	Time correction
	Timers

	Interrupt handling
	Interrupt latency
	Scheduling latency
	Nested interrupts
	Interrupt calls

	Interprocess Communication (IPC)
	Synchronous message passing
	Message copying
	Simple messages
	Channels and connections
	Pulses
	Priority inheritance and messages

	Message-passing API
	Robust implementations with Send/Receive/Reply
	Events
	I/O notification

	Signals
	Special signals
	Summary of signals

	POSIX message queues
	Why use POSIX message queues?
	File-like interface
	Message-queue functions

	Shared memory
	Shared memory with message passing
	Creating a shared-memory object
	mmap()
	Initializing allocated memory

	Typed memory
	Implementation-defined behavior
	Seeding of typed memory regions
	Naming of typed memory regions
	Pathname space and typed memory
	mmap() allocation flags and typed memory objects
	Permissions and typed memory objects
	Object length and offset definitions
	Interaction with other POSIX APIs

	Practical examples

	Pipes and FIFOs

	The Instrumented Microkernel
	Instrumentation at a glance
	Event control
	Modes of emission
	Ring buffer

	Data interpretation
	System analysis with the IDE

	Proactive tracing

	Multicore Processing
	Asymmetric multiprocessing (AMP)
	Symmetric multiprocessing (SMP)
	The QNX Neutrino RTOS's microkernel approach
	Booting an x86 SMP system
	How the SMP microkernel works
	Critical sections

	Bound multiprocessing (BMP)
	A viable migration strategy

	Choosing between AMP, SMP, and BMP

	Process Manager
	Process management
	Process primitives
	posix_spawn()
	spawn()
	fork()
	vfork()
	exec*()

	Process loading

	Memory management
	Memory Management Units (MMUs)
	Memory protection at run time
	Software watchdog

	Quality control
	Full-protection model
	Private virtual memory

	Variable page size
	Locking memory
	Defragmenting physical memory
	Automatically marking memory as unmovable

	Pathname management
	Resolving pathnames
	Ordering mountpoints
	Single-device mountpoints
	Unioned filesystem mountpoints
	Why overlay mountpoints?

	Symbolic prefixes
	Creating special device names
	Relative pathnames
	Network root
	A note about cd

	File descriptor namespace
	Open control blocks

	Dynamic Linking
	Statically linked
	Dynamically linked
	Augmenting code at runtime
	How shared objects are used
	Memory layout for a typical process
	Runtime linker
	Loading a shared library at runtime
	Symbol name resolution

	Resource Managers
	What is a resource manager?
	Why write a resource manager?
	The types of resource managers
	Device resource managers
	Filesystem resource managers

	Communication via native IPC

	Resource manager architecture
	Message types
	The resource manager shared library
	Automatic default message handling
	open(), dup(), and close()
	Multiple thread handling
	Dispatch functions
	Combine messages
	Second-level default message handling

	Summary

	Filesystems
	Filesystems and pathname resolution
	Filesystem classes
	Filesystems as shared libraries
	io-blk
	Builtin RAM disk
	Partitions
	Buffer cache

	Filesystem limitations

	Image filesystem
	RAM “filesystem”
	Embedded transaction filesystem (ETFS)
	Inside a transaction
	Types of storage media
	Reliability features
	Dynamic wear-leveling
	Static wear-leveling
	CRC error detection
	ECC error correction
	Read degradation monitoring with automatic refresh
	Transaction rollback
	Atomic file operations
	Automatic file defragmentation

	QNX 4 filesystem
	Power-Safe filesystem
	Problems with existing disk filesystems
	Copy-on-write filesystem
	Performance
	Encryption

	DOS Filesystem
	CD-ROM filesystem
	FFS3 filesystem
	Customization
	Organization
	Raw partitions
	Filesystem partitions
	Mountpoints

	Features
	POSIX
	Background reclaim
	Fault recovery
	Compression/decompression
	Flash errors
	Endian awareness

	Utilities
	System calls

	NFS filesystem
	CIFS filesystem
	Linux Ext2 filesystem
	Universal Disk Format (UDF) filesystem
	Apple Macintosh HFS and HFS Plus
	Windows NT filesystem
	Virtual inflator filesystem

	PPS
	Persistence
	PPS objects
	Publishing
	Subscribing

	Character I/O
	Driver/io-char communication
	Device control
	Input modes
	Raw input mode
	Edited input mode

	Device subsystem performance
	Console devices
	Serial devices
	Parallel devices
	Pseudo terminal devices (ptys)

	Networking Architecture
	Network manager (io-pkt*)
	Threading model
	Protocol module
	Driver module

	Native Networking (Qnet)
	QNX Neutrino distributed
	Name resolution and lookup
	File descriptor (connection ID)
	Behind a simple open()
	Global Name Service (GNS)
	Network naming
	Resolvers

	Redundant Qnet: Quality of Service (QoS) and multiple paths
	QoS policies
	Specifying QoS policies
	Symbolic links

	Examples

	TCP/IP Networking
	Structure of the TCP/IP manager
	Socket API
	Database routines

	Multiple stacks
	IP filtering and NAT
	NTP
	Dynamic host configuration
	AutoIP

	PPP over Ethernet
	/etc/autoconnect

	High Availability
	An OS for HA
	Inherent HA
	HA-specific modules

	Custom hardware support
	Client library
	Recovery example

	High Availability Manager
	HAM and the Guardian
	HAM hierarchy
	Entities
	Conditions
	Actions

	Publishing autonomously detected conditions
	State transitions
	Other conditions

	Subscribing to autonomously published conditions
	HAM as a “filesystem”
	Multistage recovery
	HAM API

	Adaptive Partitioning
	What are partitions?
	If adaptive partitions aren't “boxes,” what are they?

	Why adaptive?
	Benefits of adaptive partitioning
	Engineering product performance
	Dealing with design complexity
	Providing security
	Debugging

	Adaptive partitioning thread scheduler

	Glossary
	Index

