
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

QNX® Neutrino® RTOS
Writing a Resource Manager



©2008–2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Wednesday, August 13, 2014



Table of Contents

About This Guide .......................................................................................................................7
Typographical conventions .................................................................................................9

Technical support ...........................................................................................................11

Chapter 1: What Is a Resource Manager? ....................................................................................13

Why write a resource manager? ........................................................................................15

The types of resource managers .......................................................................................16

Device resource managers ......................................................................................16

Filesystem resource managers ................................................................................16

Communication via native IPC .........................................................................................18

Examples of resource managers ........................................................................................20

Transparent Distributed Processing (Qnet) statistics ..................................................20

Robot arm ............................................................................................................20

GPS devices .........................................................................................................21

Database example .................................................................................................22

I2C (Inter-Integrated Circuit) driver .........................................................................23

When not to use a resource manager ................................................................................25

Chapter 2: The Bones of a Resource Manager .............................................................................27

Under the covers ............................................................................................................28

Under the client's covers ........................................................................................28

Under the resource manager's covers .......................................................................31

Layers in a resource manager ...........................................................................................33

The iofunc layer ....................................................................................................33

The resmgr layer ....................................................................................................33

The dispatch layer .................................................................................................34

The thread pool layer .............................................................................................36

Simple examples of device resource managers ...................................................................37

Single-threaded device resource manager ................................................................37

Multithreaded device resource manager ...................................................................42

Using MsgSend() and MsgReply() ...........................................................................45

Chapter 3: Fleshing Out the Skeleton .........................................................................................51

Message types ................................................................................................................52

Connect messages .................................................................................................52

I/O messages ........................................................................................................54

Default message handling ......................................................................................59

open(), dup(), and close() .......................................................................................60

Setting resource manager attributes .................................................................................61

Ways of adding functionality to the resource manager .........................................................64

QNX® Neutrino® RTOS



Using the default functions ....................................................................................64

Using the helper functions .....................................................................................65

Writing the entire function yourself .........................................................................66

Security .........................................................................................................................67

Chapter 4: POSIX-Layer Data Structures .....................................................................................69

The iofunc_ocb_t (Open Control Block) structure ...............................................................71

The iofunc_attr_t (attribute) structure ...............................................................................73

The optional iofunc_mount_t (mount) structure .................................................................78

Chapter 5: Handling Read and Write Messages ...........................................................................81

Handling the _IO_READ message .....................................................................................82

Sample code for handling _IO_READ messages ........................................................83

Handling the _IO_WRITE message ...................................................................................86

Sample code for handling _IO_WRITE messages ......................................................86

Methods of returning and replying ....................................................................................88

Returning with an error ..........................................................................................88

Returning using an IOV array that points to your data ................................................88

Returning with a single buffer containing data .........................................................89

Returning success but with no data .........................................................................89

Getting the resource manager library to do the reply .................................................89

Performing the reply in the server ...........................................................................90

Leaving the client blocked, replying later .................................................................90

Returning and telling the library to do the default action ...........................................92

Handling other read/write details ......................................................................................93

Handling the xtype member ....................................................................................93

Handling pread*() and pwrite*() ..............................................................................94

Handling readcond() ..............................................................................................96

Updating the time for reads and writes .............................................................................97

Chapter 6: Combine Messages ...................................................................................................99

Where combine messages are used .................................................................................100

Atomic operations ...............................................................................................100

Bandwidth considerations ....................................................................................101

The library's combine-message handling .........................................................................102

Component responses ..........................................................................................102

Component data access .......................................................................................104

Locking and unlocking the attribute structure ........................................................104

Connect message types ........................................................................................105

_IO_CONNECT_COMBINE_CLOSE ........................................................................105

_IO_CONNECT_COMBINE ....................................................................................105

Chapter 7: Extending the POSIX-Layer Data Structures ..............................................................107

Table of Contents



Extending the OCB and attribute structures .....................................................................108

Extending the mount structure .......................................................................................110

Chapter 8: Handling Other Messages .......................................................................................111

Custom messages .........................................................................................................112

Handling devctl() messages ...........................................................................................114

Sample code for handling _IO_DEVCTL messages ...................................................115

Handling ionotify() and select() ......................................................................................119

Sample code for handling _IO_NOTIFY messages ...................................................122

Handling out-of-band (_IO_MSG) messages .....................................................................128

Handling private messages and pulses ............................................................................130

Handling open(), dup(), and close() messages .................................................................133

Handling mount() .........................................................................................................134

mount() function call ...........................................................................................134

Mount in the resource manager .............................................................................135

mount utility .......................................................................................................138

Handling stat() .............................................................................................................140

Handling lseek() ...........................................................................................................142

Chapter 9: Unblocking Clients and Handling Interrupts .............................................................143

Handling client unblocking due to signals or timeouts ......................................................144

Unblocking if someone closes a file descriptor .................................................................146

Handling interrupts .......................................................................................................147

Sample code for handling interrupts ......................................................................147

Chapter 10: Multithreaded Resource Managers .........................................................................151

Multithreaded resource manager example .......................................................................152

Thread pool attributes ...................................................................................................154

Thread pool functions ...................................................................................................157

Chapter 11: Filesystem Resource Managers ..............................................................................159

Considerations for filesystem resource managers ..............................................................160

Taking over more than one device ...................................................................................161

Handling directories ......................................................................................................162

Matching at or below a mountpoint .......................................................................163

The _IO_OPEN message for filesystems .................................................................163

Returning directory entries from _IO_READ ............................................................164

Appendix A: Glossary ..............................................................................................................169

QNX® Neutrino® RTOS



Table of Contents



About This Guide

This guide will help you create a resource manager, a process that registers a name

in the filesystem name space, which other processes then use to communicate with

the resource manager.

The following table may help you find information quickly:

Go to:For information about:

What Is a Resource Manager? (p. 13)What a resource manager is, and when

you would—and wouldn't—use one

The Bones of a Resource Manager (p. 27)The overall structure of a resource

manager

Fleshing Out the Skeleton (p. 51)Adding some “meat” to the basic

structure

POSIX-Layer Data Structures (p. 69)Data structures that the POSIX-layer

routines use

Handling Read and Write Messages (p.

81)

Reading and writing data

Combine Messages (p. 99)Atomic operations

Extending the POSIX-Layer Data

Structures (p. 107)

Adding your own data to resource-manager

structures

Handling Other Messages (p. 111)Handling other types of messages

Unblocking Clients and Handling

Interrupts (p. 143)

Unblocking clients because of signals,

timeouts, and closed file descriptors, and

handling interrupts

Multithreaded Resource Managers (p. 151)Handling more than one message at once

Filesystem Resource Managers (p. 159)Taking over a directory

Glossary (p. 169)Terms used in BlackBerry 10 OS docs

For another perspective on resource managers, see the Resource Managers chapter of

Get Programming with the BlackBerry 10 OS. In particular, this chapter includes a

summary of the handlers for the connect and I/O messages that a resource manager

will receive; see “Alphabetical listing of connect and I/O functions” in it.

This book assumes that you're familiar with message passing. If you're not,

see the Interprocess Communication (IPC) chapter in the System Architecture

© 2014, QNX Software Systems Limited 7



guide as well as the MsgSend(), MsgReceivev(), and MsgReply() series of calls

in the BlackBerry 10 OS C Library Reference.

For information about programming in the BlackBerry 10 OS, see Get

Programming with the BlackBerry 10 OS and the BlackBerry 10 OS

Programmer's Guide.

8 © 2014, QNX Software Systems Limited
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Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if( stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

© 2014, QNX Software Systems Limited 9
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Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

10 © 2014, QNX Software Systems Limited
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Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

To obtain technical support for this product, visit the BlackBerry Support Forum.

© 2014, QNX Software Systems Limited 11
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Chapter 1
What Is a Resource Manager?

In general terms, a resource manager is a process that registers a name in the filesystem

name space. Other processes use that path to communicate with the resource manager.

To give the BlackBerry 10 OS a great degree of flexibility, to minimize the runtime

memory requirements of the final system, and to cope with the wide variety of devices

that may be found in a custom embedded system, the OS allows user-written processes

to act as resource managers that can be started and stopped dynamically.

Resource managers are typically responsible for presenting an interface to various

types of devices. This may involve managing actual hardware devices (like serial ports,

parallel ports, network cards, and disk drives) or virtual devices (like /dev/null, a

network filesystem, and pseudo-ttys).

In other operating systems, this functionality is traditionally associated with device

drivers. But unlike device drivers, resource managers don't require any special

arrangements with the kernel. In fact, a resource manager runs as a process that's

separate from the kernel and looks just like any other user-level program.

The kernel (procnto) is itself a resource manager; it handles /dev/null, /proc,

and several other resources in the same way any other process handles them.

A resource manager accepts messages from other programs and, optionally,

communicates with hardware. It registers a pathname prefix in the pathname space

(e.g. /dev/ser1), and other processes can open that name using the standard C

library open() function, and then read() from, and write() to, the resulting file descriptor.

When this happens, the resource manager receives an open request, followed by read

and write requests.

A resource manager isn't restricted to handling just open(), read(), and write() calls

— it can support any functions that are based on a file descriptor or file pointer, as

well as other forms of IPC.

Adding resource managers in BlackBerry 10 OS won't affect any other part of the OS

— the drivers are developed and debugged like any other application. And since the

resource managers are in their own protected address space, a bug in a device driver

won't cause the entire OS to shut down.

If you've written device drivers in most UNIX variants, you're used to being restricted

in what you can do within a device driver; but since a device driver in BlackBerry 10

OS is just a regular process, you aren't restricted in what you can do (except for the

restrictions that exist inside an ISR).

© 2014, QNX Software Systems Limited 13



In order to register a prefix in the pathname space, a resource manager must

have the PROCMGR_AID_PATHSPACE ability enabled. For more information,

see procmgr_ability() in the BlackBerry 10 OS C Library Reference.

For example, a serial port may be managed by a resource manager called

devc-ser8250, although the actual resource may be called /dev/ser1 in the

pathname space. When a process requests serial port services, it does so by opening

a serial port (in this case /dev/ser1).

fd = open("/dev/ser1", O_RDWR);
for (packet = 0; packet < npackets; packet++)
{
    write(fd, packets[packet], PACKET_SIZE);
}
close(fd);

Because resource managers execute as processes, their use isn't restricted to device

drivers; any server can be written as a resource manager. For example, a server that's

given DVD files to display in a GUI interface wouldn't be classified as a driver, yet it

could be written as a resource manager. It can register the name /dev/dvd and as

a result, clients can do the following:

fd = open("/dev/dvd", O_WRONLY);
while (data = get_dvd_data(handle, &nbytes))
{
    bytes_written = write(fd, data, nbytes);
    if (bytes_written != nbytes)
    {
        perror ("Error writing the DVD data");
    }
}
close(fd);

14 © 2014, QNX Software Systems Limited
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Why write a resource manager?

Here are a few reasons why you'd want to write a resource manager:

• The client API is POSIX.

The API for communicating with the resource manager is, for the most part, POSIX.

All C programmers are familiar with the open(), read(), and write() functions.

Training costs are minimized, and so is the need to document the interface to your

server.

• You can reduce the number of interface types.

If you have many server processes, writing each server as a resource manager keeps

the number of different interfaces that clients need to use to a minimum.

An example of this is if you have a team of programmers building your overall

application, and each programmer is writing one or more servers for that application.

These programmers may work directly for your company, or they may belong to

partner companies who are developing add-on hardware for your modular platform.

If the servers are resource managers, then the interface to all of those servers is

the POSIX functions: open(), read(), write(), and whatever else makes sense. For

control-type messages that don't fit into a read/write model, there's devctl() (although

devctl() isn't POSIX).

• Command-line utilities can communicate with resource managers.

Since the API for communicating with a resource manager is the POSIX set of

functions, and since standard POSIX utilities use this API, the utilities can be used

for communicating with the resource managers.

© 2014, QNX Software Systems Limited 15
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The types of resource managers

There are two types of resource managers:

• device resource managers

• filesystem resource managers

The type you use depends on what you want the resource manager to do, as well as

on the amount of work you want to do yourself in order to present a proper POSIX

filesystem to the client.

Device resource managers

Device resource managers create only single-file entries in the filesystem, each of

which is registered with the process manager. Each name usually represents a single

device. These resource managers typically rely on the resource-manager library to do

most of the work in presenting a POSIX device to the user.

For example, a serial port driver registers names such as /dev/ser1 and /dev/ser2.

When the user does ls -l /dev, the library does the necessary handling to respond

to the resulting _IO_STAT messages with the proper information. The person who

writes the serial port driver is able to concentrate instead on the details of managing

the serial port hardware.

Filesystem resource managers

Filesystem resource managers register a mountpoint with the process manager. A

mountpoint is the portion of the path that's registered with the process manager. The

remaining parts of the path are managed by the filesystem resource manager. For

example, when a filesystem resource manager attaches a mountpoint at /mount, and

the path /mount/home/thomasf is examined:

/mount/

Identifies the mountpoint that's managed by the process manager.

home/thomasf

Identifies the remaining part that's to be managed by the filesystem resource

manager.

Examples of using filesystem resource managers are:

• flash filesystem drivers (although the source code for flash drivers takes care of

these details)

• a tar filesystem process that presents the contents of a tar file as a filesystem

that the user can cd into and ls from

16 © 2014, QNX Software Systems Limited
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• a mailbox-management process that registers the name /mailboxes and manages

individual mailboxes that look like directories, and files that contain the actual

messages

© 2014, QNX Software Systems Limited 17
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Communication via native IPC

Once a resource manager has established its pathname prefix, it will receive messages

whenever any client program tries to do an open(), read(), write(), etc. on that

pathname. For example, after devc-ser* has taken over the pathname /dev/ser1,

and a client program executes:

fd = open ("/dev/ser1", O_RDONLY);

the client's C library will construct an _IO_CONNECT message, which it then sends

to the devc-ser* resource manager via IPC.

Some time later, when the client program executes:

read (fd, buf, BUFSIZ);

the client's C library constructs an _IO_READ message, which is then sent to the

resource manager.

A key point is that all communications between the client program and the resource

manager are done through native IPC messaging. This allows for a number of unique

features:

• A well-defined interface to application programs. In a development environment,

this allows a very clean division of labor for the implementation of the client side

and the resource manager side.

• A simple interface to the resource manager. Since all interactions with the resource

manager go through native IPC, and there are no special “back door” hooks or

arrangements with the OS, the writer of a resource manager can focus on the task

at hand, rather than worry about all the special considerations needed in other

operating systems.

• Free network transparency. Since the underlying native IPC messaging mechanism

is inherently network-distributed without any additional effort required by the client

or server (resource manager), programs can seamlessly access resources on other

nodes in the network without even being aware that they're going over a network.

All BlackBerry 10 OS device drivers and filesystems are implemented as

resource managers. This means that everything that a “native” BlackBerry 10

OS device driver or filesystem can do, a user-written resource manager can do

as well.

Consider FTP filesystems, for instance. Here a resource manager would take over a

portion of the pathname space (e.g. /ftp) and allow users to cd into FTP sites to get

files. For example, cd /ftp/rtfm.mit.edu/pub would connect to the FTP site

18 © 2014, QNX Software Systems Limited
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rtfm.mit.edu and change directory to /pub. After that point, the user could open,

edit, or copy files.

Application-specific filesystems would be another example of a user-written resource

manager. Given an application that makes extensive use of disk-based files, a custom

tailored filesystem can be written that works with that application and delivers superior

performance.

The possibilities for custom resource managers are limited only by the application

developer's imagination.

© 2014, QNX Software Systems Limited 19
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Examples of resource managers

Before getting into the workings of a resource manager, let's consider some actual and

possible uses.

Transparent Distributed Processing (Qnet) statistics

For instance, Transparent Distributed Processing (Qnet) — part of the io-pkt core

networking stack — contains resource-manager code that registers the name

/proc/qnetstats. If you open this name and read from it, the resource manager

code responds with a body of text that describes the statistics for Qnet.

The cat utility takes the name of a file and opens the file, reads from it, and displays

whatever it reads to standard output (typically the screen). As a result, you can type:

cat /proc/qnetstats

The Qnet resource manager code responds with text such as:

kif net_server                :         0,3         
kif waiting                   :         1,2         
kif net_client                :         0,1         
kif buffer                    :         0,1         
kif outbound_msgs             :         0,1         
kif vtid                      :         0,1         
kif server_msgs               :         0,1         
kif nd_down                   :        42
kif nd_up                     :       132
kif nd_changed                :         3
kif send_acks                 :         0
kif client_kercalls           :        14
kif server_msgs               :    202898
kif server_unblock            :         0
qos tx_begin_errors           :         0
qos tx_done_errors            :         0
qos tx_throttled              :         0
qos tx_failed                 :         8
qos pkts_rxd_noL4             :         0
qos tx_conn_created           :        43
qos tx_conn_deleted           :        41
qos rx_conn_created           :        35
qos rx_conn_deleted           :        33
qos rx_seq_order              :         0

Robot arm

You could also use command-line utilities for a robot-arm driver. The driver could

register the name, /dev/robot/arm/angle, and any writes to this device are

interpreted as the angle to set the robot arm to. To test the driver from the command

line, you'd type:

echo 87 >/dev/robot/arm/angle

The echo utility opens /dev/robot/arm/angle and writes the string (“87”) to it.

The driver handles the write by setting the robot arm to 87 degrees. Note that this

was accomplished without writing a special tester program.

20 © 2014, QNX Software Systems Limited
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Another example would be names such as /dev/robot/registers/r1, r2, ...

Reading from these names returns the contents of the corresponding registers; writing

to these names set the corresponding registers to the given values.

Even if all of your other IPC is done via some non-POSIX API, it's still worth having

one thread written as a resource manager for responding to reads and writes for doing

things as shown above.

GPS devices

In general, a GPS device sends a stream of data every second. The stream is composed

of information organized in command groups. Here's an example of the output from

a GPS:

$GPGSA,A,3,17,16,22,31,03,18,25,,,,,,1.6,1.0,1.2*39 
$GPGGA,185030.30,4532.8959,N,07344.2298,W,1,07,1.0,23.8,M,-32.0,M,,*69 
$GPGLL,4532.8959,N,07344.2298,W,185030.30,A*12 
$GPRMC,185030.00,A,4532.8959,N,07344.2298,W,0.9,116.9,160198,,*27 
$GPVTG,116.9,T,,,0.9,N,1.7,K*2D 
$GPZDA,185030.30,16,01,1998,,*65 
$GPGSV,2,1,08,03,55,142,50,22,51,059,51,18,48,284,53,31,23,187,52*78

Each line corresponds to a data set. Here's the C structure of some of the data sets:

typedef struct GPSRMC_s { 
   double UTC; 
   int Status; 
   Degree_t Latitude; 
   NORTHSOUTH Northing; 
   Degree_t Longitude; 
   EASTWEST Easting; 
   float Speed; 
   float Heading; 
} GPSRMC_t; 

typedef struct GPSVTG_s { 
   float Heading; 
   float SpeedInKnots; 
   float SpeedInKMH; 
} GPSVTG_t; 

typedef struct GPSUTM_s { 
   UTM_t X; 
   UTM_t Y; 
} GPSUTM_t;

You could provide one API per GPS format command: gps_get_rmc(), gps_get_vtg(),

get_get_utm(), and so on. Internally, each function would send a message with a

different command, and the reply was the data last received by the GPS.

The first obstacle was that read() and write() are half-duplex operations; you can't use

them to send a command and get data back. You could do this:

GPSUTM_t utm; 
Int cmd = GPS_GET_GSA;

fd = open( "/dev/gps1", O_RDWR ); 
write( fd, &cmd, sizeof( cmd) ); 
read( fd, &data, sizeof(data) ); 
close(fd);

but this code looks unnatural. Nobody would expect read() and write() to be used in

that way. You could use devctl() to send a command and request specific data, but if

© 2014, QNX Software Systems Limited 21
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you implement the driver as a resource manager, you can have a different path for

every command set. The driver would create the following pathnames:

• /dev/gps1/gsa.txt

• /dev/gps1/gsa.bin

• /dev/gps1/gga.bin

• /dev/gps1/gga.txt

and a program wanting to get GSA information would do this:

gps_gsa_t gsa;
int fd;

fd = open ( "/dev/gps1/gsa.bin", O_RDONLY ); 
read( fd, &gsa, sizeof( gsa ) ); 
close ( fd);

The benefit of having both the .txt and .bin extensions is that data returned by

the read() would be in ASCII format if you use the .txt file. If you use the .bin file

instead, the data is returned in a C structure for easier use. But why support *.txt

if most programs would prefer to use the binary representation? The reason is simple.

From the shell you could type:

# cat /dev/gps1/rmc.txt

and you'd see:

# GPRMC,185030.00,A,4532.8959,N,07344.2298,W,0.9,116.9,160198,,*27

You now have access to the GPS data from the shell. But you can do even more:

• If you want to know all the commands the GPS supports, simply type:

# ls /dev/gps1

• To do the same from a C program, use opendir() and readdir().

• If you want your program to be informed when there's new data available, simply

use select() or ionotify() instead of polling on the data.

Contrary to what you might think, it's quite simple to support these features from

within the resource manager.

Database example

This particular design asked for a program to centralize file access. Instead of having

each program handle the specific location of the data files (on the hard disk or in

FLASH or RAM), the developers decided that one program would handle it. Furthermore,

file updates done by one program required that all programs using that file be notified.

So instead of having each program notify each other, only one program would take

care of the notification. That program was cleverly named “database”.

22 © 2014, QNX Software Systems Limited
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The API in the original design included db_read(), db_write(), db_update_notification(),

etc., but a resource manager is an even better fit. The API was changed to the familiar

open(), read(), write(), select(), ionotify() and so on.

Client programs were seeing only one path, /dbase/filename, but the files found

in /dbase/ weren't physically there; they could be scattered all over the place.

The database resource manager program looked at the filename during open() and

decided where the file needed to go or to read from. This, of course, depended on the

specific field in the filename. For example, if the file had a .tmp extension, it would

go to the RAM disk.

The real beauty of this design is that the designers of the client program could test

their application without having the database program running. The open() would be

handled directly by the filesystem.

To support notification of a file change, a client would use ionotify() or select() on the

file descriptor of the files. Unfortunately, that feature isn't supported natively by the

filesystem, so the database program needs to be running in order for you to test the

operation.

I2C (Inter-Integrated Circuit) driver

This example is a driver for an I2C bus controller. The I2C bus is simply a 2-wire bus,

and the hardware is extremely cheap to implement. The bus supports up to 127 devices

on the bus, and each device can handle 256 commands. When devices want to read

or write information to or from another device, they must first be set up as a master

to own the bus. Then the device sends out the device address and command register

number. The slave then acts upon the command received.

You think a resource manager wouldn't apply in this case. All read() and write()

operations require a device address and command register. You could use devctl(),

but a resource manager again provides a cleaner interface.

With a resource manager, each device would live under its own directory, and each

register would have a filename:

/dev/i2c1//

An important thing to note is that each filename (127 devices * 256 registers = 32512

filenames) doesn't really need to exist. Each device would be created live, as it's

required. Therefore, each open() is actually an O_CREAT.

To prevent any problems caused by a high number of possibly existing files, you could

make an ls command of the /dev/i2c1 directory return nothing. Alternatively, you

could make ls list the filenames that have been opened at least once. At this point,

it's important to clarify that the existence of the filenames is totally handled by the

resource manager; the OS itself isn't used in that process. So it isn't a problem if

filenames respond to open() requests, but not to ls.
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One element is left to solve: the I2C bus has a concept of a baud rate. There are

already C functions to set up baud rates, and you can make it work via the stty

command from the shell.

People using the driver don't have to worry about libraries or include files because

there are none. The resource manager, at no cost, allows each command register to

be accessed via the shell, or for that matter, though SAMBA from a Linux or Windows

machine. Access via the shell makes debugging so easy — there's no need to write

custom test tools, and it's unbelievably flexible, not to mention the support for separate

permissions for each and every command register of every device.

One more thing: this code could be clearer:

fd = open ( "/dev/i2c1/34/45" );
read( fd, &variable, sizeof( variable ) );
close(fd);

It would be much better to have this instead:

fd = open ( "/dev/i2c1/flash/page_number" );
read( fd, &page_number, sizeof( page_number ) );
close (fd );

Of course, you could use #define directives to show meaningful information, but an

even better solution is to create a configuration file that the driver could read to create

an alias. The configuration file looks like this:

[4=temperature_sensor] 
10=max 
11=min 
12=temperature 
13=alarm 
[5=flash] 
211=page_number

The field inside the square brackets defines the device address and name. The data

that follows specifies each register of that device. The main advantages to this approach

are:

• The configuration file's format helps document the program.

• If the hardware is changed, and devices are assigned new addresses, you simply

change the configuration file — there's no need to recompile the program to

recompile.

These predefined devices would always show via the ls command.
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When not to use a resource manager

There are times when a resource manager isn't required.

The most obvious case would be if a program doesn't need to receive messages. But

still, if your program is event-driven, you might want to look at using the dispatch

library to handle internal events. In the future, if your program ever needs to receive

messages, you can easily turn it into a resource manager.

Another case might be if your program interfaces only with its children. The parent

has access to all the children's information required to interface with them.

Nevertheless, you can turn almost everything into a resource manager. If your resource

manager's client uses only the POSIX API, there's less documentation to write, and

the code is very portable. Of course, in many cases, providing an API on top of the

POSIX API is often very desirable. You could hide the details of devctl() or custom

messages. The internals of the API could then be changed if you have to port to a

different OS.

If you must transfer high volumes of data at a very high rate, a resource manager can

be a problem. Since resource managers basically interface via IPC kernel primitives,

they're slower than a simple memcpy(), but nothing prevents you from using a mix of

shared memory, POSIX API, and custom messages, all to be hidden in your own API.

It wouldn't be too difficult to have the API detect whether or not the resource manager

is local and to use shared memory when local and IPC when remote — a way to get

the best of both worlds.
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Chapter 2
The Bones of a Resource Manager

Let's start with the overall structure of a resource manager. First we'll look at what

happens under the covers on both the client side and the server side. After that, we'll

go into the the layers in a resource manager and then look at some examples.
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Under the covers

Despite the fact that you'll be using a resource manager API that hides many details

from you, it's still important to understand what's going on under the covers. For

example, your resource manager is a server that contains a MsgReceive() loop, and

clients send you messages using MsgSend*(). This means that you must reply either

to your clients in a timely fashion, or leave your clients blocked but save the rcvid for

use in a later reply.

To help you understand, we'll discuss the events that occur under the covers for both

the client and the resource manager.

Under the client's covers

When a client calls a function that requires pathname resolution (e.g. open(), rename(),

stat(), or unlink()), the function sends messages to both the process manager and the

resource manager to obtain a file descriptor. Once the file descriptor is obtained, the

client can use it to send messages to the device associated with the pathname, via

the resource manager.

In the following, the file descriptor is obtained, and then the client writes directly to

the device:

/*
 * In this stage, the client talks 
 * to the process manager and the resource manager.
 */
fd = open("/dev/ser1", O_RDWR);

/*
 * In this stage, the client talks directly to the
 * resource manager.
 */
for (packet = 0; packet < npackets; packet++)
{
    write(fd, packets[packet], PACKET_SIZE);
}
close(fd);

For the above example, here's the description of what happened behind the scenes.

We'll assume that a serial port is managed by a resource manager called

devc-ser8250, that's been registered with the pathname prefix /dev/ser1:
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Figure 1: Under-the-cover communication between the client, the process manager,

and the resource manager.

1. The client's library sends a “query” message. The open() in the client's library

sends a message to the process manager asking it to look up a name (e.g.

/dev/ser1).

2. The process manager indicates who's responsible and it returns the nd, pid, chid,

and handle that are associated with the pathname prefix.

Here's what went on behind the scenes...

When the devc-ser8250 resource manager registered its name (/dev/ser1) in

the namespace, it called the process manager. The process manager is responsible

for maintaining information about pathname prefixes. During registration, it adds

an entry to its table that looks similar to this:

0, 47167, 1, 0, 0, /dev/ser1

The table entries represent:

0

Node descriptor (nd).

47167

Process ID (pid) of the resource manager.

1

Channel ID (chid) that the resource manager is using to receive messages

with.

0

Handle given in case the resource manager has registered more than one

name. The handle for the first name is 0, 1 for the next name, etc.
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0

The open type passed during name registration (0 is _FTYPE_ANY).

/dev/ser1

The pathname prefix.

A resource manager is uniquely identified by a node descriptor, process ID, and a

channel ID. The process manager's table entry associates the resource manager

with a name, a handle (to distinguish multiple names when a resource manager

registers more than one name), and an open type.

When the client's library issued the query call in step 1, the process manager looked

through all of its tables for any registered pathname prefixes that match the name.

If another resource manager had previously registered the name /, more than one

match would be found. So, in this case, both / and /dev/ser1 match. The process

manager will reply to the open() with the list of matched servers or resource

managers. The servers are queried in turn about their handling of the path, with

the longest match being asked first.

3. The client's library sends a “connect” message to the resource manager. To do so,

it must create a connection to the resource manager's channel:

fd = ConnectAttach(nd, pid, chid, 0, 0);

The file descriptor that's returned by ConnectAttach() is also a connection ID and

is used for sending messages directly to the resource manager. In this case, it's

used to send a connect message (_IO_CONNECT defined in <sys/iomsg.h>)

containing the handle to the resource manager requesting that it open /dev/ser1.

Typically, only functions such as open() call ConnectAttach() with an index

argument of 0. Most of the time, you should OR _NTO_SIDE_CHANNEL

into this argument, so that the connection is made via a side channel,

resulting in a connection ID that's greater than any valid file descriptor.

When the resource manager gets the connect message, it performs validation using

the access modes specified in the open() call (e.g. are you trying to write to a

read-only device?).

4. The resource manager generally responds with a pass (and open() returns with the

file descriptor) or fail (the next server is queried).

5. When the file descriptor is obtained, the client can use it to send messages directly

to the device associated with the pathname.

In the sample code, it looks as if the client opens and writes directly to the device.

In fact, the write() call sends an _IO_WRITE message to the resource manager
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requesting that the given data be written, and the resource manager responds that

it either wrote some of all of the data, or that the write failed.

Eventually, the client calls close(), which sends an _IO_CLOSE_DUP message to the

resource manager. The resource manager handles this by doing some cleanup.

Under the resource manager's covers

The resource manager is a server that uses the BlackBerry 10 OS send/receive/reply

messaging protocol to receive and reply to messages. The following is pseudo-code

for a resource manager:

initialize the resource manager
register the name with the process manager
DO forever
    receive a message
    SWITCH on the type of message
        CASE _IO_CONNECT:
            call io_open handler
            ENDCASE
        CASE _IO_READ:
            call io_read handler
            ENDCASE
        CASE _IO_WRITE:
            call io_write handler
            ENDCASE
        .   /* etc. handle all other messages */
        .   /* that may occur, performing     */
        .   /* processing as appropriate      */
    ENDSWITCH
ENDDO

Many of the details in the above pseudo-code are hidden from you by a resource

manager library that you'll use. For example, you won't actually call a MsgReceive*()

function — you'll call a library function, such as resmgr_block() or dispatch_block(),

that does it for you. If you're writing a single-threaded resource manager, you might

provide a message handling loop, but if you're writing a multithreaded resource

manager, the loop is hidden from you.

You don't need to know the format of all the possible messages, and you don't have

to handle them all. Instead, you register “handler functions,” and when a message of

the appropriate type arrives, the library calls your handler. For example, suppose you

want a client to get data from you using read() — you'll write a handler that's called

whenever an _IO_READ message is received. Since your handler handles _IO_READ

messages, we'll call it an “io_read handler.”

The resource manager library:

1. Receives the message.

2. Examines the message to verify that it's an _IO_READ message.

3. Calls your io_read handler.

However, it's still your responsibility to reply to the _IO_READ message. You can do

that from within your io_read handler, or later on when data arrives (possibly as the

result of an interrupt from some data-generating hardware).
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The library does default handling for any messages that you don't want to handle. After

all, most resource managers don't care about presenting proper POSIX filesystems to

the clients. When writing them, you want to concentrate on the code for talking to the

device you're controlling. You don't want to spend a lot of time worrying about the

code for presenting a proper POSIX filesystem to the client.
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Layers in a resource manager

A resource manager is composed of some of the following layers:

• thread pool layer (the top layer)

• dispatch layer

• resmgr layer

• iofunc layer (the bottom layer)

Let's look at these from the bottom up.

The iofunc layer

This layer consists of a set of functions that take care of most of the POSIX filesystem

details for you — they provide a POSIX personality. If you're writing a device resource

manager, you'll want to use this layer so that you don't have to worry too much about

the details involved in presenting a POSIX filesystem to the world.

This layer consists of default handlers that the resource manager library uses if you

don't provide a handler. For example, if you don't provide an io_open handler,

iofunc_open_default() is called.

The iofunc layer also contains helper functions that the default handlers call. If you

override the default handlers with your own, you can still call these helper functions.

For example, if you provide your own io_read handler, you can call iofunc_read_verify()

at the start of it to make sure that the client has access to the resource.

The names of the functions and structures for this layer have the form iofunc_*. The

header file is <sys/iofunc.h>. For more information, see the BlackBerry 10 OS C

Library Reference.

The resmgr layer

This layer manages most of the resource manager library details. It:

• examines incoming messages

• calls the appropriate handler to process a message

If you don't use this layer, then you'll have to parse the messages yourself. Most

resource managers use this layer.

The names of the functions and structures for this layer have the form resmgr_*. The

header file is <sys/resmgr.h>. For more information, see the BlackBerry 10 OS C

Library Reference.
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io_write
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Connect
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Handler function

Message
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loop
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Blocking function

Channel
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Figure 2: You can use the resmgr layer to handle _IO_* messages.

The dispatch layer

This layer acts as a single blocking point for a number of different types of things.

With this layer, you can handle:

_IO_* messages

It uses the resmgr layer for this.

select()

Processes that do TCP/IP often call select() to block while waiting for packets

to arrive, or for there to be room for writing more data. With the dispatch

layer, you register a handler function that's called when a packet arrives.

The functions for this are the select_*() functions.

Pulses

As with the other layers, you register a handler function that's called when

a specific pulse arrives. The functions for this are the pulse_*() functions.

Other messages

You can give the dispatch layer a range of message types that you make up,

and a handler. So if a message arrives and the first few bytes of the message

contain a type in the given range, the dispatch layer calls your handler. The

functions for this are the message_*() functions.
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Figure 3: You can use the dispatch layer to handle _IO_* messages, select, pulses,

and other messages.

The following describes the manner in which messages are handled via the dispatch

layer (or more precisely, through dispatch_handler()). Depending on the blocking type,

the handler may call the message_*() subsystem. A search is made, based on the

message type or pulse code, for a matching function that was attached using

message_attach() or pulse_attach(). If a match is found, the attached function is

called.

If the message type is in the range handled by the resource manager (I/O messages)

and pathnames were attached using resmgr_attach(), the resource manager subsystem

is called and handles the resource manager message.

If a pulse is received, it may be dispatched to the resource manager subsystem if it's

one of the codes handled by a resource manager (UNBLOCK and DISCONNECT pulses).

If a select_attach() is done and the pulse matches the one used by select, then the

select subsystem is called and dispatches that event.

If a message is received and no matching handler is found for that message type,

MsgError(ENOSYS) is returned to unblock the sender.
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The thread pool layer

This layer allows you to have a single- or multithreaded resource manager. This means

that one thread can be handling a write() while another thread handles a read().

You provide the blocking function for the threads to use as well as the handler function

that's to be called when the blocking function returns. Most often, you give it the

dispatch layer's functions. However, you can also give it the resmgr layer's functions

or your own.

You can use this layer independently of the resource manager layer.
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Simple examples of device resource managers

The programs that follow are complete but simple examples of a device resource

manager.

As you read through this guide, you'll encounter many code snippets. Most of

these code snippets have been written so that they can be combined with either

of these simple resource managers.

The first two of these simple device resource managers model their functionality after

that provided by /dev/null (although they use /dev/sample to avoid conflict with

the “real” /dev/null):

• an open() always works

• read() returns zero bytes (indicating EOF)

• a write() of any size “works” (with the data being discarded)

• lots of other POSIX functions work (e.g. chown(), chmod(), lseek())

The chapters that follow describe how to add more functionality to these simple

resource managers.

The QNX Momentics Integrated Development Environment (IDE) includes a

sample /dev/sample resource manager that's very similar to the

single-threaded one given below. To get the sample in the IDE, choose Help

➝ Welcome, and then click the Samples icon.

Single-threaded device resource manager

Here's the complete code for a simple single-threaded device resource manager:

#include <errno.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr_connect_funcs_t    connect_funcs;
static resmgr_io_funcs_t         io_funcs;
static iofunc_attr_t             attr;

int main(int argc, char **argv)
{
    /* declare variables we'll be using */
    resmgr_attr_t        resmgr_attr;
    dispatch_t           *dpp;
    dispatch_context_t   *ctp;
    int                  id;

    /* initialize dispatch interface */
    if((dpp = dispatch_create()) == NULL) {
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        fprintf(stderr,
                "%s: Unable to allocate dispatch handle.\n",
                argv[0]);
        return EXIT_FAILURE;
    }

    /* initialize resource manager attributes */
    memset(&resmgr_attr, 0, sizeof resmgr_attr);
    resmgr_attr.nparts_max = 1;
    resmgr_attr.msg_max_size = 2048;

    /* initialize functions for handling messages */
    iofunc_func_init(_RESMGR_CONNECT_NFUNCS, &connect_funcs, 
                     _RESMGR_IO_NFUNCS, &io_funcs);

    /* initialize attribute structure used by the device */
    iofunc_attr_init(&attr, S_IFNAM | 0666, 0, 0);

    /* attach our device name */
    id = resmgr_attach(
            dpp,            /* dispatch handle        */
            &resmgr_attr,   /* resource manager attrs */
            "/dev/sample",  /* device name            */
            _FTYPE_ANY,     /* open type              */
            0,              /* flags                  */
            &connect_funcs, /* connect routines       */
            &io_funcs,      /* I/O routines           */
            &attr);         /* handle                 */
    if(id == -1) {
        fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);
        return EXIT_FAILURE;
    }

    /* allocate a context structure */
    ctp = dispatch_context_alloc(dpp);

    /* start the resource manager message loop */
    while(1) {
        if((ctp = dispatch_block(ctp)) == NULL) {
            fprintf(stderr, "block error\n");
            return EXIT_FAILURE;
        }
        dispatch_handler(ctp);
    }
    return EXIT_SUCCESS;
}

Include <sys/dispatch.h> after <sys/iofunc.h> to avoid warnings

about redefining the members of some functions.

Let's examine the sample code step-by-step.

Initialize the dispatch interface

/* initialize dispatch interface */
if((dpp = dispatch_create()) == NULL) {
    fprintf(stderr, "%s: Unable to allocate dispatch handle.\n",
            argv[0]);
    return EXIT_FAILURE;
}

We need to set up a mechanism so that clients can send messages to the resource

manager. This is done via the dispatch_create() function which creates and returns

the dispatch structure. This structure contains the channel ID. Note that the channel

ID isn't actually created until you attach something, as in resmgr_attach(),

message_attach(), and pulse_attach().
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In order to create a public channel (i.e., without _NTO_CHF_PRIVATE set),

your process must have the PROCMGR_AID_PUBLIC_CHANNEL ability enabled.

For more information, see procmgr_ability().

The dispatch structure (of type dispatch_t) is opaque; you can't access its contents

directly. Use message_connect() to create a connection using this hidden channel ID.

Initialize the resource manager attributes

When you call resmgr_attach(), you pass a resmgr_attr_t control structure to it.

Our sample code initializes this structure like this:

/* initialize resource manager attributes */
memset(&resmgr_attr, 0, sizeof resmgr_attr);
resmgr_attr.nparts_max = 1;
resmgr_attr.msg_max_size = 2048;

In this case, we're configuring:

• how many IOV structures are available for server replies (nparts_max)

• the minimum receive buffer size (msg_max_size)

For more information, see resmgr_attach() in the BlackBerry 10 OS C Library Reference.

Initialize functions used to handle messages

/* initialize functions for handling messages */
iofunc_func_init(_RESMGR_CONNECT_NFUNCS, &connect_funcs, 
                 _RESMGR_IO_NFUNCS, &io_funcs);

Here we supply two tables that specify which function to call when a particular message

arrives:

• connect functions table

• I/O functions table

Instead of filling in these tables manually, we call iofunc_func_init() to place the

iofunc_*_default() handler functions into the appropriate spots.

Initialize the attribute structure used by the device

/* initialize attribute structure used by the device */
iofunc_attr_init(&attr, S_IFNAM | 0666, 0, 0);

The attribute structure contains information about our particular device associated

with the name /dev/sample. It contains at least the following information:

• permissions and type of device

• owner and group ID

Effectively, this is a per-name data structure. In the Extending the POSIX-Layer Data

Structures (p. 107) chapter, we'll see how you can extend the structure to include your

own per-device information.
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Put a name into the namespace

To register our resource manager's path, we call resmgr_attach() like this:

/* attach our device name */
id = resmgr_attach(dpp,            /* dispatch handle        */
                   &resmgr_attr,   /* resource manager attrs */
                   "/dev/sample",  /* device name            */
                   _FTYPE_ANY,     /* open type              */
                   0,              /* flags                  */
                   &connect_funcs, /* connect routines       */
                   &io_funcs,      /* I/O routines           */
                   &attr);         /* handle                 */
if(id == -1) {
    fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);
    return EXIT_FAILURE;
}

Before a resource manager can receive messages from other programs, it needs to

inform the other programs (via the process manager) that it's the one responsible for

a particular pathname prefix. This is done via pathname registration. When the name

is registered, other processes can find and connect to this process using the registered

name.

In this example, a serial port may be managed by a resource manager called devc-xxx,

but the actual resource is registered as /dev/sample in the pathname space.

Therefore, when a program requests serial port services, it opens the /dev/sample

serial port.

We'll look at the parameters in turn, skipping the ones we've already discussed.

device name

Name associated with our device (i.e. /dev/sample).

open type

Specifies the constant value of _FTYPE_ANY. This tells the process manager

that our resource manager will accept any type of open request — we're not

limiting the kinds of connections we're going to be handling.

Some resource managers legitimately limit the types of open requests they

handle. For instance, the POSIX message queue resource manager accepts

only open messages of type _FTYPE_MQUEUE.

flags

Controls the process manager's pathname resolution behavior. By specifying

a value of zero, we indicate that we'll accept only requests for the name

“/dev/sample”.

The bits that you use in this argument are the _RESMGR_FLAG_*

flags (e.g. _RESMGR_FLAG_BEFORE) defined in <sys/resmgr.h>.

We'll discuss some of these flags in this guide, but you can find a

full list in the entry for resmgr_attach() in the BlackBerry 10 OS C

Library Reference.

40 © 2014, QNX Software Systems Limited

The Bones of a Resource Manager



There are some other flags whose names don't start with an

underscore, but they're for the flags member of the resmgr_attr_t

structure, which we'll look at in more detail in “Setting resource

manager attributes (p. 61)” in the Fleshing Out the Skeleton chapter.

Allocate the context structure

/* allocate a context structure */
ctp = dispatch_context_alloc(dpp);

The context structure contains a buffer where messages will be received. The size of

the buffer was set when we initialized the resource manager attribute structure. The

context structure also contains a buffer of IOVs that the library can use for replying

to messages. The number of IOVs was set when we initialized the resource manager

attribute structure.

For more information, see dispatch_context_alloc() in the BlackBerry 10 OS C Library

Reference.

Start the resource manager message loop

/* start the resource manager message loop */
while(1) {
    if((ctp = dispatch_block(ctp)) == NULL) {
        fprintf(stderr, "block error\n");
        return EXIT_FAILURE;
    }
    dispatch_handler(ctp);
}

Once the resource manager establishes its name, it receives messages when any client

program tries to perform an operation (e.g. open(), read(), write()) on that name.

In our example, once /dev/sample is registered, and a client program executes:

fd = open ("/dev/sample", O_RDONLY);

the client's C library constructs an _IO_CONNECT message and sends it to our resource

manager. Our resource manager receives the message within the dispatch_block()

function. We then call dispatch_handler(), which decodes the message and calls the

appropriate handler function based on the connect and I/O function tables that we

passed in previously. After dispatch_handler() returns, we go back to the

dispatch_block() function to wait for another message.
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Note that dispatch_block() returns a pointer to a dispatch context

(dispatch_context_t) structure — the same type of pointer you pass to

the routine:

• If dispatch_block() returns a non-NULL context pointer, it could be different

from the one passed in, as it's possible for the ctp to be reallocated to a

larger size. In this case, the old ctp is no longer valid.

• If dispatch_block() returns NULL (for example, because a signal interrupted

the MsgReceive()), the old context pointer is still valid. Typically, a resource

manager targets any signals to a thread that's dedicated to handling signals.

However, if a signal can be targeted to the thread doing dispatch_block(),

you could use the following code:

dispatch_context_t   *ctp, *new_ctp;

ctp = dispatch_context_alloc( … );
while (1) {
   new_ctp = dispatch_block( ctp );
   if ( new_ctp ) {
      ctp = new_ctp
      }
   else {
      /* handle the error condition */
      …
      }
}

At some later time, when the client program executes:

read (fd, buf, BUFSIZ);

the client's C library constructs an _IO_READ message, which is then sent directly

to our resource manager, and the decoding cycle repeats.

Multithreaded device resource manager

Here's the complete code for a simple multithreaded device resource manager:

#include <errno.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

/*
 * Define THREAD_POOL_PARAM_T such that we can avoid a compiler
 * warning when we use the dispatch_*() functions below
 */
#define THREAD_POOL_PARAM_T dispatch_context_t

#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr_connect_funcs_t    connect_funcs;
static resmgr_io_funcs_t         io_funcs;
static iofunc_attr_t             attr;

int main(int argc, char **argv)
{
    /* declare variables we'll be using */
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    thread_pool_attr_t   pool_attr;
    resmgr_attr_t        resmgr_attr;
    dispatch_t           *dpp;
    thread_pool_t        *tpp;
    int                  id;

    /* initialize dispatch interface */
    if((dpp = dispatch_create()) == NULL) {
        fprintf(stderr, "%s: Unable to allocate dispatch handle.\n",
                argv[0]);
        return EXIT_FAILURE;
    }

    /* initialize resource manager attributes */
    memset(&resmgr_attr, 0, sizeof resmgr_attr);
    resmgr_attr.nparts_max = 1;
    resmgr_attr.msg_max_size = 2048;

    /* initialize functions for handling messages */
    iofunc_func_init(_RESMGR_CONNECT_NFUNCS, &connect_funcs, 
                     _RESMGR_IO_NFUNCS, &io_funcs);

    /* initialize attribute structure used by the device */
    iofunc_attr_init(&attr, S_IFNAM | 0666, 0, 0);

    /* attach our device name */
    id = resmgr_attach(dpp,            /* dispatch handle        */
                       &resmgr_attr,   /* resource manager attrs */
                       "/dev/sample",  /* device name            */
                       _FTYPE_ANY,     /* open type              */
                       0,              /* flags                  */
                       &connect_funcs, /* connect routines       */
                       &io_funcs,      /* I/O routines           */
                       &attr);         /* handle                 */
    if(id == -1) {
        fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);
        return EXIT_FAILURE;
    }

    /* initialize thread pool attributes */
    memset(&pool_attr, 0, sizeof pool_attr);
    pool_attr.handle = dpp;
    pool_attr.context_alloc = dispatch_context_alloc;
    pool_attr.block_func = dispatch_block; 
    pool_attr.unblock_func = dispatch_unblock;
    pool_attr.handler_func = dispatch_handler;
    pool_attr.context_free = dispatch_context_free;
    pool_attr.lo_water = 2;
    pool_attr.hi_water = 4;
    pool_attr.increment = 1;
    pool_attr.maximum = 50;

    /* allocate a thread pool handle */
    if((tpp = thread_pool_create(&pool_attr, 
                                 POOL_FLAG_EXIT_SELF)) == NULL) {
        fprintf(stderr, "%s: Unable to initialize thread pool.\n",
                argv[0]);
        return EXIT_FAILURE;
    }

    /* Start the threads. This function doesn't return. */
    thread_pool_start(tpp);
    return EXIT_SUCCESS;
}

Most of the code is the same as in the single-threaded example, so we'll cover only

those parts that aren't described above. Also, we'll go into more detail on multithreaded

resource managers later in this guide, so we'll keep the details here to a minimum.

For this code sample, the threads are using the dispatch_*() functions (i.e. the dispatch

layer) for their blocking loops.
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Define THREAD_POOL_PARAM_T

/*
 * Define THREAD_POOL_PARAM_T such that we can avoid a compiler
 * warning when we use the dispatch_*() functions below
 */
#define THREAD_POOL_PARAM_T dispatch_context_t

#include <sys/iofunc.h>
#include <sys/dispatch.h>

The THREAD_POOL_PARAM_T manifest tells the compiler what type of parameter is

passed between the various blocking/handling functions that the threads will be using.

This parameter should be the context structure used for passing context information

between the functions. By default it's defined as a resmgr_context_t, but since

this sample is using the dispatch layer, we need it to be a dispatch_context_t.

We define it prior to the include directives above, since the header files refer to it.

Initialize thread pool attributes

/* initialize thread pool attributes */
memset(&pool_attr, 0, sizeof pool_attr);
pool_attr.handle = dpp;
pool_attr.context_alloc = dispatch_context_alloc;
pool_attr.block_func = dispatch_block;
pool_attr.unblock_func = dispatch_unblock;
pool_attr.handler_func = dispatch_handler;
pool_attr.context_free = dispatch_context_free;
pool_attr.lo_water = 2;
pool_attr.hi_water = 4;
pool_attr.increment = 1;
pool_attr.maximum = 50;

The thread pool attributes tell the threads which functions to use for their blocking

loop and control how many threads should be in existence at any time. We'll go into

more detail on these attributes when we talk about multithreaded resource managers

in more detail later in this guide.

Allocate a thread pool handle

/* allocate a thread pool handle */
if((tpp = thread_pool_create(&pool_attr, 
                             POOL_FLAG_EXIT_SELF)) == NULL) {
    fprintf(stderr, "%s: Unable to initialize thread pool.\n",
            argv[0]);
    return EXIT_FAILURE;
}

The thread pool handle is used to control the thread pool. Among other things, it

contains the given attributes and flags. The thread_pool_create() function allocates

and fills in this handle.

Start the threads

/* start the threads; will not return */
thread_pool_start(tpp);
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The thread_pool_start() function starts up the thread pool. Each newly created thread

allocates a context structure of the type defined by THREAD_POOL_PARAM_T using

the context_alloc function we gave above in the attribute structure. They'll then block

on the block_func and when the block_func returns, they'll call the handler_func, both

of which were also given through the attributes structure. Each thread essentially does

the same thing that the single-threaded resource manager above does for its message

loop.

From this point on, your resource manager is ready to handle messages. Since we gave

the POOL_FLAG_EXIT_SELF flag to thread_pool_create(), once the threads have

been started up, pthread_exit() will be called and this calling thread will exit.

Using MsgSend() and MsgReply()

You don't have to use read() and write() to interact with a resource manager; you can

use the path that a resource manager registers to get a connection ID (coid) that you

can use with MsgSend() to send messages to the server.

This example consists of simple client and server programs that you can use as the

starting point for any similar project. There are two source files: one for the server,

and one for the client. Note that the server must have the PROCMGR_AID_PATHSPACE

ability enabled—a requirement in order to use the resmgr_attach() function. For more

information, see procmgr_ability() in the BlackBerry 10 OS C Library Reference.

A bit of history

The BlackBerry 10 OS and our earlier QNX 4 RTOS both use a notion of

Send/Receive/Reply for messaging. This IPC mechanism is (generally) used in a

synchronous manner; the sending process waits for a reply from the receiver, and a

receiver waits for a message to be sent. This provides a very easy call-response

synchronization.

Under QNX 4, the Send() function needed only the process ID (pid) of the receiving

process. QNX 4 also provided a very simple API for giving a process a name and, in

turn, looking up that name to get a process ID. So you could name your server process,

and then your client process could look up that name, get a process ID (pid), and then

send the server some data and wait for a reply. This model worked well in a

non-threaded environment.

Since BlackBerry 10 OS includes proper thread support, the notion of having a single

conduit into a process doesn't make a lot of sense, so a more flexible system was

designed. To perform a MsgSend() under BlackBerry 10 OS, you no longer need a pid,

but rather a connection ID (coid).

This coid is obtained from opening a connection to a channel. Processes can create

multiple channels and can have different threads service any (or all) of them. The

© 2014, QNX Software Systems Limited 45

Simple examples of device resource managers



issue now becomes: how does a client get a coid in the first place so it can open a

connection to get the coid it needs to perform the MsgSend()?

There are many different ways this kind of information-sharing can occur, but the

method that falls in line with the BlackBerry 10 OS design ideals is for the server to

also be a resource manager.

Under BlackBerry 10 OS — and other POSIX systems — when you call open(), you

get back a file descriptor (fd). But this fd is also a coid. So instead of registering a

name, as in QNX 4, your server process registers a path in the filesystem, and the

client opens that path to get the coid to talk to the server.

The server

Let's begin with the server:

/*
 * ResMgr and Message Server Process
 */

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/neutrino.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

resmgr_connect_funcs_t  ConnectFuncs;
resmgr_io_funcs_t       IoFuncs;
iofunc_attr_t           IoFuncAttr;

typedef struct
{
    uint16_t msg_no;
    char     msg_data[255];
} server_msg_t;

int message_callback( message_context_t *ctp, int type, unsigned flags, 
                      void *handle )
{
    server_msg_t *msg;
    int num;
    char msg_reply[255];

    /* Cast a pointer to the message data */
    msg = (server_msg_t *)ctp->msg;

    /* Print some useful information about the message */
    printf( "\n\nServer Got Message:\n" );
    printf( "  type: %d\n" , type );
    printf( "  data: %s\n\n", msg->msg_data );

    /* Build the reply message */
    num = type - _IO_MAX;
    snprintf( msg_reply, 254, "Server Got Message Code: _IO_MAX + %d", num );

    /* Send a reply to the waiting (blocked) client */ 
    MsgReply( ctp->rcvid, EOK, msg_reply, strlen( msg_reply ) + 1 );

    return 0;
}

int main( int argc, char **argv )
{
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    resmgr_attr_t        resmgr_attr;
    message_attr_t       message_attr;
    dispatch_t           *dpp;
    dispatch_context_t   *ctp, *ctp_ret;
    int                  resmgr_id, message_id;

    /* Create the dispatch interface */
    dpp = dispatch_create();
    if( dpp == NULL )
    {
        fprintf( stderr, "dispatch_create() failed: %s\n", 
                 strerror( errno ) );
        return EXIT_FAILURE;
    }

    memset( &resmgr_attr, 0, sizeof( resmgr_attr ) );
    resmgr_attr.nparts_max = 1;
    resmgr_attr.msg_max_size = 2048;

    /* Setup the default I/O functions to handle open/read/write/... */
    iofunc_func_init( _RESMGR_CONNECT_NFUNCS, &ConnectFuncs,
                      _RESMGR_IO_NFUNCS, &IoFuncs );

    /* Setup the attribute for the entry in the filesystem */
    iofunc_attr_init( &IoFuncAttr, S_IFNAM | 0666, 0, 0 );

    resmgr_id = resmgr_attach( dpp, &resmgr_attr, "serv", _FTYPE_ANY, 
                               0, &ConnectFuncs, &IoFuncs, &IoFuncAttr );
    if( resmgr_id == -1 )
    {
        fprintf( stderr, "resmgr_attach() failed: %s\n", strerror( errno ) );
        return EXIT_FAILURE;
    }

    /* Setup our message callback */
    memset( &message_attr, 0, sizeof( message_attr ) );
    message_attr.nparts_max = 1;
    message_attr.msg_max_size = 4096;

    /* Attach a callback (handler) for two message types */
    message_id = message_attach( dpp, &message_attr, _IO_MAX + 1,
                                 _IO_MAX + 2, message_callback, NULL );
    if( message_id == -1 )
    {
        fprintf( stderr, "message_attach() failed: %s\n", strerror( errno ) );
        return EXIT_FAILURE;
    }

    /* Setup a context for the dispatch layer to use */
    ctp = dispatch_context_alloc( dpp );
    if( ctp == NULL )
    {
        fprintf( stderr, "dispatch_context_alloc() failed: %s\n", 
                 strerror( errno ) );
        return EXIT_FAILURE;
    }

    /* The "Data Pump" - get and process messages */
    while( 1 )
    {
        ctp_ret = dispatch_block( ctp );
        if( ctp_ret )
        {
            dispatch_handler( ctp );
        }
        else
        {
            fprintf( stderr, "dispatch_block() failed: %s\n", 
                     strerror( errno ) );
            return EXIT_FAILURE;
        }
    }

    return EXIT_SUCCESS;
}
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The first thing the server does is create a dispatch handle (dpp) using dispatch_create().

This handle will be used later when making other calls into the dispatch portion of

the library. The dispatch layer takes care of receiving incoming messages and routing

them to the appropriate layer (resmgr, message, pulse).

After the dispatch handle is created, the server sets up the variables needed to make

a call into resmgr_attach(). But since we're not using the resmgr functionality for

anything more than getting a connection ID to use with MsgSend(), the server sets up

everything to the defaults.

We don't need (or want) to worry about I/O and connection messages right now (like

the messages that open(), close(), read(), write() and so on generate); we just want

them to work and do the right thing. Luckily, there are defaults built into the C library

to handle these types of messages for you, and iofunc_func_init() sets up these defaults.

The call to iofunc_attr_init() sets up the attribute structure so that the entry in the

filesystem has the specified attributes.

Finally, the call to resmgr_attach() is made. For our purposes, the most important

parameter is the third. In this case we're registering the filesystem entry serv. Since

an absolute path wasn't given, the entry will appear in the same directory where the

server was run. All of this gives us a filesystem entry that can be opened and closed,

but generally behaves the same as /dev/null. But that's fine, since we want to be

able to MsgSend() data to our server, not write() data to it.

Now that the resmgr portion of the setup is complete, we need to tell the dispatch

layer that we'll be handling our own messages in addition to the standard I/O and

connection messages handled by the resmgr layer. In order to let the dispatch layer

know the general attributes of the messages we'll be receiving, we fill in the

message_attr structure. In this case we're telling it that the number of message parts

we're going to receive is 1 with a maximum message size of 4096 bytes.

Once we have these attributes defined, we can register our intent to handle messages

with the dispatch layer by invoking message_attach(). With this call, we're setting up

our message_callback() routine to be the handler of messages of type _IO_MAX + 1

up to and including messages of type _IO_MAX + 2. There's even the option of having

a pointer to arbitrary data passed into the callback, but we don't need that so we're

setting it to NULL.

You might now be asking, “Message type _IO_MAX + 1! I don't see anything in the

MsgSend() docs for setting a message type!” This is true. However, in order to play

nicely with the dispatch layer, all incoming messages must have a 32-bit integer at

the start indicating the message type. Although this may seem restrictive to a new

BlackBerry 10 OS developer, the reason it's in place is that most designs will end up

using some sort of message identification anyway, and this just forces you into a

particular style. This will become clearer when we look at the client. But now let's

finish the server.

48 © 2014, QNX Software Systems Limited

The Bones of a Resource Manager



Now that we've registered both the resmgr and message handlers with the dispatch

layer, we simply create a context for the dispatch layer to use while processing messages

by calling dispatch_context_alloc(), and then start receiving and processing data. This

is a two-step process:

1. The server calls dispatch_block(), which waits for incoming messages and pulses.

2. Once there's data available, we call into dispatch_handler() to do the right thing

based on the message data. It's inside the dispatch_handler() call that our

message_callback() routing will be invoked, when messages of the proper type are

received.

Finally, let's look at what our message_callback() routine actually does when a proper

message is received. When a message of type _IO_MAX + 1 or _IO_MAX + 2 is

received, our callback is invoked. We get the message type passed in via the type

parameter. The actual message data can be found in ctp->msg. When the message

comes in, the server prints the message type and the string that was sent from the

client. It then prints the offset from _IO_MAX of the message type, and then finally

formats a reply string and sends the reply back to the client via ctp->rcvid using

MsgReply().

The client

The client is much simpler:

/* 
 * Message Client Process 
 */ 

#include <stdio.h> 
#include <unistd.h> 
#include <stdlib.h> 
#include <fcntl.h> 
#include <errno.h> 
#include <string.h> 
#include <sys/neutrino.h> 
#include <sys/iofunc.h> 
#include <sys/dispatch.h> 

typedef struct 
{ 
    uint16_t msg_no; 
    char msg_data[255]; 
} client_msg_t; 

int main( int argc, char **argv ) 
{ 
    int fd; 
    int c; 
    client_msg_t msg; 
    int ret; 
    int num; 
    char msg_reply[255]; 

    num = 1; 

    /* Process any command line arguments */ 
    while( ( c = getopt( argc, argv, "n:" ) ) != -1 ) 
    { 
        if( c == 'n' ) 
        { 
            num = strtol( optarg, 0, 0 ); 
        } 
    } 
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    /* Open a connection to the server (fd == coid) */ 
    fd = open( "serv", O_RDWR ); 
    if( fd == -1 ) 
    { 
        fprintf( stderr, "Unable to open server connection: %s\n", 
            strerror( errno ) ); 
        return EXIT_FAILURE; 
    } 

    /* Clear the memory for the msg and the reply */ 
    memset( &msg, 0, sizeof( msg ) ); 
    memset( &msg_reply, 0, sizeof( msg_reply ) ); 

    /* Set up the message data to send to the server */ 
    msg.msg_no = _IO_MAX + num; 
    snprintf( msg.msg_data, 254, "client %d requesting reply.", getpid() ); 

    printf( "client: msg_no: _IO_MAX + %d\n", num ); 
    fflush( stdout ); 

    /* Send the data to the server and get a reply */ 
    ret = MsgSend( fd, &msg, sizeof( msg ), msg_reply, 255 ); 
    if( ret == -1 ) 
    { 
        fprintf( stderr, "Unable to MsgSend() to server: %s\n", strerror( errno ) ); 
        return EXIT_FAILURE; 
    } 

    /* Print out the reply data */ 
    printf( "client: server replied: %s\n", msg_reply ); 

    close( fd ); 

    return EXIT_SUCCESS; 
} 

Remember that since the server registers a relative pathname, the client must

be run from the same directory as the server.

The client uses the open() function to get a coid (the server's default resmgr setup

takes care of all of this on the server side), and performs a MsgSend() to the server

based on this coid, and then waits for the reply. When the reply comes back, the client

prints the reply data.

You can give the client the command-line option -n# (where # is the offset from

_IO_MAX) to use for the message. If you give anything over 2 as the offset, the

MsgSend() will fail, since the server hasn't set up handlers for those messages.

This example is very basic, but it still covers a lot of ground. There are many other

things you can do using this same basic framework:

• Register different message callbacks, based on different message types.

• Register to receive pulses, in addition to messages, using pulse_attach().

• Override the default I/O message handlers so that clients can also use read() and

write() to interact with your server.

• Use a thread pool to make your server multithreaded.

Many of these topics are covered later in this guide.
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Chapter 3
Fleshing Out the Skeleton

It's time now to start adding some flesh to the basic bones of the resource manager.

We'll look at the types of messages you might have to handle, how to set the resource

manager's attributes, how to add functionality, and some security issues you should

consider.
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Message types

As we saw in the Bones of a Resource Manager (p. 27) chapter, your resource manager

may need to handle these types of messages:

• connect messages

• I/O messages

We'll examine them in the sections and chapters that follow.

The Get Programming with the BlackBerry 10 OS guide includes a summary

of the handlers for these messages; see “Alphabetical listing of connect and

I/O functions” in its Resource Managers chapter.

Connect messages

A connect message is issued by the client to perform an operation based on a

pathname. This may be a message that establishes a longer term relationship between

the client and the resource manager (e.g. open()), or it may be a message that is a

“one-shot” event (e.g. rename()).

When you call resmgr_attach(), you pass it a pointer to a resmgr_connect_funcs_t

structure that defines your connect functions. This structure is defined in

<sys/resmgr.h> as follows:

typedef struct _resmgr_connect_funcs {

    unsigned nfuncs;

    int (*open)      (resmgr_context_t *ctp, io_open_t *msg,
                      RESMGR_HANDLE_T *handle, void *extra);

    int (*unlink)    (resmgr_context_t *ctp, io_unlink_t *msg,
                      RESMGR_HANDLE_T *handle, void *reserved);

    int (*rename)    (resmgr_context_t *ctp, io_rename_t *msg,
                      RESMGR_HANDLE_T *handle,
                      io_rename_extra_t *extra);

    int (*mknod)     (resmgr_context_t *ctp, io_mknod_t *msg,
                      RESMGR_HANDLE_T *handle, void *reserved);

    int (*readlink)  (resmgr_context_t *ctp, io_readlink_t *msg,
                      RESMGR_HANDLE_T *handle, void *reserved);

    int (*link)      (resmgr_context_t *ctp, io_link_t *msg,
                      RESMGR_HANDLE_T *handle,
                      io_link_extra_t *extra);

    int (*unblock)   (resmgr_context_t *ctp, io_pulse_t *msg,
                      RESMGR_HANDLE_T *handle, void *reserved);

    int (*mount)     (resmgr_context_t *ctp, io_mount_t *msg,
                      RESMGR_HANDLE_T *handle,
                      io_mount_extra_t *extra);
} resmgr_connect_funcs_t;
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To initialize this structure, call iofunc_func_init() to fill it with pointers to the default

handlers, and then override any that your resource manager needs to handle specifically.

The resmgr_attach() function copies the pointers to the

resmgr_connect_funcs_t and resmgr_io_funcs_t structures, not the

structures themselves. You should allocate the structures, declare them to be

static, or make them global variables. If your resource manager is for more

than one device with different handlers, create separate structures that define

the handlers.

The connect messages all have a type of _IO_CONNECT; the subtype further indicates

what's happening. The entries are as follows:

nfuncs

The number of functions in the structure. This allows for future expansion.

open

Handles client calls to open(), fopen(), sopen(), and so on. The message

subtype is _IO_CONNECT_COMBINE, _IO_CONNECT_COMBINE_CLOSE,

or _IO_CONNECT_OPEN.

For more information about the io_open handler, see “Ways of adding

functionality to the resource manager (p. 64),” later in this chapter.

unlink

Handles client calls to unlink(). The message subtype is

_IO_CONNECT_UNLINK.

rename

Handles client calls to rename(). The message subtype is

_IO_CONNECT_RENAME.

mknod

Handles client calls to mkdir(), mkfifo(), and mknod(). The message subtype

is _IO_CONNECT_MKNOD.

readlink

Handles client calls to readlink(). The message subtype is

_IO_CONNECT_READLINK.

link

Handles client calls to link(). The message subtype is _IO_CONNECT_LINK.
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unblock

Handles requests from the kernel to unblock a client during the connect

message phase. There's no corresponding message; the call is synthesized

by the library.

For more information about the io_unblock handler, see “Handling client

unblocking due to signals or timeouts (p. 144)” in the Unblocking Clients

and Handling Interrupts chapter.

mount

Handles client calls to mount(). The message subtype is

_IO_CONNECT_MOUNT.

For more information about the io_mount handler, see “Handling mount()

(p. 134)” in the Handling Other Messages chapter.

If the message is the _IO_CONNECT message (and variants) corresponding with the

open() outcall, then a context needs to be established for further I/O messages that

will be processed later. This context is referred to as an OCB (Open Control Block); it

holds any information required between the connect message and subsequent I/O

messages.

Basically, the OCB is a good place to keep information that needs to be stored on a

per-open basis. An example of this would be the current position within a file. Each

open file descriptor would have its own file position. The OCB is allocated on a per-open

basis. During the open handling, you'd initialize the file position; during read and write

handling, you'd advance the file position. For more information, see the section “The

open control block (OCB) structure (p. 71)” in the POSIX-Layer Data Structures chapter

of this guide.

I/O messages

An I/O message is one that relies on an existing binding (e.g. OCB) between the client

and the resource manager.

As an example, an _IO_READ (from the client's read() function) message depends on

the client's having previously established an association (or context) with the resource

manager by issuing an open() and getting back a file descriptor. This context, created

by the open() call, is then used to process the subsequent I/O messages, like the

_IO_READ.

There are good reasons for this design. It would be inefficient to pass the full pathname

for each and every read() request, for example. The open() handler can also perform

tasks that we want done only once (e.g. permission checks), rather than with each I/O

message. Also, when the read() has read 4096 bytes from a disk file, there may be

another 20 megabytes still waiting to be read. Therefore, the read() function would
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need to have some context information telling it the position within the file it's reading

from, how much has been read, and so on.

The resmgr_io_funcs_t structure (which you pass to resmgr_attach() along with

the connect functions) defines the functions to call for the I/O messages. The

resmgr_io_funcs_t structure is defined in <sys/resmgr.h> as follows:

typedef struct _resmgr_io_funcs {
    unsigned    nfuncs;
    int (*read)       (resmgr_context_t *ctp, io_read_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*write)      (resmgr_context_t *ctp, io_write_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*close_ocb)  (resmgr_context_t *ctp, void *reserved,
                       RESMGR_OCB_T *ocb);
    int (*stat)       (resmgr_context_t *ctp, io_stat_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*notify)     (resmgr_context_t *ctp, io_notify_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*devctl)     (resmgr_context_t *ctp, io_devctl_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*unblock)    (resmgr_context_t *ctp, io_pulse_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*pathconf)   (resmgr_context_t *ctp, io_pathconf_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*lseek)      (resmgr_context_t *ctp, io_lseek_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*chmod)      (resmgr_context_t *ctp, io_chmod_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*chown)      (resmgr_context_t *ctp, io_chown_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*utime)      (resmgr_context_t *ctp, io_utime_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*openfd)     (resmgr_context_t *ctp, io_openfd_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*fdinfo)     (resmgr_context_t *ctp, io_fdinfo_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*lock)       (resmgr_context_t *ctp, io_lock_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*space)      (resmgr_context_t *ctp, io_space_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*shutdown)   (resmgr_context_t *ctp, io_shutdown_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*mmap)       (resmgr_context_t *ctp, io_mmap_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*msg)        (resmgr_context_t *ctp, io_msg_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*reserved)   (resmgr_context_t *ctp, void *msg,
                       RESMGR_OCB_T *ocb);
    int (*dup)        (resmgr_context_t *ctp, io_dup_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*close_dup)  (resmgr_context_t *ctp, io_close_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*lock_ocb)   (resmgr_context_t *ctp, void *reserved,
                       RESMGR_OCB_T *ocb);
    int (*unlock_ocb) (resmgr_context_t *ctp, void *reserved,
                       RESMGR_OCB_T *ocb);
    int (*sync)       (resmgr_context_t *ctp, io_sync_t *msg,
                       RESMGR_OCB_T *ocb);
    int (*power)      (resmgr_context_t *ctp, io_power_t *msg,
                       RESMGR_OCB_T *ocb);
} resmgr_io_funcs_t;

You initialize this structure in the same way as the resmgr_connect_funcs_t

structure: call iofunc_func_init() to fill it with pointers to the default handlers, and

then override any that your resource manager needs to handle specifically. This

structure also begins with an nfuncs member that indicates how many functions are

in the structure, to allow for future expansion.
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The resmgr_attach() function copies the pointers to the

resmgr_connect_funcs_t and resmgr_io_funcs_t structures, not the

structures themselves. You should allocate the structures, declare them to be

static, or make them global variables. If your resource manager is for more

than one device with different handlers, create separate structures that define

the handlers.

Notice that the I/O functions all have a common parameter list. The first entry is a

resource manager context structure, the second is a message (the type of which

matches the message being handled and contains parameters sent from the client),

and the last is an OCB (containing what we bound when we handled the client's open()

function).

You usually have to provide a handler for the following entries:

read

Handles client calls to read() and readdir(). The message type is _IO_READ.

For more information about the io_read handler, see “Handling the

_IO_READ message (p. 82)” in the Handling Read and Write Messages

chapter.

write

Handles client calls to write(), fwrite(), and so on. The message type is

_IO_WRITE. For more information about the io_write handler, see “Handling

the _IO_WRITEmessage (p. 86)” in the Handling Read and Write Messages

chapter.

devctl

Handles client calls to devctl() and ioctl(). The message type is _IO_DEVCTL.

For more information about the io_devctl handler, see “Handling devctl()

messages (p. 114)” in the Handling Other Messages chapter.

You typically use the default entry for the following:

close_ocb

Called by the library when the last close() has been received by a particular

OCB. You can use this handler to clean up anything associated with the

OCB.

stat

Handles client calls to stat(), lstat(), and fstat(). The message type is

_IO_STAT. For more information about the io_stat handler, see “Handling

stat() (p. 140)” in the Handling Other Messages chapter.
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notify

Handles client calls to select() and ionotify(). The message type is

_IO_NOTIFY. For more information about the io_notify handler, see

“Handling ionotify() and select() (p. 119)” in the Handling Other Messages

chapter.

unblock

Handles requests from the kernel to unblock the client during the I/O

message phase. There's no message associated with this. For more

information about the io_unblock handler, see “Handling client unblocking

due to signals or timeouts (p. 144)” in the Unblocking Clients and Handling

Interrupts chapter.

pathconf

Handles client calls to fpathconf() and pathconf(). The message type is

_IO_PATHCONF.

lseek

Handles client calls to lseek(), fseek(), and rewinddir(). The message type

is _IO_LSEEK. For more information about the io_lseek handler, see

“Handling lseek() (p. 142)” in the Handling Other Messages chapter.

chmod

Handles client calls to chmod() and fchmod(). The message type is

_IO_CHMOD.

chown

Handles client calls to chown() and fchown(). The message type is

_IO_CHOWN.

utime

Handles client calls to utime(). The message type is _IO_UTIME.

openfd

Handles client calls to openfd(). The message type is _IO_OPENFD.

fdinfo

Handles client calls to iofdinfo(). The message type is _IO_FDINFO.

lock
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Handles client calls to fcntl(), lockf(), and flock(). The message type is

_IO_LOCK.

space

Handles client calls to chsize(), fcntl(), ftruncate(), and ltrunc(). The message

type is _IO_SPACE.

shutdown

Reserved for future use.

mmap

Handles client calls to mmap(), munmap(), mmap_device_io(), and

mmap_device_memory(). The message type is _IO_MMAP.

msg

Handles messages that are manually assembled and sent via MsgSend().

The message type is _IO_MSG. For more information about the io_msg

handler, see “Handling out-of-band (_IO_MSG) messages (p. 128)” in the

Handling Other Messages chapter.

reserved

Reserved for future use.

dup

Handles client calls to dup(), dup2(), fcntl(), fork(), spawn*(), and vfork().

The message type is _IO_DUP. For more information about the io_dup

handler, see “Handling open(), dup(), and close() messages (p. 133)” in the

Handling Other Messages chapter.

close_dup

Handles client calls to close() and fclose(). The message type is

_IO_CLOSE_DUP.

You'll almost never replace the default close_dup handler because

the library keeps track of multiple open(), dup(), and close() calls

for an OCB. For more information, see “open(), dup(), and close()

(p. 60),” below.

lock_ocb

Locks the attributes structure pointed to by the OCB. This is done to ensure

that only one thread at a time is operating on both the OCB and the
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corresponding attributes structure. The lock (and corresponding unlock)

functions are synthesized by the resource manager library before and after

completion of message handling.

unlock_ocb

Unlocks the attributes structure pointed to by the OCB.

sync

Handles client calls to fsync() and fdatasync(). The message type is

_IO_SYNC.

power

Reserved for future use.

Default message handling

Since a large number of the messages received by a resource manager deal with a

common set of attributes, the OS provides an iofunc_*() shared library that lets a

resource manager handle functions like stat(), chmod(), chown(), lseek(), and so on

automatically, without your having to write additional code. As an added benefit, these

iofunc_*() default handlers implement the POSIX semantics for the messages,

offloading some work from you.

The library contains iofunc_*() default handlers for these client functions:

• chmod()

• chown()

• close()

• devctl()

• fpathconf()

• fseek()

• fstat()

• lockf()

• lseek()

• mmap()

• open()

• pathconf()

• stat()

• utime()
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open(), dup(), and close()

The resource manager shared library automatically handles dup() messages.

Suppose that the client program executed code that eventually ended up performing:

fd = open ("/dev/device", O_RDONLY);
...
fd2 = dup (fd);
...
fd3 = dup (fd);
...
close (fd3);
...
close (fd2);
...
close (fd);

The client generates an open connect message for the first open(), and then two

_IO_DUP messages for the two dup() calls. Then, when the client executes the close()

calls, it generates three close messages.

Since the dup() functions generate duplicates of the file descriptors, new context

information shouldn't be allocated for each one. When the close messages arrive,

because no new context has been allocated for each dup(), no release of the memory

by each close message should occur either! (If it did, the first close would wipe out

the context.)

The resource manager shared library provides default handlers that keep track of the

open(), dup(), and close() messages and perform work only for the last close (i.e. the

third io_close message in the example above).
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Setting resource manager attributes

In addition to the structures that define the connect and I/O functions, you pass a

resmgr_attr_t structure to resmgr_attach() to specify the attributes of the resource

manager.

The resmgr_attr_t structure is defined as follows:

typedef struct _resmgr_attr {
    unsigned            flags;
    unsigned            nparts_max;
    unsigned            msg_max_size;
    int                 (*other_func)(resmgr_context_t *,
                                      void *msg);
    unsigned            reserved[4];    
} resmgr_attr_t;

The members include:

flags

Lets you change the behavior of the resource manager interface. Set this to

0, or a combination of the following bits (defined in <sys/dispatch.h>):

• RESMGR_FLAG_ATTACH_LOCAL — set up the resource manager, but

don't register its path with procnto. You can send messages to the

resource manager's channel (if you know where to find it).

• RESMGR_FLAG_ATTACH_OTHERFUNC — the other_func member of this

structure points to a function for unhandled I/O messages.

• RESMGR_FLAG_CROSS_ENDIAN — the server handles cross-endian

support. The framework handles all necessary conversions on the server's

side; the client doesn't have to do anything.

If necessary, your resource manager can determine that a message came

from a client of a different endian-ness by checking to see if the

_NTO_MI_ENDIAN_DIFF bit is set in the flags member of the

_msg_info structure that's included in the resmgr_context_t

structure that's passed to the handler functions.

• RESMGR_FLAG_NO_DEFAULT_FUNC — not implemented.

• RESMGR_FLAG_RCM (QNX Neutrino 6.6 or later) — automatically adopt

the client's resource constraint mode when handling a request.

There are also some _RESMGR_FLAG_* bits (with a leading

underscore), but you use them in the flags argument to

resmgr_attach().

nparts_max
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The number of components that should be allocated to the IOV array.

msg_max_size

The size of the message buffer.

These members will be important when you start writing your own handler

functions.

If you specify a value of zero for nparts_max, the resource manager library

will bump the value to the minimum usable by the library itself. Why would

you want to set the size of the IOV array? As we'll see in the “Getting the

resource manager library to do the reply (p. 89)” section of the Handling

Read and Write Messages chapter, you can tell the resource manager library

to do our replying for us. We may want to give it an IOV array that points to

N buffers containing the reply data. But, since we'll ask the library to do the

reply for us, we need to use its IOV array, which of course would need to be

big enough to point to our N buffers.

other_func

Lets you specify a routine to call in cases where the resource manager gets

an I/O message that it doesn't understand.

In general, we don't recommend that you use this member. For

private or custom messages, you should use _IO_DEVCTL or

_IO_MSG handlers, as described in the Handling Other Messages

(p. 111) chapter. If you want to receive pulses, use pulse_attach().

To attach an other_func, you must set the

RESMGR_FLAG_ATTACH_OTHERFUNC bit in the flags member of this

structure.

If the resource manager library gets an I/O message that it doesn't know how

to handle, it'll call the routine specified by the other_func member, if

non-NULL. (If it's NULL, the resource manager library will return an ENOSYS

to the client, effectively stating that it doesn't know what this message

means.)

You might specify a non-NULL value for other_func in the case where you've

specified some form of custom messaging between clients and your resource

manager, although the recommended approach for this is the devctl()

function call (client) and the _IO_DEVCTL message handler (server) or a

MsgSend*() function call (client) and the _IO_MSG message handler (server).

For non-I/O message types, you should use the message_attach() function,

which attaches a message range for the dispatch handle. When a message
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with a type in that range is received, the dispatch_block() function calls a

user-supplied function that's responsible for doing any specific work, such

as replying to the client.
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Ways of adding functionality to the resource manager

You can add functionality to the resource manager you're writing in these fundamental

ways:

• use the default functions (p. 64) encapsulated within your own

• use the helper functions (p. 65) within your own

• write the entire function (p. 66) yourself

The first two are almost identical, because the default functions really don't do that

much by themselves — they rely on the POSIX helper functions. The third approach

has advantages and disadvantages.

Using the default functions

Since the default functions (e.g. iofunc_open_default()) can be installed in the jump

table directly, there's no reason you couldn't embed them within your own functions.

Here's an example of how you would do that with your own io_open handler:

int main (int argc, char **argv)
{
    …

    /* install all of the default functions */
    iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_funcs,
                      _RESMGR_IO_NFUNCS, &io_funcs);

    /* take over the open function */
    connect_funcs.open = io_open;
    …
}

int
io_open (resmgr_context_t *ctp, io_open_t *msg, 
         RESMGR_HANDLE_T *handle, void *extra)
{
    return (iofunc_open_default (ctp, msg, handle, extra));
}

Obviously, this is just an incremental step that lets you gain control in your io_open

handler when the message arrives from the client. You may wish to do something

before or after the default function does its thing:

/* example of doing something before */

extern int accepting_opens_now;

int
io_open (resmgr_context_t *ctp, io_open_t *msg,
         RESMGR_HANDLE_T *handle, void *extra)
{
    if (!accepting_opens_now) {
        return (EBUSY);
    }

    /* 
     *  at this point, we're okay to let the open happen,
     *  so let the default function do the "work".
     */

64 © 2014, QNX Software Systems Limited

Fleshing Out the Skeleton



    return (iofunc_open_default (ctp, msg, handle, extra));
}

Or:

/* example of doing something after */

int
io_open (resmgr_context_t *ctp, io_open_t *msg,
         RESMGR_HANDLE_T *handle, void *extra)
{
    int     sts;

    /* 
     * have the default function do the checking 
     * and the work for us
     */

    sts = iofunc_open_default (ctp, msg, handle, extra);

    /* 
     *  if the default function says it's okay to let the open
     *  happen, we want to log the request
     */

    if (sts == EOK) {
        log_open_request (ctp, msg);
    }
    return (sts);
}

It goes without saying that you can do something before and after the standard default

POSIX handler.

The principal advantage of this approach is that you can add to the functionality of

the standard default POSIX handlers with very little effort.

Using the helper functions

The default functions make use of helper functions — these functions can't be placed

directly into the connect or I/O jump tables, but they do perform the bulk of the work.

Here's the source for the two functions iofunc_chmod_default() and

iofunc_stat_default():

int
iofunc_chmod_default (resmgr_context_t *ctp, io_chmod_t *msg,
                      iofunc_ocb_t *ocb)
{
    return (iofunc_chmod (ctp, msg, ocb, ocb -> attr));
}

int iofunc_stat_default( resmgr_context_t *ctp, io_stat_t *msg,
                         iofunc_ocb_t *ocb)
{
    int             status;

    /*  Update stale time fields (ctime, mtime, atime) this OCB.
    */
    (void)iofunc_time_update(ocb->attr);

    if ((status = iofunc_stat(ctp, ocb->attr, &msg->o)) != EOK)
        return(status);
    return _RESMGR_PTR(ctp, &msg->o, sizeof msg->o);
}

Notice how the iofunc_chmod() handler performs all the work for the

iofunc_chmod_default() default handler. This is typical for the simple functions.
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The more interesting case is the iofunc_stat_default() default handler, which calls two

helper routines. First it calls iofunc_time_update() to ensure that all of the time fields

(atime, ctime and mtime) are up to date. Then it calls iofunc_stat(), which builds the

reply. Finally, the default function builds a pointer in the ctp structure and returns

-1, to indicate to the resource manager library that it should return one part from the

ctp->iov structure to the client.

The most complicated handling is done by the iofunc_open_default() handler:

int
iofunc_open_default (resmgr_context_t *ctp, io_open_t *msg,
                     iofunc_attr_t *attr, void *extra)
{
    int     status;

    iofunc_attr_lock (attr);

    if ((status = iofunc_open (ctp, msg, attr, 0, 0)) != EOK) {
        iofunc_attr_unlock (attr);
        return (status);
    }

    if ((status = iofunc_ocb_attach (ctp, msg, 0, attr, 0)) 
        != EOK) {
        iofunc_attr_unlock (attr);
        return (status);
    }

    iofunc_attr_unlock (attr);
    return (EOK);
}

This handler calls four helper functions:

1. It calls iofunc_attr_lock() to lock the attribute structure so that it has exclusive

access to it (it's going to be updating things like the counters, so we need to make

sure no one else is doing that at the same time).

2. It then calls the helper function iofunc_open(), which does the actual verification

of the permissions.

3. Next it calls iofunc_ocb_attach() to bind an OCB to this request, so that it will get

automatically passed to all of the I/O functions later.

4. Finally, it calls iofunc_attr_unlock() to release the lock on the attribute structure.

Writing the entire function yourself

Sometimes a default function will be of no help for your particular resource manager.

For example, iofunc_read_default() and iofunc_write_default() functions implement

/dev/null — they do all the work of returning 0 bytes (EOF) or swallowing all the

message bytes (respectively).

You'll want to do something in those handlers (unless your resource manager doesn't

support the _IO_READ or _IO_WRITE messages).

Note that even in such cases, there are still helper functions you can use:

iofunc_read_verify() and iofunc_write_verify().
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Security

A resource manager is usually a privileged process, so you should be careful not to let

a client coerce it into exhausting resources or compromising the system.

When you're designing your resource manager, you should consider the following:

The permissions on the resource manager's entry in the pathname space

You specify these permissions as an argument to iofunc_attr_init(). In general,

there isn't a “correct” set of permissions to use; you should restrict them

according to what you want other processes and users to be able to do with

your resource manager.

Running as root

A resource manager typically needs to be started by root in order to attach

to the pathname space, but it's a good idea to use procmgr_ability() to retain

the abilities that the resource manager needs, and then run as a non-root

user. For more information, see “Process privileges” in the BlackBerry 10

OS Programmer's Guide.

Requests to allocate resources on behalf of a client

If the resource manager isn't a critical process that needs to be free of any

resource constraint thresholds, it can simply run in constrained mode (see

“Resource constraint thresholds” in the BlackBerry 10 OS Programmer's

Guide).

If the resource manager is a critical process, it should keep the

PROCMGR_AID_RCONSTRAINT ability (see procmgr_ability()), but it then

needs to ensure that constrained clients don't use it to allocate a resource

in excess of the currently defined threshold. Unless the resource manager

is managing the resource itself, compliance generally means adopting the

client's constraint mode when handling a request, in one of the following

ways:

• Automatically, by setting RESMGR_FLAG_RCM in the resmgr_attr_t

structure (see the entry for resmgr_attach() in the BlackBerry 10 OS C

Library Reference):

resmgr_attr.flags |= RESMGR_FLAG_RCM;
resmgr_attach(dpp, &resmgr_attr, name, _FTYPE_ANY, 0, 
&connect_funcs,
              &io_funcs, &io_attr))

• Manually, by checking for _NTO_MI_CONSTRAINED in the flags member

of the _msg_info structure, available from a call to MsgReceive() or
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MsgInfo(). If this bit is set, the message was received from a constrained

client; when the resource manager allocates resources on behalf of such

a client, it should constrain itself using ThreadCtl() with the

_NTO_TCTL_RCM_GET_AND_SET command:

int value = 1; // 1 to constrain, 0 to remove constraint
ThreadCtl(_NTO_TCTL_RCM_GET_AND_SET, &value); /* swaps current 
state with value */

/* Handle the request... */

ThreadCtl(_NTO_TCTL_RCM_GET_AND_SET, &value); /* restores original
 state */

When a resource manager runs as a constrained process or constrains one

of its threads, resource allocation requests fail when there are still resources

available. It should handle these failures in the same way it would handle

a failure caused by complete exhaustion of resources, generally by returning

an error to the client. If the resource manager can continue to process

messages, it should do so, for the sake of overall system stability.

Checking a client's abilities

You can make sure that a client has the appropriate abilities by calling

ConnectClientInfoAble() or iofunc_client_info_able(). Both of these take as

an argument a list of abilities; if the client doesn't have all the required

abilities, these functions set _NTO_CI_UNABLE in the flags member of the

_client_info structure.

If you've called one of these functions, iofunc_check_access() returns

EACCES if _NTO_CI_UNABLE is set.

Your resource manager can create custom abilities by calling

procmgr_ability_create() (see “Creating abilities” in the BlackBerry 10 OS

Programmer's Guide). When you check a client's abilities, you can include

a combination of PROCMGR_AID_* abilities and custom ones.
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Chapter 4
POSIX-Layer Data Structures

The resource manager library defines several key structures that are related to the

POSIX-layer support routines:

iofunc_ocb_t (Open Control Block) (p. 71) structure

Contains per-open data, such as the current position into a file (the lseek()

offset).

iofunc_attr_t (attribute) (p. 73) structure

Since a resource manager may be responsible for more than one device (e.g.

devc-ser*may be responsible for /dev/ser1, /dev/ser2, /dev/ser3,

etc.), the attributes structure holds data on a per-name basis. This structure

contains such items as the user and group ID of the owner of the device,

the last modification time, etc.

iofunc_mount_t (mount) (p. 78) structure

Contains per-mountpoint data items that are global to the entire mount

device. Filesystem (block I/O device) managers use this structure; a resource

manager for a device typically won't have a mount structure.

This picture may help explain their interrelationships:

Open Control
Block (OCB)
structure

Attribute
structure

Mount
structure
(optional)

iofunc_mount_t

attr mount

iofunc_ocb_t iofunc_attr_t

Figure 4: A resource manager is responsible for three data structures.

If three clients open two paths associated with a resource manager, the data structures

are linked like this:
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B
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C

Clients
OCB A

OCB B

OCB C

Attribute
structure for
/dev/path1

Attribute
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/dev/path2

Mount
structure
describing

/dev/path*

resmgr library
Resource manager

process

One per
open

One per
name

One per
mountpoint
(optional)

Channel

Resource
manager
threads

Figure 5: Multiple clients with multiple OCBs, all linked to one mount structure.
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The iofunc_ocb_t (Open Control Block) structure

The Open Control Block (OCB) maintains the state information about a particular

session involving a client and a resource manager. It's created during open() handling

and exists until a close() is performed.

This structure is used by the iofunc layer helper functions. (In the Extending the

POSIX-Layer Data Structures (p. 107) chapter, we'll show you how to extend this to

include your own data).

The OCB structure contains at least the following:

typedef struct _iofunc_ocb {
    IOFUNC_ATTR_T   *attr;
    int32_t         ioflag;
    off_t           offset;
    uint16_t        sflag;
    uint16_t        flags;
} iofunc_ocb_t;

where the values represent:

attr

A pointer to the attribute structure (p. 73) (see below).

ioflag

Contains the mode (e.g. reading, writing, blocking) that the resource was

opened with. This information is inherited from the io_connect_t structure

that's available in the message passed to the io_open handler. The open

modes (as passed to open() on the client side) are converted to the ioflag

values as follows:

ioflag valueOpen mode

_IO_FLAG_RDO_RDONLY

_IO_FLAG_RD | _IO_FLAG_WRO_RDWR

_IO_FLAG_WRO_WRONLY

offset

The read/write offset into the resource (e.g. our current lseek() position within

a file). Your resource manager can modify this member.

sflag
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Defines the sharing mode. This information is inherited from the

io_connect_t structure that's available in the message passed to the

io_open handler.

flags

When the IOFUNC_OCB_PRIVILEGED bit is set, a privileged process (i.e.

root) performed the open(). Additionally, you can use flags in the range

IOFUNC_OCB_FLAGS_PRIVATE (see <sys/iofunc.h>) for your own

purposes. Your resource manager can modify this member.
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The iofunc_attr_t (attribute) structure

The iofunc_attr_t structure defines the characteristics of the device that you're

supplying the resource manager for. This is used in conjunction with the OCB structure.

The attribute structure contains at least the following:

typedef struct _iofunc_attr {
    IOFUNC_MOUNT_T            *mount;
    uint32_t                  flags;
    int32_t                   lock_tid;
    uint16_t                  lock_count;
    uint16_t                  count;
    uint16_t                  rcount;
    uint16_t                  wcount;
    uint16_t                  rlocks;
    uint16_t                  wlocks;
    struct _iofunc_mmap_list  *mmap_list;
    struct _iofunc_lock_list  *lock_list;
    void                      *list;
    uint32_t                  list_size;
    off_t                     nbytes;
    ino_t                     inode;
    uid_t                     uid;
    gid_t                     gid;
    time_t                    mtime;
    time_t                    atime;
    time_t                    ctime;
    mode_t                    mode;
    nlink_t                   nlink;
    dev_t                     rdev;
} iofunc_attr_t;

where the values represent:

mount

A pointer to the mount structure (p. 78) (see below).

flags

The bit-mapped flags member can contain the following flags:

IOFUNC_ATTR_ATIME

The access time is no longer valid. Typically set on a read from

the resource.

IOFUNC_ATTR_CTIME

The change of status time is no longer valid. Typically set on a file

info change.

IOFUNC_ATTR_DIRTY_NLINK

The number of links has changed.

IOFUNC_ATTR_DIRTY_MODE
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The mode has changed.

IOFUNC_ATTR_DIRTY_OWNER

The uid or the gid has changed.

IOFUNC_ATTR_DIRTY_RDEV

The rdev member has changed, e.g. mknod().

IOFUNC_ATTR_DIRTY_SIZE

The size has changed.

IOFUNC_ATTR_DIRTY_TIME

One or more of mtime, atime, or ctime has changed.

IOFUNC_ATTR_MTIME

The modification time is no longer valid. Typically set on a write

to the resource.

Since your resource manager uses these flags, you can tell right away which

fields of the attribute structure have been modified by the various iofunc-layer

helper routines. That way, if you need to write the entries to some medium,

you can write just those that have changed. The user-defined area for flags

is IOFUNC_ATTR_PRIVATE (see <sys/iofunc.h>).

For details on updating your attribute structure, see the section on “Updating

the time for reads and writes (p. 97)” in the Handling Read and Write

Messages chapter.

lock_tid and lock_count

To support multiple threads in your resource manager, you'll need to lock

the attribute structure so that only one thread at a time is allowed to change

it. The resource manager layer automatically locks the attribute (using

iofunc_attr_lock()) for you when certain handler functions are called (i.e.

IO_*). The lock_tid member holds the thread ID; the lock_count member

holds the number of times the thread has locked the attribute structure. For

more information, see the iofunc_attr_lock() and iofunc_attr_unlock()

functions in the BlackBerry 10 OS C Library Reference.)

count, rcount, wcount, rlocks and wlocks

Several counters are stored in the attribute structure and are

incremented/decremented by some of the iofunc layer helper functions. Both

the functionality and the actual contents of the message received from the

client determine which specific members are affected.
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Tracks the number of:This counter:

OCBs using this attribute in any

manner. When this count goes to

count

zero, it means that no one is using

this attribute.

OCBs using this attribute for reading.rcount

OCBs using this attribute for writing.wcount

read locks currently registered on the

attribute.

rlocks

write locks currently registered on

the attribute.

wlocks

These counts aren't exclusive. For example, if an OCB has specified that

the resource is opened for reading and writing, then count, rcount, and

wcount will all be incremented. (See the iofunc_attr_init(),

iofunc_lock_default(), iofunc_lock(), iofunc_ocb_attach(), and

iofunc_ocb_detach() functions.)

mmap_list and lock_list

To manage their particular functionality on the resource, the mmap_list

member is used by the iofunc_mmap() and iofunc_mmap_default() functions;

the lock_list member is used by the iofunc_lock_default() function. Generally,

you shouldn't need to modify or examine these members.

list

Reserved for future use.

list_size

The size of the reserved list area; reserved for future use.

nbytes

The number of bytes in the resource. Your resource manager can modify this

member. For a file, this would contain the file's size. For special devices

(e.g. /dev/null) that don't support lseek() or have a radically different

interpretation for lseek(), this field isn't used (because you wouldn't use any

of the helper functions, but would supply your own instead.) In these cases,

we recommend that you set this field to zero, unless there's a meaningful

interpretation that you care to put to it.

inode
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This is a mountpoint-specific inode that must be unique per mountpoint.

You can specify your own value, or 0 to have the process manager fill it in

for you. For filesystem resource managers, this may correspond to some

on-disk structure. In any case, the interpretation of this field is up to you.

uid and gid

The user ID and group ID of the owner of this resource. These fields are

updated automatically by the chown() helper functions (e.g.

iofunc_chown_default()) and are referenced in conjunction with the mode

member for access-granting purposes by the open() help functions (e.g.

iofunc_open_default()).

mtime, atime, and ctime

The three POSIX time members:

• mtime — modification time (write() updates this)

• atime — access time (read() updates this)

• ctime — change of status time (write(), chmod(), and chown() update

this)

One or more of the time members may be invalidated as a result of

calling an iofunc-layer function. This is to avoid having each and

every I/O message handler go to the kernel and request the current

time of day, just to fill in the attribute structure's time member(s).

POSIX states that these times must be valid when the fstat() is performed,

but they don't have to reflect the actual time that the associated change

occurred. Also, the times must change between fstat() invocations if the

associated change occurred between fstat() invocations. If the associated

change never occurred between fstat() invocations, then the time returned

should be the same as returned last time. Furthermore, if the associated

change occurred multiple times between fstat() invocations, then the time

need only be different from the previously returned time.

There's a helper function that fills the members with the correct time; you

may wish to call it in the appropriate handlers to keep the time up-to-date

on the device — see the iofunc_time_update() function.

mode

Contains the resource's mode (e.g. type, permissions). Valid modes may be

selected from the S_* series of constants in <sys/stat.h>.

nlink
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The number of links to this particular name. For names that represent a

directory, this value must be at least 2 (one for the directory itself, one for

the ./ entry in it). Your resource manager can modify this member.

rdev

Contains the device number for a character special device and the rdev

number for a named special device.
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The optional iofunc_mount_t (mount) structure

The members of the mount structure, specifically the conf and flags members, modify

the behavior of some of the iofunc layer functions. This optional structure contains at

least the following:

typedef struct _iofunc_mount {
    uint32_t            flags;
    uint32_t            conf;
    dev_t               dev;
    int32_t             blocksize;
    iofunc_funcs_t      *funcs;
} iofunc_mount_t;

The variables are:

flags

Contains one relevant bit (manifest constant IOFUNC_MOUNT_32BIT),

which indicates that the offsets used by this resource manager are 32-bit

(as opposed to the extended 64-bit offsets). The user-modifiable mount flags

are defined as IOFUNC_MOUNT_FLAGS_PRIVATE (see <sys/iofunc.h>).

conf

Contains several bits:

IOFUNC_PC_CHOWN_RESTRICTED

Causes the default handler for the _IO_CHOWN message to behave

in a manner defined by POSIX as “chown-restricted”.

IOFUNC_PC_NO_TRUNC

Has no effect on the iofunc layer libraries, but is returned by the

iofunc layer's default _IO_PATHCONF handler.

IOFUNC_PC_SYNC_IO

If not set, causes the default iofunc layer _IO_OPEN handler to

fail if the client specified any one of O_DSYNC, O_RSYNC, or

O_SYNC.

IOFUNC_PC_LINK_DIR

Controls whether or not root is allowed to link and unlink

directories.

IOFUNC_PC_ACL
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Indicates whether or not the resource manager supports access

control lists. For more information about ACLs, see Working with

Access Control Lists (ACLs) in the BlackBerry 10 OS Programmer's

Guide.

Note that the options mentioned above for the conf member are returned

by the iofunc layer _IO_PATHCONF default handler.

dev

Contains the device number for the filesystem. This number is returned to

the client's stat() function in the struct stat st_dev member.

blocksize

Contains the block size of the device. On filesystem types of resource

managers, this indicates the native blocksize of the disk, e.g. 512 bytes.

funcs

Contains the following structure:

struct _iofunc_funcs {
   unsigned     nfuncs;
   IOFUNC_OCB_T *(*ocb_calloc) (resmgr_context_t *ctp,
                                IOFUNC_ATTR_T *attr);
   void         (*ocb_free) (IOFUNC_OCB_T *ocb);
};

where:

nfuncs

Indicates the number of functions present in the structure; you

should fill it with the manifest constant _IOFUNC_NFUNCS.

ocb_calloc() and ocb_free()

Allows you to override the OCBs on a per-mountpoint basis (see

“Extending the OCB and attribute structures (p. 108)” in the

Extending the POSIX-Layer Data Structures chapter). If these

members are NULL, then the default library versions

(iofunc_ocb_calloc() and iofunc_ocb_free()) are used. You must

specify either both or neither of these functions; they operate as

a matched pair.
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Chapter 5
Handling Read and Write Messages
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Handling the _IO_READ message

The io_read handler is responsible for returning data bytes to the client after receiving

an _IO_READ message. Examples of functions that send this message are read(),

readdir(), fread(), and fgetc(). Let's start by looking at the format of the message itself:

struct _io_read {
    uint16_t            type;
    uint16_t            combine_len;
    int32_t             nbytes;
    uint32_t            xtype;
};

typedef union {
    struct _io_read     i;
    /* unsigned char    data[nbytes];    */
    /* nbytes is returned with MsgReply  */
} io_read_t;

As with all resource manager messages, we've defined a union that contains the input

(coming into the resource manager) structure and a reply or output (going back to the

client) structure. The io_read handler is prototyped with an argument of io_read_t

*msg — that's the pointer to the union containing the message.

Since this is a read(), the type member has the value _IO_READ. The items of interest

in the input structure are:

combine_len

This field has meaning for a combine message — see the Combine Messages

(p. 99) chapter.

nbytes

How many bytes the client is expecting.

xtype

A per-message override, if your resource manager supports it. Even if your

resource manager doesn't support it, you should still examine this member.

More on the xtype later (see the “Handling the xtype member (p. 93)”

section).

We'll create an io_read handler that actually returns some data (the fixed string

"Hello, world\n"). We'll use the OCB to keep track of our position within the

buffer that we're returning to the client.

When we get the _IO_READ message, the nbytes member tells us exactly how many

bytes the client wants to read. Suppose that the client issues:

read (fd, buf, 4096);
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In this case, it's a simple matter to return our entire "Hello, world\n" string in

the output buffer and tell the client that we're returning 13 bytes, i.e. the size of the

string.

However, consider the case where the client is performing the following:

while (read (fd, &character, 1) != EOF) {
    printf ("Got a character \"%c\"\n", character);
}

Granted, this isn't a terribly efficient way for the client to perform reads! In this case,

we would get msg->i.nbytes set to 1 (the size of the buffer that the client wants

to get). We can't simply return the entire string all at once to the client — we have to

hand it out one character at a time. This is where the OCB's offset member comes

into play.

Sample code for handling _IO_READ messages

Here's a complete io_read handler that correctly handles these cases:

#include <errno.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int io_read (resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb);

static char                     *buffer = "Hello world\n";

static resmgr_connect_funcs_t   connect_funcs;
static resmgr_io_funcs_t        io_funcs;
static iofunc_attr_t            attr;

int main(int argc, char **argv)
{
    /* declare variables we'll be using */
    resmgr_attr_t        resmgr_attr;
    dispatch_t           *dpp;
    dispatch_context_t   *ctp;
    int                  id;

    /* initialize dispatch interface */
    if((dpp = dispatch_create()) == NULL) {
        fprintf(stderr, "%s: Unable to allocate dispatch handle.\n",
                argv[0]);
        return EXIT_FAILURE;
    }

    /* initialize resource manager attributes */
    memset(&resmgr_attr, 0, sizeof resmgr_attr);
    resmgr_attr.nparts_max = 1;
    resmgr_attr.msg_max_size = 2048;

    /* initialize functions for handling messages */
    iofunc_func_init(_RESMGR_CONNECT_NFUNCS, &connect_funcs,
                     _RESMGR_IO_NFUNCS, &io_funcs);
    io_funcs.read = io_read;

    /* initialize attribute structure used by the device */
    iofunc_attr_init(&attr, S_IFNAM | 0666, 0, 0);
    attr.nbytes = strlen(buffer)+1;

    /* attach our device name */
    if((id = resmgr_attach(dpp, &resmgr_attr, "/dev/sample", _FTYPE_ANY, 0,
                 &connect_funcs, &io_funcs, &attr)) == -1) {
        fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);
        return EXIT_FAILURE;
    }

    /* allocate a context structure */
    ctp = dispatch_context_alloc(dpp);

    /* start the resource manager message loop */
    while(1) {
        if((ctp = dispatch_block(ctp)) == NULL) {
            fprintf(stderr, "block error\n");
            return EXIT_FAILURE;
        }
        dispatch_handler(ctp);
    }
    return EXIT_SUCCESS;
}
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int
io_read (resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb)
{
    int         nleft;
    int         nbytes;
    int         nparts;
    int         status;

    if ((status = iofunc_read_verify (ctp, msg, ocb, NULL)) != EOK)
        return (status);

    if ((msg->i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE)
        return (ENOSYS);

    /*
     *  On all reads (first and subsequent), calculate
     *  how many bytes we can return to the client,
     *  based upon the number of bytes available (nleft)
     *  and the client's buffer size
     */

    nleft = ocb->attr->nbytes - ocb->offset;
    nbytes = min (msg->i.nbytes, nleft);

    if (nbytes > 0) {
        /* set up the return data IOV */
        SETIOV (ctp->iov, buffer + ocb->offset, nbytes);

        /* set up the number of bytes (returned by client's read()) */
        _IO_SET_READ_NBYTES (ctp, nbytes);

        /*
         * advance the offset by the number of bytes
         * returned to the client.
         */

        ocb->offset += nbytes;

        nparts = 1;
    } else {
        /*
         * they've asked for zero bytes or they've already previously
         * read everything
         */

        _IO_SET_READ_NBYTES (ctp, 0);

        nparts = 0;
    }

    /* mark the access time as invalid (we just accessed it) */

    if (msg->i.nbytes > 0)
        ocb->attr->flags |= IOFUNC_ATTR_ATIME;

    return (_RESMGR_NPARTS (nparts));
}

The ocb maintains our context for us by storing the offset field, which gives us the

position within the buffer, and by having a pointer to the attribute structure attr, which

tells us how big the buffer actually is via its nbytes member.

Of course, we had to give the resource manager library the address of our io_read

handler so that it knew to call it. So the code in main() where we had called

iofunc_func_init() became:

/* initialize functions for handling messages */
iofunc_func_init(_RESMGR_CONNECT_NFUNCS, &connect_funcs,
                 _RESMGR_IO_NFUNCS, &io_funcs);
io_funcs.read = io_read;

We also needed to add the following to the area above main():

#include <errno.h>                                                             
#include <unistd.h>                                                            

int io_read (resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb);        

static char *buffer = "Hello world\n";"                                        

Where did the attribute structure's nbytes member get filled in? In main(), just after

we did the iofunc_attr_init(). We modified main() slightly:

After this line:

iofunc_attr_init (&attr, S_IFNAM | 0666, 0, 0);
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We added this one:

attr.nbytes = strlen (buffer)+1;

At this point, if you were to run the resource manager (our simple resource manager

used the name /dev/sample), you could do:

# cat /dev/sample
Hello, world

The return line (_RESMGR_NPARTS(nparts)) tells the resource manager library

to:

• reply to the client for us

• reply with nparts IOVs

Where does it get the IOV array? It's using ctp->iov. That's why we first used the

SETIOV() macro to make ctp->iov point to the data to reply with.

If we had no data, as would be the case of a read of zero bytes, then we'd do a return

(_RESMGR_NPARTS(0)). But read() returns with the number of bytes successfully

read. Where did we give it this information? That's what the _IO_SET_READ_NBYTES()

macro was for. It takes the nbytes that we give it and stores it in the context structure

(ctp). Then when we return to the library, the library takes this nbytes and passes it

as the second parameter to the MsgReplyv(). The second parameter tells the kernel

what the MsgSend() should return. And since the read() function is calling MsgSend(),

that's where it finds out how many bytes were read.

We also update the access time for this device in the read handler. For details on

updating the access time, see the section on “Updating the time for reads and writes

(p. 97)” below.
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Handling the _IO_WRITE message

The io_write handler is responsible for writing data bytes to the media after receiving

a client's _IO_WRITE message. Examples of functions that send this message are

write() and fflush(). Here's the message:

struct _io_write {
    uint16_t            type;
    uint16_t            combine_len;
    int32_t             nbytes;
    uint32_t            xtype;
    /* unsigned char    data[nbytes]; */
};

typedef union {
    struct _io_write    i;
    /*  nbytes is returned with MsgReply  */
} io_write_t;

As with the io_read_t, we have a union of an input and an output message, with

the output message being empty (the number of bytes actually written is returned by

the resource manager library directly to the client's MsgSend()).

The data being written by the client almost always follows the header message stored

in struct _io_write. The exception is if the write was done using pwrite() or

pwrite64(). More on this when we discuss the xtype (p. 93) member.

To access the data, we recommend that you reread it into your own buffer. Let's say

you had a buffer called inbuf that was “big enough” to hold all the data you expected

to read from the client (if it isn't big enough, you'll have to read the data piecemeal).

Sample code for handling _IO_WRITE messages

The following is a code snippet that can be added to one of the simple resource

manager examples. It prints out whatever it's given (making the assumption that it's

given only character text):

int
io_write (resmgr_context_t *ctp, io_write_t *msg, RESMGR_OCB_T *ocb)
{
    int     status;
    char    *buf;

    if ((status = iofunc_write_verify(ctp, msg, ocb, NULL)) != EOK)
        return (status);

    if ((msg->i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE)
        return(ENOSYS);

    /* set up the number of bytes (returned by client's write()) */

    _IO_SET_WRITE_NBYTES (ctp, msg->i.nbytes);

    buf = (char *) malloc(msg->i.nbytes + 1);
    if (buf == NULL)
        return(ENOMEM);

    /*
     *  Reread the data from the sender's message buffer.
     *  We're not assuming that all of the data fit into the
     *  resource manager library's receive buffer.
     */

    resmgr_msgread(ctp, buf, msg->i.nbytes, sizeof(msg->i));
    buf [msg->i.nbytes] = '\0'; /* just in case the text is not NULL terminated */
    printf ("Received %d bytes = '%s'\n", msg -> i.nbytes, buf);
    free(buf);

    if (msg->i.nbytes > 0)
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        ocb->attr->flags |= IOFUNC_ATTR_MTIME | IOFUNC_ATTR_CTIME;

    return (_RESMGR_NPARTS (0));
}

Of course, we'll have to give the resource manager library the address of our io_write

handler so that it'll know to call it. In the code for main() where we called

iofunc_func_init(), we'll add a line to register our io_write handler:

/* initialize functions for handling messages */
iofunc_func_init(_RESMGR_CONNECT_NFUNCS, &connect_funcs,
                 _RESMGR_IO_NFUNCS, &io_funcs);                                               
io_funcs.write = io_write;                                                 

You may also need to add the following prototype:

int io_write (resmgr_context_t *ctp, io_write_t *msg,
              RESMGR_OCB_T *ocb);  

At this point, if you were to run the resource manager (our simple resource manager

used the name /dev/sample), you could write to it by doing echo Hello >

/dev/sample as follows:

# echo Hello > /dev/sample
Received 6 bytes = 'Hello'

Notice how we passed the last argument to resmgr_msgread() (the offset argument)

as the size of the input message buffer. This effectively skips over the header and gets

to the data component.

If the buffer you supplied wasn't big enough to contain the entire message from the

client (e.g. you had a 4 KB buffer and the client wanted to write 1 megabyte), you'd

have to read the buffer in stages, using a for loop, advancing the offset passed to

resmgr_msgread() by the amount read each time.

Unlike the io_read handler sample, this time we didn't do anything with ocb->offset.

In this case there's no reason to. The ocb->offset would make more sense if we

were managing things that had advancing positions such as a file position.

The reply is simpler than with the io_read handler, since a write() call doesn't expect

any data back. Instead, it just wants to know if the write succeeded and if so, how

many bytes were written. To tell it how many bytes were written we used the

_IO_SET_WRITE_NBYTES() macro. It takes the nbytes that we give it and stores it in

the context structure (ctp). Then when we return to the library, the library takes this

nbytes and passes it as the second parameter to the MsgReplyv(). The second parameter

tells the kernel what the MsgSend() should return. And since the write() function is

calling MsgSend(), that's where it finds out how many bytes were written.

Since we're writing to the device, we should also update the modification, and

potentially, the creation time. For details on updating the modification and change of

file status times, see the section on “Updating the time for reads and writes (p. 97)”

below.
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Methods of returning and replying

You can return to the resource manager library from your handler functions in various

ways. This is complicated by the fact that the resource manager library can reply for

you if you want it to, but you must tell it to do so and put the information that it'll use

in all the right places.

In this section, we'll discuss the following ways of returning to the resource manager

library.

Returning with an error

To reply to the client such that the function the client is calling (e.g. read()) will return

with an error, you simply return with an appropriate errno value (from <errno.h>).

return (ENOMEM);

In the case of a read(), this causes the read to return -1 with errno set to ENOMEM.

You might sometimes see this in the code for a resource manager:

_RESMGR_ERRNO (error_code)

but this is the same as simply returning the error_code directly. The

_RESMGR_ERRNO() macro is deprecated.

Returning using an IOV array that points to your data

Sometimes you'll want to reply with a header followed by one of N buffers, where the

buffer used will differ each time you reply. To do this, you can set up an IOV array

whose elements point to the header and to a buffer.

The context structure already has an IOV array. If you want the resource manager

library to do your reply for you, then you must use this array. But the array must contain

enough elements for your needs. To ensure that this is the case, set the nparts_max

member of the resmgr_attr_t structure that you passed to resmgr_attach() when

you registered your name in the pathname space.

The following example assumes that the variable i contains the offset into the array

of buffers of the desired buffer to reply with. The 2 in _RESMGR_NPARTS(2) tells

the library how many elements in ctp->iov to reply with.

my_header_t     header;
a_buffer_t      buffers[N];

...

SETIOV(&ctp->iov[0], &header, sizeof(header));
SETIOV(&ctp->iov[1], &buffers[i], sizeof(buffers[i]));
return (_RESMGR_NPARTS(2));
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Returning with a single buffer containing data

An example of this would be replying to a read() where all the data existed in a single

buffer. You'll typically see this done in two ways:

return (_RESMGR_PTR(ctp, buffer, nbytes));

And:

SETIOV (ctp->iov, buffer, nbytes);
return (_RESMGR_NPARTS(1));

The first method, using the _RESMGR_PTR() macro, is just a convenience for the

second method where a single IOV is returned.

Returning success but with no data

This can be done in a few ways. The most simple would be:

return (EOK);

But you'll often see:

return (_RESMGR_NPARTS(0));

Note that in neither case are you causing the MsgSend() to return with a 0. The value

that the MsgSend() returns is the value passed to the _IO_SET_READ_NBYTES(),

_IO_SET_WRITE_NBYTES(), and other similar macros. These two were used in the

read and write samples above.

Getting the resource manager library to do the reply

In this case, you give the client the data and get the resource manager library to do

the reply for you. However, the reply data won't be valid by that time. For example, if

the reply data was in a buffer that you wanted to free before returning, you could use

the following:

resmgr_msgwrite (ctp, buffer, nbytes, 0);
free (buffer);
return (EOK);

The resmgr_msgwrite() function copies the contents of buffer into the client's reply

buffer immediately. Note that a reply is still required in order to unblock the client so

it can examine the data. Next we free the buffer. Finally, we return to the resource

manager library such that it does a reply with zero-length data. Since the reply is of

zero length, it doesn't overwrite the data already written into the client's reply buffer.

When the client returns from its send call, the data is there waiting for it.
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Performing the reply in the server

In all of the previous examples, it's the resource manager library that calls MsgReply*()

or MsgError() to unblock the client. In some cases, you may not want the library to

reply for you. For instance, you might have already done the reply yourself, or you'll

reply later. In either case, you'd return as follows:

return (_RESMGR_NOREPLY);

Leaving the client blocked, replying later

An example of a resource manager that would reply to clients later is a pipe resource

manager. If the client is doing a read of your pipe but you have no data for the client,

then you have a choice:

• You can reply with an error (EAGAIN).

Or:

• You can leave the client blocked and later, when your write handler function is

called, you can reply to the client with the new data.

Another example might be if the client wants you to write to some device but doesn't

want to get a reply until the data has been fully written out. Here's the sequence of

events that might follow:

1. Your resource manager does some I/O to the hardware to tell it that data is available.

2. The hardware generates an interrupt when it's ready for a packet of data.

3. You handle the interrupt by writing data out to the hardware.

4. Many interrupts may occur before all the data is written — only then would you

reply to the client.

The first issue, though, is whether the client wants to be left blocked. If the client

doesn't want to be left blocked, then it opens with the O_NONBLOCK flag:

fd = open("/dev/sample", O_RDWR | O_NONBLOCK);

The default is to allow you to block it.

One of the first things done in the read and write samples above was to call some

POSIX verification functions: iofunc_read_verify() and iofunc_write_verify(). If we pass

the address of an int as the last parameter, then on return the functions will stuff

that int with nonzero if the client doesn't want to be blocked (O_NONBLOCK flag was

set) or with zero if the client wants to be blocked.

int    nonblock;                                                     

if ((status = iofunc_read_verify (ctp, msg, ocb,
                                  &nonblock)) != EOK) 
    return (status);                                                 

...                                                                  
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int    nonblock;                                                     

if ((status = iofunc_write_verify (ctp, msg, ocb,
                                   &nonblock)) != EOK)
    return (status);

When it then comes time to decide if we should reply with an error or reply later, we

do:

if (nonblock) {
    /* client doesn't want to be blocked */
    return (EAGAIN);                                          
} else {                                                      
    /*
    *  The client is willing to be blocked.
    *  Save at least the ctp->rcvid so that you can
    *  reply to it later.
    */
    ...
    return (_RESMGR_NOREPLY);
}                                                             

The question remains: How do you do the reply yourself? The only detail to be aware

of is that the rcvid to reply to is ctp->rcvid. If you're replying later, then you'd save

ctp->rcvid and use the saved value in your reply:

MsgReply(saved_rcvid, 0, buffer, nbytes);

Or:

iov_t    iov[2];

SETIOV(&iov[0], &header, sizeof(header));
SETIOV(&iov[1], &buffers[i], sizeof(buffers[i]));
MsgReplyv(saved_rcvid, 0, iov, 2);

Note that you can fill up the client's reply buffer as data becomes available by using

resmgr_msgwrite() and resmgr_msgwritev(). Just remember to do the MsgReply*() at

some time to unblock the client.

If you're replying to an _IO_READ or _IO_WRITEmessage, the status argument

for MsgReply*() must be the number of bytes read or written.

There's another way to resume the blocked operation, but it isn't as efficient as the

other methods: you can call resmgr_msg_again(). This function restores the

resmgr_context_t structure to the way it was when your resource manager received

the message associated with the rcvid, and then processes the message again as if it

had just been received.

If your resource manager leaves clients blocked, you'll need to keep track of

which clients are blocked, so that you can unblock them if necessary. For more

information, see “Unblocking if someone closes a file descriptor (p. 146)” in

the Unblocking Clients and Handling Interrupts chapter.
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Returning and telling the library to do the default action

The default action in most cases is for the library to cause the client's function to fail

with ENOSYS:

return (_RESMGR_DEFAULT);
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Handling other read/write details

Handling the xtype member

The message structures passed to the io_read, io_write, and io_openfd handlers contain

a member called xtype. From struct _io_read:

struct _io_read {
    ...
    uint32_t            xtype;
    ...
}

Basically, the xtype contains extended type information that can be used to adjust the

behavior of a standard I/O function. Most resource managers care about only a few

values:

_IO_XTYPE_NONE

No extended type information is being provided.

_IO_XTYPE_OFFSET

If clients are calling pread(), pread64(), pwrite(), or pwrite64(), then they

don't want you to use the offset in the OCB. Instead, they're providing a

one-shot offset. That offset follows the struct _io_read or struct

_io_write headers that reside at the beginning of the message buffers.

For example:

struct myread_offset {
    struct _io_read        read;
    struct _xtype_offset   offset;
}   

Some resource managers can be sure that their clients will never call pread*()

or pwrite*(). (For example, a resource manager that's controlling a robot arm

probably wouldn't care.) In this case, you can treat this type of message as

an error.

_IO_XTYPE_READCOND

If a client is calling readcond(), they want to impose timing and return buffer

size constraints on the read. Those constraints follow the struct _io_read

or struct _io_write headers at the beginning of the message buffers.

For example:

struct myreadcond {
    struct _io_read        read;
    struct _xtype_readcond cond;
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}   

As with _IO_XTYPE_OFFSET, if your resource manager isn't prepared to

handle readcond(), you can treat this type of message as an error.

_IO_XFLAG_DIR_EXTRA_HINT

This flag is valid only when reading from a directory. The filesystem should

normally return extra directory information when it's easy to get. If this flag

is set, it is a hint to the filesystem to try harder (possibly causing media

lookups) to return the extra information. The most common use is to return

_DTYPE_LSTAT information.

If you aren't expecting extended types (xtype)

The following code sample demonstrates how to handle the case where you're not

expecting any extended types. In this case, if you get a message that contains an

xtype, you should reply with ENOSYS. The example can be used in either an io_read

or io_write handler.

int
io_read (resmgr_context_t *ctp, io_read_t *msg,
         RESMGR_OCB_T *ocb)
{
    int    status;

    if ((status = iofunc_read_verify(ctp, msg, ocb, NULL))
         != EOK) {
        return (status);
    }

    /* No special xtypes */
    if ((msg->i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE)
        return (ENOSYS);

    ...
}

Handling pread*() and pwrite*()

Here are code examples that demonstrate how to handle an _IO_READ or _IO_WRITE

message when a client calls.

Sample code for handling _IO_READ messages in pread*()

The following sample code demonstrates how to handle _IO_READ for the case where

the client calls one of the pread*() functions.

/* we are defining io_pread_t here to make the code below
   simple */
typedef struct {
    struct _io_read         read;
    struct _xtype_offset    offset;
} io_pread_t;

int
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io_read (resmgr_context_t *ctp, io_read_t *msg,
         RESMGR_OCB_T *ocb)
{
    off64_t offset; /* where to read from */
    int     status;

    if ((status = iofunc_read_verify(ctp, msg, ocb, NULL))
         != EOK) {
        return(status);
    }

    switch(msg->i.xtype & _IO_XTYPE_MASK) {
    case _IO_XTYPE_NONE:
        offset = ocb->offset;
        break;
    case _IO_XTYPE_OFFSET:
        /*
         *  io_pread_t is defined above.
         *  Client is doing a one-shot read to this offset by
         *  calling one of the pread*() functions
         */
        offset = ((io_pread_t *) msg)->offset.offset;
        break;
    default:
        return(ENOSYS);
    }

    ...
}

Sample code for handling _IO_WRITE messages in pwrite*()

The following sample code demonstrates how to handle _IO_WRITE for the case where

the client calls one of the pwrite*() functions. Keep in mind that the struct

_xtype_offset information follows the struct _io_write in the sender's

message buffer. This means that the data to be written follows the struct

_xtype_offset information (instead of the normal case where it follows the struct

_io_write). So, you must take this into account when doing the resmgr_msgread()

call in order to get the data from the sender's message buffer.

/* we are defining io_pwrite_t here to make the code below
   simple */
typedef struct {
    struct _io_write        write;
    struct _xtype_offset    offset;
} io_pwrite_t;

int
io_write (resmgr_context_t *ctp, io_write_t *msg,
          RESMGR_OCB_T *ocb)
{
    off64_t offset; /* where to write */
    int     status;
    size_t  skip;   /* offset into msg to where the data
                       resides */

    if ((status = iofunc_write_verify(ctp, msg, ocb, NULL))
         != EOK) {
        return(status);
    }

    switch(msg->i.xtype & _IO_XTYPE_MASK) {
    case _IO_XTYPE_NONE:
        offset = ocb->offset;
        skip = sizeof(io_write_t);
        break;
    case _IO_XTYPE_OFFSET:
        /* 
         *  io_pwrite_t is defined above
         *  client is doing a one-shot write to this offset by
         *  calling one of the pwrite*() functions
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         */
        offset = ((io_pwrite_t *) msg)->offset.offset;
        skip = sizeof(io_pwrite_t);
        break;
    default:
        return(ENOSYS);
    }

    ...

    /* 
     *  get the data from the sender's message buffer, 
     *  skipping all possible header information
     */
    resmgr_msgreadv(ctp, iovs, niovs, skip);

    ...
}

Handling readcond()

The same type of operation that was done to handle the pread()/_IO_XTYPE_OFFSET

case can be used for handling the client's readcond() call:

typedef struct {
    struct _io_read        read;
    struct _xtype_readcond cond;
} io_readcond_t

Then:

struct _xtype_readcond *cond
...
    CASE _IO_XTYPE_READCOND:
        cond = &((io_readcond_t *)msg)->cond
        break;
}

Then your manager has to properly interpret and deal with the arguments to readcond().

For more information, see the BlackBerry 10 OS C Library Reference.
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Updating the time for reads and writes

In the read sample above we did:

if (msg->i.nbytes > 0)
    ocb->attr->flags |= IOFUNC_ATTR_ATIME;

According to POSIX, if the read succeeds and the reader had asked for more than zero

bytes, then the access time must be marked for update. But POSIX doesn't say that

it must be updated right away. If you're doing many reads, you may not want to read

the time from the kernel for every read. In the code above, we mark the time only as

needing to be updated. When the next _IO_STAT or _IO_CLOSE_OCB message is

processed, the resource manager library will see that the time needs to be updated

and will get it from the kernel then. This of course has the disadvantage that the time

is not the time of the read.

Similarly for the write sample above, we did:

if (msg->i.nbytes > 0)
    ocb->attr->flags |= IOFUNC_ATTR_MTIME | IOFUNC_ATTR_CTIME;

so the same thing will happen.

If you do want to have the times represent the read or write times, then after setting

the flags you need only call the iofunc_time_update() helper function. So the read

lines become:

if (msg->i.nbytes > 0) {
    ocb->attr->flags |= IOFUNC_ATTR_ATIME;
    iofunc_time_update(ocb->attr);
}

and the write lines become:

if (msg->i.nbytes > 0) {
    ocb->attr->flags |= IOFUNC_ATTR_MTIME | IOFUNC_ATTR_CTIME;
    iofunc_time_update(ocb->attr);
}

You should call iofunc_time_update() before you flush out any cached attributes. As

a result of changing the time fields, the attribute structure will have the

IOFUNC_ATTR_DIRTY_TIME bit set in the flags field, indicating that this field of

the attribute must be updated when the attribute is flushed from the cache.

© 2014, QNX Software Systems Limited 97

Updating the time for reads and writes





Chapter 6
Combine Messages
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Where combine messages are used

In order to conserve network bandwidth and to provide support for atomic operations,

combine messages are supported. A combine message is constructed by the client's

C library and consists of a number of I/O and/or connect messages packaged together

into one. Let's see how they're used.

Atomic operations

Consider a case where two threads are executing the following code, trying to read

from the same file descriptor:
Atomic
a_thread ()
{
    char buf [BUFSIZ];

    lseek (fd, position, SEEK_SET);
    read (fd, buf, BUFSIZ);
    …
}

The first thread performs the lseek() and then gets preempted by the second thread.

When the first thread resumes executing, its offset into the file will be at the end of

where the second thread read from, not the position that it had lseek()'d to.

This can be solved in one of three ways:

• The two threads can use a mutex to ensure that only one thread at a time is using

the file descriptor.

• Each thread can open the file itself, thus generating a unique file descriptor that

won't be affected by any other threads.

• The threads can use the readblock() function, which performs an atomic lseek()

and read().

Let's look at these three methods.

Using a mutex

In the first approach, if the two threads use a mutex between themselves,

the following issue arises: every read(), lseek(), and write() operation must

use the mutex.

If this practice isn't enforced, then you still have the exact same problem.

For example, suppose one thread that's obeying the convention locks the

mutex and does the lseek(), thinking that it's protected. However, another

thread (that's not obeying the convention) can preempt it and move the

offset to somewhere else. When the first thread resumes, we again encounter

the problem where the offset is at a different (unexpected) location.

Generally, using a mutex will be successful only in very tightly managed
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projects, where a code review will ensure that each and every thread's file

functions obey the convention.

Per-thread files

The second approach — of using different file descriptors — is a good

general-purpose solution, unless you explicitly wanted the file descriptor to

be shared.

The readblock() function

In order for the readblock() function to be able to effect an atomic seek/read

operation, it must ensure that the requests it sends to the resource manager

will all be processed at the same time. This is done by combining the

_IO_LSEEK and _IO_READ messages into one message. Thus, when the

base layer performs the MsgReceive(), it will receive the entire readblock()

request in one atomic message.

Bandwidth considerations

Another place where combine messages are useful is in the stat() function, which can

be implemented by calling open(), fstat(), and close() in sequence.

Rather than generate three separate messages (one for each of the functions), the C

library combines them into one contiguous message. This boosts performance,

especially over a networked connection, and also simplifies the resource manager,

because it's not forced to have a connect function to handle stat().

© 2014, QNX Software Systems Limited 101

Where combine messages are used



The library's combine-message handling

The resource manager library handles combine messages by presenting each component

of the message to the appropriate handler routines. For example, if we get a combine

message that has an _IO_LSEEK and _IO_READ in it (e.g. readblock()), the library

will call our io_lseek and io_read handlers for us in turn.

But let's see what happens in the resource manager when it's handling these messages.

With multiple threads, both of the client's threads may very well have sent in their

“atomic” combine messages. Two threads in the resource manager will now attempt

to service those two messages. We again run into the same synchronization problem

as we originally had on the client end — one thread can be partway through processing

the message and can then be preempted by the other thread.

The solution? The resource manager library provides callouts to lock the OCB while

processing any message (except _IO_CLOSE and _IO_UNBLOCK —we'll return to

these). As an example, when processing the readblock() combine message, the resource

manager library performs callouts in this order:

1. lock_ocb handler

2. _IO_LSEEK message handler

3. _IO_READ message handler

4. unlock_ocb handler

Therefore, in our scenario, the two threads within the resource manager would be

mutually exclusive to each other by virtue of the lock — the first thread to acquire the

lock would completely process the combine message, unlock the lock, and then the

second thread would perform its processing.

Let's examine several of the issues that are associated with handling combine messages.

Component responses

As we've seen, a combine message really consists of a number of “regular” resource

manager messages combined into one large contiguous message. The resource manager

library handles each component in the combine message separately by extracting the

individual components and then out calling to the handlers you've specified in the

connect and I/O function tables, as appropriate, for each component.

This generally doesn't present any new wrinkles for the message handlers themselves,

except in one case. Consider the readblock() combine message:

Client call:

readblock()
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Message(s):

_IO_LSEEK , _IO_READ

Callouts:

io_lock_ocb, io_lseek, io_read, io_unlock_ocb

Ordinarily, after processing the _IO_LSEEK message, your handler would return the

current position within the file. However, the next message (the _IO_READ) also

returns data. By convention, only the last data-returning message within a combine

message will actually return data. The intermediate messages are allowed to return

only a pass/fail indication.

The impact of this is that the _IO_LSEEK message handler has to be aware of whether

or not it's being invoked as part of combine message handling. If it is, it should only

return either an EOK (indicating that the lseek() operation succeeded) or an error

indication to indicate some form of failure.

But if the _IO_LSEEK handler isn't being invoked as part of combine message

handling, it should return the EOK and the new offset (or, in case of error, an error

indication only).

Here's a sample of the code for the default iofunc-layer lseek() handler:

int
iofunc_lseek_default (resmgr_context_t *ctp,
                      io_lseek_t *msg,
                      iofunc_ocb_t *ocb)
{
    /* 
     *  performs the lseek processing here
     *  may "early-out" on error conditions
     */
     . . .

    /* decision re: combine messages done here */
    if (msg -> i.combine_len & _IO_COMBINE_FLAG) {
        return (EOK);
    }

    msg -> o = offset;
    return (_RESMGR_PTR (ctp, &msg -> o, sizeof (msg -> o)));
}

The relevant decision is made in this statement:

if (msg -> i.combine_len & _IO_COMBINE_FLAG)

If the _IO_COMBINE_FLAG bit is set in the combine_len member, this indicates that

the message is being processed as part of a combine message.

When the resource manager library is processing the individual components of the

combine message, it looks at the error return from the individual message handlers.

If a handler returns anything other than EOK, then processing of further combine

message components is aborted. The error that was returned from the failing

component's handler is returned to the client.
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Component data access

The second issue associated with handling combine messages is how to access the

data area for subsequent message components.

For example, the writeblock() combine message format has an lseek() message first,

followed by the write() message. This means that the data associated with the write()

request is further in the received message buffer than would be the case for just a

simple _IO_WRITE message:

Client call:

writeblock()

Message(s):

_IO_LSEEK , _IO_WRITE , data

Callouts:

io_lock_ocb, io_lseek, io_write, io_unlock_ocb

This issue is easy to work around. There's a resource manager library function called

resmgr_msgread() that knows how to get the data corresponding to the correct message

component. Therefore, in the io_write handler, if you used resmgr_msgread() instead

of MsgRead(), this would be transparent to you.

Resource managers should always use resmgr_msg*() cover

functions.

For reference, here's the source for resmgr_msgread():

int resmgr_msgread( resmgr_context_t *ctp,
                    void *msg,
                    int nbytes,
                    int offset)
{
    return MsgRead(ctp->rcvid, msg, nbytes, ctp->offset + offset);
}

As you can see, resmgr_msgread() simply calls MsgRead() with the offset of the

component message from the beginning of the combine message buffer. For

completeness, there's also a resmgr_msgwrite() that works in an identical manner to

MsgWrite(), except that it dereferences the passed ctp to obtain the rcvid.

Locking and unlocking the attribute structure

As mentioned above, another facet of the operation of the readblock() function from

the client's perspective is that it's atomic. In order to process the requests for a

particular OCB in an atomic manner, we must lock and unlock the attribute structure
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pointed to by the OCB, thus ensuring that only one resource manager thread has access

to the OCB at a time.

The resource manager library provides two callouts for doing this:

• lock_ocb

• unlock_ocb

These are members of the I/O functions structure. The handlers that you provide for

those callouts should lock and unlock the attribute structure pointed to by the OCB

by calling iofunc_attr_lock() and iofunc_attr_unlock(). Therefore, if you're locking the

attribute structure, there's a possibility that the lock_ocb callout will block for a period

of time. This is normal and expected behavior. Note also that the attributes structure

is automatically locked for you when your I/O function is called.

Connect message types

Let's take a look at the general case for the io_open handler — it doesn't always

correspond to the client's open() call!

For example, consider the stat() and access() client function calls.

_IO_CONNECT_COMBINE_CLOSE

For a stat() client call, we essentially perform the sequence open()/fstat()/close(). Note

that if we actually did that, three messages would be required. For performance reasons,

we implement the stat() function as one single combine message:

Client call:

stat()

Message(s):

_IO_CONNECT_COMBINE_CLOSE , _IO_STAT

Callouts:

io_open, io_lock_ocb, io_stat, io_unlock_ocb, io_close

The _IO_CONNECT_COMBINE_CLOSE message causes the io_open handler to be

called. It then implicitly (at the end of processing for the combine message) causes

the io_close_ocb handler to be called.

_IO_CONNECT_COMBINE

For the access() function, the client's C library will open a connection to the resource

manager and perform a stat() call. Then, based on the results of the stat() call, the

client's C library access() may perform an optional devctl() to get more information.

In any event, because access() opened the device, it must also call close() to close it:
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Client call:

access()

Message(s):

_IO_CONNECT_COMBINE , _IO_STAT, _IO_DEVCTL (optional),

_IO_CLOSE

Callouts:

io_open, io_lock_ocb, io_stat, io_unlock_ocb, io_lock_ocb (optional), io_devctl

(optional), io_unlock_ocb (optional), io_close

Notice how the access() function opened the pathname/device — it sent it an

_IO_CONNECT_COMBINE message along with the _IO_STAT message. This creates

an OCB (when the io_open handler is called), locks the associated attribute structure

(via io_lock_ocb), performs the stat (io_stat), and then unlocks the attributes structure

(io_unlock_ocb). Note that we don't implicitly close the OCB — this is left for a later,

explicit, message. Contrast this handling with that of the plain stat() above.

106 © 2014, QNX Software Systems Limited

Combine Messages



Chapter 7
Extending the POSIX-Layer Data Structures

The iofunc_*() default functions operate on the assumption that you've used the default

definitions for the context block and the attributes structures. This is a safe assumption

for two reasons:

1. The default context and attribute structures contain sufficient information for most

applications.

2. If the default structures don't hold enough information, you can encapsulate them

within the structures that you've defined.

The default structures must be the first members of their respective superstructures,

so that the iofunc_*() default functions can access them:

(iofunc_attr_t *)

Attribute
superstructure

Default
members

Extensions

Figure 6: Encapsulating the POSIX-layer data structures.
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Extending the OCB and attribute structures

In our /dev/sample example, we had a static buffer associated with the entire

resource. Sometimes you may want to keep a pointer to a buffer associated with the

resource, rather than in a global area. To maintain the pointer with the resource, we

would have to store it in the iofunc_attr_t attribute structure. Since the attribute

structure doesn't have any spare fields, we would have to extend it to contain that

pointer.

Sometimes you may want to add extra entries to the standard iofunc_*() OCB

(iofunc_ocb_t).

Let's see how we can extend both of these structures. The basic strategy used is to

encapsulate the existing attributes and OCB structures within a newly defined

superstructure that also contains our extensions. Here's the code (see the text following

the listing for comments):

/* Define our overrides before including <sys/iofunc.h>  */
struct device;
#define IOFUNC_ATTR_T       struct device  /* see note 1 */
struct ocb;
#define IOFUNC_OCB_T        struct ocb     /* see note 1 */

#include <sys/iofunc.h>
#include <sys/dispatch.h>

struct ocb {                               /* see note 2 */
    iofunc_ocb_t            hdr;           /* see note 4; must always be first */
    struct ocb              *next;
    struct ocb              **prev;        /* see note 3 */
};

struct device {                            /* see note 2 */
    iofunc_attr_t           attr;          /* must always be first */
    struct ocb              *list;         /* waiting for write */
};

/* Prototypes, needed since we refer to them a few lines down */

struct ocb *ocb_calloc (resmgr_context_t *ctp, struct device *device);
void ocb_free (struct ocb *ocb);

iofunc_funcs_t ocb_funcs = { /* our ocb allocating & freeing functions */
    _IOFUNC_NFUNCS,
    ocb_calloc,
    ocb_free
};

/* The mount structure.  We have only one, so we statically declare it */

iofunc_mount_t          mountpoint = { 0, 0, 0, 0, &ocb_funcs };

/* One struct device per attached name (there's only one name in this
   example) */

struct device           deviceattr;

main()
{
    ...

    /* 
     *  deviceattr will indirectly contain the addresses 
     *  of the OCB allocating and freeing functions
     */

    deviceattr.attr.mount = &mountpoint;
    resmgr_attach (..., &deviceattr);

    ...
}

/*
 * ocb_calloc
 *
 *  The purpose of this is to give us a place to allocate our own OCB.
 *  It is called as a result of the open being done
 *  (e.g. iofunc_open_default causes it to be called). We
 *  registered it through the mount structure.
 */
IOFUNC_OCB_T
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ocb_calloc (resmgr_context_t *ctp, IOFUNC_ATTR_T *device)
{
    struct ocb *ocb;

    if (!(ocb = calloc (1, sizeof (*ocb)))) {
        return 0;
    }

    /* see note 3 */
    ocb -> prev = &device -> list;
    if (ocb -> next = device -> list) {
        device -> list -> prev = &ocb -> next;
    }
    device -> list = ocb;

    return (ocb);
}

/*
 * ocb_free
 *
 * The purpose of this is to give us a place to free our OCB.
 * It is called as a result of the close being done
 * (e.g. iofunc_close_ocb_default causes it to be called). We
 * registered it through the mount structure.
 */
void
ocb_free (IOFUNC_OCB_T *ocb)
{
    /* see note 3 */
    if (*ocb -> prev = ocb -> next) {
        ocb -> next -> prev = ocb -> prev;
        }
        free (ocb);
}

Here are the notes for the above code:

1. We place the definitions for our enhanced structures before including the standard

I/O functions header file. Because the standard I/O functions header file checks

to see if the two manifest constants are already defined, this allows a convenient

way for us to semantically override the structures.

2. Define our new enhanced data structures, being sure to place the encapsulated

members first.

3. The ocb_calloc() and ocb_free() sample functions shown here cause the newly

allocated OCBs to be maintained in a linked list. Note the use of dual indirection

on the struct ocb **prev; member.

4. You must always place the iofunc structure that you're overriding as the first

member of the new extended structure. This lets the common library work properly

in the default cases.
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Extending the mount structure

You can also extend the iofunc_mount_t structure in the same manner as the

attribute and OCB structures. In this case, you'd define:

#define IOFUNC_MOUNT_T       struct newmount  

and then declare the new structure:

struct newmount {
    iofunc_mount_t          mount;
    int                   ourflag;
};
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Chapter 8
Handling Other Messages
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Custom messages

Although most of the time your resource manager will handle messages from clients,

there still could be times when you need to control the behavior of the resource manager

itself. For example, if the resource manager is for a serial port, you'll likely need a way

to change the baud rate, and so on.

There are various ways you could send control information to a resource manager:

• Stop the resource manager, and then restart it with new command-line options.

This is an awkward method that leaves the device unavailable while the resource

manager is restarting. It isn't a viable solution if the resource manager controls

various devices and you need to set different options (at different times) for different

devices.

• Accept write() messages that include control instructions. This lets you control the

resource manager from the command line or a script; you can simply echo a

command to a path that the resource manager has registered.

However, the write() messages might be broken into smaller messages, so your

resource manager would have to be prepared to save the pieces, reassemble them,

and then act on them. Your io_write handler also has to parse the commands, in

addition to handling write() messages from the clients.

• Send an IPC message, via MsgSend(), directly to the resource manager. This

message would contain a data structure that includes the control instructions. This

method is fast, simple, and flexible, but it isn't portable because MsgSend() isn't

a POSIX function.

• Send control instructions via a devctl() command. Such messages won't conflict

with any other messages sent to the resource manager, but this approach might

not be portable because devctl() isn't a POSIX function (it was in a draft standard,

but wasn't adopted). See “Handling devctl() messages (p. 114),” below.

• Set up a handler for “other” I/O messages when you call resmgr_attach(). As

described in “Initialize the resource manager attributes (p. 39)” in the Bones of a

Resource Manager chapter, you have to set the

RESMGR_FLAG_ATTACH_OTHERFUNC bit in the flags member of the

resmgr_attr_t structure, and set the other_func member to point to the handler

function. However, as we mentioned earlier, we don't recommend this approach.

• Use message_attach() or pulse_attach() to attach a specified message range or

pulse code for the dispatch handle. When a message with a type in that range is

received, the dispatch_block() function calls the handler function that you specify.

The message range must be outside the I/O range, and the messages or pulses

aren't associated with an OCB. For more information, see “Handling private

messages and pulses (p. 130),” later in this chapter.
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• Use an out-of-band I/O message, _IO_MSG. This type of message is associated

with an OCB, and is handled through the resource manager's framework. For more

information, see “Handling out-of-band (_IO_MSG) messages (p. 128),” later in

this chapter.
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Handling devctl() messages

The devctl() function is a general-purpose mechanism for communicating with a

resource manager. Clients can send data to, receive data from, or both send and receive

data from a resource manager. The prototype of the client devctl() call is:

int devctl( int fd,
            int dcmd, 
            void * data, 
            size_t nbytes, 
            int * return_info);

The following values (described in detail in the devctl() documentation in the BlackBerry

10 OS C Library Reference) map directly to the _IO_DEVCTL message itself:

struct _io_devctl {
        uint16_t                  type;
        uint16_t                  combine_len;
        int32_t                   dcmd;
        int32_t                   nbytes;
        int32_t                   zero;
/*      char                      data[nbytes]; */
};

struct _io_devctl_reply {
        uint32_t                  zero;
        int32_t                   ret_val;
        int32_t                   nbytes;
        int32_t                   zero2;
/*      char                      data[nbytes]; */
    } ;

typedef union {
        struct _io_devctl         i;
        struct _io_devctl_reply   o;
} io_devctl_t;

As with most resource manager messages, we've defined a union that contains the

input structure (coming into the resource manager), and a reply or output structure

(going back to the client). The io_devctl resource manager handler is prototyped with

the argument:

io_devctl_t *msg

which is the pointer to the union containing the message.

The type member has the value _IO_DEVCTL.

The combine_len field has meaning for a combine message; see the Combine Messages

(p. 99) chapter.

The nbytes value is the nbytes that's passed to the devctl() function. The value contains

the size of the data to be sent to the device driver, or the maximum size of the data

to be received from the device driver.
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The most interesting item of the input structure is the dcmd argument that's passed

to the devctl() function. This command is formed using the macros defined in

<devctl.h>:

#define _POSIX_DEVDIR_NONE        0
#define _POSIX_DEVDIR_TO          0x80000000
#define _POSIX_DEVDIR_FROM        0x40000000
#define __DIOF(class, cmd, data)  ((sizeof(data)<<16) + ((class)<<8) + (cmd) + _POSIX_DEVDIR_FROM)
#define __DIOT(class, cmd, data)  ((sizeof(data)<<16) + ((class)<<8) + (cmd) + _POSIX_DEVDIR_TO)
#define __DIOTF(class, cmd, data) ((sizeof(data)<<16) + ((class)<<8) + (cmd) + _POSIX_DEVDIR_TOFROM)
#define __DION(class, cmd)        (((class)<<8) + (cmd) + _POSIX_DEVDIR_NONE)

It's important to understand how these macros pack data to create a command. An

8-bit class (defined in <devctl.h>) is combined with an 8-bit subtype that's

manager-specific, and put together in the lower 16 bits of the integer.

The upper 16 bits contain the direction (TO, FROM) as well as a hint about the size

of the data structure being passed. This size is only a hint put in to uniquely identify

messages that may use the same class and code but pass different data structures.

In the following example, a command is generated to indicate that the client is sending

data to the server (TO), but not receiving anything in return. The only bits that the

library or the resource manager layer look at are the TO and FROM bits to determine

which arguments are to be passed to MsgSend().

struct _my_devctl_msg {
    ...
}

#define MYDCMD  __DIOT(_DCMD_MISC, 0x54, struct _my_devctl_msg) 

The size of the structure that's passed as the last field to the __DIO* macros

must be less than 214 == 16 KB. Anything larger than this interferes with the

upper two directional bits.

The data directly follows this message structure, as indicated by the /* char da 

ta[nbytes] */ comment in the _io_devctl structure.

Sample code for handling _IO_DEVCTL messages

You can add the following code samples to either of the “/dev/null” examples

provided in the “Simple device resource manager examples (p. 37)” section of the

Bones of a Resource Manager chapter. Both of those code samples provided the name

/dev/sample. With the changes indicated below, the client can use devctl() to set

and retrieve a global value (an integer in this case) that's maintained in the resource

manager.

The first addition defines what the devctl() commands are going to be. This is generally

put in a common or shared header file:

typedef union _my_devctl_msg {
        int tx;             /* Filled by client on send */
        int rx;             /* Filled by server on reply */
} data_t;

#define MY_CMD_CODE      1
#define MY_DEVCTL_GETVAL __DIOF(_DCMD_MISC,  MY_CMD_CODE + 0, int)
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#define MY_DEVCTL_SETVAL __DIOT(_DCMD_MISC,  MY_CMD_CODE + 1, int)
#define MY_DEVCTL_SETGET __DIOTF(_DCMD_MISC, MY_CMD_CODE + 2, union _my_devctl_msg)

In the above code, we defined three commands that the client can use:

MY_DEVCTL_SETVAL

Sets the server's global variable to the integer the client provides.

MY_DEVCTL_GETVAL

Gets the value of the server's global variable and puts it into the client's

buffer.

MY_DEVCTL_SETGET

Sets the server's global variable to the integer that the client provides, and

then returns the previous value of the server's global variable in the client's

buffer.

Add this code to the main() function:

/* For handling _IO_DEVCTL, sent by devctl() */
io_funcs.devctl = io_devctl;

And the following code gets added before the main() function:

int io_devctl(resmgr_context_t *ctp, io_devctl_t *msg,
              RESMGR_OCB_T *ocb);

int global_integer = 0;

Now, you need to include the new handler function to handle the _IO_DEVCTL

message (see the text following the listing for additional notes):

int io_devctl(resmgr_context_t *ctp, io_devctl_t *msg,
              RESMGR_OCB_T *ocb) {
    int     nbytes, status, previous;

    union {  /* See note 1 */
        data_t  data;
        int     data32;
        /* ... other devctl types you can receive */
    } *rx_data;

    /*
     Let common code handle DCMD_ALL_* cases.
     You can do this before or after you intercept devctls, depending
     on your intentions.  Here we aren't using any predefined values,
     so let the system ones be handled first. See note 2.
    */
    if ((status = iofunc_devctl_default(ctp, msg, ocb)) !=
         _RESMGR_DEFAULT) {
        return(status);
    }
    status = nbytes = 0;

    /*
     Note this assumes that you can fit the entire data portion of
     the devctl into one message.  In reality you should probably
     perform a MsgReadv() once you know the type of message you
     have received to get all of the data, rather than assume
     it all fits in the message.  We have set in our main routine
     that we'll accept a total message size of up to 2 KB, so we
     don't worry about it in this example where we deal with ints.
    */

116 © 2014, QNX Software Systems Limited

Handling Other Messages



    /* Get the data from the message. See Note 3. */
    rx_data = _DEVCTL_DATA(msg->i);

    /*
     Three examples of devctl operations:
     SET: Set a value (int) in the server
     GET: Get a value (int) from the server
     SETGET: Set a new value and return the previous value
    */
    switch (msg->i.dcmd) {
    case MY_DEVCTL_SETVAL: 
        global_integer = rx_data->data32;
        nbytes = 0;
        break;

    case MY_DEVCTL_GETVAL: 
        rx_data->data32 = global_integer; /* See note 4 */
        nbytes = sizeof(rx_data->data32);
        break;

    case MY_DEVCTL_SETGET: 
        previous = global_integer; 
        global_integer = rx_data->data.tx;

        /* See note 4. The rx data overwrites the tx data
           for this command. */

        rx_data->data.rx = previous;
        nbytes = sizeof(rx_data->data.rx);
        break;

    default:
        return(ENOSYS); 
    }

    /* Clear the return message. Note that we saved our data past
       this location in the message. */
    memset(&msg->o, 0, sizeof(msg->o));

    /*
     If you wanted to pass something different to the return
     field of the devctl() you could do it through this member.
     See note 5.
    */
    msg->o.ret_val = status;

    /* Indicate the number of bytes and return the message */
    msg->o.nbytes = nbytes;
    return(_RESMGR_PTR(ctp, &msg->o, sizeof(msg->o) + nbytes));
}

Here are the notes for the above code:

1. We define a union for all the possible types of received data. The

MY_DEVCTL_SETVAL and MY_DEVCTL_GETVAL commands use the data32

member, and the MY_DEVCTL_SETGET uses the data member, of type data_t,

which is a union of the received and transmitted data.

2. The default devctl() handler is called before we begin to service our messages. This

allows normal system messages to be processed. If the message isn't handled by

the default handler, then it returns _RESMGR_DEFAULT to indicate that the message

might be a custom message. This means that we should check the incoming

command against commands that our resource manager understands.

3. The data to be passed follows directly after the io_devctl_t structure. You can

get a pointer to this location by using the _DEVCTL_DATA(msg->i) macro defined

in <devctl.h>. The argument to this macro must be the input message structure

— if it's the union message structure or a pointer to the input message structure,

the pointer won't point to the right location.
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For your convenience, we've defined a union of all of the messages that this server

can receive. However, this won't work with large data messages. In this case, you'd

use resmgr_msgread() to read the message from the client. Our messages are never

larger than sizeof( int) and this comfortably fits into the minimum receive

buffer size.

4. The data being returned to the client is placed at the end of the reply message.

This is the same mechanism used for the input data, so we can use the

_DEVCTL_DATA() function to get a pointer to this location. With large replies that

wouldn't necessarily fit into the server's receive buffer, you should use one of the

reply mechanisms described in the “Methods of returning and replying (p. 88)”

section in the Handling Read and Write Messages chapter. Again, in this example,

we're only returning an integer that fits into the receive buffer without any problem.

5. The last argument to the devctl() function is a pointer to an integer. If this pointer

is provided, then the integer is filled with the value stored in the msg->o.ret_val

reply message. This is a convenient way for a resource manager to return simple

status information without affecting the core devctl() operation. It's not used in

this example.

If you add the following handler code, a client should be able to open /dev/sample

and subsequently set and retrieve the global integer value:

int main(int argc, char **argv) {
    int     fd, ret, val;
    data_t  data;

    if ((fd = open("/dev/sample", O_RDONLY)) == -1) {
            return(1);
    }

    /* Find out what the value is set to initially */
    val = -1;
    ret = devctl(fd, MY_DEVCTL_GETVAL, &val, sizeof(val), NULL);
    printf("GET returned %d w/ server value %d \n", ret, val);

    /* Set the value to something else */
    val = 25;
    ret = devctl(fd, MY_DEVCTL_SETVAL, &val, sizeof(val), NULL);
    printf("SET returned %d \n", ret);

    /* Verify we actually did set the value */
    val = -1;
    ret = devctl(fd, MY_DEVCTL_GETVAL, &val, sizeof(val), NULL);
    printf("GET returned %d w/ server value %d == 25? \n", ret, val);

    /* Now do a set/get combination */
    memset(&data, 0, sizeof(data));
    data.tx = 50;
    ret = devctl(fd, MY_DEVCTL_SETGET, &data, sizeof(data), NULL);
    printf("SETGET returned with %d w/ server value %d == 25?\n",
           ret, data.rx);

    /* Check set/get worked */
    val = -1;
    ret = devctl(fd, MY_DEVCTL_GETVAL, &val, sizeof(val), NULL);
    printf("GET returned %d w/ server value %d == 50? \n", ret, val);

    return(0);
}
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Handling ionotify() and select()

A client uses ionotify() and select() to ask a resource manager about the status of

certain conditions (e.g. whether input data is available). The conditions may or may

not have been met. The resource manager can be asked to:

• check the status of the conditions immediately, and return if any have been met

• deliver an event later on when a condition is met (this is referred to as arming the

resource manager)

The select() function differs from ionotify() in that most of the work is done in the

library. For example, the client code would be unaware that any event is involved, nor

would it be aware of the blocking function that waits for the event. This is all hidden

in the library code for select().

However, from a resource manager's point of view, there's no difference between

ionotify() and select(); they're handled with the same code.

For more information on the ionotify() and select() functions, see the BlackBerry 10

OS C Library Reference.

If multiple threads in the same client perform simultaneous operations with

select() and ionotify(), notification races may occur.

Since ionotify() and select() require the resource manager to do the same work, they

both send the _IO_NOTIFY message to the resource manager. The io_notify handler

is responsible for handling this message. Let's start by looking at the format of the

message itself:

struct _io_notify {
    uint16_t                    type;
    uint16_t                    combine_len;
    int32_t                     action;
    int32_t                     flags;
    struct sigevent             event;
};

struct _io_notify_reply {
    uint32_t                    flags;
};

typedef union {
    struct _io_notify           i;
    struct _io_notify_reply     o;
} io_notify_t;

The code samples used in this chapter are not always

POSIX-compliant.
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As with all resource manager messages, we've defined a union that contains the input

structure (coming into the resource manager), and a reply or output structure (going

back to the client). The io_notify handler is prototyped with the argument:

io_notify_t *msg

which is the pointer to the union containing the message. The items in the input

structure are:

• type

• combine_len

• action

• flags

• event

The type member has the value _IO_NOTIFY.

The combine_len field has meaning for a combine message; see the Combine Messages

(p. 99) chapter.

The action member is used by the iofunc_notify() helper function to tell it whether it

should:

• just check for conditions now

• check for conditions now, and if none are met, arm them

• just arm for transitions

Since iofunc_notify() looks at this, you don't have to worry about it.

The flags member contains the conditions that the client is interested in and can be

any mixture of the following:

_NOTIFY_COND_INPUT

This condition is met when there are one or more units of input data available

(i.e. clients can now issue reads). The number of units defaults to 1, but

you can change it. The definition of a unit is up to you: for a character device

such as a serial port, it would be a character; for a POSIX message queue,

it would be a message. Each resource manager selects an appropriate object.

_NOTIFY_COND_OUTPUT

This condition is met when there's room in the output buffer for one or more

units of data (i.e. clients can now issue writes). The number of units defaults

to 1, but you can change it. The definition of a unit is up to you — some

resource managers may default to an empty output buffer while others may

choose some percentage of the buffer empty.

_NOTIFY_COND_OBAND
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The condition is met when one or more units of out-of-band data are

available. The number of units defaults to 1, but you can change it. The

definition of out-of-band data is specific to the resource manager.

_NOTIFY_COND_EXTEN

The conditions are defined with the following extended flags:

• _NOTIFY_CONDE_RDNORM — normal data is available; this is the same

as _NOTIFY_COND_INPUT.

• _NOTIFY_CONDE_WRNORM — room for normal data; this is the same as

_NOTIFY_COND_OUTPUT.

• _NOTIFY_CONDE_RDBAND — out-of-band data is available; this is the

same as _NOTIFY_COND_OBAND.

• _NOTIFY_CONDE_PRI — priority data is available.

• _NOTIFY_CONDE_WRBAND — room for OOB data.

• _NOTIFY_CONDE_ERR — an error occurred on the device or stream.

• _NOTIFY_CONDE_HUP — the device has been disconnected.

• _NOTIFY_CONDE_NVAL — the file descriptor is invalid.

The event member is what the resource manager delivers once a condition is met.

A resource manager needs to keep a list of clients that want to be notified as conditions

are met, along with the events to use to do the notifying. When a condition is met,

the resource manager must traverse the list to look for clients that are interested in

that condition, and then deliver the appropriate event. As well, if a client closes its

file descriptor, then any notification entries for that client must be removed from the

list.

To make all this easier, the following structure and helper functions are provided for

you to use in a resource manager:

iofunc_notify_t structure

Contains the three notification lists, one for each possible condition. Each

is a list of the clients to be notified for that condition.

iofunc_notify()

Adds or removes notification entries; also polls for conditions. Call this

function inside your io_notify handler function.

iofunc_notify_trigger()

Sends notifications to queued clients. Call this function when one or more

conditions have been met.

iofunc_notify_remove()

© 2014, QNX Software Systems Limited 121

Handling ionotify() and select()



Removes notification entries from the list. Call this function when the client

closes its file descriptor.

Don't return _RESMGR_NOREPLY from an io_notify handler, as it may be called

multiple times from a single message if handling multiple file descriptors from

a client call to select() or poll(). This is handled for you if you're using

iofunc_notify().

Sample code for handling _IO_NOTIFY messages

You can add the following code samples to either of the examples provided in the

“Simple device resource manager examples (p. 37)” section of the Bones of a Resource

Manager chapter. Both of those code samples provided the name /dev/sample.

With the changes indicated below, clients can use writes to send it data, which it'll

store as discrete messages. Other clients can use either ionotify() or select() to request

notification when that data arrives. When clients receive notification, they can issue

reads to get the data.

You'll need to replace this code that's located above the main() function:

#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr_connect_funcs_t    connect_funcs;
static resmgr_io_funcs_t         io_funcs;
static iofunc_attr_t             attr;

with the following:

struct device_attr_s;
#define IOFUNC_ATTR_T   struct device_attr_s

#include <sys/iofunc.h>
#include <sys/dispatch.h>

/*
 * Define a structure and variables for storing the data that
 * is received. When clients write data to us, we store it here.
 * When clients do reads, we get the data from here.  Result: a
 * simple message queue.
*/
typedef struct item_s {
    struct item_s   *next;
    char            *data;
} item_t;

/* the extended attributes structure */
typedef struct device_attr_s {
    iofunc_attr_t   attr;
    iofunc_notify_t notify[3];  /* notification list used by
                                   iofunc_notify*() */
    item_t          *firstitem; /* the queue of items */
    int             nitems;     /* number of items in the queue */
} device_attr_t;

/* We only have one device; device_attr is its attribute structure */

static device_attr_t    device_attr;

int io_read( resmgr_context_t *ctp, io_read_t  *msg,
             RESMGR_OCB_T *ocb);
int io_write( resmgr_context_t *ctp, io_write_t *msg,
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              RESMGR_OCB_T *ocb);
int io_notify( resmgr_context_t *ctp, io_notify_t *msg,
              RESMGR_OCB_T *ocb);
int io_close_ocb( resmgr_context_t *ctp, void *reserved,
                  RESMGR_OCB_T *ocb);

static resmgr_connect_funcs_t  connect_funcs;
static resmgr_io_funcs_t       io_funcs;

We need a place to keep data that's specific to our device. A good place for this is in

an attribute structure that we can associate with the name we registered:

/dev/sample. So, in the code above, we defined device_attr_t and

IOFUNC_ATTR_T for this purpose. We talk more about this type of device-specific

attribute structure in the Extending the POSIX-Layer Data Structures (p. 107) chapter.

We need two types of device-specific data:

• an array of three notification lists — one for each possible condition that a client

can ask to be notified about. In device_attr_t, we called this notify.

• a queue to keep the data that gets written to us, and that we use to reply to a client.

For this, we defined item_t; it's a type that contains data for a single item, as

well as a pointer to the next item_t. In device_attr_t we use firstitem (points

to the first item in the queue), and nitems (number of items).

Note that we removed the definition of attr, since we use device_attr instead.

Of course, we have to give the resource manager library the address of our handlers

so that it'll know to call them. In the code for main() where we called iofunc_func_init(),

we'll add the following code to register our handlers:

/* initialize functions for handling messages */
iofunc_func_init(_RESMGR_CONNECT_NFUNCS, &connect_funcs,
                 _RESMGR_IO_NFUNCS, &io_funcs);

/* For handling _IO_NOTIFY, sent as a result of client
   calls to ionotify() and select() */
io_funcs.notify = io_notify;

io_funcs.write = io_write;
io_funcs.read = io_read;
io_funcs.close_ocb = io_close_ocb;

And, since we're using device_attr in place of attr, we need to change the code wherever

we use it in main(). So, you'll need to replace this code:

/* initialize attribute structure used by the device */
iofunc_attr_init(&attr, S_IFNAM | 0666, 0, 0);

/* attach our device name */
id = resmgr_attach(dpp,            /* dispatch handle        */
                   &resmgr_attr,   /* resource manager attrs */
                   "/dev/sample",  /* device name            */
                   _FTYPE_ANY,     /* open type              */
                   0,              /* flags                  */
                   &connect_funcs, /* connect routines       */
                   &io_funcs,      /* I/O routines           */
                   &attr);         /* handle                 */

with the following:

/* initialize attribute structure used by the device */
iofunc_attr_init(&device_attr.attr, S_IFNAM | 0666, 0, 0);
IOFUNC_NOTIFY_INIT(device_attr.notify);
device_attr.firstitem = NULL;
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device_attr.nitems = 0;

/* attach our device name */
id = resmgr_attach(dpp,            /* dispatch handle        */
                   &resmgr_attr,   /* resource manager attrs */
                   "/dev/sample",  /* device name            */
                   _FTYPE_ANY,     /* open type              */
                   0,              /* flags                  */
                   &connect_funcs, /* connect routines       */
                   &io_funcs,      /* I/O routines           */
                   &device_attr);  /* handle                 */

Note that we set up our device-specific data in device_attr. And, in the call to

resmgr_attach(), we passed &device_attr (instead of &attr) for the handle

parameter.

Now, you need to include the new handler function to handle the _IO_NOTIFY

message:

int
io_notify( resmgr_context_t *ctp, io_notify_t *msg,
           RESMGR_OCB_T *ocb)
{
    device_attr_t   *dattr = (device_attr_t *) ocb->attr;
    int             trig;

    /* 
     * 'trig' will tell iofunc_notify() which conditions are
     * currently satisfied.  'dattr->nitems' is the number of
     * messages in our list of stored messages.
    */

    trig = _NOTIFY_COND_OUTPUT; /* clients can always give us data */
    if (dattr->nitems > 0)
        trig |= _NOTIFY_COND_INPUT; /* we have some data available */

    /*
     * iofunc_notify() will do any necessary handling, including
     * adding the client to the notification list if need be.
    */

    return (iofunc_notify( ctp, msg, dattr->notify, trig,
                           NULL, NULL));
}

As stated above, our io_notify handler will be called when a client calls ionotify() or

select(). In our handler, we're expected to remember who those clients are, and what

conditions they want to be notified about. We should also be able to respond

immediately with conditions that are already true. The iofunc_notify() helper function

makes this easy.

The first thing we do is to figure out which of the conditions we handle have currently

been met. In this example, we're always able to accept writes, so in the code above

we set the _NOTIFY_COND_OUTPUT bit in trig. We also check nitems to see if we

have data and set the _NOTIFY_COND_INPUT if we do.

We then call iofunc_notify(), passing it the message that was received (msg), the

notification lists (notify), and which conditions have been met (trig). If one of the

conditions that the client is asking about has been met, and the client wants us to

poll for the condition before arming, then iofunc_notify() will return with a value that

indicates what condition has been met and the condition will not be armed. Otherwise,

the condition will be armed. In either case, we'll return from the handler with the

return value from iofunc_notify().
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Earlier, when we talked about the three possible conditions, we mentioned that if you

specify _NOTIFY_COND_INPUT, the client is notified when there's one or more units

of input data available and that the number of units is up to you. We said a similar

thing about _NOTIFY_COND_OUTPUT and _NOTIFY_COND_OBAND. In the code

above, we let the number of units for all these default to 1. If you want to use

something different, then you must declare an array such as:

int notifycounts[3] =  { 10, 2, 1 };

This sets the units for: _NOTIFY_COND_INPUT to 10; _NOTIFY_COND_OUTPUT to

2; and _NOTIFY_COND_OBAND to 1. We would pass notifycounts to iofunc_notify()

as the second to last parameter.

Then, as data arrives, we notify whichever clients have asked for notification. In this

sample, data arrives through clients sending us _IO_WRITE messages and we handle

it using an io_write handler.

int
io_write(resmgr_context_t *ctp, io_write_t *msg,
         RESMGR_OCB_T *ocb)
{
    device_attr_t   *dattr = (device_attr_t *) ocb->attr;
    int             i;
    char            *p;
    int             status;
    char            *buf;
    item_t          *newitem;

    if ((status = iofunc_write_verify(ctp, msg, ocb, NULL))
         != EOK)
        return (status);

    if ((msg->i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE)
        return (ENOSYS);

    if (msg->i.nbytes > 0) {

        /* Get and store the data */

        if ((newitem = malloc(sizeof(item_t))) == NULL)
            return (errno);
        if ((newitem->data = malloc(msg->i.nbytes+1)) ==
            NULL) {
            free(newitem);
            return (errno);
        }
        /* reread the data from the sender's message buffer */
        resmgr_msgread(ctp, newitem->data, msg->i.nbytes,
                       sizeof(msg->i));
        newitem->data[msg->i.nbytes] = NULL;

        if (dattr->firstitem)
            newitem->next = dattr->firstitem;
        else
            newitem->next = NULL;
        dattr->firstitem = newitem;
        dattr->nitems++;

        /*
         * notify clients who may have asked to be notified
         * when there is data
        */

        if (IOFUNC_NOTIFY_INPUT_CHECK(dattr->notify,
            dattr->nitems, 0))
            iofunc_notify_trigger(dattr->notify, dattr->nitems,
                                  IOFUNC_NOTIFY_INPUT);
    }
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    /* set up the number of bytes (returned by client's
       write()) */

    _IO_SET_WRITE_NBYTES(ctp, msg->i.nbytes);

    if (msg->i.nbytes > 0)
        ocb->attr->attr.flags |= IOFUNC_ATTR_MTIME |
                                 IOFUNC_ATTR_CTIME;

    return (_RESMGR_NPARTS(0));
}

The important part of the above io_write handler is the code within the following

section:

if (msg->i.nbytes > 0) {
    ....
}

Here we first allocate space for the incoming data, and then use resmgr_msgread() to

copy the data from the client's send buffer into the allocated space. Then, we add the

data to our queue.

Next, we pass the number of input units that are available to

IOFUNC_NOTIFY_INPUT_CHECK() to see if there are enough units to notify clients

about. This is checked against the notifycounts that we mentioned above when talking

about the io_notify handler. If there are enough units available then we call

iofunc_notify_trigger() telling it that nitems of data are available

(IOFUNC_NOTIFY_INPUT means input is available). The iofunc_notify_trigger()

function checks the lists of clients asking for notification (notify) and notifies any that

asked about data being available.

Any client that gets notified will then perform a read to get the data. In our sample,

we handle this with the following io_read handler:

int
io_read(resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb)
{
    device_attr_t   *dattr = (device_attr_t *) ocb->attr;
    int             status;

    if ((status = iofunc_read_verify(ctp, msg, ocb, NULL)) != EOK)
        return (status);

    if ((msg->i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE)
        return (ENOSYS);

    if (dattr->firstitem) {
        int     nbytes;
        item_t  *item, *prev;

        /* get last item */
        item = dattr->firstitem;
        prev = NULL;
        while (item->next != NULL) {
            prev = item;
            item = item->next;
        }

        /* 
         * figure out number of bytes to give, write the data to the 
         * client's reply buffer, even if we have more bytes than they
         * are asking for, we remove the item from our list
        */
        nbytes = min (strlen (item->data), msg->i.nbytes);

        /* set up the number of bytes (returned by client's read()) */
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        _IO_SET_READ_NBYTES (ctp, nbytes);

        /* 
         * write the bytes to the client's reply buffer now since we
         * are about to free the data
        */
        resmgr_msgwrite (ctp, item->data, nbytes, 0);

        /* remove the data from the queue */
        if (prev)
            prev->next = item->next;
        else
            dattr->firstitem = NULL;
        free(item->data);
        free(item);
        dattr->nitems--;
    } else {
        /* the read() will return with 0 bytes */
        _IO_SET_READ_NBYTES (ctp, 0);
    }   

    /* mark the access time as invalid (we just accessed it) */

    if (msg->i.nbytes > 0)
        ocb->attr->attr.flags |= IOFUNC_ATTR_ATIME;

    return (EOK);
}

The important part of the above io_read handler is the code within this section:

if (firstitem) {
    ....
}

We first walk through the queue looking for the oldest item. Then we use

resmgr_msgwrite() to write the data to the client's reply buffer. We do this now because

the next step is to free the memory that we're using to store that data. We also remove

the item from our queue.

Lastly, if a client closes its file descriptor, we must remove the client from our list.

This is done using a io_close_ocb handler:

int io_close_ocb( resmgr_context_t *ctp, void *reserved,
                  RESMGR_OCB_T *ocb)
{
    device_attr_t   *dattr = (device_attr_t *) ocb->attr;

    /*
     * A client has closed its file descriptor or has terminated.
     * Remove the client from the notification list.
    */

    iofunc_notify_remove(ctp, dattr->notify);

    return (iofunc_close_ocb_default(ctp, reserved, ocb));
}

In the io_close_ocb handler, we called iofunc_notify_remove() and passed it ctp

(contains the information that identifies the client) and notify (contains the list of

clients) to remove the client from the lists.
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Handling out-of-band (_IO_MSG) messages

An _IO_MSG message lets a client send an “out-of-band” or control message to a

resource manager, by way of a file descriptor. This interface is more general than an

ioctl() or devctl(), but less portable.

The format of the message is specific to the resource manager, aside from the header,

which we'll look at shortly. The client program sets up the message and uses MsgSend()

to send it to the resource manager. The resource manager must set up an io_msg

handler in order to receive the message; there isn't a default handler.

The message header is defined in <sys/iomsg.h> and looks like this:

struct _io_msg {
    uint16_t    type;
    uint16_t    combine_len;
    uint16_t    mgrid;
    uint16_t    subtype;
};

The fields include:

type

_IO_MSG

combine_len

Set this to sizeof (struct _io_msg).

mgrid

A unique ID for your resource manager. The <sys/iomgr.h> header file

defines some IDs that are reserved for various BlackBerry 10 OS resource

managers. If you're sure that your resource manager will never get an

_IO_MSG message that isn't intended for it (for example, the resource

manager will only run in an embedded system), you can use an ID in the

range from _IOMGR_PRIVATE_BASE through _IOMGR_PRIVATE_MAX. If

your resource manager will be used in a more open system, contact QNX

Software Systems and reserve a manager ID or range of IDs.

subtype

Use this field to distinguish different types of _IO_MSG messages that you

want your resource manager to handle.

Any data should follow this header. For example:

typedef struct {
    struct _io_msg hdr;

    /* Add any required data fields here. */
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} my_msg_t;

The client program would then do something like this:

#define MY_MGR_ID (_IOMGR_PRIVATE_BASE + 22)

my_msg_t msg, my_reply;
int fd, status;

fd = open ("/dev/sample", O_RDWR);

msg.hdr.type = _IO_MSG;
msg.hdr.combine_len = sizeof( msg.hdr );
msg.hdr.mgrid = MY_MGR_ID;
msg.hdr.subtype = 0;

/* Fill in the additional fields as required. */

status = MsgSend( fd, &msg, sizeof( msg ), &my_reply,
                  sizeof (my_reply));

The resource manager registers a function to handle the _IO_MSG messages:

/* Initialize the functions for handling messages */
iofunc_func_init(_RESMGR_CONNECT_NFUNCS, &connect_funcs,
                 _RESMGR_IO_NFUNCS, &io_funcs);

io_funcs.msg = my_io_msg;

This handler processes the message as appropriate. For example:

int my_io_msg (resmgr_context_t *ctp, io_msg_t *msg,
               RESMGR_OCB_T *ocb)
{
    my_msg_t my_msg;

    MsgRead (ctp->rcvid, &my_msg, sizeof (my_msg), 0);

    if (my_msg.hdr.mgrid != MY_MGR_ID)
    {
        return (ENOSYS);
    }

    /* Process the data as required. */

    /* Reply if necessary and tell the library that we've
       already replied. */

    MsgReply( ctp->rcvid, 0, &my_reply, sizeof(my_reply));
    return (_RESMGR_NOREPLY);
}

Note that the handler returns ENOSYS if the mgrid member of the header isn't the

correct manager ID. This handler replies to the client, and then returns

_RESMGR_NOREPLY to tell the library that there's no need for it to do the reply.
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Handling private messages and pulses

A resource manager may need to receive and handle pulses, perhaps because an

interrupt handler has returned a pulse or some other thread or process has sent a

pulse.

The main issue with pulses is that they have to be received as a message. This means

that a thread has to explicitly perform a MsgReceive() in order to get the pulse. But

unless this pulse is sent to a different channel than the one that the resource manager

is using for its main messaging interface, it will be received by the library. Therefore,

we need to see how a resource manager can associate a pulse code with a handler

routine and communicate that information to the library.

You can use the pulse_attach() function to associate a pulse code with a handler

function. When the dispatch layer receives a pulse, it will look up the pulse code and

see which associated handler to call to handle the pulse message.

You may also want to define your own private message range to communicate with

your resource manager. Note that the range 0x0 to 0x1FF is reserved for the OS. To

attach a range, you use the message_attach() function.

In this example, we create the same resource manager, but this time we also attach

to a private message range and attach a pulse, which is then used as a timer event:

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

#define THREAD_POOL_PARAM_T     dispatch_context_t
#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr_connect_funcs_t   connect_func;
static resmgr_io_funcs_t        io_func;
static iofunc_attr_t            attr;

int
timer_tick( message_context_t *ctp, int code, unsigned flags,
            void *handle)
{
    union sigval             value = ctp->msg->pulse.value;
    /*
     *  Do some useful work on every timer firing
     *  ....
     */
    printf("received timer event, value %d\n", value.sival_int);
    return 0;
}

int
message_handler( message_context_t *ctp, int code, unsigned flags,
                 void *handle)
{
    printf("received private message, type %d\n", code);
    return 0;
}

int
main(int argc, char **argv) {
    thread_pool_attr_t    pool_attr;
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    resmgr_attr_t         resmgr_attr;
    struct sigevent       event;
    struct _itimer        itime;
    dispatch_t            *dpp;
    thread_pool_t         *tpp;
    int                   timer_id;
    int                   id;

    if((dpp = dispatch_create()) == NULL) {
        fprintf(stderr,
                "%s: Unable to allocate dispatch handle.\n",
                argv[0]);
        return EXIT_FAILURE;
    }

    memset(&pool_attr, 0, sizeof pool_attr);
    pool_attr.handle = dpp;
    /*  We are doing resmgr and pulse-type attaches.
     *
     *  If you're going to use custom messages or pulses with 
     *  the message_attach() or pulse_attach() functions,
     *  then you MUST use the dispatch functions 
     *  (i.e. dispatch_block(),  dispatch_handler(), ...),
     *  NOT the resmgr functions (resmgr_block(), resmgr_handler()).
     */
    pool_attr.context_alloc = dispatch_context_alloc;
    pool_attr.block_func = dispatch_block; 
    pool_attr.unblock_func = dispatch_unblock;
    pool_attr.handler_func = dispatch_handler;
    pool_attr.context_free = dispatch_context_free;
    pool_attr.lo_water = 2;
    pool_attr.hi_water = 4;
    pool_attr.increment = 1;
    pool_attr.maximum = 50;

    if((tpp = thread_pool_create(&pool_attr, POOL_FLAG_EXIT_SELF)) == NULL) {
        fprintf(stderr, "%s: Unable to initialize thread pool.\n",argv[0]);
        return EXIT_FAILURE;
    }

    iofunc_func_init(_RESMGR_CONNECT_NFUNCS, &connect_func, _RESMGR_IO_NFUNCS,
                     &io_func);
    iofunc_attr_init(&attr, S_IFNAM | 0666, 0, 0);

    memset(&resmgr_attr, 0, sizeof resmgr_attr);
    resmgr_attr.nparts_max = 1;
    resmgr_attr.msg_max_size = 2048;

    if((id = resmgr_attach(dpp, &resmgr_attr, "/dev/sample", _FTYPE_ANY, 0,
                 &connect_func, &io_func, &attr)) == -1) {
        fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);
        return EXIT_FAILURE;
    }

    /* We want to handle our own private messages, of type 0x5000 to 0x5fff */
    if(message_attach(dpp, NULL, 0x5000, 0x5fff, &message_handler, NULL) == -1) {
        fprintf(stderr, "Unable to attach to private message range.\n");
         return EXIT_FAILURE;
    }

    /* Initialize an event structure, and attach a pulse to it */
    if((event.sigev_code = pulse_attach(dpp, MSG_FLAG_ALLOC_PULSE, 0, &timer_tick,
                                        NULL)) == -1) {
        fprintf(stderr, "Unable to attach timer pulse.\n");
         return EXIT_FAILURE;
    }

    /* Connect to our channel */
    if((event.sigev_coid = message_connect(dpp, MSG_FLAG_SIDE_CHANNEL)) == -1) {
        fprintf(stderr, "Unable to attach to channel.\n");
        return EXIT_FAILURE;
    }

    event.sigev_notify = SIGEV_PULSE;
    event.sigev_priority = -1;
    /* We could create several timers and use different sigev values for each */
    event.sigev_value.sival_int = 0;

    if((timer_id = TimerCreate(CLOCK_REALTIME, &event)) == -1) {;
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        fprintf(stderr, "Unable to attach channel and connection.\n");
        return EXIT_FAILURE;
    }

    /* And now set up our timer to fire every second */
    itime.nsec = 1000000000;
    itime.interval_nsec = 1000000000;
    TimerSettime(timer_id, 0, &itime, NULL);

    /* Never returns */
    thread_pool_start(tpp);
    return EXIT_SUCCESS;
}

We can either define our own pulse code (e.g. #define OurPulseCode 57), or we

can ask the pulse_attach() function to dynamically generate one for us (and return

the pulse code value as the return code from pulse_attach()) by specifying the pulse

code as _RESMGR_PULSE_ALLOC.

See the pulse_attach(), MsgSendPulse(), MsgDeliverEvent(), and MsgReceive()

functions in the BlackBerry 10 OS C Library Reference for more information on

receiving and generating pulses.
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Handling open(), dup(), and close() messages

The resource manager library provides another convenient service for us: it knows how

to handle dup() messages.

Suppose that the client executed code that eventually ended up performing:

fd = open ("/dev/sample", O_RDONLY);
…
fd2 = dup (fd);
…
fd3 = dup (fd);
…
close (fd3);
…
close (fd2);
…
close (fd);

Our resource manager would get an _IO_CONNECT message for the first open(),

followed by two _IO_DUP messages for the two dup() calls. Then, when the client

executed the close() calls, we would get three _IO_CLOSE messages.

Since the dup() functions generate duplicates of the file descriptors, we don't want

to allocate new OCBs for each one. And since we're not allocating new OCBs for each

dup(), we don't want to release the memory in each _IO_CLOSE message when the

_IO_CLOSE messages arrive! If we did that, the first close would wipe out the OCB.

The resource manager library knows how to manage this for us; it keeps count of the

number of _IO_DUP and _IO_CLOSE messages sent by the client. Only on the last

_IO_CLOSE message will the library synthesize a call to our _IO_CLOSE_OCB handler.

Most users of the library will want to have the default functions manage the

_IO_DUP and _IO_CLOSE messages; you'll most likely never override the

default actions.
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Handling mount()

Mount requests can provide a very convenient and flexible interface for programs that

need to enable and disable components of their resource managers' systems.

The main areas to consider when using and building mount functionality into your

resource manager are:

• mount utility

• mount() function call

• mount() callout in the resource manager

These components represent the stream of communication for the mount request.

Let's start in the middle with the mount() function call and work our way out.

The mount() function call is at the bottom of the utility and represents a client's access

point to the resource manager. The function is implemented in the C library, defined

in <sys/mount.h>, and described in the BlackBerry 10 OS C Library Reference.

mount() function call

The prototype for mount() is as follows:

int mount( const char *special_device, 
           const char *mount_directory, 
           int flags, 
           const char *mount_type, 
           const void *mount_data, 
           int mount_datalen); 

The argument that we need to consider here is the flags field.

To support the mounting of non-existent special devices (such as NFS devices) or

arbitrary strings (such as the name of shared object or DLL), we need to massage the

arguments to this function slightly because the mount utility has two methods (-T

and -t) for specifying the mount type.

In the general case where special_device is an actual device, a typical mount command

may look like:

% mount -t qnx4 /dev/hd0t77 /mnt/fs

In this case the special_device is /dev/hd0t77, the mount_directory is /mnt/fs,

and the mount type is qnx4. In this case, the mount request should be directed only

to the process responsible for managing the special_device. That is to say the resource

manager that has provided the /dev/hd0t77 path into the pathname space. In this

type of scenario, the resource manager is given an OCB for the special_device

(/dev/hd0t77), rather than the string /dev/hd0t77. This simplifies the processing

in the resource manager since having the OCB, which is an internal data pointer, for
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the special device implies that the server doesn't have to recursively communicate

with itself to get a handle for the device.

A less frequently used, but very useful case, is where the special_device isn't an actual

device. For example:

% mount -T io-pkt /lib/dll/devn-i82544.so

Note that the mountpoint is missing from the command line. In this case, NULL (or

/) acts as an implied mount_directory, which causes the process handling the request

(i.e. the currently running variant of io-pkt) to take the appropriate action when it

receives the mount request. The special_device is /lib/dll/devn-i82544.so

and the type is io-pkt.

In this case, you want to avoid having the special device interpreted as being provided

by the same process that will handle the mount request. So while the file

/lib/dll/devn-i82544.so is probably handled by some filesystem process, we're

actually interested in mounting a network interface that's managed by the io-pkt

process. Ideally, the mount callout will receive only the special device string

/lib/dll/devn-i82544.so, and not the OCB for the device.

The behavioral difference between the -t and -T options for the mount utility can

be obtained by ORing in _MFLAG_OCB to the standard mount() flags parameter. If

you don't want to use the OCB method of performing the mount request, use -T, which

we translate to _MFLAG_OCB.

Mount requests are connection requests, which means they operate on a path in the

same way that the open() or unlink() calls do. The requests are sent along the path

specified by dir. When a resource manager receives a request to mount something,

the information is already provided in the same way that it would be for an open() for

creation request, namely in the msg->connect.path variable.

For more information on the name-resolution process, see the example “Using

MsgSend() and MsgReply() (p. 45)” in the Bones of a Resource Manager chapter in

this guide.

Mount in the resource manager

Your resource manager will be called upon to perform a mount request via the mount

function callout in the resmgr_connect_funcs_t structure, defined as:

int mount( resmgr_context_t *ctp,
           io_mount_t *msg,
           RESMGR_HANDLE_T *handle,
           io_mount_extra_t *extra);

The only field here that differs from the other connect functions is the

io_mount_extra_t structure. It's defined in <sys/iomsg.h> as:

typedef struct _io_mount_extra {
    uint32_t flags; /* _MOUNT_? or ST_? flags above */
    uint32_t nbytes; /* Size of entire structure */
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    uint32_t datalen; /* Length of the data structure following */
    uint32_t zero[1];

    union { /* If EXTRA_MOUNT_PATHNAME these set*/
        struct { /* Sent from client to resmgr framework */
            struct _msg_info info; /* Special info on first mount,
                                      path info on remount */

        } cl;

        struct { /* Server receives this structure filled in */
            void * ocb; /* OCB to the special device */
            void * data; /* Server specific data of len datalen */
            char * type; /* Character string with type information */
            char * special; /* Optional special device info */
            void * zero[4]; /* Padding */
        } srv;
    } extra;
} io_mount_extra_t;

This structure is provided with all of the pointers already resolved, so you can use it

without doing any extra fiddling.

The members are:

flags

Flag fields provided to the mount command containing the common mount

flags defined in <sys/mount.h>.

nbytes

Size of the entire mount-extra message:

sizeof(_io_mount_extra) + datalen + strlen(type)
+ 1 + strlen(special) + 1

datalen

Size of the data pointer.

info

Used by the resource manager layer.

ocb

OCB of the special device if it was requested via the _MOUNT_OCB flag.

NULL otherwise.

data

Pointer to the user data of length datalen.

type

Null-terminated string containing the mount type, such as nfs, cifs, or

qnx4.
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special

Null-terminated string containing the special device if it was requested via

the _MOUNT_SPEC flag. NULL otherwise.

In order to receive mount requests, the resource manager should register a NULL path

with an FTYPE of _FTYPE_MOUNT and with the flags _RESMGR_FLAG_FTYPEONLY.

This would be done with code that looks something like:

mntid = resmgr_attach(
           dpp, /* Dispatch pointer */
           &resmgr_attr, /* Dispatch attributes */
           NULL, /* Attach at "/" */

           /* We are a directory and want only matching ftypes */

           _RESMGR_FLAG_DIR | _RESMGR_FLAG_FTYPEONLY,
           _FTYPE_MOUNT,
           mount_connect, /* Only mount filled in */
           NULL, /* No io handlers */
           & handle); /* Handle to pass to mount callout */

Again, we're attaching at the root of the filesystem so that we'll be able to receive the

full path of the new mount requests in the msg->connect structure.

Adding the _RESMGR_FLAG_FTYPEONLY flag ensures that this request is used only

when there's an _FTYPE_MOUNT-style of connection. Once this is done, the resource

manager is ready to start receiving mount requests from users.

An outline of a sample mount handler would look something like this:

int io_mount( ... ) {

   Do any sanity checks that you need to do.

   Check type against our type with strcmp(), since
   there may be no name for REMOUNT/UNMOUNT flags.

   Error with ENOENT out if no match.

   If no name, check the validity of the REMOUNT/UNMOUNT request.

   Parse arguments or set up your data structure.

   Check to see if we are remounting (_MOUNT_REMOUNT)

      Change flags, etc., if you can remount.
      Return EOK.

   Check to see if we are unmounting _MOUNT_UNMOUNT

      Change flags, etc., if you can unmount.
      Return EOK.

   Create a new node and attach it at the msg->connect.path
   point (unless some other path is implied based on the
   input variables and the resource manager) with resmgr_attach().

   Return EOK.
}

What's important to notice here is that each resource manager that registers a mount

handler will potentially get a chance to examine the request to see if it can handle it.

This means that you have to be rigorous in your type- and error-checking to make sure

that the request is indeed destined for your manager. If your manager returns anything
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other than ENOSYS or ENOENT, it's assumed that the request was valid for this manager,

but there was some other sort of error. Only errors of ENOSYS or ENOENT cause the

request to “fall through” to other resource managers.

When you unmount, you would perform any cleanup and integrity checks that you

need, and then call resmgr_detach() with the ctp->id field. In general, you should

support umounted calls only on the root of a mounted filesystem.

mount utility

By covering the mount() library function and the operation in the resource manager,

we've pretty well covered the mount utility. The usage for the utility is shown here for

reference:

mount [-wreuv] -t type [-o options] [special] mntpoint

mount [-wreuv] -T type [-o options] special [mntpoint]

mount

The options are:

-t

Indicates the special device, if it's present, is generally a real device and

the same server will handle the mountpoint.

-T

Indicates the special device isn't a real device but rather a key for the server.

The server will automatically create an appropriate mountpoint if mntpoint

isn't specified.

-v

Increases the verbosity.

-w

Mount read/write.

-r

Mount read-only.

-u

Mount for update (remount).

However, if you're writing a mount handler, there may be occasions when you want to

do custom parsing of arguments and provide your own data structure to your server.

This is why the mount command will always first try and call out to a separate program

named mount_XXX, where XXX is the type that you specified with the -t option. To
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see just what would be called (in terms of options, etc.), you can use the -v option,

which should provide you with the command line that would be exec()'ed.

In order to help with the argument parsing, there's a utility function,

mount_parse_generic_args(), that you can call to process the common options. The

function is defined in <sys/mount.h> as:

char *mount_parse_generic_args(char *options, int *flags);

This function parses the given options, removes any options that it recognizes, and

sets or clears the appropriate bits in the flags. It returns a pointer to the modified

version of options containing any options that it didn't recognize, or NULL if it

recognized all the options. You use mount_parse_generic_args() like this:

while ((c = getopt(argv, argc, "o:"))) {
   switch (c) {

      case 'o':

        if ((mysteryop = mount_parse_generic_args(optarg, &flags))) {

           /* You can do your own getsubopt-type processing here.
              The common options are removed from mysteryop. */
        }

        break;
    }
}

For more information about the stripped options and the corresponding flags, see the

entry for mount_parse_generic_args(), in the BlackBerry 10 OS C Library Reference.
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Handling stat()

Your resource manager will receive an _IO_STAT message when a client calls stat(),

lstat(), or fstat(). You usually don't need to provide your own handler for this message.

The prototype for the io_stat handler is as follows:

int io_stat ( resmgr_context_t *ctp,
              io_stat_t *msg,
              RESMGR_OCB_T *ocb)

The default handler for the _IO_STAT message, iofunc_stat_default(), calls

iofunc_time_update() to ensure that the time entries in the ocb->attr structure are

current and valid, and then calls the iofunc_stat() helper function to fill in the stat

structure based on the information in the ocb->attr structure.

The io_stat_t structure holds the _IO_STAT message received by the resource

manager:

struct _io_stat {
    uint16_t                    type;
    uint16_t                    combine_len;
    uint32_t                    zero;
};

typedef union {
    struct _io_stat             i;
    struct stat                 o;
} io_stat_t;

As with all the I/O messages, this structure is a union of an input message (coming

to the resource manager) and an output or reply message (going back to the client).

The i member is a structure of type _io_stat that contains the following members:

type

_IO_STAT.

combine_len

If the message is a combine message, _IO_COMBINE_FLAG is set in this

member. For more information, see the Combine Messages (p. 99) chapter

of this guide.

The o member is a structure of type stat; for more information, see the entry for

stat() in the BlackBerry 10 OS C Library Reference.

If you write your own handler, it should return the status via the helper macro

_RESMGR_STATUS() and the struct stat via message reply.

If your resource manager is for a filesystem, you might want to include the stat

information in the reply for other messages. For more information, see “Returning
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directory entries from _IO_READ (p. 164)” in the Filesystem Resource Managers chapter

of this guide.
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Handling lseek()

Your resource manager will receive an _IO_LSEEK message when a client calls lseek(),

fseek(), or rewinddir().

A resource manager that handles directories will also need to interpret the

_IO_LSEEK message for directory operations.

The prototype for the io_lseek handler is as follows:

int io_lseek ( resmgr_context_t *ctp,
               io_lseek_t *msg,
               RESMGR_OCB_T *ocb)

The default handler, iofunc_lseek_default(), simply calls the iofunc_lseek() helper

function.

The io_lseek_t structure is (once again), a union of an input message and an output

message:

struct _io_lseek {
  uint16_t         type;
  uint16_t         combine_len;
  short            whence;
  uint16_t         zero;
  uint64_t         offset;
};

typedef union {
  struct _io_lseek i;
  uint64_t         o;
} io_lseek_t;

The whence and offset members are passed from the client's lseek() function. The

routine should adjust the OCB's offset parameter after interpreting the whence and

offset parameters from the message and should return the new offset or an error.

The handler should return the status via the helper macro _RESMGR_STATUS(), and

optionally (if no error occurred, and if the message isn't part of a combine message)

the current offset.
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Chapter 9
Unblocking Clients and Handling Interrupts

Your resource manager needs to avoid leaving clients blocked indefinitely, and it might

need to handle interrupts.

© 2014, QNX Software Systems Limited 143



Handling client unblocking due to signals or timeouts

Another convenient service that the resource manager library does for us is unblocking.

When a client issues a request (e.g. read()), this translates (via the client's C library)

into a MsgSend() to our resource manager. The MsgSend() is a blocking call. If the

client receives a signal during the time that the MsgSend() is outstanding, our resource

manager needs to have some indication of this so that it can abort the request.

Because the library set the _NTO_CHF_UNBLOCK flag when it called ChannelCreate(),

we'll receive a pulse whenever the client tries to unblock from a MsgSend() that we

have MsgReceive()'d.

As an aside, recall that in the BlackBerry 10 OS messaging model, the client can be

in one of two states as a result of calling MsgSend(). If the server hasn't yet received

the message (via the server's MsgReceive()), the client is in a SEND-blocked state —

the client is waiting for the server to receive the message. When the server has actually

received the message, the client transits to a REPLY-blocked state — the client is

now waiting for the server to reply to the message (via MsgReply()).

When this happens and the pulse is generated, the resource manager library handles

the pulse message and synthesizes an _IO_UNBLOCK message.

Looking through the resmgr_io_funcs_t and the resmgr_connect_funcs_t

structures (see the BlackBerry 10 OS C Library Reference), you'll notice that there

are actually two unblock message handlers: one in the I/O functions structure and

one in the connect functions structure.

Why two? Because we may get an abort in one of two places. We can get the abort

pulse right after the client has sent the _IO_OPEN message (but before we've replied

to it), or we can get the abort during an I/O message.

Once we've performed the handling of the _IO_CONNECT message, the I/O functions'

unblock member will be used to service an unblock pulse. Therefore, if you're supplying

your own io_open handler, be sure to set up all relevant fields in the OCB before you

call resmgr_open_bind(); otherwise, your I/O functions' version of the unblock handler

may get called with invalid data in the OCB. (Note that this issue of abort pulses

“during” message processing arises only if there are multiple threads running in your

resource manager. If there's only one thread, then the messages will be serialized by

the library's MsgReceive() function.)

The effect of this is that if the client is SEND-blocked, the server doesn't need to know

that the client is aborting the request, because the server hasn't yet received it.

Only in the case where the server has received the request and is performing processing

on that request does the server need to know that the client now wishes to abort.

144 © 2014, QNX Software Systems Limited

Unblocking Clients and Handling Interrupts



For more information on these states and their interactions, see the MsgSend(),

MsgReceive(), MsgReply(), and ChannelCreate() functions in the BlackBerry 10 OS C

Library Reference; see also the chapter on Interprocess Communication in the System

Architecture book.

If you're overriding the default unblock handler, iofunc_unblock_default(), you should

always call the default handler to process any generic unblocking cases first (which

it does by calling iofunc_unblock()). For example:

if((status = iofunc_unblock_default(...)) != _RESMGR_DEFAULT) {
    return status;
}

This ensures that any client waiting on a resource manager list (such as an advisory

lock list) will be unblocked if possible.

Then you'll need some way to walk your table of blocked client rcvids, looking for a

match, and unblocking them. That is done by replying to them; you aren't replying to

the unblock request as such, but to the original client call (so either partially read the

data or give an EINTR error as appropriate).

The routine should confirm the unblock is still pending (to avoid the race condition

where the client was replied to by the time you got the unblock pulse, and the rcvid

now indicates another client), by calling MsgInfo() and then checking for the

_NTO_MI_UNBLOCK_REQ flag. If you can't find a matching client, you can ignore the

unblock request by returning _RESMGR_NOREPLY:

/* Check if rcvid is still valid and still has an unblock
   request pending. */
if (MsgInfo(ctp->rcvid, &info) == -1 ||
    !(info.flags & _NTO_MI_UNBLOCK_REQ)) {
 return _RESMGR_NOREPLY;
}

If you don't provide an unblock handler, having your client thread left REPLY-blocked

on the server is expected behavior; the server has to be given a chance to clean up

client data structures when a client terminates.
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Unblocking if someone closes a file descriptor

Suppose the following sequence occurs:

• A client opens a file descriptor and calls read()) on it.

• The resource manager doesn't reply in the io_read() handler, so the client remains

blocked.

• A second thread in the client closes the file descriptor while the first thread is

blocked on read().

If your resource manager doesn't handle this case, then the client's read() is indefinitely

blocked, even though the fd has been detached. This could happen for other blocking

operations, such as calls to write() and devctl().

To avoid this situation your resource manager needs to maintain a list of blocked

clients. Whenever it blocks a client that's waiting for an operation to complete, you

must add this client to the list—and you need to remove a client from the list when

you unblock it.

The resource manager framework provides an io_close_dup() callout that gets called

whenever close() is called on a file descriptor (see the Resource Managers chapter of

Get Programming with the BlackBerry 10 OS). In this callout, you must traverse the

list and use the server connection ID (scoid) and connection ID (coid) to determine

which clients (be they separate processes or threads) are blocked on that file descriptor,

and reply to these clients (via MsgError() or otherwise) to unblock them. For example:
int io_close_dup (resmgr_context_t *ctp, io_close_t *msg, RESMGR_OCB_T *ocb)
{
    // unblock any clients blocked on the file descriptor being closed
    blocked_client_t *client, *prev;
    prev = NULL;
    client = blocked_clients;
    while ( client != NULL )
    {
        if ( (client->coid == ctp->info.coid) && (client->scoid == ctp->info.scoid) )
        {
            MsgError( client -> rcvid, EBADF );
            if (prev != NULL) // anywhere but the head of the list
            {
                prev->next = client->next;
                free(client);
                client = prev->next;
            }
            else // head of the list case
            {
                blocked_clients = client->next; 
                free(client); 
                client = blocked_clients; 
            }
        }
        else // no match, move to the next entry and track previous entry
        { 
            prev = client;
            client = client->next;
        }
    }
    // do rest of the regular close handling
    return iofunc_close_dup_default(ctp, msg, ocb );
}
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Handling interrupts

Resource managers that manage an actual hardware resource will likely need to handle

interrupts generated by the hardware. For a detailed discussion on strategies for

interrupt handlers, see the chapter on Writing an Interrupt Handler in the BlackBerry

10 OS Programmer's Guide.

How do interrupt handlers relate to resource managers? When a significant event

happens within the interrupt handler, the handler needs to inform a thread in the

resource manager. This is usually done via a pulse (discussed in the “Handling private

messages and pulses (p. 130)” section of the Handling Other Messages chapter), but

it can also be done with the SIGEV_INTR event notification type. Let's look at this

in more detail.

When the resource manager starts up, it transfers control to thread_pool_start(). This

function may or may not return, depending on the flags passed to thread_pool_create()

(if you don't pass any flags, the function returns after the thread pool is created). This

means that if you're going to set up an interrupt handler, you should do so before

starting the thread pool, or use one of the strategies we discussed above (such as

starting a thread for your entire resource manager).

However, if you're going to use the SIGEV_INTR event notification type, there's a

catch — the thread that attaches the interrupt (via InterruptAttach() or

InterruptAttachEvent()) must be the same thread that calls InterruptWait().

Sample code for handling interrupts

Here's an example that includes relevant portions of the interrupt service routine and

the handling thread:

#define INTNUM 0
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>
#include <sys/neutrino.h>

static resmgr_connect_funcs_t   connect_funcs;
static resmgr_io_funcs_t        io_funcs;
static iofunc_attr_t            attr;

void *
interrupt_thread (void * data)
{
    struct sigevent event;
    int             id;

    /* fill in "event" structure */
    memset(&event, 0, sizeof(event));
    event.sigev_notify = SIGEV_INTR;

    /* Obtain I/O privileges */
    ThreadCtl( _NTO_TCTL_IO, 0 );
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    /* intNum is the desired interrupt level */
    id = InterruptAttachEvent (INTNUM, &event, 0);

    /*... insert your code here ... */

    while (1) {
        InterruptWait (NULL, NULL);
        /*  do something about the interrupt,
         *  perhaps updating some shared
         *  structures in the resource manager 
         *
         *  unmask the interrupt when done
         */
        InterruptUnmask(INTNUM, id);
    }
}

int
main(int argc, char **argv) {
    thread_pool_attr_t    pool_attr;
    resmgr_attr_t         resmgr_attr;
    dispatch_t            *dpp;
    thread_pool_t         *tpp;
    int                   id;

    if((dpp = dispatch_create()) == NULL) {
        fprintf(stderr,
                "%s: Unable to allocate dispatch handle.\n",
                argv[0]);
        return EXIT_FAILURE;
    }

    memset(&pool_attr, 0, sizeof pool_attr);
    pool_attr.handle = dpp; 
    pool_attr.context_alloc = (void *) dispatch_context_alloc; 
    pool_attr.block_func = (void *) dispatch_block;  
    pool_attr.unblock_func = (void *) dispatch_unblock; 
    pool_attr.handler_func = (void *) dispatch_handler; 
    pool_attr.context_free = (void *) dispatch_context_free;
    pool_attr.lo_water = 2;
    pool_attr.hi_water = 4;
    pool_attr.increment = 1;
    pool_attr.maximum = 50;

    if((tpp = thread_pool_create(&pool_attr, 
                                 POOL_FLAG_EXIT_SELF)) == NULL) {
        fprintf(stderr, "%s: Unable to initialize thread pool.\n",
                argv[0]);
        return EXIT_FAILURE;
    }

    iofunc_func_init(_RESMGR_CONNECT_NFUNCS, &connect_funcs,
                     _RESMGR_IO_NFUNCS, &io_funcs);
    iofunc_attr_init(&attr, S_IFNAM | 0666, 0, 0);

    memset(&resmgr_attr, 0, sizeof resmgr_attr);
    resmgr_attr.nparts_max = 1;
    resmgr_attr.msg_max_size = 2048;

    if((id = resmgr_attach(dpp, &resmgr_attr, "/dev/sample", 
                           _FTYPE_ANY, 0,
                 &connect_funcs, &io_funcs, &attr)) == -1) {
        fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);
        return EXIT_FAILURE;
    }

    /* Start the thread that will handle interrupt events. */
    pthread_create (NULL, NULL, interrupt_thread, NULL);

    /* Never returns */
    thread_pool_start(tpp);
    return EXIT_SUCCESS;
}

Here the interrupt_thread() function uses InterruptAttachEvent() to bind the interrupt

source (intNum) to the event (passed in event), and then waits for the event to occur.
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This approach has a major advantage over using a pulse. A pulse is delivered as a

message to the resource manager, which means that if the resource manager's

message-handling threads are busy processing requests, the pulse will be queued until

a thread does a MsgReceive().

With the InterruptWait() approach, if the thread that's executing the InterruptWait()

is of sufficient priority, it unblocks and runs immediately after the SIGEV_INTR is

generated.
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Chapter 10
Multithreaded Resource Managers
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Multithreaded resource manager example

Let's look at our multithreaded resource manager example in more detail:

#include <errno.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

/*
 * Define THREAD_POOL_PARAM_T such that we can avoid a compiler
 * warning when we use the dispatch_*() functions below
 */
#define THREAD_POOL_PARAM_T dispatch_context_t

#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr_connect_funcs_t    connect_funcs;
static resmgr_io_funcs_t         io_funcs;
static iofunc_attr_t             attr;

int main(int argc, char **argv)
{
    /* declare variables we'll be using */
    thread_pool_attr_t   pool_attr;
    resmgr_attr_t        resmgr_attr;
    dispatch_t           *dpp;
    thread_pool_t        *tpp;
    int                  id;

    /* initialize dispatch interface */
    if((dpp = dispatch_create()) == NULL) {
        fprintf(stderr, "%s: Unable to allocate dispatch handle.\n",
                argv[0]);
        return EXIT_FAILURE;
    }

    /* initialize resource manager attributes */
    memset(&resmgr_attr, 0, sizeof resmgr_attr);
    resmgr_attr.nparts_max = 1;
    resmgr_attr.msg_max_size = 2048;

    /* initialize functions for handling messages */
    iofunc_func_init(_RESMGR_CONNECT_NFUNCS, &connect_funcs, 
                     _RESMGR_IO_NFUNCS, &io_funcs);

    /* initialize attribute structure used by the device */
    iofunc_attr_init(&attr, S_IFNAM | 0666, 0, 0);

    /* attach our device name */
    id = resmgr_attach(dpp,            /* dispatch handle        */
                       &resmgr_attr,   /* resource manager attrs */
                       "/dev/sample",  /* device name            */
                       _FTYPE_ANY,     /* open type              */
                       0,              /* flags                  */
                       &connect_funcs, /* connect routines       */
                       &io_funcs,      /* I/O routines           */
                       &attr);         /* handle                 */
    if(id == -1) {
        fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);
        return EXIT_FAILURE;
    }

    /* initialize thread pool attributes */
    memset(&pool_attr, 0, sizeof pool_attr);
    pool_attr.handle = dpp;
    pool_attr.context_alloc = dispatch_context_alloc;
    pool_attr.block_func = dispatch_block; 
    pool_attr.unblock_func = dispatch_unblock;
    pool_attr.handler_func = dispatch_handler;
    pool_attr.context_free = dispatch_context_free;
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    pool_attr.lo_water = 2;
    pool_attr.hi_water = 4;
    pool_attr.increment = 1;
    pool_attr.maximum = 50;

    /* allocate a thread pool handle */
    if((tpp = thread_pool_create(&pool_attr, 
                                 POOL_FLAG_EXIT_SELF)) == NULL) {
        fprintf(stderr, "%s: Unable to initialize thread pool.\n",
                argv[0]);
        return EXIT_FAILURE;
    }

    /* Start the threads. This function doesn't return. */
    thread_pool_start(tpp);
    return EXIT_SUCCESS;
}

The thread pool attribute (pool_attr) controls various aspects of the thread pool, such

as which functions get called when a new thread is started or dies, the total number

of worker threads, the minimum number, and so on.
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Thread pool attributes

Here's the _thread_pool_attr structure:

typedef struct _thread_pool_attr {
  THREAD_POOL_HANDLE_T  *handle;
  THREAD_POOL_PARAM_T   *(*block_func)(THREAD_POOL_PARAM_T *ctp);
  void                  (*unblock_func)(THREAD_POOL_PARAM_T *ctp);
  int                   (*handler_func)(THREAD_POOL_PARAM_T *ctp);
  THREAD_POOL_PARAM_T   *(*context_alloc)(
                            THREAD_POOL_HANDLE_T *handle);
  void                  (*context_free)(THREAD_POOL_PARAM_T *ctp);
  pthread_attr_t        *attr;
  unsigned short        lo_water;
  unsigned short        increment;
  unsigned short        hi_water;
  unsigned short        maximum;
  unsigned              reserved[8];
} thread_pool_attr_t;

The functions that you fill into the above structure can be taken from the dispatch

layer (dispatch_block(), ...), the resmgr layer (resmgr_block(), ...) or they can be of

your own making. If you're not using the resmgr layer functions, then you'll have to

define THREAD_POOL_PARAM_T to some sort of context structure for the library to

pass between the various functions. By default, it's defined as a resmgr_context_t

but since this sample is using the dispatch layer, we needed it to be

adispatch_context_t. We defined it prior to doing the includes above since the

header files refer to it. THREAD_POOL_PARAM_T

Part of the above structure contains information telling the resource manager library

how you want it to handle multiple threads (if at all). During development, you should

design your resource manager with multiple threads in mind. But during testing, you'll

most likely have only one thread running (to simplify debugging). Later, after you've

ensured that the base functionality of your resource manager is stable, you may wish

to “turn on” multiple threads and revisit the debug cycle.

The following members control the number of threads that are running:

lo_water

Minimum number of blocked threads.

increment

Number of thread to create at a time to achieve lo_water.

hi_water

Maximum number of blocked threads.

maximum

Total number of threads created at any time.
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The important parameters specify the maximum thread count and the increment. The

value for maximum should ensure that there's always a thread in a RECEIVE-blocked

state. If you're at the number of maximum threads, then your clients will block until

a free thread is ready to receive data. The value you specify for increment will cut

down on the number of times your driver needs to create threads. It's probably wise

to err on the side of creating more threads and leaving them around rather than have

them being created/destroyed all the time.

You determine the number of threads you want to be RECEIVE-blocked on the

MsgReceive() at any time by filling in the lo_water parameter.

If you ever have fewer than lo_water threads RECEIVE-blocked, the increment parameter

specifies how many threads should be created at once, so that at least lo_water number

of threads are once again RECEIVE-blocked.

Once the threads are done their processing, they will return to the block function. The

hi_water variable specifies an upper limit to the number of threads that are

RECEIVE-blocked. Once this limit is reached, the threads will destroy themselves to

ensure that no more than hi_water number of threads are RECEIVE-blocked.

To prevent the number of threads from increasing without bounds, the maximum

parameter limits the absolute maximum number of threads that will ever run

simultaneously.

When threads are created by the resource manager library, they'll have a stack size as

specified by the thread_stack_size parameter. If you want to specify stack size or

priority, fill in pool_attr.attr with a proper pthread_attr_t pointer.

The thread_pool_attr_t structure contains pointers to several functions:

block_func()

Called by the worker thread when it needs to block waiting for some message.

handler_func()

Called by the thread when it has unblocked because it received a message.

This function processes the message.

context_alloc()

Called when a new thread is created. Returns a context that this thread uses

to do its work.

context_free()

Free the context when the worker thread exits.

unblock_func()
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Called by the library to shutdown the thread pool or change the number of

running threads.
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Thread pool functions

The library provides the following thread pool functions:

thread_pool_create()

Initializes the pool context. Returns a thread pool handle (tpp) that's used

to start the thread pool.

thread_pool_start()

Start the thread pool. This function may or may not return, depending on

the flags passed to thread_pool_create().

thread_pool_destroy()

Destroy a thread pool.

thread_pool_control()

Control the number of threads.

In the example provided in themultithreaded resource managers (p. 152) section,

thread_pool_start(tpp) never returns because we set the

POOL_FLAG_EXIT_SELF bit. Also, the POOL_FLAG_USE_SELF flag itself

never returns, but the current thread becomes part of the thread pool.

If no flags are passed (i.e. 0 instead of any flags), the function returns after the thread

pool is created.
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Considerations for filesystem resource managers

Since a filesystem resource manager may potentially receive long pathnames, it must

be able to parse and handle each component of the path properly.

Let's say that a resource manager registers the mountpoint /mount/, and a user types:

ls -l /mount/home

where /mount/home is a directory on the device.

ls does the following:

d = opendir("/mount/home");
while (...) {
    dirent = readdir(d);
    ...
}
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Taking over more than one device

If we wanted our resource manager to handle multiple devices, the change is really

quite simple. We would call resmgr_attach() for each device name we wanted to

register. We would also pass in an attributes structure that was unique to each

registered device, so that functions such as chmod() would be able to modify the

attributes associated with the correct resource.

Here are the modifications necessary to handle both /dev/sample1 and

/dev/sample2:

/* 
 *  MOD [1]:  allocate multiple attribute structures,
 *            and fill in a names array (convenience)
 */

#define NumDevices  2
iofunc_attr_t     sample_attrs [NumDevices];
char              *names [NumDevices] =
{
    "/dev/sample1",
    "/dev/sample2"
};

int main ( void )
{
    ...
    /*
     *  MOD [2]:  fill in the attribute structure for each device 
     *           and call resmgr_attach for each device           
     */
    for (i = 0; i < NumDevices; i++) {
        iofunc_attr_init (&sample_attrs [i],
                          S_IFCHR | 0666, NULL, NULL);
        pathID = resmgr_attach (dpp, &resmgr_attr, name[i],
                                 _FTYPE_ANY, 0,
                                 &my_connect_funcs,
                                 &my_io_funcs,
                                 &sample_attrs [i]);
    }
    ...
}                                    

The first modification simply declares an array of attributes, so that each device has

its own attributes structure. As a convenience, we've also declared an array of names

to simplify passing the name of the device in the for loop. Some resource managers

(such as devc-ser8250) construct the device names on the fly or fetch them from

the command line.

The second modification initializes the array of attribute structures and then calls

resmgr_attach() multiple times, once for each device, passing in a unique name and

a unique attribute structure.

Those are all the changes required. Nothing in our io_read or io_write handlers has to

change — the iofunc-layer default functions will gracefully handle the multiple devices.
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Handling directories

Up until this point, our discussion has focused on resource managers that associate

each device name via discrete calls to resmgr_attach(). We've shown how to “take

over” a single pathname. (Our examples have used pathnames under /dev, but there's

no reason you couldn't take over any other pathnames, e.g. /MyDevice.)

A typical resource manager can take over any number of pathnames. A practical limit,

however, is on the order of a hundred — the real limit is a function of memory size

and lookup speed in the process manager.

What if you wanted to take over thousands or even millions of pathnames?

The most straightforward method of doing this is to take over a pathname prefix and

manage a directory structure below that prefix (or mountpoint).

Here are some examples of resource managers that may wish to do this:

• A CD-ROM filesystem might take over the pathname prefix /cdrom, and then

handle any requests for files below that pathname by going out to the CD-ROM

device.

• A filesystem for managing compressed files might take over a pathname prefix of

/uncompressed, and then uncompress disk files on the fly as read requests

arrive.

• A network filesystem could present the directory structure of a remote machine

called “flipper” under the pathname prefix of /mount/flipper and allow the

user to access flipper's files as if they were local to the current machine.

And those are just the most obvious ones. The reasons (and possibilities) are almost

endless.

The common characteristic of these resource managers is that they all implement

filesystems. A filesystem resource manager differs from the “device” resource managers

(that we have shown so far) in the following key areas:

1. The _RESMGR_FLAG_DIR bit in the flags argument to resmgr_attach() informs

the library that the resource manager will accept matches at or below the defined

mountpoint (p. 163).

2. The _IO_CONNECT (p. 163) logic has to check the individual pathname components

against permissions and access authorizations. It must also ensure that the proper

attribute is bound when a particular filename is accessed.

3. The _IO_READ (p. 164) logic has to return the data for either the “file” or “directory”

specified by the pathname.

Let's look at these points in turn.
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Matching at or below a mountpoint

When we specified the flags argument to resmgr_attach() for our sample resource

manager, we specified a 0, implying that the library should “use the defaults.”

If we specified the value _RESMGR_FLAG_DIR instead of 0, the library would allow

the resolution of pathnames at or below the specified mountpoint.

The _IO_OPEN message for filesystems

Once we've specified a mountpoint, it would then be up to the resource manager to

determine a suitable response to an open request. Let's assume that we've defined a

mountpoint of /sample_fsys for our resource manager:

pathID = resmgr_attach
             (dpp,
             &resmgr_attr,
             "/sample_fsys",    /* mountpoint */
            _FTYPE_ANY,
             _RESMGR_FLAG_DIR,   /* it's a directory */
             &connect_funcs,
             &io_funcs,
             &attr);

Now when the client performs a call like this:

fopen ("/sample_fsys/spud", "r");

we receive an _IO_CONNECT message, and our io_open handler will be called. Since

we haven't yet looked at the _IO_CONNECT message in depth, let's take a look now:

struct _io_connect {
    unsigned short  type;
    unsigned short  subtype;     /* _IO_CONNECT_*              */
    unsigned long   file_type;   /* _FTYPE_* in sys/ftype.h    */
    unsigned short  reply_max;
    unsigned short  entry_max;
    unsigned long   key;
    unsigned long   handle;
    unsigned long   ioflag;      /* O_* in fcntl.h, _IO_FLAG_* */
    unsigned long   mode;        /* S_IF* in sys/stat.h        */
    unsigned short  sflag;       /* SH_* in share.h            */
    unsigned short  access;      /* S_I in sys/stat.h          */
    unsigned short  zero;
    unsigned short  path_len;
    unsigned char   eflag;       /* _IO_CONNECT_EFLAG_*        */
    unsigned char   extra_type;  /* _IO_EXTRA_*                */
    unsigned short  extra_len;
    unsigned char   path[1];     /* path_len, null, extra_len  */
};

Looking at the relevant fields, we see ioflag, mode, sflag, and access, which tell us

how the resource was opened.

The path_len parameter tells us how many bytes the pathname takes; the actual

pathname appears in the path parameter. Note that the pathname that appears is not

/sample_fsys/spud, as you might expect, but instead is just spud — the message

contains only the pathname relative to the resource manager's mountpoint. This

simplifies coding because you don't have to skip past the mountpoint name each time,

© 2014, QNX Software Systems Limited 163

Handling directories



the code doesn't have to know what the mountpoint is, and the messages will be a

little bit shorter.

Note also that the pathname will never have relative (. and ..) path components, nor

redundant slashes (e.g. spud//stuff) in it — these are all resolved and removed

by the time the message is sent to the resource manager.

When writing filesystem resource managers, we encounter additional complexity when

dealing with the pathnames. For verification of access, we need to break apart the

passed pathname and check each component. You can use strtok() and friends to

break apart the string, and then there's iofunc_check_access(), a convenient

iofunc-layer call that performs the access verification of pathname components leading

up to the target. (See the BlackBerry 10 OS C Library Reference page for the

iofunc_open() for information detailing the steps needed for this level of checking.)

The binding that takes place after the name is validated requires that every

path that's handled has its own attribute structure passed to

iofunc_open_default(). Unexpected behavior will result if the wrong attribute

is bound to the pathname that's provided.

Returning directory entries from _IO_READ

When the _IO_READ handler is called, it may need to return data for either a file (if

S_ISDIR (ocb->attr->mode) is false) or a directory (if S_ISDIR (ocb->attr-

>mode) is true). We've seen the algorithm for returning data, especially the method

for matching the returned data's size to the smaller of the data available or the client's

buffer size.

A similar constraint is in effect for returning directory data to a client, except we have

the added issue of returning block-integral data. What this means is that instead of

returning a stream of bytes, where we can arbitrarily package the data, we're actually

returning a number of struct dirent structures. (In other words, we can't return

1.5 of those structures; we always have to return an integral number.) The dirent

structures must be aligned on 4-byte boundaries in the reply.

A struct dirent looks like this:

struct dirent {
#if _FILE_OFFSET_BITS - 0 == 64
    ino_t           d_ino;          /* File serial number. */
    off_t           d_offset;
#elif !defined(_FILE_OFFSET_BITS) || _FILE_OFFSET_BITS == 32
#if defined(__LITTLEENDIAN__)
    ino_t           d_ino;          /* File serial number. */
    ino_t           d_ino_hi;
    off_t           d_offset;
    off_t           d_offset_hi;
#elif defined(__BIGENDIAN__)
    ino_t           d_ino_hi;
    ino_t           d_ino;          /* File serial number. */
    off_t           d_offset_hi;
    off_t           d_offset;
#else
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 #error endian not configured for system
#endif
#else
 #error _FILE_OFFSET_BITS value is unsupported
#endif
    int16_t             d_reclen;
    int16_t             d_namelen;
    char                d_name[1];
};

The d_ino member contains a mountpoint-unique file serial number. This serial number

is often used in various disk-checking utilities for such operations as determining

infinite-loop directory links. (Note that the inode value cannot be zero, which would

indicate that the inode represents an unused entry.)

In some filesystems, the d_offset member is used to identify the directory entry itself;

in others, it's the offset of the next directory entry. For a disk-based filesystem, this

value might be the actual offset into the on-disk directory structure.

The d_reclen member contains the size of this directory entry and any other associated

information (such as an optional struct stat structure appended to the struct

dirent entry; see below).

The d_namelen parameter indicates the size of the d_name parameter, which holds

the actual name of that directory entry. (Since the size is calculated using strlen(),

the \0 string terminator, which must be present, is not counted.)

The dirent structure includes space only for the first four bytes of

the name; your _IO_READ handler needs to return the name and the

struct dirent as a bigger structure:

struct {
    struct dirent ent;
    char namebuf[NAME_MAX + 1 + offsetof(struct dirent, d_name) -
                 sizeof( struct dirent)];
} entry

or as a union:

union {
    struct dirent ent;
    char filler[ offsetof( struct dirent, dname ) + NAME_MAX + 1];
} entry;

So in our io_read handler, we need to generate a number of struct dirent entries

and return them to the client. If we have a cache of directory entries that we maintain

in our resource manager, it's a simple matter to construct a set of IOVs to point to

those entries. If we don't have a cache, then we must manually assemble the directory

entries into a buffer and then return an IOV that points to that.

Returning information associated with a directory structure

Instead of returning just the struct dirent in the _IO_READ message, you can

also return a struct stat. Although this will improve efficiency, returning the

struct stat is entirely optional. If you don't return one, the users of your device
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will then have to call stat() or lstat() to get that information. (This is basically a usage

question. If your device is typically used in such a way that readdir() is called, and

then stat() is called, it will be more efficient to return both. See the documentation

for readdir() in the BlackBerry 10 OS C Library Reference for more information.)

The client can set the xtype member of the message to _IO_XFLAG_DIR_EXTRA_HINT

to send a hint to the filesystem to return the extra information, however the filesystem

isn't guaranteed to do so. If the resource manager provides the information, it must

put it in a struct dirent_extra_stat, which is defined as follows:

struct dirent_extra_stat {
    uint16_t            d_datalen;
    uint16_t            d_type;
    uint32_t            d_reserved;
    struct stat         d_stat;
};

The resource manager must set d_type to _DTYPE_LSTAT or _DTYPE_STAT,

depending on whether or not it resolves symbolic links. For example:

if(msg->i.xtype & _IO_XFLAG_DIR_EXTRA_HINT) { 
    struct dirent_extra_stat    extra;
    extra.d_datalen = sizeof extra.d_stat;
    extra.d_type = _DTYPE_LSTAT;
    extra.d_reserved = 0;
    iofunc_stat(ctp, &attr, &extra.d_stat);
    ...
}

There's a dirent_extra_stat after each directory entry:

struct dirent

struct stat

Alignment

struct dirent_extra_stat

Rest of pathname

struct dirent

struct stat

Alignment

struct dirent_extra_stat

Rest of pathname

Figure 7: Returning the optional struct dirent_extra_stat along with the

struct dirent entry can improve efficiency.

The dirent structures must be aligned on 4-byte boundaries, and the

dirent_extra_stat structures on 8-byte boundaries. The d_reclen member

of the struct dirent must contain the size of both structures, including

any space necessary for the pathname and alignment. There must be no more

than seven bytes of alignment filler.

The client has to check for extra data by using the _DEXTRA_*() macros (see the entry

for readdir() in the BlackBerry 10 OS C Library Reference.) If this check fails, the
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client will need to call lstat() or stat() explicitly. For example, ls -l checks for extra

_DTYPE_LSTAT information; if it isn't present, ls calls lstat(). The ls -L command

checks for extra _DTYPE_STAT information; if it isn't present, ls calls stat().
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Appendix A
Glossary

administrator

See superuser.

alias

A shell feature that lets you create new commands or specify your favorite

options. For example, alias my_ls='ls -F' creates an alias called

my_ls that the shell replaces with ls -F.

atomic

Of or relating to atoms. :-)

In operating systems, this refers to the requirement that an operation, or

sequence of operations, be considered indivisible. For example, a thread

may need to move a file position to a given location and read data. These

operations must be performed in an atomic manner; otherwise, another

thread could preempt the original thread and move the file position to a

different location, thus causing the original thread to read data from the

second thread's position.

BIOS/ROM Monitor extension signature

A certain sequence of bytes indicating to the BIOS or ROM Monitor that the

device is to be considered an “extension” to the BIOS or ROM Monitor —

control is to be transferred to the device by the BIOS or ROM Monitor, with

the expectation that the device will perform additional initializations.

On the x86 architecture, the two bytes 0x55 and 0xAA must be present (in

that order) as the first two bytes in the device, with control being transferred

to offset 0x0003.

budget

In sporadic scheduling, the amount of time a thread is permitted to execute

at its normal priority before being dropped to its low priority.

buildfile

A text file containing instructions for mkifs specifying the contents and

other details of an image, or for mkefs specifying the contents and other

details of an embedded filesystem image.

canonical mode
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Also called edited mode or “cooked” mode. In this mode the character device

library performs line-editing operations on each received character. Only

when a line is “completely entered”—typically when a carriage return (CR)

is received—will the line of data be made available to application processes.

Contrast raw mode.

channel

A kernel object used with message passing.

In BlackBerry 10 OS, message passing is directed towards a connection

(made to a channel); threads can receive messages from channels. A thread

that wishes to receive messages creates a channel (using ChannelCreate()),

and then receives messages from that channel (using MsgReceive()). Another

thread that wishes to send a message to the first thread must make a

connection to that channel by “attaching” to the channel (using

ConnectAttach()) and then sending data (using MsgSend()).

CIFS

Common Internet File System (aka SMB) — a protocol that allows a client

workstation to perform transparent file access over a network to a Windows

server. Client file access calls are converted to CIFS protocol requests and

are sent to the server over the network. The server receives the request,

performs the actual filesystem operation, and sends a response back to the

client.

CIS

Card Information Structure.

command completion

A shell feature that saves typing; type enough of the command's name to

identify it uniquely, and then press Esc twice. If possible, the shell fills in

the rest of the name.

command interpreter

A process that parses what you type on the command line; also known as a

shell.

compound command

A command that includes a shell's reserved words, grouping constructs, and

function definitions (e.g., ls -al | less). Contrast simple command.

configurable limit
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A special variable that stores system information. Some (e.g.

_PC_NAME_MAX) depend on the filesystem and are associated with a path;

others (e.g. _SC_ARG_MAX) are independent of paths.

configuration string

A system variable that's like an environment variable, but is more dynamic.

When you set an environment variable, the new value affects only the current

instance of the shell and any of its children that you create after setting the

variable; when you set a configuration string, its new value is immediately

available to the entire system.

connection

A kernel object used with message passing.

Connections are created by client threads to “connect” to the channels made

available by servers. Once connections are established, clients can MsgSend()

messages over them.

console

The display adapter, the screen, and the system keyboard are collectively

referred to as the physical console. A virtual console emulates a physical

console and lets you run more than one terminal session at a time on a

machine.

cooked mode

See canonical mode.

core dump

A file describing the state of a process that terminated abnormally.

critical section

A code passage that must be executed “serially” (i.e. by only one thread at

a time). The simplest from of critical section enforcement is via a mutex.

device driver

A process that allows the OS and application programs to make use of the

underlying hardware in a generic way (e.g. a disk drive, a network interface).

Unlike OSs that require device drivers to be tightly bound into the OS itself,

device drivers for BlackBerry 10 OS are standard processes that can be

started and stopped dynamically. As a result, adding device drivers doesn't

affect any other part of the OS—drivers can be developed and debugged

like any other application. Also, device drivers are in their own protected
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address space, so a bug in a device driver won't cause the entire OS to shut

down.

DNS

Domain Name Service — an Internet protocol used to convert ASCII domain

names into IP addresses. In BlackBerry 10 OS native networking, dns is

one of Qnet's builtin resolvers.

edge-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller) can be

programmed to respond to interrupts. In edge-sensitive mode, the interrupt

is “noticed” upon a transition to/from the rising/falling edge of a pulse.

Contrast level-sensitive.

edited mode

See canonical mode.

EPROM

Erasable Programmable Read-Only Memory — a memory technology that

allows the device to be programmed (typically with higher-than-operating

voltages, e.g. 12V), with the characteristic that any bit (or bits) may be

individually programmed from a 1 state to a 0 state. To change a bit from

a 0 state into a 1 state can only be accomplished by erasing the entire

device, setting all of the bits to a 1 state. Erasing is accomplished by shining

an ultraviolet light through the erase window of the device for a fixed period

of time (typically 10-20 minutes). The device is further characterized by

having a limited number of erase cycles (typically 10e5 - 10e6). Contrast

EEPROM, flash, and RAM.

EEPROM

Electrically Erasable Programmable Read-Only Memory — a memory

technology that's similar to EPROM, but you can erase the entire device

electrically instead of via ultraviolet light. Contrast flash and RAM.

event

A notification scheme used to inform a thread that a particular condition

has occurred. Events can be signals or pulses in the general case; they can

also be unblocking events or interrupt events in the case of kernel timeouts

and interrupt service routines. An event is delivered by a thread, a timer,

the kernel, or an interrupt service routine when appropriate to the requester

of the event.

extent
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A contiguous sequence of blocks on a disk.

fd

File Descriptor — a client must open a file descriptor to a resource manager

via the open() function call. The file descriptor then serves as a handle for

the client to use in subsequent messages.

FIFO

First In First Out — a scheduling policy whereby a thread is able to consume

CPU at its priority level without bounds. See also round robin and sporadic.

filename completion

A shell feature that saves typing; type enough of the file's name to identify

it uniquely, and then press Esc twice. If possible, the shell fills in the rest

of the name.

filter

A program that reads from standard input and writes to standard output,

such as grep and sort. You can use a pipe (|) to combine filters.

flash memory

A memory technology similar in characteristics to EEPROM memory, with

the exception that erasing is performed electrically, and, depending upon

the organization of the flash memory device, erasing may be accomplished

in blocks (typically 64 KB bytes at a time) instead of the entire device.

Contrast EPROM and RAM.

FQNN

Fully Qualified Node Name — a unique name that identifies a BlackBerry

10 OS node on a network. The FQNN consists of the nodename plus the

node domain tacked together.

garbage collection

The process whereby a filesystem manager recovers the space occupied by

deleted files and directories. Also known as space reclamation.

group

A collection of users who share similar file permissions.

HA

High Availability — in telecommunications and other industries, HA describes

a system's ability to remain up and running without interruption for extended

periods of time.
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hard link

See link.

hidden file

A file whose name starts with a dot (.), such as .profile. Commands

such as ls don't operate on hidden files unless you explicitly say to.

image

In the context of embedded BlackBerry 10 OS systems, an “image” can

mean either a structure that contains files (i.e. an OS image) or a structure

that can be used in a read-only, read/write, or read/write/reclaim filesystem

(i.e. a flash filesystem image).

inode

Information node — a storage table that holds information about files, other

than the files' names. In order to support links for each file, the filename is

separated from the other information that describes a file.

interrupt

An event (usually caused by hardware) that interrupts whatever the processor

was doing and asks it do something else. The hardware will generate an

interrupt whenever it has reached some state where software intervention is

required.

interrupt latency

The amount of elapsed time between the generation of a hardware interrupt

and the first instruction executed by the relevant interrupt service routine.

Also designated as “Til”. Contrast scheduling latency.

IPC

Interprocess Communication — the ability for two processes (or threads) to

communicate. BlackBerry 10 OS offers several forms of IPC, most notably

native messaging (synchronous, client/server relationship), POSIX message

queues and pipes (asynchronous), as well as signals.

IPL

Initial Program Loader — the software component that either takes control

at the processor's reset vector (e.g. location 0xFFFFFFF0 on the x86), or

is a BIOS extension. This component is responsible for setting up the

machine into a usable state, such that the startup program can then perform

further initializations. The IPL is written in assembler and C. See also

BIOS/ROM Monitor extension signature and startup code.
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IRQ

Interrupt Request — a hardware request line asserted by a peripheral to

indicate that it requires servicing by software. The IRQ is handled by the

PIC, which then interrupts the processor, usually causing the processor to

execute an Interrupt Service Routine (ISR).

ISR

Interrupt Service Routine — a routine responsible for servicing hardware

(e.g. reading and/or writing some device ports), for updating some data

structures shared between the ISR and the thread(s) running in the

application, and for signalling the thread that some kind of event has

occurred.

kernel

See microkernel.

level-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller) can be

programmed to respond to interrupts. If the PIC is operating in level-sensitive

mode, the IRQ is considered active whenever the corresponding hardware

line is active. Contrast edge-sensitive.

link

A filename; a pointer to the file's contents. Contrast symbolic link.

message

A parcel of bytes passed from one process to another. The OS attaches no

special meaning to the content of a message — the data in a message has

meaning for the sender of the message and for its receiver, but for no one

else.

Message passing not only allows processes to pass data to each other, but

also provides a means of synchronizing the execution of several processes.

As they send, receive, and reply to messages, processes undergo various

“changes of state” that affect when, and for how long, they may run.

metadata

Data about data; for a filesystem, metadata includes all the overhead and

attributes involved in storing the user data itself, such as the name of a file,

the physical blocks it uses, modification and access timestamps, and so on.

microkernel
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A part of the operating system that provides the minimal services used by

a team of optional cooperating processes, which in turn provide the

higher-level OS functionality. The microkernel itself lacks filesystems and

many other services normally expected of an OS; those services are provided

by optional processes.

mountpoint

The location in the pathname space where a resource manager has

“registered” itself. For example, a CD-ROM filesystem may register a single

mountpoint of /cdrom.

mutex

Mutual exclusion lock, a simple synchronization service used to ensure

exclusive access to data shared between threads. It is typically acquired

(pthread_mutex_lock()) and released (pthread_mutex_unlock()) around the

code that accesses the shared data (usually a critical section).

name resolution

In a BlackBerry 10 OS network, the process by which the Qnet network

manager converts an FQNN to a list of destination addresses that the

transport layer knows how to get to.

name resolver

Program code that attempts to convert an FQNN to a destination address.

NDP

Node Discovery Protocol — proprietary QNX Software Systems protocol for

broadcasting name resolution requests on a BlackBerry 10 OS LAN.

network directory

A directory in the pathname space that's implemented by the Qnet network

manager.

Neutrino

Product name of an RTOS developed by QNX Software Systems.

NFS

Network FileSystem — a TCP/IP application that lets you graft remote

filesystems (or portions of them) onto your local namespace. Directories on

the remote systems appear as part of your local filesystem and all the utilities

you use for listing and managing files (e.g. ls, cp, mv) operate on the remote

files exactly as they do on your local files.

Node Discovery Protocol
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See NDP.

node domain

A character string that the Qnet network manager tacks onto the nodename

to form an FQNN.

nodename

A unique name consisting of a character string that identifies a node on a

network.

package

A directory tree of files laid out in a structure that matches where they would

be if they were transported to the root of some filesystem.

package filesystem

A virtual filesystem manager that presents a customized view of a set of files

and directories to a client. The “real” files are present on some media; the

package filesystem presents a virtual view of selected files to the client.

BlackBerry 10 OS doesn't start the package filesystem by

default.

pathname prefix

See mountpoint.

pathname-space mapping

The process whereby the Process Manager maintains an association between

resource managers and entries in the pathname space.

persistent

When applied to storage media, the ability for the media to retain information

across a power-cycle. For example, a hard disk is a persistent storage media,

whereas a ramdisk is not, because the data is lost when power is lost.

Photon microGUI

The proprietary graphical user interface built by QNX Software Systems.

PIC

Programmable Interrupt Controller — a hardware component that handles

IRQs.

PID
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Process ID. Also often pid (e.g. as an argument in a function call). See also

process ID.

POSIX

An IEEE/ISO standard. The term is an acronym (of sorts) for Portable

Operating System Interface — the “X” alludes to “UNIX”, on which the

interface is based.

preemption

The act of suspending the execution of one thread and starting (or resuming)

another. The suspended thread is said to have been “preempted” by the

new thread. Whenever a lower-priority thread is actively consuming the CPU,

and a higher-priority thread becomes READY, the lower-priority thread is

immediately preempted by the higher-priority thread.

prefix tree

The internal representation used by the Process Manager to store the

pathname table.

priority inheritance

The characteristic of a thread that causes its priority to be raised or lowered

to that of the thread that sent it a message. Also used with mutexes. Priority

inheritance is a method used to prevent priority inversion.

priority inversion

A condition that can occur when a low-priority thread consumes CPU at a

higher priority than it should. This can be caused by not supporting priority

inheritance, such that when the lower-priority thread sends a message to a

higher-priority thread, the higher-priority thread consumes CPU on behalf

of the lower-priority thread. This is solved by having the higher-priority thread

inherit the priority of the thread on whose behalf it's working.

process

A nonschedulable entity, which defines the address space and a few data

areas. A process must have at least one thread running in it.

process group

A collection of processes that permits the signalling of related processes.

Each process in the system is a member of a process group identified by a

process group ID. A newly created process joins the process group of its

creator.

process group ID
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The unique identifier representing a process group during its lifetime. A

process group ID is a positive integer. The system may reuse a process group

ID after the process group dies.

process group leader

A process whose ID is the same as its process group ID.

process ID (PID)

The unique identifier representing a process. A PID is a positive integer.

The system may reuse a process ID after the process dies, provided no

existing process group has the same ID. Only the Process Manager can have

a process ID of 1.

pty

Pseudo-TTY — a character-based device that has two “ends”: a master end

and a slave end. Data written to the master end shows up on the slave end,

and vice versa. You typically use these devices when a program requires a

terminal for standard input and output, and one doesn't exist, for example

as with sockets.

Qnet

The native network manager in BlackBerry 10 OS.

QNX

Name of an earlier-generation RTOS and the current OS created by QNX

Software Systems. Also, short form of the company's name.

QoS

Quality of Service — a policy (e.g. loadbalance) used to connect nodes

in a network in order to ensure highly dependable transmission. QoS is an

issue that often arises in high-availability (HA) networks as well as realtime

control systems.

QSS

QNX Software Systems.

quoting

A method of forcing a shell's special characters to be treated as simple

characters instead of being interpreted in a special way by the shell. For

example, less "my file name" escapes the special meaning of the

spaces in a filename.

RAM
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Random Access Memory — a memory technology characterized by the ability

to read and write any location in the device without limitation. Contrast

flash, EPROM, and EEPROM.

raw mode

In raw input mode, the character device library performs no editing on

received characters. This reduces the processing done on each character to

a minimum and provides the highest performance interface for reading data.

Also, raw mode is used with devices that typically generate binary data —

you don't want any translations of the raw binary stream between the device

and the application. Contrast canonical mode.

remote execution

Running commands on a machine other than your own over a network.

replenishment

In sporadic scheduling, the period of time during which a thread is allowed

to consume its execution budget.

reset vector

The address at which the processor begins executing instructions after the

processor's reset line has been activated. On the x86, for example, this is

the address 0xFFFFFFF0.

resource manager

A user-level server program that accepts messages from other programs and,

optionally, communicates with hardware. BlackBerry 10 OS resource

managers are responsible for presenting an interface to various types of

devices, whether actual (e.g. serial ports, parallel ports, network cards, disk

drives) or virtual (e.g. /dev/null, a network filesystem, and pseudo-ttys).

In other operating systems, this functionality is traditionally associated with

device drivers. But unlike device drivers, BlackBerry 10 OS resource

managers don't require any special arrangements with the kernel. In fact, a

resource manager looks just like any other user-level program. See also

device driver.

root

The superuser, which can do anything on your system. The superuser has

what Windows calls administrator's rights.

round robin
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A scheduling policy whereby a thread is given a certain period of time (the

timeslice) to run. Should the thread consume CPU for the entire period of

its timeslice, the thread will be placed at the end of the ready queue for its

priority, and the next available thread will be made READY. If a thread is

the only thread READY at its priority level, it will be able to consume CPU

again immediately. See also FIFO and sporadic.

RTOS

Realtime operating system.

runtime loading

The process whereby a program decides while it's actually running that it

wishes to load a particular function from a library. Contrast static linking.

scheduling latency

The amount of time that elapses between the point when one thread makes

another thread READY and when the other thread actually gets some CPU

time. Note that this latency is almost always at the control of the system

designer.

Also designated as “Tsl”. Contrast interrupt latency.

session

A collection of process groups established for job-control purposes. Each

process group is a member of a session. A process belongs to the session

that its process group belongs to. A newly created process joins the session

of its creator. A process can alter its session membership via setsid(). A

session can contain multiple process groups.

session leader

A process whose death causes all processes within its process group to

receive a SIGHUP signal.

shell

A process that parses what you type on the command line; also known as a

command interpreter.

shell script

A file that contains shell commands.

simple command

A command line that contains a single command, usually a program that

you want to run (e.g. less my_file). Contrast compound command.
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socket

A logical drive in a flash filesystem, consisting of a contiguous and

homogeneous region of flash memory.

socket

In TCP/IP, a combination of an IP address and a port number that uniquely

identifies a single network process.

software interrupt

Similar to a hardware interrupt (see interrupt), except that the source of the

interrupt is software.

spilling

What happens when you try to change a file that the package filesystem

manages (if you're using it): a copy of the file is transferred to the spill

directory.

sporadic

A scheduling policy whereby a thread's priority can oscillate dynamically

between a “foreground” or normal priority and a “background” or low priority.

A thread is given an execution budget of time to be consumed within a

certain replenishment period. See also FIFO and round robin.

startup code

The software component that gains control after the IPL code has performed

the minimum necessary amount of initialization. After gathering information

about the system, the startup code transfers control to the OS.

static linking

The process whereby you combine your programs with the modules from the

library to form a single executable that's entirely self-contained. The word

“static” implies that it's not going to change — all the required modules

are already combined into one. Contrast runtime loading.

superuser

The root user, which can do anything on your system. The superuser has

what Windows calls administrator's rights.

symbolic link

A special file that usually has a pathname as its data. Symbolic links are a

flexible means of pathname indirection and are often used to provide multiple

paths to a single file. Unlike hard links, symbolic links can cross filesystems

and can also create links to directories.
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system page area

An area in the kernel that is filled by the startup code and contains

information about the system (number of bytes of memory, location of serial

ports, etc.) This is also called the SYSPAGE area.

thread

The schedulable entity under BlackBerry 10 OS. A thread is a flow of

execution; it exists within the context of a process.

timer

A kernel object used in conjunction with time-based functions. A timer is

created via timer_create() and armed via timer_settime(). A timer can then

deliver an event, either periodically or on a one-shot basis.

timeslice

A period of time assigned to a round-robin scheduled thread. This period of

time is small (four times the clock period in BlackBerry 10 OS); programs

shouldn't rely on the actual value (doing so is considered bad design).
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