
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

QNX Persistent Publish/Subscribe
Developer's Guide

©2010–2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Wednesday, August 20, 2014

Table of Contents

About This Guide ...7
Typographical conventions ...8

Technical support ...10

Chapter 1: QNX Neutrino PPS service ..11

Running PPS ..12

Chapter 2: Objects and their attributes ...13

Object files ..14

Special objects ...15

Object and directory sizes ..15

Change notification ...16

Object syntax ...17

Attribute syntax ..18

Chapter 3: Persistence ...19

Persistent storage ...20

Saving objects ..21

Loading objects ..23

Chapter 4: Publishing ...25

Creating, modifying, and deleting objects and attributes ...26

Multiple Publishers ...27

Chapter 5: Subscribing ...29

Blocking and nonblocking reads ...30

Getting notifications of data on a file descriptor ...32

io_notify() functionality ..32

Subscription Modes ..33

Full mode ...33

Delta mode ...33

Subscribing to multiple objects ..35

Subscribe to all objects in a directory ..35

Notification groups ..36

Chapter 6: Options and qualifiers ..39

Pathname open options ...40

Critical option ...42

Filtering notifications ...42

QNX Persistent Publish/Subscribe Developer's Guide

Object and attribute qualifiers ...44

Nonpersistence qualifier ..45

Item qualifier ..45

Reading and writing from the command line ..47

Active Control List configuration file ...48

ACL configuration file format ..48

Chapter 7: Server objects ..51

Working with server objects ..53

Sending messages through PPS server objects ...53

Chapter 8: PPS encoding and decoding API ..55

Encoding PPS data ...56

Decoding PPS data ...58

Handling unknown data ...60

Dealing with errors ..61

Other features of PPS ..63

Chapter 9: PPS API reference ...65

pps_attrib_flags_t ...66

pps_attrib_t ...67

pps_decoder_cleanup() ...69

pps_decoder_dump_tree() ...70

pps_decoder_error_t ..71

pps_decoder_flags() ..72

pps_decoder_get_bool() ...73

pps_decoder_get_double() ...75

pps_decoder_get_int() ...77

pps_decoder_get_int64() ...79

pps_decoder_get_state() ..81

pps_decoder_get_string() ...82

pps_decoder_goto_index() ...84

pps_decoder_initialize() ...86

pps_decoder_is_integer() ...88

pps_decoder_length() ..89

pps_decoder_name() ...90

pps_decoder_next() ...91

pps_decoder_parse_json_str() ..92

pps_decoder_parse_pps_str() ...94

pps_decoder_pop() ...96

pps_decoder_push() ..98

pps_decoder_push_array() ...100

pps_decoder_push_object() ...102

pps_decoder_reset() ..104

Table of Contents

pps_decoder_set_position() ..105

pps_decoder_set_state() ..107

pps_decoder_state_t ...108

pps_decoder_status() ..109

pps_decoder_t ..110

pps_decoder_type() ...111

pps_encoder_add_bool() ...112

pps_encoder_add_double() ..114

pps_encoder_add_from_decoder() ..116

pps_encoder_add_int() ..118

pps_encoder_add_int64() ..120

pps_encoder_add_json() ..122

pps_encoder_add_null() ..124

pps_encoder_add_string() ..126

pps_encoder_buffer() ..128

pps_encoder_cleanup() ...129

pps_encoder_delete_attribute() ..130

pps_encoder_end_array() ...132

pps_encoder_end_object() ...134

pps_encoder_error_t ..136

pps_encoder_initialize() ...137

pps_encoder_length() ..138

pps_encoder_reset ..139

pps_encoder_start_array() ..140

pps_encoder_start_object() ..142

pps_encoder_t ..144

pps_node_type_t ...145

pps_options_t ...146

pps_status_t ...147

ppsparse() ..148

QNX Persistent Publish/Subscribe Developer's Guide

Table of Contents

About This Guide

The QNX Neutrino PPS Developer's Guide includes:

See:To find out about:

QNX Neutrino PPS service (p. 11)An introduction to the Persistent

Publish/Subscribe service, and how to run

it

Objects and their attributes (p. 13)A description of the PPS service's objects

and their attributes

Persistence (p. 19)How PPS manages persistence

Publishing (p. 25)How to publish to PPS

Subscribing (p. 29)How to subscribe to PPS

Working with server objects (p. 53)How to use server PPS objects

Options and qualifiers (p. 39)Pathname open options, and object and

attribute qualifiers

PPS encoding and decoding API (p. 55)A description of the publicly visible PPS

encoding and decoding API functions and

data types

© 2014, QNX Software Systems Limited 7

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

8 © 2014, QNX Software Systems Limited

About This Guide

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

© 2014, QNX Software Systems Limited 9

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

10 © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
QNX Neutrino PPS service

The QNX Neutrino Persistent Publish/Subscribe (PPS) service is a small, extensible

publish and subscribe service that offers persistence across reboots. It's designed to

provide a simple and easy-to-use solution for both publish/subscribe and persistence

in embedded systems, answering a need for building loosely connected systems using

asynchronous publications and notifications.

With PPS, publishing is asynchronous: the subscriber need not be waiting for the

publisher. In fact, the publisher and subscriber rarely know each other; their only

connection is an object that has a meaning and purpose for both publisher and

subscriber.

Media

Automatic
speech

recognition

Phone

Navigation

SQLite
database

QDB

Radio

Software
update

HMI
notification
manager

PPS

Manager

PPS, SQL & Screen plugins, and libraries

HMI framework B

Applications

HMI framework A

Applications

Figure 1: A complex application that uses PPS to share information between

components.

© 2014, QNX Software Systems Limited 11

Running PPS

The PPS service can be run from the command line with the options listed below.

Syntax:

pps [options]

Options:

[-A path] [-A path] [...]

Set the path to an Active Control List (ACL) configuration file. More than

one instance of this option can be used. In the event of contradictory

permissions, the permissions in the last configuration file listed take

precedence. See Active Control List configuration file (p. 48).

-b

Do not run in the background. Useful for debugging.

-l argument

Set the object load behavior, as follows:

• 0 — load directory names and objects on demand. Default.

• 1 — load all directory and object names on startup, but do not load object

contents. Load object contents on demand.

• 2 — load directories, objects, and object contents on startup.

-m mount

Specify the mountpath for PPS. Default is /pps/

-p path

Set the path for backing up the persistent storage.

-t period

Specify the periodicity of the forced persistence, in milliseconds. For example

-t 5000 forces the PPS service to write to persistent storage every five

seconds. Default is no forced persistence.

-v

Enable verbose mode. Increase the number of “v”s to increase verbosity.

12 © 2014, QNX Software Systems Limited

QNX Neutrino PPS service

Chapter 2
Objects and their attributes

The QNX Neutrino PPS service is a system with objects whose properties a publisher

can modify.

Clients that subscribe to an object receive updates when that object changes; that is,

when the publisher has modified it.

With PPS, your application can:

• publish changes to objects

• subscribe to objects to receive notifications of changes

• both publish and subscribe

© 2014, QNX Software Systems Limited 13

Object files

PPS objects are implemented as files in a special PPS filesystem. By default, PPS

objects appear under /pps, but this path depends on the configuration of your system.

There is never more than one instance of a PPS object, so changes to that object are

immediately visible to subscribers.

Objects can contain attributes. Each attribute is represented by a line of text in the

object's file. So, for example, you might publish an object called Time that represents

the time of day and has integer attributes representing the current hour, minute, and

second as follows:

@Time
hour::17
minute::04
second::38

In this case, the filename is Time, and the three attributes are each text strings in

that file.

Because PPS objects are represented by files, you can:

• Create directories and populate them with PPS objects by creating files in those

directories.

• Use the open(), then the read() and write() functions to query and change PPS

objects.

• Use standard utilities as simple debugging tools.

In order to avoid possible confusion or conflict in the event that applications

from different organizations are integrated to use the same PPS filesystem,

we recommend that you use your organization's web domain name to create

your directory inside the PPS directory. Thus, QNX Software Systems, whose

Internet web domain name is “qnx.com” should use /pps/qnx, while an

organization with the domain name “example.net” should use /pps/example.

PPS objects are accessed through the filesystem and look like normal POSIX

files. However, they are not standard POSIX files, and some PPS behaviors

differ from standard POSIX behaviors. For instance, if the allocated read

buffer is too small for the data being read in, the read doesn't return a partial

result. It fails.

14 © 2014, QNX Software Systems Limited

Objects and their attributes

Attribute order

PPS doesn't guarantee that attributes will be read in the same order that they were

written to the object. That is, a publisher may write:

@Time
hour::17
minute::04
second::38

This may be read in by a subscriber as, for instance:

@Time
second::38
hour::17
minute::04

Special objects

PPS directories can include special objects that you can open to facilitate subscription

behavior. The table below lists these special objects:

UseObject

Open to receive notification of changes to any object in this directory..all

Open a notification file descriptor in the PPS filesystem root..notify

Object and directory sizes

Since PPS holds its objects in memory, they are small. Each object is allocated 32

kilobytes. This doesn't mean that each object uses 32 kilobytes of memory at run

time; it uses only the amount of memory needed to internally represent its current

attributes.

The number of PPS directories and objects is limited only by available memory. The

depth of PPS directories is limited by the fact that the full pathnames of objects are

stored in the persistent directory as files; the size of these pathnames is limited by

the maximum filename size supported by the persistent filesystem used.

• PPS objects should not be used as a dumping ground for large amounts of

data. The size of most PPS objects should be measured in hundreds of

bytes, not in kilobytes.

• PPS has been tested with fs-qnx6, using the default PPS options. This

configuration supports a total pathname length of 517 bytes, with no

individual pathname element longer than 508 bytes. That is, a nesting

depth of 50 is possible on fs-qnx6, provided that the total length of the

path is less than 517 bytes.

© 2014, QNX Software Systems Limited 15

Object files

Change notification

PPS informs publishers and subscribers when it creates, deletes, or truncates an

object.

When PPS creates, deletes, or truncates an object (a file or a directory), it places a

notification string into the queue of any subscriber or publisher that has open either

that object or the .all special object for the directory with the modified object.

The syntax for this notification string is a special character prefix, followed by the

object identifier "@", then the object name, as follows:

MeaningExampleSymbol

PPS created the object. To know if a created object is a

file or a directory, call stat() or fstat().

+@object

name

+

PPS deleted the object.-@object

name

-

PPS truncated the object.#@object

name

#

The object has lost a critical publisher. All nonpersistent

attributes have been deleted. For more information, see

Options and qualifiers (p. 39).

*@object

name

*

In addition, when an object is deleted, PPS sends a single -@objectname to any

application that has that object open. Typical behavior for an application receiving

this notification is to close the open file descriptor, since the file is no longer visible

in the filesystem (POSIX behavior).

Attribute options always precede both the special character and the object or

attribute name.

16 © 2014, QNX Software Systems Limited

Objects and their attributes

Object syntax

In listings of the PPS filesystem, PPS objects have no special identifiers. That is, they

will appear just like any other file in a listing. For example, the PPS object

"PlayCurrent" in the directory /pps/media will appear in a file listing as simply

/pps/media/PlayCurrent.

In the results of a read of a PPS file, the first line identifies the object. This line is

prefixed with an "@" character to identify it as the object name. The lines that follow

define the object's attributes. These lines have no special prefix.

Suppose the PPS object "PlayCurrent" in the example above contains attributes

describing the metadata for the currently playing song in a multimedia application.

Let's assume that the attributes have the following format:

@PlayCurrent
author::[Presentation text for track author]
album::[Presentation text for album name]
title::[Presentation text for track title]
duration::[Track duration, floating point number of seconds]
time::[Track position, floating point number of seconds]

An open() call followed by read() call on this file returns the name of the object (the

filename, with an "@" prefix), followed by the object's attributes with their values:

@PlayCurrent
author::Beatles
album::Abbey Road
title::Come Together
duration::3.45
time::1.24

• Object names may not contain any of the following: "@" (at sign), "?"

(question mark), "/" (forward slash), linefeed (ASCII LF), or ASCII NUL.

• Every line in the PPS object is terminated with a linefeed ("\n" in C, or

hexadecimal 0A), so you must encode this character in a manner agreed

upon by cooperating client applications. That is, any values containing

ASCII LF or NUL characters must be encoded. The encoding field can be

used to assist cooperating applications in determining what encoding is

used in the value field.

© 2014, QNX Software Systems Limited 17

Object syntax

Attribute syntax

PPS objects have user-defined attributes. Attributes are listed in a PPS object after

the object name.

Attribute names may consist of alphanumeric characters, underscores, and periods,

but must begin with a letter or underscore. Attribute lines in a PPS object file are of

the form attrname:encoding:value\n where attrname is the attribute name, and encoding

defines the encoding type for value. The end of the attribute name and the end of the

encoding are marked by colons (":"). Subsequent colons are ignored.

PPS does not interpret the encoding; it simply passes the encoding through from

publisher to subscriber. Thus, publishers and subscribers are free to define their own

encodings to meet their needs. The table below describes possible encoding types:

EncodingSymbol

Also referred to as null encoding. Simple text terminated by a linefeed.::

C language escape sequences, such as "\t" and "\n". Note that "\n" or "\t"

in this encoding is a "\" character followed by an "n" or "t"; in a C string

this would be "\\n\\t"

:c:

Boolean.:b:

Numeric.:n:

Base64 encoding.:b64:

JavaScript Object Notation encoding.:json:

An attribute's value can be any sequence of characters, except:

• a null ("\0" in C, or hexadecimal 0x00)

• a linefeed character ("\n" in C, or hexadecimal 0x0A).

18 © 2014, QNX Software Systems Limited

Objects and their attributes

Chapter 3
Persistence

PPS maintains its objects in memory while it's running. It will, as required:

• save its objects to persistent storage, either on demand while it's running, or at

shutdown

• restore its objects on startup, either immediately, or on first access (deferred

loading)

• PPS may be used to create objects that are rarely (or never) published or

subscribed to, but that require persistence.

• “Shutdown” means the orderly exit of the PPS server process. An orderly

exit can be triggered by SIGTERM, SIGINT, or SIGQUIT. Since other

signals (such as SIGKILL, SIGSEGV, and SIGABRT) don't result in an

orderly exit, they don't constitute a “shutdown” for the purposes of

persistence.

© 2014, QNX Software Systems Limited 19

Persistent storage

PPS supports persistent storage across reboots. This storage requires a reliable

filesystem.

The underlying persistent storage used by PPS depends on a reliable filesystem, such

as:

• disk — Power-Safe filesystem

• NAND Flash — ETFS filesystem

• Nor Flash — FFS3 filesystem

• other — customer generated filesystem

If you need to persist an object to specialized hardware such as a small NVRAM (which

doesn't support a filesystem), you can create your own client that subscribes to the

PPS object to be saved. On each object change, PPS will notify your client, allowing

the client to update the NVRAM in real time.

Persistence and filesystem limitation

The persistence directory where PPS objects are stored uses exactly the same directory

hierarchy as the PPS root directory. Object persistence is, therefore, limited by the

path and filename lengths as well as the directory nesting limits of the underlying

filesystem.

For example, the QNX Neutrino NFS server supports a maximum nesting depth of 15

levels. This limit also applies to PPS using this service.

20 © 2014, QNX Software Systems Limited

Persistence

Saving objects

On shutdown, PPS always saves any modified objects to a persistent filesystem. You

can also force PPS to save an object at any time by calling fsync() on the object.

When PPS saves to a persistent filesystem, it saves every object to its own file, in a

directory hierarchy that reproduces the hierarchy of the PPS object tree. For example,

with a default configuration, the PPS object /pps/example/object1 is stored at

/var/pps/example/object1.

The default location for the PPS directory is /var/pps. You can use the PPS -p

option to change this location.

• You can set object and attribute qualifiers to have PPS not save specific

objects or attributes.

• To ensure multiple language support, all strings should use UTF-8 to encode

extended character sets.

Changing the directory for persistent storage

The root PPS object tree (/pps by default) may look something like this:

pwd
/pps
ls -1F
accounts/
applications/
qnx/
qnxcar/
servicedata/
services/
system/
#

PPS populates its root object tree from the persistence tree (/var/pps by default),

where the objects and attributes that you want to persist are stored.

To specify a different directory for persistent storage:

1. Create your own persistence directory (e.g., mkdir /myobjects).

2. Start the PPS service from a different mountpoint (e.g., /fs/pps) and specify

your new persistence directory:

pps -m /fs/pps -p /myobjects

You may want to run PPS with the -t option, which configures PPS to write

to persistent storage at the interval you specify. Without the -t, you won't see

© 2014, QNX Software Systems Limited 21

Saving objects

any changes in your persistence directory until PPS exits. For more information,

see Running PPS (p. 12).

22 © 2014, QNX Software Systems Limited

Persistence

Loading objects

When PPS starts up, it immediately builds the directory hierarchy from the encoded

filenames on the persistent filesystem.

In its default configuration, PPS defers loading the objects in the directories until first

access to one of the files. This access could be an open() call on a PPS object or a

readdir() call on the PPS directory.

You can change the configuration by providing the -l (el) option on startup to have

PPS:

• load directory and object names (but not the object contents), or

• load directories, objects, and object contents

For more information, see Running PPS (p. 12).

© 2014, QNX Software Systems Limited 23

Loading objects

Chapter 4
Publishing

To publish to a PPS object, a publisher simply calls open() for the object file with

O_WRONLY to publish only, or O_RDWR to publish and subscribe. The publisher can

then call write() to modify the object's attributes. This operation is nonblocking.

© 2014, QNX Software Systems Limited 25

Creating, modifying, and deleting objects and attributes

You can create, modify, and delete objects and attributes, as shown in the following

table:

Do this:If you want to:

Create a file with the name of the object. The new object

will come into existence with no attributes. You can then

write attributes to the object, as required.

Create a new object

Delete the object file.Delete an object

Write the attribute to the object file.Create a new attribute

Write the new attribute value to the object file.Modify an attribute

Open the object with O_TRUNC.Delete all existing

attributes

Prefix its name with a minus sign, then call write(). For

example:

// Delete the "url" attribute
sprintf(ppsobj, "-url\n");
write(ppsobj-fd, ppsobj, strlen(ppsobj));

To delete one attribute

Note the following about deleting attributes:

• Calling ftruncate() on an object file will delete all the object's attributes,

whatever the value of the length argument.

• A simple Bourne shell redirection instruction (such as echo

attr::hello > /pps/object) entered from the command line will

open an object with O_TRUNC and delete all attributes.

26 © 2014, QNX Software Systems Limited

Publishing

Multiple Publishers

PPS supports multiple publishers that publish to the same PPS object. This capability

is required because different publishers may have access to data that applies to

different attributes for the same object.

In a multimedia system with a PlayCurrent object, for instance, io-media may

be the source of a time::value attribute, while the HMI may be the source of a

duration::value attribute. A publisher that changes only the time attribute will

update only that attribute when it writes to the object. It will leave the other attributes

unchanged.

In the example above, suppose the PlayCurrent object has the following attribute

values:

@PlayCurrent
author::Beatles
album::Abbey Road
title::Come Together
duration::3.45
time::1.24

If io-media updated the time attribute of the PlayCurrent object as follows:

// Update the "time" attribute
sprintf(ppsobj, "time::2.32\n");
write(ppsobj-fd, ppsobj, strlen(ppsobj));

and then the HMI updated the duration attribute as follows:

// Update the "duration" attribute
sprintf(ppsobj, "duration::4.02\n");
write(ppsobj-fd, ppsobj, strlen(ppsobj));

The result would be:

@PlayCurrent
author::Beatles
album::Abbey Road
title::Come Together
duration::4.02
time::2.32

© 2014, QNX Software Systems Limited 27

Multiple Publishers

Chapter 5
Subscribing

PPS clients can subscribe to multiple objects, and PPS objects can have multiple

subscribers. When a publisher changes an object, all clients subscribed to that object

are informed of the change.

To subscribe to an object, a client simply calls open() for the object with O_RDONLY

to subscribe only, or O_RDWR to publish and subscribe. The subscriber can then query

the object with a read() call. A read returns the length of the data read, in bytes.

The behavior of a PPS read differs from standard POSIX behavior. With PPS,

if the allocated read buffer is too small for the data being read in, the read

doesn't return a partial result. It fails.

Attribute order

PPS doesn't guarantee that attributes will be read in the same order that they were

written to the object. That is, a publisher may write:

@Time
hour::17
minute::04
second::38

This may be read in by a subscriber as, for instance:

@Time
second::38
hour::17
minute::04

© 2014, QNX Software Systems Limited 29

Blocking and nonblocking reads

Reads to PPS objects are nonblocking by default, but the preferred method for querying

PPS objects is to use blocking reads.

By default, reads to PPS objects are nonblocking; that is, PPS defaults a normal open()

to O_NONBLOCK, so that reads made by the client that opened the object don't block.

The PPS default behavior when it reads is atypical for most filesystems. It's

done this way so that standard utilities won't hang waiting for a change when

they make a read() call on a file.

For example, with the default behavior, you could tar up the entire state of PPS using

the standard tar utility. Without this default behavior, however, tar would never make

it past the first file opened and read.

Setting PPS to block

Though the PPS default is to open objects for nonblocking reads, the preferred method

for querying PPS objects is to use blocking reads. With this method, a read waits until

the object or its attributes change, then returns data.

To have reads block, you need to open the object with the ?wait pathname open

option, appended as a suffix to the pathname for the object. (For more information

on the ?wait option, see Pathname open options (p. 40).)

For example:

• to open the PlayList object for the default nonblocking reads, use the

pathname:"/pps/media/PlayList"

• to open the PlayList for blocking reads, use the pathname plus the option:

"/pps/media/PlayList?wait"

A typical loop in a subscriber would live in its own thread. For a subscriber that opened

the object with the ?wait option, this loop might do the following:

/* Assume that the object was opened with the ?wait option
 No error checking in this example. */
for(;;) {
 read(fd, buf, sizeof(buf)); // Read waits until the object changes
 process(buf);
}

Clearing O_NONBLOCK

If you have opened an object without the ?wait option and want to change to blocking

reads, you can clear the O_NONBLOCK bit, so that the subscriber waits for changes to

an object or its attributes.

30 © 2014, QNX Software Systems Limited

Subscribing

To clear the bit you can use the fcntl() function. For example:

flags = fcntl(fd, F_GETFL);
flags &= ~O_NONBLOCK;
fcntl(fd, F_SETFL, flags);

Or you can use the ioctl() function:

int i=0;
ioctl(fd,FIONBIO,&i);

After clearing the O_NONBLOCK bit, you can issue a read that waits until the object

changes.

© 2014, QNX Software Systems Limited 31

Blocking and nonblocking reads

Getting notifications of data on a file descriptor

You can use either of two simple mechanisms to receive notifications that data is

available on a file descriptor:

• You can issue a blocking read() either by opening the object with the ?wait option

on the open() call or by clearing the O_NONBLOCK flag using the fcntl() function

after the open() call.

• You can use the QNX Neutrino io_notify() mechanisms to receive a user-specified

event; you can also use the select() function, which uses io_notify() under the

covers.

PPS has a limit of 200 open file descriptors per PPS

object.

io_notify() functionality

The PPS service implements io_notify() functionality, allowing subscribers to request

notification via a PULSE, SIGNAL, SEMAPHORE, etc. On notification of a change, a

subscriber must issue a read() to the object file to get the contents of the object. For

example:

/* Process events while there are some */
while ((flags = ionotify(fd, _NOTIFY_ACTION_POLLARM,
 _NOTIFY_COND_INPUT, event) != -1)
 && (flags & _NOTIFY_COND_INPUT))
{
 nbytes = read(fd, buf, sizeof(buf));
 if (nbytes > 0)
 process(buf);
}
/* If flags != -1, the event will be triggered in the future to get
 our attention */

For more information, see the entry for ionotify() in the QNX Neutrino C Library

Reference.

32 © 2014, QNX Software Systems Limited

Subscribing

Subscription Modes

A subscriber can open an object in full mode, in delta mode, or in full and delta modes

at the same time. The default is full mode. To open an object in delta mode, you need

to open the object with the ?delta pathname open option, appended as a suffix to

the pathname for the object.

For information about ?delta and other pathname open options, see Options and

qualifiers (p. 39).

Full mode

In full mode (the default), the subscriber always receives a single, consistent version

of the entire object as it exists at the moment when it's requested.

If a publisher changes an object several times before a subscriber asks for it, the

subscriber receives the state of the object at the time of asking only. If the object

changes again, the subscriber is notified again of the change. Thus, in full mode, the

subscriber may miss multiple changes to an object — changes to the object that occur

before the subscriber asks for it.

Delta mode

In delta mode, a subscriber receives only the changes (but all the changes) to an

object's attributes.

On the first read, since a subscriber knows nothing about the state of an object, PPS

assumes everything has changed. Therefore, a subscriber's first read in delta mode

returns all attributes for an object, while subsequent reads return only the changes

since that subscriber's previous read.

Thus, in delta mode, the subscriber always receives all changes to an object.

The figure below illustrates the different information sent to subscribers who open a

PPS object in full mode and in delta mode.

Subscriber

SubscriberDeltaDeltaDelta

PPS
object

Delta mode

Full mode

Figure 2: Comparison of PPS full and delta subscription modes.

© 2014, QNX Software Systems Limited 33

Subscription Modes

In all cases PPS maintains persistent objects with states — there is always an object.

The mode used to open an object does not change the object; it only determines the

subscriber's view of changes to the object.

Delta mode queues

When a subscriber opens an object in delta mode, the PPS service creates a new

queue of object changes. That is, if multiple subscribers open an object in delta mode,

each subscriber has its own queue of changes to the object, and the PPS service sends

each subscriber its own copy of the changes. If no subscriber has an object open in

delta mode, the PPS service does not maintain any queues of changes to that object.

On shutdown, the PPS service saves its objects, but objects' delta queues are

lost.

Changes to multiple attributes

If a publisher changes multiple attributes with a single write() call, then PPS keeps

the deltas together and returns them in the same group on a subscriber's read() call.

In other words, PPS deltas maintain both time and atomicity of changes. For example:

write() write()
 time::1.23 time::1.24
 duration::4.2 write()
 duration::4.2

read() read()
 @objname @objname
 time::1.23 time:1.24
 duration::4.2 @objname
 duration::4.2

34 © 2014, QNX Software Systems Limited

Subscribing

Subscribing to multiple objects

PPS supports a number of mechanisms that facilitate subscribing to multiple objects:

• .all special object — open to receive notification of changes to any object in this

directory.

• .notify special object — open to receive notification of changes to any object

associated with a notification group.

Subscribe to all objects in a directory

PPS uses directories as a natural grouping mechanism to simplify and make more

efficient the task of subscribing to multiple objects. Subscribers can open multiple

objects by calling open() then select() on their file descriptors. More easily, they can

open the special .all object, which merges all objects in its directory.

For example, assume the following object file structure under /pps:

rear/left/PlayCurrent
rear/left/Time
rear/left/PlayError

If you open rear/left/.all you will receive a notification when any object in the

rear/left directory changes. A read in full mode will return at most one object per

read.

read()
@Time
 position::18
 duration::300

read()
@PlayCurrent
 artist::The Beatles
 genre::Pop
 ... the full set of attributes for the object

If you open a .all object in delta mode, however, you will receive a queue of every

attribute that changes in any object in the directory. In this case, a single read() call

may include multiple objects.

read()
@Time
 position::18
@Time
 position::19
@PlayCurrent
 artist::The Beatles
 genre::Pop

© 2014, QNX Software Systems Limited 35

Subscribing to multiple objects

Notification groups

PPS provides a mechanism to associate a set of file descriptors with a notification

group. This mechanism allows you to read only the PPS special notification object to

receive notification of changes to any of the objects associated with that notification

group.

Creating notification groups

To create a notification group:

1. Open the .notify object in the root of the PPS filesystem.

2. Read the .notify object; the first read of this file returns a short string (less than

16 characters) with the name of the group to which other file descriptors should

associate themselves.

To associate a file descriptor to a group, on an open, specify the pathname open option

?notify=group:value, where:

• group is the string returned by the first read from the .notify file

• value is any arbitrary string; a subscriber will use this string to determine which

objects bound to the notification group have data available for reading

The returned notification group string has a trailing linefeed character that you

must remove before using the string.

Using notification groups

Once you have created a notification group and associated file descriptors to it, you

can use this group to learn about changes to any of the objects associated with it.

Whenever there is data available for reading on any of the group's file descriptors,

reads to the notification object's file descriptor return the string passed in the ?noti

fy=group:value pathname option.

For example, with PPS mounted at /pps, you could write something like the following:

char noid[16], buf[128];
int notify_fd, fd1, fd2;

notify_fd = open("/pps/.notify", O_RDONLY);
read(notify_fd, &noid[0], sizeof(noid));

sprintf(buf, "/pps/fish?notify=%s:water", noid);
fd1 = open(buf, O_RDONLY);
sprintf(buf, "/pps/dir/birds?notify=%s:air", noid);
fd2 = open(buf, O_RDONLY);

while(read(notify_fd, &buf, sizeof(buf) > 0) {
 printf("Notify %s\n", buf);
}

36 © 2014, QNX Software Systems Limited

Subscribing

The data printed from the “while” loop in the example above would look something

like the following:

Notify 243:water
Notify 243:water
Notify 243:air
Notify 243:water
Notify 243:air

When reading from an object that is bound to a notification group, a subscriber

should do multiple reads for each change indicated. There may be more than

one change on an item, but there is no guarantee that every change will be

indicated on the notification group's file descriptor.

Notification of closed file descriptors for objects

If a file descriptor for an object that is part of a notification group is closed, the string

passed with the change notification is prefixed by a minus (“-”) sign. For example:

-243:air

© 2014, QNX Software Systems Limited 37

Subscribing to multiple objects

Chapter 6
Options and qualifiers

PPS lets you use various pathname options when opening objects. PPS uses these

pathname options to apply open options on the file descriptor used to open an object.

PPS also lets you use qualifiers to specify actions to take with an object or attribute

(e.g., make an object nonpersistent or delete an attribute).

© 2014, QNX Software Systems Limited 39

Pathname open options

PPS objects support an extended syntax on the pathnames used to open them.

Open options are added as suffixes to the pathname, following a question mark (“?”).

That is, the PPS service uses any data that follows a question mark in a pathname to

apply open options on the file descriptor used to access the object. Multiple options

are separated by commas. For example:

• "/pps/media/PlayList" — open the PlayList file with no options

• "/pps/media/PlayList?wait" — open the PlayList file with the wait

option

• "/pps/media/Playlist?wait,delta" — open PlayList file with the wait

and delta options

• "/pps/media/.all?wait" — open the media directory with the wait option

• "/pps/fish?notify=345:water"— open fish and associate it with .notify

group 345

The syntax used for specifying PPS pathname open query options will be easily

recognizable to anyone familiar with the getsubopt() library routine.

Supported pathname open options include:

backlog

Total delta size to keep before flushing this OCB (Open Control Block).

cred

Output the credentials for this object.

critical

Designate the publisher as critical to the object. See Critical option (p. 42).

crypt

Set the crypto domain for this object.

delta

Open the object in delta mode. See Subscription Modes (p. 33).

deltadir

Return the names of all objects (files) in the directory—valid only on the

special .all object in a directory.

40 © 2014, QNX Software Systems Limited

Options and qualifiers

If any objects in the directory are created or deleted, these changes are

indicated by a “+” (created) or a “-” (deleted) sign prefixed to their names.

This behavior allows you to effectively perform a readdir() within PPS and

to monitor filesystem changes without having to also monitor attribute

changes.

See Subscribing to multiple objects (p. 35).

f=filter ...

Place a filter on notifications based on changes to the listed attributes.

See Filtering notifications (p. 42).

flow

Treat the object as a server object, with purge and overflow notifications.

See Server objects (p. 51).

hiwater

Flow high water mark as percent of client backlog. If this tag is not specified,

the default (100 pefcent) value is used.

See Server objects (p. 51).

nopersist

Make the object nonpersistent. When the system restarts, the object won't

exist. The default setting is for all objects to be persistent and reloaded on

restart. See Object and attribute qualifiers (p. 44).

notify=id:value

Associate the opened file descriptor with the notification group specified by

id. This id is returned on the first read from an open() on the “.notify” file

in the root of the PPS mount point.

Reads of the “.notify” file will return the string: id:value whenever data is

available on the file descriptor opened with the notify= query.

See Subscribing to multiple objects (p. 35).

opens

Update an _opens::rd,wr attribute when the open count changes.

reflect

Reflect attribute changes made on this object back to itself.

© 2014, QNX Software Systems Limited 41

Pathname open options

server

Designate the publisher as a "server" for the object. See Server objects (p.

51) for more information.

verbose

Set the verbosity level for this object..

wait

Open the file with the O_NONBLOCK flag cleared so that read() calls wait

until the object changes or a delta appears. See Subscribing (p. 29) for more

information.

Critical option

The critical option can be used as a mechanism to clean up attributes on the abnormal

termination of a publisher.

If this option is used when opening a file descriptor for a write, when the file descriptor

is closed PPS deletes all nonpersistent attributes and prefixes an asterisk (“*”) to the

object name in the notification string it sends to all subscribers. PPS does not provide

a list of the deleted attributes.

Duplicate critical file descriptors

You should never have more than one critical file descriptor for any one PPS object.

File descriptors can be duplicated either explicitly (by dup(), dup2(), fcntl(), etc.) or

implicitly (by fork(), spawn(), etc.). Duplicated descriptors in effect increment a

reference count on the underlying critical descriptor. The behavior required of critical

objects (the notification and deletion of volatile attributes) is not triggered until the

reference count for a file descriptor drops to zero, indicating that the original and all

duplicates are closed.

However, if you open a PPS object more than once in critical mode, each file descriptor

behaves as a critical descriptor: if the reference count of any one file descriptor drops

to zero, the notification and deletion behavior is triggered for the object — even if

other descriptors remain open.

Filtering notifications

You can filter PPS notifications based on the names of attributes, the values of

attributes, or a combination of the two.

To filter notifications, use the following syntax:

f=<attrspec>{+<attrspec>}...

42 © 2014, QNX Software Systems Limited

Options and qualifiers

where attrspec is an attribute specification consisting of either an attribute's name or

an expression specyfing an attribute's value. The syntax for specifying an attribute's

value is:

<attr><operator><value>

where attr is the attribute's name, operator is the operator used to determine the

threshold for triggering notifcations, and value is the value to compare to.

Supported operators are:

• <, <=, >, >=, =, ==, and != for integers. Integer values must be in the range of a

long long; otherwise they are treated as strings.

• =, ==, and != for strings. Note that = and == are synonymous. String values can

include the + character, but only by escaping it with \.

If you specify only an attribute's name, PPS notifies you of any updates where an

attribute with that name is set. If you specify a name, operator, and value, PPS notifies

you of any updates where the named attribute is set to a value that matches the given

operator and value expression.

In both full and delta modes the file descriptor will get notifications if any of the

attribute specifications match:

• In full mode the entire object is returned.

• In delta mode only the specified attributes are returned. Changes to other attributes

are filtered out.

In the following examples the name of the object being opened is "objname":

• /pps/objname?delta,f=attr1+attr2 — return change notifications for only

the attributes named "attr1" and "attr2"

• /pps/objname?delta,f=attr1<37 — return change notifications for only the

attribute named "attr1" when its value is less than 37

• /pps/objname?f=attr2<0+attr2>100 — return change notifications for the

entire object when the attribute "attr2" has an integer value less than 0 or greater

than 100

• /pps/objname?delta,f=attr1=a\+b — return change notifications only for

the attribute "attr1" when it has a string value of "a+b"

• /pps/objname?delta,f=attr1+attr2<10 — return change notifications

only for the attribute "attr1" (for any change) and attribute "attr2" when it has an

integer value less than 10.

© 2014, QNX Software Systems Limited 43

Pathname open options

Object and attribute qualifiers

PPS supports qualifiers to objects and their attributes.

Object and attribute qualifiers are contained in square brackets (“[qualifier]”) and are

prefixed to lines containing an object or an attribute name.

You can set qualifiers to read() and write() calls by starting a line containing an object

or attribute name with an open square bracket, followed by a list of single-letter or

single-numeral qualifiers, and terminated by a close square bracket.

The following qualifiers are supported:

n

Nonpersistence. When set on an object, makes it nonpersistent. When set

on an attribute, makes it nonpersistent if the parent object is also

nonpersistent; otherwise is ignored. For more information, see Nonpersistence

qualifier (p. 45).

i

Item. Specifies an item for a set attribute. For more information, see Item

qualifier (p. 45).

• Qualifiers always default to “clear”.

• On a read() call you will see a preceding qualifier list “[option letters]” only

for options that have been set.

• Attribute options always precede both the special character and the object

or attribute name.

Setting qualifiers

If nothing precedes a qualifier, that qualifier is set. It the qualifier is preceded by a

minus sign (“-”), that qualifier is cleared. If a qualifier is not specified, that qualifier

is not changed. For example:

• [n]url::www.qnx.com — set the nonpersistence qualifier on this attribute

• [-n]url::www.qnx.com — clear the nonpersistence qualifier on this attribute

• url::www.qnx.com — do not change the current nonpersistence qualifier on

this attribute

• [i]items::hammer, — add hammer to the set

• [-i]items::screw driver, — remove screw driver from the set

44 © 2014, QNX Software Systems Limited

Options and qualifiers

Nonpersistence qualifier

The nonpersistence qualifier can be used for objects and attributes. It's very useful

on attributes that may not be valid across a system restart and don't need to be saved.

The table below describes the effects of the nonpersistence qualifier on PPS

objects and attributes:

AttributeObjectActionSyntax

Make the attribute

nonpersistent.

Make the object and its attributes

nonpersistent; ignore any persistence

qualifiers set on this object's

attributes.

Setn

Make the attribute

persistent, if the attribute's

object is also persistent.

Make the object persistent;

persistence of the object's attributes

is determined by the individual

attribute's qualifiers.

Clear-n

Setting the nonpersistence qualifier on an object overrides any nonpersistence

qualifiers set on the object's attributes and is therefore convenient if you need to make

a temporary object in which nothing persists.

Item qualifier

The item qualifier can be used for attributes only. It causes PPS to treat the value

following the qualifier as a set of items. Items in a set are separated by a user-defined

separator, such as a comma.

The item separator:

• is required

• must be the last character in a value that uses the item qualifier

• can be any character not used in the items

Adding and deleting set items

You may add or delete only one set item at a time. For example, to add items to a set:

[i]items::hammer,
[i]items::screw driver,

Or, to delete an item from a set:

[-i]items::hammer,

The following examples show incorrect item syntax and are not permitted:

[i]items::hammer,screw driver,

Or:

[-i]items::hammer,screw driver,

© 2014, QNX Software Systems Limited 45

Object and attribute qualifiers

Examples

Example 1: Duplicate items

This example shows that PPS ignores a duplicate attempt to add the same item to a

set. The following lines written:

[i]items::hammer,
[i]items::hammer,
[i]items::screw driver,

would result in the following being read by a subscriber:

items::hammer,screw driver,

Example 2: Null items

This example shows how PPS supports a null item in a set. The following line written

to the set created in the previous example:

[i]items::,

would result in the following being read by a subscriber:

items::hammer,screw driver,,

Example 3: Delete an item

This example shows how to delete an item from a set. The following line written to

the set created and updated in the previous examples:

[-i]items::hammer,

would result in the following being read by a subscriber:

items::screw driver,,

46 © 2014, QNX Software Systems Limited

Options and qualifiers

Reading and writing from the command line

PPS objects and their attributes can be viewed and changed using standard

command-line utilities.

You can use standard command-line utilities to view the status of objects or to change

their attributes. To read objects, use the cat command. To write to objects, use echo.

Here are some examples.

Using cat to read

View the current contents of the Bluetooth status object:

cat /pps/services/bluetooth/status

Monitor the changes to the mpaudio status object as they occur:

cat /pps/services/mm-control/mpaudio/status?wait,delta

Using echo to write

Set the pause attribute to 1 in the gears control object:

echo "pause:n:1" >> /pps/services/gears/control

Set the demo_enabled attribute to false, overwriting all other existing

attributes in the mytest control object:

echo "demo_enabled:b:false" > /pps/mytest/control

© 2014, QNX Software Systems Limited 47

Reading and writing from the command line

Active Control List configuration file

The -A option gives the path to an Active Control List (ACL) configuration file, which

can be used to set access permissions. Using the ACL file eliminates reads to establish

PPS object access permissions at startup, and can thus be used to reduce startup

times.

Overview

At startup, clients may need to make multiple setfacl commands to set access

permissions for PPS objects. Since every setfacl commands sends messages, this

method of setting object access permissions increases messaging overhead. Using

one or more ACL configuration files eliminates this messaging overhead and reduces

the PPS startup time.

You can use more than one instance of the -A option to specify multiple ACL

configuration files. In the event that the access permissions in the different files do

not agree, the permissions in the last configuration file listed take precedence.

A PPS mount point can be associated with no more than one

configuration.

Location of ACL configuration files

You should place ACL configuration files in a secure storage location (not in the same

location as the PPS objects).

ACL configuration file format

The ACL configuration file format is intended to facilitate both generation and parsing.

Descriptors

An ACL configuration file consists of of zero or more text descriptors. A descriptor

specifies properties of a PPS object path. In particular, it specifies access permissions

(owner, mode, and ACL). A descriptor also records other important properties of the

object, including whether it is a server object; whether it is persistent, and whether it

should be created if is missing on startup.

Descriptor format

A descriptor consists of two or more non-blank lines of text followed by a blank line

(or end of file). The two mandatory lines of text define the:

• file or directory path

• file or directory details

48 © 2014, QNX Software Systems Limited

Options and qualifiers

These two mandatory lines may optionally be followed by a POSIX ACL, in either short

or long text form.

The permissions described by the ACL (if one is present) take precedence over those

specified in the details line. An ACL must be of a form usable by the acl_from_text()

function (i.e. either short or long text form). The ACL must also be complete and valid

according to acl_valid(). Specifically, an extended ACL must include an explicit

ACL_MASK ACE. No mask will be computed if one is missing.

Leading and trailing whitespace are stripped from lines before processing.

Comments are introduced by the "#" character, and run to the end of the line; they

are syntactically equivalent to whitespace.

Paths

Paths must be specified relative to the PPS mount point. They may not contain:

• extraneous path separators or relative components such as "." or ".."

• leading or trailing whitespaces

• the "#" character

Paths for directories must end with a single separator character.

Details

The details line must not contain extraneous whitespace, and must be of the form:

user:group:mode[:property[,property...]]

where:

• user is the file or directory owner

• group is the file or directory group

• mode is a bit map of file permissions: read, write, and exectute for user, group,

and other (as well as the setuid, setgid, and sticky bits), stored as an octal number

The properties are optional and consist of zero or more of the following:

DescriptionProperty

The object should be created if it is

missing.

O_CREAT

Disable persistence for this object and its

attributes.

nopersist

Treat the object as a server object.server

© 2014, QNX Software Systems Limited 49

Active Control List configuration file

Example ACL configuration file

The following example shows ACL configurations for a directory with a POSIX ACL in

short text form, and for a file.

a/directory/
nobody:nobody:2711:O_CREAT # comment
user::rwx
group::x
other::x
mask::x # comment
group:nto:x

a/directory/file
nobody:nobody:640

50 © 2014, QNX Software Systems Limited

Options and qualifiers

Chapter 7
Server objects

PPS supports a special type of object called a server object. When a client writes to

a server object, only the application that created it with the ?server option (called

the "server") will get the message. Other clients cannot see that message.

At write time, PPS appends a unique identifier to the object name so that the "server"

knows which client connection is sending the message. This allows the connection to

have stateful information. For example:

@foo.1234

indicates object foo with client identifier 1234. When a client connects, the server

reads a new object that is prefixed with a + symbol (for example, +@foo.1234).

Disconnects are sent to the "server" and the + prefix is changed to a - prefix.

When a server replies, it must write the object name with the unique identifier

appended so that the response is sent only to the client that is marked by the unique

identifier. If a server does not append the unique identifier to the object name, the

message will be broadcast to all clients that are connected to the object.

For more information about sending and receiving messages from server objects, see

Working with server objects (p. 53)

An application that opens an object with the ?server option automatically becomes

a critical publisher of that object. It also automatically receives notifications in delta

mode.

Do not duplicate file descriptors of server objects. Behavior with duplicate

server file descriptors is undetermined.

The following figure shows a PPS transaction using the ?server option:

© 2014, QNX Software Systems Limited 51

Client Server PPS

open /pps/foo?server

open /pps/foo?delta

+@foo.1234

attr::value

@foo.1234

@foo.1234

resp::value

close /pps/foo

-@foo.1234

attr::value

resp::value

Figure 3: Using the ?server option

52 © 2014, QNX Software Systems Limited

Server objects

Working with server objects

PPS server mode provides point-to-point communication between a single server and

one or more clients. Messages are formatted as for standard PPS usage, but there is

no data persistence and there is no concept of a current object state. A client opening

a PPS server object won't receive anything until the server explicitly sends a message.

Implementing a server or client in C/C++ is much easier if you make use of the PPS

Encoding and Decoding API, since attributes are frequently not simple strings. See

PPS encoding and decoding API (p. 55) for more information.

Sending messages through PPS server objects

A client and server communicating through a PPS server object can use whatever

messaging format is required.

In principle any PPS attributes can be sent to a server object. However, to aid

interoperability between clients and servers, we recommend the protocol described in

the following sections.

This protocol defines how messages are sent from one side to the other and how replies

to messages are identified. The protocol is symmetric; the method used to send

messages is independent of whether an application is a client or server.

Sending a message

A message that is not sent as a response to another message can contain the following

attributes:

msg

The type of message, typically the name of the function or command to

execute. This should normally be short with no embedded spaces.

id

A string that identifies this instance of the message, which can be anything

the client selects. The server always reflects it back. By convention, if the

id is omitted, the server should not provide a response. Therefore, the

presence or absence of the id can be used to as a mechanism to request a

response. Typically, the id is simply a sequence number represented as a

string, although it might be anything. There is no requirement that the id

be unique.

dat

© 2014, QNX Software Systems Limited 53

Working with server objects

Other data (for example, parameters) associated with the message. This

attribute is optional. The dat attribute is frequently JSON encoded because

there is often a need to encode more than a simple string.

Replying to a message

The attributes that can be sent in reply to a message are as follows:

res

A string that is identical to the value of the msg attribute of the message

this is a response to.

id

A string that is identical to the value of the id attribute of the message this

is a response to.

dat

Other data that is associated with the response. This attribute is optional.

The dat attribute is frequently JSON encoded because there is often a need

to encode more than a simple string.

err

If present this indicates that the request failed. It should be the number of

the error as defined in errno.h. For example, for EBUSY you would put 16

in this field.

errstr

An optional string that could contain further explanation of the error or

debugging information. For example, a more verbose explanation might be

required for an error resulting from a request that includes a SQL statement,

since errors might occur for diverse reasons.

Supporting cancellation of requests

If a server supports a request that can be cancelled after being made, we recommended

that the cancellation take the form of a message with a value of "cancel" for the msg

attribute and with the same id attribute as the original request. It's not necessary to

support the cancellation of requests, but if your application does support them, this

standard message should be used.

54 © 2014, QNX Software Systems Limited

Server objects

Chapter 8
PPS encoding and decoding API

The PPS encoding and decoding API makes it easy to encode and decode complex

data structures such as arrays and objects in PPS attributes and to ensure attributes

are properly typed.

It is usually much easier to use these functions for all but the simplest of tasks and

often much safer. Although you can use the standard libc functions to encode and

decode PPS data, experience has shown it's sometimes harder to do this correctly

than one might think.

PPS attribute encodings

The PPS encoding and decoding API supports the attribute encodings described in

Attribute syntax (p. 18).

To allow interoperability between PPS clients of varying sophistication, the simplest

encoding is always used by the encoder functions. For example, consider a string that

can be represented using the null encoding, C encoding, and JSON. If the string being

encoded does not include new line characters, the null encoding is used; if it does,

the encoding switches to C.

The existence of these encodings should be important only if you're going to write your

own PPS parsers or if you need to deal with PPS data from shell scripts.

© 2014, QNX Software Systems Limited 55

Encoding PPS data

The encoding functions store PPS data in the data structure pps_encoder_t. In

many cases, the same pps_encoder_t structure will be reused multiple times. To

begin encoding, you call either pps_encoder_initialize() (if you are starting with a

pps_encoder_t structure that has not been initialized) or pps_encoder_reset() (to

start again with one that you've previously used). Following this, you make calls to

functions such as pps_encoder_add_string() or pps_encoder_add_int() to add data

elements. Once everything has been added, you can obtain a pointer to the encoded

data by calling pps_encoder_buffer() and you can find out the length of the encoded

data by calling pps_encoder_length().

The PPS encoder functions can encode both simple attribute types such as strings

and numbers, as well as complex types including objects and arrays. To create objects,

call the function pps_encoder_start_object() to start the object and

pps_encoder_end_object() to end it. To create arrays, you use pps_encoder_start_array()

and pps_encoder_end_array() instead. Objects and arrays must be properly nested.

While all the functions for adding data return a status, it's typically not necessary to

check it after each call. Once any function fails, all subsequent calls will fail until the

encoder is reset. Thus a reasonable strategy is to make all calls assuming they will

succeed and only test the return value of pps_encoder_buffer().

To take a simple example, suppose we want to encode PPS data to represent GPS

information. In this case the PPS data has a speed attribute representing the current

speed, a city attribute with the name of the current city, and a position attribute

that contains the latitude and longitude of the current position. You might use the

following code to encode this data:

pps_encoder_t encoder;

pps_encoder_initialize(&encoder, false);
pps_encoder_start_object(&encoder, "@gps");
pps_encoder_add_double(&encoder, "speed", speed);
pps_encoder_add_string(&encoder, "city", city);
pps_encoder_start_object(&encoder, "position");
pps_encoder_add_double(&encoder, "longitude", lon);
pps_encoder_add_double(&encoder, "latitude", lat);
pps_encoder_end_object(&encoder);
pps_encoder_end_object(&encoder);

if (pps_encoder_buffer(&encoder) != NULL) {
 write(fd,
 pps_encoder_buffer(&encoder),
 pps_encoder_length(&encoder));
}
pps_encoder_cleanup(&encoder);

The purpose of each call is as follows:

56 © 2014, QNX Software Systems Limited

PPS encoding and decoding API

• pps_encoder_initialize() — Initializes the pps_encoder_t structure from an

unknown state. The second parameter is false, indicating that we're encoding as

PPS data. To have the data encoded as JSON, pass true instead.

• pps_encoder_start_object() — Begins a new object with a name @gps. For writing

ordinary PPS data, you don't need to start and end an object. If this were part of

a server using PPS server mode, this step would be necessary to address a message

to a single client.

• pps_encoder_add_double(), pps_encoder_add_string() — Adds double and string

attributes to the object. There are also functions to add integers, Booleans, and

nulls. In this case, an attribute name is being passed in these calls since we're

encoding into an object; if we were in the middle of an array, we would just pass

NULL for the names.

• pps_encoder_start_object(), pps_encoder_add_double(), pps_encoder_add_double(),

pps_encoder_end_object() — Because we want both the latitude and longitude to

be contained within a single position attribute, we have to call

pps_encoder_start_object() again. Having done this we then call

pps_encoder_add_double() to add the latitude and longitude and then

pps_encoder_end_object() to return back to the PPS level.

• pps_encoder_end_object() — Ends the PPS object we're encoding.

• pps_encoder_buffer() — Returns a pointer to the encoder buffer. We're using it

here in two ways. The encoder returns a non-NULL pointer only if there have been

no errors and all objects and arrays have been ended. So the first call here is testing

that we have valid data to send; the second call is providing the buffer in a call to

write the data. The string in the buffer has a zero byte to terminate it.

• pps_encoder_length() — Returns the length of the data.

The resulting PPS object should look like this:

@gps
speed:n:65.412
city::Ottawa
position:json:{"latitude":45.6512,"longitude":-75.9041}

© 2014, QNX Software Systems Limited 57

Encoding PPS data

Decoding PPS data

For the purposes of the decoder functions of this API, an object is a container that

holds zero or more attributes of any type, each of which can be referenced by name.

An array is a container that holds zero or more values that are referenced by position.

Unlike arrays in C, an array here can use a different data type for each element. When

the JSON encoding is used, individual PPS attributes can themselves be objects or

arrays, which can be nested.

The PPS decoder functions allow both PPS and JSON-encoded data to be parsed.

Once a data string has been parsed, the pps_decoder_t structure maintains a

representation of this data as a tree. Immediately upon parsing the data, you are

positioned at the root of the tree. Using the PPS decoder functions you can:

• extract simple types such as numbers or strings that are located at the current level

• move into more deeply nested objects or arrays by calling pps_decoder_push()

• return to an outer level by calling pps_decoder_pop()

The decoder is always positioned within some object or array, either at one of its

elements or off the end at a special element of type PPS_TYPE_NONE. Many of the

decoder functions take a name argument that indicates the PPS attribute or object

property name to look for. If the name is NULL, the current element is used. When

extracting data from arrays, the name must always be NULL because array elements

don't have names. When you successfully extract a data element, for example by calling

pps_decoder_get_int() or after you call pps_decoder_pop(), the position automatically

moves to the next element. So, for example, you could extract all elements of an array

of numbers using code like this:

while (pps_decoder_type(decoder, NULL) != PPS_TYPE_NONE) {
 pps_decoder_get_double(decoder, NULL, &values[i++]);
}

Let's look at a complete example, using the following PPS data:

@gps
city::Ottawa
speed:n:65.412
position:json:{"latitude":45.6512,"longitude":-75.9041}

To extract this data, you might use code like this:

const char *city;
double lat, lon, speed;
pps_decoder_t decoder;

pps_decoder_initialize(&decoder, NULL);
pps_decoder_parse_pps_str(&decoder, buffer);
pps_decoder_push(&decoder, NULL);
pps_decoder_get_double(&decoder, "speed", &speed);
pps_decoder_get_string(&decoder, "city", &city);

58 © 2014, QNX Software Systems Limited

PPS encoding and decoding API

pps_decoder_push(&decoder, "position");
pps_decoder_get_double(&decoder, "latitude", &lat);
pps_decoder_get_double(&decoder, "longitude", &lon);
pps_decoder_pop(&decoder);

pps_decoder_pop(&decoder);

if (pps_decoder_status(&decoder, false) == PPS_DECODER_OK) {
 . . .
}
pps_decoder_cleanup(&decoder);

Let's take a look at each of these function calls:

• pps_decoder_initialize() — Initializes the pps_decoder_t structure from an

unknown state. You can skip the subsequent call to pps_decoder_parse_pps_str()

and just pass the data to be parsed in this call, but typically you'll be parsing

multiple buffers of PPS data, so you'll need both steps.

• pps_decoder_parse_pps_str() — Parses the PPS data into the decoder's internal

data structures. This process modifies the buffer that's passed in, and the internal

structure makes use of pointers into this buffer, so the contents of the buffer must

remain valid and unchanged until the parsing results are no longer needed.

• pps_decoder_push() — Causes the decoder to descend into the gps object to allow

the values of the attributes to be extracted. In this particularly simple situation,

this step might seem unnecessary. But if, for example, the data came from reading

the .all special object, which returns multiple objects, it's important to indicate

which particular object you're extracting data from.

• pps_decoder_get_double(), pps_decoder_get_string — Extract data from the PPS

object, in this case the speed and city attributes. Note that the order of these

calls doesn't have to match the order of the attributes in the original PPS data.

• pps_decoder_push(), pps_decoder_get_double, pps_decoder_pop — In this case,

the latitude and longitude are both contained in a single JSON-encoded PPS

attribute. Therefore, before extracting latitude and longitude, we have to

descend into the object they're contained in by calling pps_decoder_push(). Having

pushed into the object, we can extract the two values just as if they had been PPS

attributes. After the position data has been extracted, we then call

pps_decoder_pop() to go back a level in case we need to extract more PPS

attributes.

• pps_decoder_pop() — Performs the reverse action of the initial pps_decoder_push

and pops out of an object (in this case the gps object) to its parent. Calling

pps_decoder_pop() in this case is not really required, but if we had read .all and

there were multiple objects contained in the data, we would need this call to

advance to the next object.

• pps_decoder_status() — Returns the status of the decoder object. If this is

PPS_DECODER_OK, then all parsing and data extraction occurred successfully.

The preceding calls have the effect that if they fail, they will update the decoder

status, so that you can perform a series of operations and check the status at the

© 2014, QNX Software Systems Limited 59

Decoding PPS data

end, rather than checking at each stage. In this case, the second parameter to

pps_decoder_status() is false, meaning that the status should not be reset to

PPS_DECODER_OK when the function returns. Parsing more data using

pps_decoder_parse_pps_str() also has the effect of resetting the status (unless it

fails).

• pps_decoder_cleanup() — Once you've finished with a decoder object,

pps_decoder_cleanup() will free any memory that was allocated. You need to call

this only when you no longer require the decoder; if you have more data to parse,

you can simply call pps_decoder_parse_pps_str() again.

Handling unknown data

In some cases you'll need to deal with data that is of an unknown type or that varies.

The decoder provides the functions pps_decoder_type() and pps_decoder_name(),

which provide the type and attribute name associated with the current element. These

functions allow your application to iterate over an object in the same manner as an

array, advancing from element to element and extracting the type, name, and value

of each element.

At all times, the decoder is positioned on an element of an array or object. So, how

do you know if you are within an object or array? The API provides the special attribute

name ".", which refers to the current container much like "." refers to the current

directory in a filesystem. Your application can determine the type of the current

container by calling the function pps_decoder_type() with the "." attribute. For example:

if (pps_decoder_type(&decoder, ".") == PPS_TYPE_ARRAY) {
 . . .
}

A good example of how to handle unknown data is the pps_decoder_dump_tree()

function, which takes an arbitrary object or array and dumps it to a file. The complete

source for this function is as follows:

void
pps_decoder_dump_tree(pps_decoder_t *decoder, FILE *fp)
{
 pps_decoder_state_t state;

 pps_decoder_get_state(decoder, &state);
 pps_decoder_dump_collection(decoder, fp, 0);
 fprintf(fp, "\n");
 pps_decoder_set_state(decoder, &state);
}

static void
pps_decoder_dump_collection(pps_decoder_t *decoder, FILE *fp, int prefix)
{
 int len = pps_decoder_length(decoder);
 int i;
 int flags = pps_decoder_flags(decoder, ".");

 if (flags) {
 fprintf(fp,"(%s)", flags & PPS_DELETED ? "deleted" :
 flags & PPS_CREATED ? "created" :
 flags & PPS_TRUNCATED ? "truncated" :

60 © 2014, QNX Software Systems Limited

PPS encoding and decoding API

 flags & PPS_PURGED ? "purged" : "other");
 return;
 }

 (void)pps_decoder_goto_index(decoder, 0);
 if (pps_decoder_type(decoder,".") == PPS_TYPE_OBJECT) {
 fprintf(fp, "{\n");
 for (i = 0; i < len; ++i) {
 fprintf(fp,"%*s%s (%s) ", prefix+2, "",
 pps_decoder_name(decoder),
 pps_datatypes[pps_decoder_type(decoder,NULL)]);
 pps_decoder_dump_value(decoder, fp, prefix + 2);
 }
 fprintf(fp,"%*s}",prefix, "");
 }
 else {
 fprintf(fp, "[\n");
 for (i = 0; i < len; ++i) {
 fprintf(fp,"%*s%d (%s) ", prefix+2, "", i,
 pps_datatypes[pps_decoder_type(decoder,NULL)]);
 pps_decoder_dump_value(decoder, fp, prefix + 2);
 }
 fprintf(fp,"%*s]", prefix, "");
 }
}

static void
pps_decoder_dump_value(pps_decoder_t *decoder, FILE *fp, int prefix)
{
 double dvalue;
 bool bvalue;
 const char *svalue;

 switch (pps_decoder_type(decoder,NULL)) {
 case PPS_TYPE_NUMBER:
 (void)pps_decoder_get_double(decoder, NULL, &dvalue);
 fprintf(fp, "%lf", dvalue);
 break;
 case PPS_TYPE_BOOL:
 (void)pps_decoder_get_bool(decoder, NULL, &bvalue);
 fprintf(fp, "%s", bvalue ? "true" : "false");
 break;
 case PPS_TYPE_STRING:
 (void)pps_decoder_get_string(decoder, NULL, &svalue);
 fprintf(fp, "%s", svalue);
 break;
 case PPS_TYPE_ARRAY:
 case PPS_TYPE_OBJECT:
 (void)pps_decoder_push(decoder, NULL);
 pps_decoder_dump_collection(decoder, fp, prefix);
 (void)pps_decoder_pop(decoder);
 break;
 case PPS_TYPE_NULL:
 default:
 (void)pps_decoder_next(decoder);
 }
 fprintf(fp,"\n");
}

Dealing with errors

There are a number of ways to deal with errors when using the decoder functions.

Many of the functions return a status. For example, pps_decoder_get_string() returns

PPS_DECODER_OK if it succeeds and another value otherwise. While you can take

the traditional approach by checking the return value of each function and then taking

© 2014, QNX Software Systems Limited 61

Decoding PPS data

the appropriate action, this isn't the preferred method because it tends to be verbose

and no more effective than the alternatives.

One way of handling errors is the "all or nothing" approach. In some cases, a PPS

message (or JSON string), is expected to contain a particular set of attributes; if any

are missing it's considered an error. In this case, you can attempt to extract all the

attributes expected and just check the final status of the pps_decoder_t structure.

For example, if you need a message to contain the three attributes name, size, and

serial_no, you could do this:

pps_decoder_get_string(decoder, "name", &name);
pps_decoder_get_int(decoder, "size", &size);
pps_decoder_get_string(decoder, "serial_no", &serial_no);

if (pps_decoder_status(decoder, true) != PPS_DECODER_OK) {
 printf("Bad message\n");
 . . .
}

In this case, rather than individually check whether each attribute was fetched

successfully, we just check at the end that everything was OK.

The above method of error handling works fine in many cases, but sometimes there's

no fixed set of attributes that must always be included. So another way of handling

errors is to pre-initialize all variables, extract values from the PPS data, and just use

the results. If an attribute was missing or of the wrong type, the corresponding variable

is left with the value it was initialized with. For example:

char *name = NULL;
int size = -1;
char *serial_no = NULL;

pps_decoder_get_string(decoder, "name", &name);
pps_decoder_get_int(decoder, "size", &size);
pps_decoder_get_string(decoder, "serial_no", &serial_no);

if (name != NULL) {
. . .
}

You can, of course, use some hybrid of the two approaches. For example, you might

fetch all mandatory attributes first, checking that the final status is OK, and then

fetch all optional attributes, relying on having initialized your variables with appropriate

default values.

62 © 2014, QNX Software Systems Limited

PPS encoding and decoding API

Other features of PPS

Besides conveying the values of attributes, PPS can also signal when attributes and

objects are deleted and when objects are created or truncated.

This extra data can be obtained by calling the pps_decoder_flags() function, which

returns the flags associated with an object or attribute. These flags consist of any

combination of the values in the enumeration pps_attrib_flags_t. For example,

if it's possible for the gps object to be deleted, then before calling pps_decoder_push(),

you might first do the following:

if (pps_decoder_flags(&decoder, NULL) & PPS_DELETED) {
 . . .
}

These flags are important when writing a program that acts as PPS server. For example,

to handle client connections and disconnections, you could use code such as:

char *clientid;

// The data read from pps is not null terminated so we need to
// terminate it now
buffer[len] = '\0';
pps_decoder_parse_pps_str(&decoder, buffer);

// Get the id of this client
clientid = pps_decoder_name(&decoder);

if (pps_decoder_flags(&decoder, NULL) & PPS_CREATED) {
 // This is a new client
}
else if (pps_decoder_flags(&decoder, NULL) & PPS_DELETED) {
 // The client has just disconnected
}
else {
 // Regular message from client
}

© 2014, QNX Software Systems Limited 63

Other features of PPS

Chapter 9
PPS API reference

This chapter describes the publicly visible PPS API functions and data types.

The PPS header file pps.h is found in the $QNX_TARGET/usr/include directory.

© 2014, QNX Software Systems Limited 65

pps_attrib_flags_t

The states for PPS objects and attributes

The values enumerated by pps_attrib_flags_t define the possible states for PPS

objects and attributes. These states include:

• PPS_INCOMPLETE — the object or attribute line is incomplete.

• PPS_DELETED — the object or attribute has been deleted.

• PPS_CREATED — the object has been created.

• PPS_TRUNCATED — the object or attribute has been truncated.

• PPS_PURGED — a critical publisher has closed its connection and all nonpersistent

attributes have been deleted.

• PPS_OVERFLOWED — queued data overflowed because it was not read fast enough.

66 © 2014, QNX Software Systems Limited

PPS API reference

pps_attrib_t

pps_attrib_t

typedef struct {
 char *obj_name;
 int obj_index;
 char *attr_name;
 int attr_index;
 char *encoding;
 char *value;
 int flags;
 int options;
 int option_mask;
 int quality;
 char *line;
 int reserved[3];
} pps_attrib_t;

Description:

The pps_attrib_t data structure carries information about PPS objects and attributes

obtained by running the ppsparse() function. It includes these members:

DescriptionTypeMember

A pointer to the name of the last PPS object encountered.

ppsparse() sets this pointer only if it encounters a PPS

charobj_name

object name. You should initialize this pointer before

calling ppsparse().

The index for obj_name in the objnames array. It's set

to -1 if the index is not found or objnames is NULL. You

should initialize this value before calling ppsparse().

intobj_index

A pointer to the name of the attribute from the line of

PPS data that ppsparse() just parsed. It's set to NULL if

no attribute name was found.

charattr_name

The index for attr_name in the attrnames array. It's set

to -1 if the index is not found or attrnames is NULL.

intattr_index

A pointer to a string that indicates the encoding used for

the PPS attribute. This value is relevant only if the

ppsparse() return value is PPS_ATTRIBUTE.

charencoding

A pointer to the value of a PPS attribute. This value is

relevant only if the ppsparse() return value is

PPS_ATTRIBUTE.

charvalue

Flags indicating that parsing has found a PPS special

character prefixed to a line or that the line is incomplete.

intflags

© 2014, QNX Software Systems Limited 67

pps_attrib_t

DescriptionTypeMember

Indicates which nonnegated options are prefixed in

square brackets to a line.

intoptions

A mask of the options (both negated and nonnegated)

prefixed to a line.

intoption_mask

Not used.intquality

Pointer to the beginning of the line parsed by ppsparse(),

for use in case of a parsing error.

charline

For internal use.int

array

reserved

68 © 2014, QNX Software Systems Limited

PPS API reference

pps_decoder_cleanup()

Clean up a pps_decoder_t structure

Synopsis:

#include <pps.h>

void pps_decoder_cleanup(pps_decoder_t *decoder);

Arguments:

decoder

The PPS decoder structure.

Library:

libpps

Description:

The function pps_decoder_cleanup() cleans up a pps_decoder_t structure, freeing

any allocated memory. Call this function only when the decoder structure is no longer

needed. You don't need to call pps_decoder_cleanup() between calls to

pps_decoder_parse_pps_str() or pps_decoder_parse_json_str().

Returns:

None.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 69

pps_decoder_cleanup()

pps_decoder_dump_tree()

Write a decoded PPS data structure in human-readable format to a file

Synopsis:

#include <pps.h>

void pps_decoder_dump_tree(pps_decoder_t *decoder, FILE *fp);

Arguments:

decoder

A pointer to the PPS decoder structure.

fp

A pointer to the file to write to.

Library:

libpps

Description:

The function pps_decoder_dump_tree() writes the contents of a decoded PPS data

structure in human-readable format to the specified file.

Returns:

None.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

70 © 2014, QNX Software Systems Limited

PPS API reference

pps_decoder_error_t

pps_decoder_error_t

The values enumerated by pps_decoder_error_t define the errors that can be

returned by the PPS decoder functions. These values include:

• PPS_DECODER_OK — no error occurred.

• PPS_DECODER_NO_MEM — an error occurred while allocating memory during the

parsing operation.

• PPS_DECODER_BAD_TYPE — there was a request for the wrong type of data

• PPS_DECODER_NOT_FOUND — the requested item was not found

• PPS_DECODER_PARSE_ERROR — an error occurred while parsing JSON-encoded

data.

• PPS_DECODER_DELETED — the requested item was deleted.

• PPS_DECODER_CONVERSION_FAILED — a numeric conversion was out of range

or would result in a loss of precision.

• PPS_DECODER_POP_AT_ROOT — a call was made to pps_decoder_pop() while at

the root of the tree (that is, there is nothing to pop to).

© 2014, QNX Software Systems Limited 71

pps_decoder_error_t

pps_decoder_flags()

Return the flags associated with the current or named attribute

Synopsis:

#include <pps.h>

int pps_decoder_flags(pps_decoder_t *decoder,
const char *name);

Arguments:

decoder

The PPS decoder structure.

name

The name of the attribute to provide the flags for. If NULL, the flags of the

current node are returned.

Library:

libpps

Description:

The function pps_decoder_flags() returns the flags associated with either the current

node or the node of the specified name.

Returns:

The flags of the specified attribute. See pps_attrib_flags_t (p. 66).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

72 © 2014, QNX Software Systems Limited

PPS API reference

pps_decoder_get_bool()

Extract a Boolean value from the current or named node

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_get_bool(
pps_decoder_t *decoder,
const char *name,
bool *value);

Arguments:

decoder

A pointer to the PPS decoder structure.

name

The name of the property to extract the value from. Specify NULL to extract

the data from the current node.

value

A pointer to a Boolean to take the result.

Library:

libpps

Description:

The function pps_decoder_get_bool() extracts a Boolean value from the current node

or the node of the specified name. Following successful extraction, the decoder

advances to the next node.

Returns:

PPS_DECODER_OK

Success.

PPS_DECODER_BAD_TYPE

There was a type mismatch.

PPS_DECODER_DELETED

© 2014, QNX Software Systems Limited 73

pps_decoder_get_bool()

The attribute was deleted.

PPS_DECODER_NOT_FOUND

The specified node does not exist.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

74 © 2014, QNX Software Systems Limited

PPS API reference

pps_decoder_get_double()

Extract a double value from the current or named node

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_get_double(
pps_decoder_t *decoder,
const char *name,
double *value);

Arguments:

decoder

A pointer to the PPS decoder structure.

name

The name of the property to extract the value from. Specify NULL to extract

the data from the current node.

value

A pointer to an integer to take the result.

Library:

libpps

Description:

The function pps_decoder_get_double extracts a double value from the node having

the specified name or, if the name argument is NULL, the current node. Following

successful extraction, the decoder advances to the next node.

Returns:

PPS_DECODER_OK

Success.

PPS_DECODER_DELETED

The attribute was deleted.

PPS_DECODER_BAD_TYPE

© 2014, QNX Software Systems Limited 75

pps_decoder_get_double()

There was a type mismatch.

PPS_DECODER_NOT_FOUND

The specified node does not exist.

PPS_DECODER_CONVERSION_FAILED

The value of the attribute is outside the range or would lose precision when

converted to the specified type.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

76 © 2014, QNX Software Systems Limited

PPS API reference

pps_decoder_get_int()

Extract an integer value from the current or named node

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_get_int(
pps_decoder_t *decoder,
const char *name,
int *value);

Arguments:

decoder

A pointer to the PPS decoder structure.

name

The name of the property to extract the value from. Specify NULL to extract

the data from the current node.

value

A pointer to an integer to take the result.

Library:

libpps

Description:

The function pps_decoder_get_int() extracts an integer value from the node having

the specified name, or if the name argument is NULL, the current node. Following

successful extraction, the decoder advances to the next node.

Returns:

PPS_DECODER_OK

Success.

PPS_DECODER_BAD_TYPE

There was a type mismatch.

PPS_DECODER_DELETED

© 2014, QNX Software Systems Limited 77

pps_decoder_get_int()

The attribute was deleted.

PPS_DECODER_NOT_FOUND

The specified node does not exist.

PPS_DECODER_CONVERSION_FAILED

The value of the attribute is outside the range or would lose precision when

converted to the specified type.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

78 © 2014, QNX Software Systems Limited

PPS API reference

pps_decoder_get_int64()

Extract a 64-bit integer value from the current or named node

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_get_int64(
pps_decoder_t *decoder,
const char *name,
int64_t *value);

Arguments:

decoder

A pointer to the PPS decoder structure.

name

The name of the property to extract the value from. Specify NULL to extract

the data from the current node.

value

A pointer to a 64-bit integer to take the result.

Library:

libpps

Description:

The function pps_decoder_get_int64() extracts a 64-bit integer value from the current

node or the node of the specified name. Following successful extraction, the decoder

advances to the next node.

Returns:

PPS_DECODER_OK

Success.

PPS_DECODER_BAD_TYPE

There was a type mismatch.

PPS_DECODER_DELETED

© 2014, QNX Software Systems Limited 79

pps_decoder_get_int64()

The attribute was deleted.

PPS_DECODER_NOT_FOUND

The specified node does not exist.

PPS_DECODER_CONVERSION_FAILED

The value of the attribute is outside the range or would lose precision when

converted to the specified type.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

80 © 2014, QNX Software Systems Limited

PPS API reference

pps_decoder_get_state()

Return the current state of the decoder

Synopsis:

#include <pps.h>

void pps_decoder_get_state(pps_decoder_t *decoder,
pps_decoder_state_t *state);

Arguments:

decoder

A pointer to the PPS decoder structure.

state

A pointer to a structure to hold the state.

Library:

libpps

Description:

The function pps_decoder_get_state() sets the argument state to point to the current

node of the decoder structure. Obtaining the state allows you to return the decoder to

a known state after a sequence of data extraction or navigation calls.

Returns:

None.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 81

pps_decoder_get_state()

pps_decoder_get_string()

Extract a string value from a node

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_get_string(
pps_decoder_t *decoder,
const char *name,
const char **value);

Arguments:

decoder

A pointer to the PPS decoder structure.

name

The name of the property to extract the value from. Specify NULL to extract

the data from the current node.

value

A pointer to an integer to take the result.

Library:

libpps

Description:

The function pps_decoder_get_string() extracts a string value from the node having

the specified name, or if the name argument is NULL, the current node. Following

successful extraction, the decoder advances to the next node.

Returns:

PPS_DECODER_OK

Success.

PPS_DECODER_BAD_TYPE

There was a type mismatch.

PPS_DECODER_DELETED

82 © 2014, QNX Software Systems Limited

PPS API reference

The attribute was deleted.

PPS_DECODER_NOT_FOUND

The specified node does not exist.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 83

pps_decoder_get_string()

pps_decoder_goto_index()

Advance to the indicated element or property of an array or object

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_goto_index(
pps_decoder_t *decoder,
int index);

Arguments:

decoder

A pointer to the PPS decoder structure.

index

The index of the element to go to. The index of the first element is 0 (zero).

Library:

libpps

Description:

The function pps_decoder_goto_index() advances to the indicated element or property

of an array or object.

Returns:

PPS_DECODER_OK

Success.

PPS_DECODER_NOT_FOUND

There is no next property/element.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

84 © 2014, QNX Software Systems Limited

PPS API reference

Safety:

YesThread

© 2014, QNX Software Systems Limited 85

pps_decoder_goto_index()

pps_decoder_initialize()

Initialize the decoder structure

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_initialize(
pps_decoder_t *decoder,
char *str);

Arguments:

decoder

A pointer to the decoder data type to initialize.

str

An initial NULL-terminated string to parse. If it's NULL,

pps_decoder_parse_pps_str must be called to parse the string.

Library:

libpps

Description:

The function pps_decoder_initialize() initializes the specified decoder structure from

an unknown state.

Returns:

PPS_DECODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

86 © 2014, QNX Software Systems Limited

PPS API reference

Safety:

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 87

pps_decoder_initialize()

pps_decoder_is_integer()

Test whether a node is an integer

Synopsis:

#include <pps.h>

bool pps_decoder_is_integer(pps_decoder_t *decoder,
const char *name);

Arguments:

decoder

A pointer to the decoder structure.

name

The name of the property or attribute to examine. If NULL, the type of the

current node is used.

Library:

libpps

Description:

The function pps_decoder_is_integer() returns true if the current node or the node

of the given name (if the decoder is currently within an object) is an integer.

Returns:

true if the current node or the node of the given name (if the decoder is currently

within an object) is an integer.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

88 © 2014, QNX Software Systems Limited

PPS API reference

pps_decoder_length()

Return the number of elements or properties in the current object or array

Synopsis:

#include <pps.h>

int pps_decoder_length(pps_decoder_t *decoder);

Arguments:

decoder

A pointer to the decoder data type.

Library:

libpps

Description:

The function pps_decoder_length() returns the number of elements or properties in

the current object or array.

Returns:

The property or element count.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 89

pps_decoder_length()

pps_decoder_name()

Return the name of the current node

Synopsis:

#include <pps.h>

const char *pps_decoder_name(pps_decoder_t *decoder);

Arguments:

decoder

A pointer to the PPS decoder structure.

Library:

libpps

Description:

The function pps_decoder_name() returns the name of the current node. This is

applicable only if the current node represents an object.

Returns:

The name of the current node.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

90 © 2014, QNX Software Systems Limited

PPS API reference

pps_decoder_next()

Advance to the next node

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_next(pps_decoder_t *decoder);

Arguments:

decoder

A pointer to the PPS decoder structure.

Library:

libpps

Description:

The function pps_decoder_next() advances to the next node in the current object or

array.

Returns:

PPS_DECODER_OK

Success.

PPS_DECODER_NOT_FOUND

There is no next property/element.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 91

pps_decoder_next()

pps_decoder_parse_json_str()

Parse a string of JSON-formatted data

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_parse_json_str(
pps_decoder_t *decoder,
char *str);

Arguments:

decoder

The PPS decoder structure.

str

A pointer to a string containing PPS data.

Library:

libpps

Description:

The function pps_decoder_parse_json_str() parses a string of JSON-formatted data.

Except for the format of the data passed in the str argument, the behavior of this

function is the same as for pps_decoder_parse_pps_str.

Returns:

PPS_DECODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

92 © 2014, QNX Software Systems Limited

PPS API reference

Safety:

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 93

pps_decoder_parse_json_str()

pps_decoder_parse_pps_str()

Parse a string of PPS-formatted data

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_parse_pps_str(
pps_decoder_t *decoder,
char *str);

Arguments:

decoder

The PPS decoder structure.

str

A pointer to a null-terminated string containing PPS data.

Library:

libpps

Description:

The function pps_decoder_parse_pps_str() parses a string of PPS-formatted data into

the decoder's internal data structures.

This function modifies the buffer that is passed in the str argument; the internal

decoder structure makes use of pointers into this buffer. Consequently, the contents

of the buffer must remain valid and unchanged until the results of parsing are no

longer needed.

This function supports a number of PPS attribute encodings including the null

encoding, c for C strings, b for Booleans, n for numbers, and json for JSON. The str

argument must contain a null-terminated string.

Returns:

PPS_DECODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

94 © 2014, QNX Software Systems Limited

PPS API reference

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 95

pps_decoder_parse_pps_str()

pps_decoder_pop()

Ascend to the parent of the current node

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_pop(pps_decoder_t *decoder);

Arguments:

decoder

The PPS decoder structure.

Library:

libpps

Description:

The function pps_decoder_pop() ascends to the parent of the current object or array.

Following this call, the current node will be the node that follows the object or array

popped out of (that is, the sibling of the node that was current at the time this function

was called).

Returns:

PPS_DECODER_OK

Success.

PPS_DECODER_POP_AT_ROOT

Already positioned at the root node.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

96 © 2014, QNX Software Systems Limited

PPS API reference

Safety:

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 97

pps_decoder_pop()

pps_decoder_push()

Descend into a lower-level node

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_push(pps_decoder_t *decoder,
const char *name);

Arguments:

decoder

The PPS decoder structure.

name

The name of the property or attribute to descend into.

Library:

libpps

Description:

The function pps_decoder_push() descends into an array or object. If successful,

subsequent data will be returned for properties or elements of that object or array.

Returns:

PPS_DECODER_OK

Success.

PPS_DECODER_BAD_TYPE

There was a type mismatch.

PPS_DECODER_DELETED

The attribute was deleted.

PPS_DECODER_NOT_FOUND

The specified node does not exist.

98 © 2014, QNX Software Systems Limited

PPS API reference

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 99

pps_decoder_push()

pps_decoder_push_array()

Descend into a lower-level array

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_push_array(
pps_decoder_t *decoder,
const char *name);

Arguments:

decoder

The PPS decoder structure.

name

The name of the object to descend into.

Library:

libpps

Description:

The function pps_decoder_push_array() descends into an array. If successful,

subsequent data will be returned for properties or elements of that array. This function

is identical to pps_decoder_push(), except that it will fail if the specified element is

not an array.

Returns:

PPS_DECODER_OK

Success.

PPS_DECODER_BAD_TYPE

There was a type mismatch.

PPS_DECODER_DELETED

The attribute was deleted.

PPS_DECODER_NOT_FOUND

100 © 2014, QNX Software Systems Limited

PPS API reference

The specified node does not exist.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 101

pps_decoder_push_array()

pps_decoder_push_object()

Descend into a lower-level object

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_push_object(
pps_decoder_t *decoder,
const char *name);

Arguments:

decoder

The PPS decoder structure.

name

The name of the object to descend into.

Library:

libpps

Description:

The function pps_decoder_push_object() descends into an object. If successful,

subsequent data will be returned for properties or elements of that object. This function

is identical to pps_decoder_push(), except that it will fail if the specified element is

not an object.

Returns:

PPS_DECODER_OK

Success.

PPS_DECODER_BAD_TYPE

There was a type mismatch.

PPS_DECODER_DELETED

The attribute was deleted.

PPS_DECODER_NOT_FOUND

102 © 2014, QNX Software Systems Limited

PPS API reference

The specified node does not exist.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 103

pps_decoder_push_object()

pps_decoder_reset()

Reset the pps_decoder_t structure

Synopsis:

#include <pps.h>

void pps_decoder_reset(pps_decoder_t *decoder);

Arguments:

decoder

The PPS decoder structure.

Library:

libpps

Description:

The function pps_decoder_reset() resets the pps_decoder_t structure so that it's

positioned at the root node, which is the state the structure is in immediately after

parsing data.

Returns:

None.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

104 © 2014, QNX Software Systems Limited

PPS API reference

pps_decoder_set_position()

Position the decoder at the specified node

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_set_position(
pps_decoder_t *decoder,
const char *name);

Arguments:

decoder

A pointer to the PPS decoder structure.

name

The name of the property or attribute to set the position to.

Library:

libpps

Description:

The function pps_decoder_set_position() searches for the node of the specified name

in the current object and positions the decoder at that node.

Returns:

PPS_DECODER_OK

Success.

PPS_DECODER_NOT_FOUND

Call failed.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

© 2014, QNX Software Systems Limited 105

pps_decoder_set_position()

Safety:

NoSignal handler

YesThread

106 © 2014, QNX Software Systems Limited

PPS API reference

pps_decoder_set_state()

Set the state of the decoder

Synopsis:

#include <pps.h>

void pps_decoder_set_state(pps_decoder_t *decoder,
pps_decoder_state_t *state);

Arguments:

decoder

A pointer to the PPS decoder structure.

state

A pointer to a structure containing the decoder's state.

Library:

libpps

Description:

The function pps_decoder_set_state() returns the decoder to a state obtained by a call

to pps_decoder_get_state() by setting the current node of the decoder to the node

indicated by the state argument.

Returns:

None.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 107

pps_decoder_set_state()

pps_decoder_state_t

pps_decoder_state_t

typedef struct {
 pps_node_t *node;
} pps_decoder_state_t;

Description:

The pps_decoder_state_t data structure stores the current state of the decoder

structure, pps_decoder_t (p. 110). This data structure is used by the functions

pps_decoder_get_state() and pps_decoder_set_state().

DescriptionTypeMember

A pointer to a node of a PPS object.pps_node_t*node

108 © 2014, QNX Software Systems Limited

PPS API reference

pps_decoder_status()

Return the current error status of the decoder

Synopsis:

#include <pps.h>

pps_decoder_error_t pps_decoder_status(
pps_decoder_t *decoder,
bool clear);

Arguments:

decoder

The PPS decoder structure.

clear

Flag to indicate whether the error status should be reset. To reset, set to

true. To leave the error status intact, set to false.

Library:

libpps

Description:

The function pps_decoder_status() returns the current error status of the decoder. If

an error occurs during an attempt to extract data or push into objects, the decoder

will be set to an error state. Rather than check return codes after every operation, you

can perform a series and then check if the entire set completed successfully.

Returns:

The error status of the decoder. See pps_decoder_error_t (p. 71).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 109

pps_decoder_status()

pps_decoder_t

pps_decoder_t

Description:

The pps_decoder_t data structure is a data type that carries information about

parsed PPS objects and attributes. It's used by the pps_decoder_* functions.

110 © 2014, QNX Software Systems Limited

PPS API reference

pps_decoder_type()

Return the data type of the current or named node

Synopsis:

#include <pps.h>

pps_node_type_t pps_decoder_type(pps_decoder_t *decoder,
const char *name);

Arguments:

decoder

The PPS decoder structure.

name

The name of the property/attribute to provide the type for. If NULL, the type

of the current node is returned.

Library:

libpps

Description:

The function pps_decoder_type() returns the data type of the current node or the node

of the given name (if currently with an object). The name "." can be used for the current

object or array as a means of determining whether the current node represents an

object or an array.

Returns:

The data type of the referenced node. See pps_node_type_t (p. 145).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 111

pps_decoder_type()

pps_encoder_add_bool()

Add a Boolean to the current object or array

Synopsis:

#include <pps.h>

pps_encoder_error_t pps_encoder_add_bool(
pps_encoder_t *encoder,
const char *name,
bool value);

Arguments:

encoder

A pointer to the PPS encoder structure.

name

If the current node is an object, the name of the new attribute. If within an

array, this must be NULL.

value

The boolean value to add.

Library:

libpps

Description:

The function pps_encoder_add_bool() adds a boolean value to the current object or

array.

Returns:

PPS_ENCODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

The status is sticky. If a call to encode something fails, all subsequent calls

will show failure until the encoder is reset.

112 © 2014, QNX Software Systems Limited

PPS API reference

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 113

pps_encoder_add_bool()

pps_encoder_add_double()

Add a double to the current object or array

Synopsis:

#include <pps.h>

pps_encoder_error_t pps_encoder_add_double(
pps_encoder_t *encoder,
const char *name,
double value);

Arguments:

encoder

A pointer to the PPS encoder structure.

name

If the current node is an object, the name of the new attribute. If within an

array, this must be NULL.

value

The double value to add.

Library:

libpps

Description:

The function pps_encoder_add_double() adds a double value to the current object or

array.

Returns:

PPS_ENCODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

The status is sticky. If a call to encode something fails, all subsequent calls

will show failure until the encoder is reset.

114 © 2014, QNX Software Systems Limited

PPS API reference

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 115

pps_encoder_add_double()

pps_encoder_add_from_decoder()

Add part or all of the contents of a decoder to an encoder

Synopsis:

#include <pps.h>

pps_encoder_error_t pps_encoder_add_from_decoder(
pps_encoder_t *encoder,
const char *name,
pps_decoder_t *decoder,
const char *propName);

Arguments:

encoder

A pointer to the PPS encoder structure.

name

If the current node is an object, the name of the new attribute. If within an

array, this must be NULL.

decoder

A pointer to the PPS decoder structure.

propName

The name of the property to add from the decoder. If NULL, this function

adds the node at the current position in the decoder.

Library:

libpps

Description:

The function pps_encoder_add_from_decoder() adds part or all of the contents of a

PPS decoder to a PPS encoder. This allows data previously decoded to be encoded

again. Upon completion of the call the decoder is left in the same state as at the time

of the call.

Returns:

PPS_ENCODER_OK

116 © 2014, QNX Software Systems Limited

PPS API reference

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

The status is sticky. If a call to encode something fails, all subsequent calls

will show failure until the encoder is reset.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 117

pps_encoder_add_from_decoder()

pps_encoder_add_int()

Add an integer to the current object or array

Synopsis:

#include <pps.h>

pps_encoder_error_t pps_encoder_add_int(
pps_encoder_t *encoder,
const char *name,
int value);

Arguments:

encoder

A pointer to the PPS encoder structure.

name

If the current node is an object, the name of the new attribute. If within an

array, this must be NULL.

value

The integer value to add.

Library:

libpps

Description:

The function pps_encoder_add_int() adds an integer value to the current object or

array.

Returns:

PPS_ENCODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

The status is sticky. If a call to encode something fails, all subsequent calls

will show failure until the encoder is reset.

118 © 2014, QNX Software Systems Limited

PPS API reference

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 119

pps_encoder_add_int()

pps_encoder_add_int64()

Add a 64-bit integer to the current object or array

Synopsis:

#include <pps.h>

pps_encoder_error_t pps_encoder_add_int64(
pps_encoder_t *encoder,
const char *name,
int64_t value);

Arguments:

encoder

A pointer to the PPS encoder structure.

name

If the current node is an object, the name of the new attribute. If within an

array, this must be NULL.

value

The 64-bit integer value to add.

Library:

libpps

Description:

The function pps_encoder_add_int64() adds a 64-bit integer value to the current

object or array.

Returns:

PPS_ENCODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

The status is sticky. If a call to encode something fails, all subsequent calls

will show failure until the encoder is reset.

120 © 2014, QNX Software Systems Limited

PPS API reference

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 121

pps_encoder_add_int64()

pps_encoder_add_json()

Add a JSON-encoded string to the current object or array

Synopsis:

#include <pps.h>

pps_encoder_error_t pps_encoder_add_json(
pps_encoder_t *encoder,
const char *name,
const char *value);

Arguments:

encoder

A pointer to the PPS encoder structure.

name

If the current node is an object, the name of the new attribute. If within an

array, this must be NULL.

value

The JSON-encoded string to add.

Library:

libpps

Description:

The function pps_encoder_add_json() adds a JSON-encoded string to the current

object or array.

Returns:

PPS_ENCODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

The status is sticky. If a call to encode something fails, all subsequent calls

will show failure until the encoder is reset.

122 © 2014, QNX Software Systems Limited

PPS API reference

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 123

pps_encoder_add_json()

pps_encoder_add_null()

Add a null to the current object or array

Synopsis:

#include <pps.h>

pps_encoder_error_t pps_encoder_add_null(
pps_encoder_t *encoder,
const char *name);

Arguments:

encoder

A pointer to the PPS encoder structure.

name

If the current node is an object, the name of the new attribute. If within an

array, this must be NULL.

Library:

libpps

Description:

The function pps_encoder_add_null() adds a null to the current object or array.

Returns:

PPS_ENCODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

The status is sticky. If a call to encode something fails, all subsequent calls

will show failure until the encoder is reset.

Classification:

QNX Neutrino

124 © 2014, QNX Software Systems Limited

PPS API reference

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 125

pps_encoder_add_null()

pps_encoder_add_string()

Add a string to the current object or array

Synopsis:

#include <pps.h>

pps_encoder_error_t pps_encoder_add_string(
pps_encoder_t *encoder,
const char *name,
const char *value);

Arguments:

encoder

A pointer to the PPS encoder structure.

name

If the current node is an object, the name of the new attribute. If within an

array, this must be NULL.

value

The string to add.

Library:

libpps

Description:

The function pps_encoder_add_string() adds a string to the current object or array.

Returns:

PPS_ENCODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

The status is sticky. If a call to encode something fails, all subsequent calls

will show failure until the encoder is reset.

126 © 2014, QNX Software Systems Limited

PPS API reference

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 127

pps_encoder_add_string()

pps_encoder_buffer()

Returns a pointer to the buffer holding the encoded data

Synopsis:

#include <pps.h>

const char *pps_encoder_buffer(pps_encoder_t *encoder);

Arguments:

encoder

A pointer to the PPS encoder structure.

Library:

libpps

Description:

The function pps_encoder_buffer() returns a pointer to the buffer holding the encoded

data. This function returns a valid pointer only if there have been no errors and all

objects have been closed off. Therefore, a null pointer can indicate either an error

situation or incomplete data.

Returns:

A pointer to the encoder buffer or NULL if not available.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

128 © 2014, QNX Software Systems Limited

PPS API reference

pps_encoder_cleanup()

Clean up an encoder structure, releasing any allocated memory

Synopsis:

#include <pps.h>

void pps_encoder_cleanup(pps_encoder_t *encoder);

Arguments:

encoder

A pointer to the PPS encoder structure.

Library:

libpps

Description:

The function pps_encoder_cleanup() cleans up an encoder structure, releasing any

allocated memory.

Returns:

None.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 129

pps_encoder_cleanup()

pps_encoder_delete_attribute()

Add attribute and mark it as deleted

Synopsis:

#include <pps.h>

pps_encoder_error_t pps_encoder_delete_attribute(
pps_encoder_t *encoder,
const char *name);

Arguments:

encoder

A pointer to the PPS encoder structure.

name

The name of the deleted attribute.

Library:

libpps

Description:

The function pps_encoder_delete_attribute() deletes an attribute from the current

object. This call is valid only if encoding PPS data and only when called at the highest

level.

Returns:

PPS_ENCODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

The status is sticky. If a call to encode something fails, all subsequent calls

will show failure until the encoder is reset.

Classification:

QNX Neutrino

130 © 2014, QNX Software Systems Limited

PPS API reference

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 131

pps_encoder_delete_attribute()

pps_encoder_end_array()

End the current array

Synopsis:

#include <pps.h>

pps_encoder_error_t pps_encoder_end_array(
pps_encoder_t *encoder);

Arguments:

encoder

A pointer to the PPS encoder structure.

Library:

libpps

Description:

The function pps_encoder_end_array() ends the current array, returning to the array's

parent object or array.

Returns:

PPS_ENCODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

The status is sticky. If a call to encode something fails, all subsequent calls

will show failure until the encoder is reset.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

132 © 2014, QNX Software Systems Limited

PPS API reference

Safety:

YesThread

© 2014, QNX Software Systems Limited 133

pps_encoder_end_array()

pps_encoder_end_object()

End the current object

Synopsis:

#include <pps.h>

pps_encoder_error_t pps_encoder_end_object(
pps_encoder_t *encoder);

Arguments:

encoder

A pointer to the PPS encoder structure.

Library:

libpps

Description:

The function pps_encoder_end_object() ends the current object, returning to the

object's parent object or array.

Returns:

PPS_ENCODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

The status is sticky. If a call to encode something fails, all subsequent calls

will show failure until the encoder is reset.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

134 © 2014, QNX Software Systems Limited

PPS API reference

Safety:

YesThread

© 2014, QNX Software Systems Limited 135

pps_encoder_end_object()

pps_encoder_error_t

pps_encoder_error_t

The values enumerated by pps_encoder_error_t define the errors that can be

returned by the PPS encoder functions. These values include:

• PPS_ENCODER_OK — no error occurred.

• PPS_ENCODER_NO_MEM — an error occurred while allocating memory during the

encoding operation.

• PPS_ENCODER_BAD_NESTING — a call to a pps_encoder_start_*() function didn't

have a matching call to a pps_encoder_end_*() function.

• PPS_ENCODER_INVALID_VALUE — there was an attempt to add an invalid value

to an encoder.

• PPS_ENCODER_MISSING_ATTRIBUTE_NAME — there was an attempt to add a

PPS attribute with no attribute name.

• PPS_ENCODER_NOT_FOUND — there was an attempt to add a decoder property

that doesn't exist.

136 © 2014, QNX Software Systems Limited

PPS API reference

pps_encoder_initialize()

Initialize an encoder structure

Synopsis:

#include <pps.h>

void pps_encoder_initialize(pps_encoder_t *encoder,
bool encodeJSON);

Arguments:

encoder

A pointer to the PPS encoder structure.

encodeJSON

If true data will be encoded as JSON rather than PPS.

Library:

libpps

Description:

The function pps_encoder_initialize() initializes an encoder structure from an unknown

state. It initializes the memory used by the encoder to a known value, and then sets

the encoding level to either 0 or 1, depending on the value specified for encodeJSON

(0 for PPS encoding ; 1 for JSON encoding).

Returns:

None.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 137

pps_encoder_initialize()

pps_encoder_length()

Return the length of the encoded data

Synopsis:

#include <pps.h>

 int pps_encoder_length(pps_encoder_t *encoder);

Arguments:

encoder

A pointer to the PPS encoder structure.

Library:

libpps

Description:

The function pps_encoder_length() returns the current length of the data encoded by

the encoder.

Returns:

The length of the encoded data in bytes.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

138 © 2014, QNX Software Systems Limited

PPS API reference

pps_encoder_reset

Reset an encoder prior to encoding new data

Synopsis:

#include <pps.h>

void pps_encoder_reset(pps_encoder_t *encoder);

Arguments:

encoder

A pointer to the PPS encoder structure.

Library:

libpps

Description:

The function pps_encoder_reset() resets an encoder prior to encoding new data. It's

typically preferred to call pps_encoder_reset() rather than pps_encoder_cleanup() if

the encoder is to be reused because by using pps_encoder_reset() the encoder will

eventually acquire a buffer large enough such that it will require no subsequent memory

allocation.

Returns:

None.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 139

pps_encoder_reset

pps_encoder_start_array()

Start a new array

Synopsis:

#include <pps.h>

pps_encoder_error_t pps_encoder_start_array(
pps_encoder_t *encoder,
const char *name);

Arguments:

encoder

A pointer to the PPS encoder structure.

name

The name of this array if it is embedded in an object. This must be NULL

if contained within an array.

Library:

libpps

Description:

The function pps_encoder_start_array() starts a new array. Subsequent elements are

added to this array.

Returns:

PPS_ENCODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

The status is sticky. If a call to encode something fails, all subsequent calls

will show failure until the encoder is reset.

Classification:

QNX Neutrino

140 © 2014, QNX Software Systems Limited

PPS API reference

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 141

pps_encoder_start_array()

pps_encoder_start_object()

Start a new object

Synopsis:

#include <pps.h>

pps_encoder_error_t pps_encoder_start_object(
pps_encoder_t *encoder,
const char *name);

Arguments:

encoder

A pointer to the PPS encoder structure.

name

If this object is within another object, name provides the object's property

name. If the object is an element of an array, this must be NULL.

Library:

libpps

Description:

The function pps_encoder_start_object() starts a new object. Subsequent properties

are added to this object.

Returns:

PPS_ENCODER_OK

Success.

>=1

An error occurred. See pps_decoder_error_t (p. 71).

The status is sticky. If a call to encode something fails, all subsequent calls

will show failure until the encoder is reset.

Classification:

QNX Neutrino

142 © 2014, QNX Software Systems Limited

PPS API reference

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 143

pps_encoder_start_object()

pps_encoder_t

pps_encoder_t

Description:

The pps_encoder_t data structure carries information to be encoded as PPS objects

and attributes. It's used by the pps_encoder_* functions.

144 © 2014, QNX Software Systems Limited

PPS API reference

pps_node_type_t

pps_node_type_t

The values enumerated by pps_node_type_t define the possible types for PPS

nodes during parsing. These values include:

• PPS_TYPE_NULL — the node is NULL.

• PPS_TYPE_BOOL — the node is an attribute with a Boolean data value.

• PPS_TYPE_NUMBER — the node is an attribute with a numeric data value.

• PPS_TYPE_STRING — the node is an attribute with a string data value.

• PPS_TYPE_ARRAY — the node is an array.

• PPS_TYPE_OBJECT — the node is an object.

• PPS_TYPE_NONE — the requested attribute does not exist.

• PPS_TYPE_UNKNOWN — the requested attribute exists but was invalid or not

recognized.

• PPS_TYPE_DELETED — the requested attribute was deleted.

© 2014, QNX Software Systems Limited 145

pps_node_type_t

pps_options_t

pps_options_t

The values enumerated by pps_options_t define values for PPS options:

• PPS_NOPERSIST — nonpersistence option

• PPS_ITEM — item option

146 © 2014, QNX Software Systems Limited

PPS API reference

pps_status_t

ppsparse() return values

The values enumerated by pps_status_t define the possible ppsparse() return

values. These values include:

• PPS_ERROR — the line of PPS data is invalid

• PPS_END — end of data or incomplete line

• PPS_OBJECT — data for the given object follows

• PPS_OBJECT_CREATED — an object has been created

• PPS_OBJECT_DELETED — an object has been deleted

• PPS_OBJECT_TRUNCATED — an object has been truncated (all attributes were

removed)

• PPS_ATTRIBUTE — an attribute has been updated

• PPS_ATTRIBUTE_DELETED — an attribute has been deleted

• PPS_OBJECT_OVERFLOWED — there was an overflow in the data queued for an

object

© 2014, QNX Software Systems Limited 147

pps_status_t

ppsparse()

Parse an object read from PPS

Synopsis:

#include <pps.h>

extern pps_status_t ppsparse(char **ppsdata,
 const char * const *objnames,
 const char * const *attrnames,
 pps_attrib_t *info,
 int parse_flags);

Arguments:

ppsdata

A pointer to a pointer to the current position in the buffer of PPS data. The

function updates this pointer as it parses the options.

objnames

A pointer to a NULL-terminated array of object names. If this value is not

NULL, ppsparse() looks up any object name it finds and provides its index

in the pps_attrib_t structure.

attrnames

A pointer to a NULL-terminated array of attribute names. If this value is not

NULL, ppsparse() looks up any attribute name it finds and provides its index

in the pps_attrib_t structure.

info

A pointer to the data structure pps_attrib_t, which carries details about

a line of PPS data.

parse_flags

Reserved for future use.

Library:

libpps

148 © 2014, QNX Software Systems Limited

PPS API reference

Description:

The function ppsparse() provides a lower-level alternative to the pps_decoder_*

functions (which themselves use pps_parse()). Except in special circumstances, it's

better to use the pps_decoder_* functions than to use ppsparse().

The function ppsparse() parses the next line of a buffer of PPS data. This buffer must

be terminated by a null ("\0") in C or hexadecimal 0x00).

The first time you call this function after reading PPS data, you should set ppsdata

to reference the start of the buffer with the data. As it parses each line of data,

ppsparse():

• places the information parsed from the buffer in the pps_attrib_t data structure

• updates the pointer to the next PPS line in the buffer

When it successfully completes parsing a line, ppsparse() returns the type of line

parsed or end of data in the pps_status_t data structure.

Returns:

>=0

Success.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Caveats:

During parsing, separators (":" and "\n") in the input string may be changed to null

characters.

© 2014, QNX Software Systems Limited 149

ppsparse()

Index

.all 15, 16

.notify 15, 32
file 32

A

ACL file 48
descriptors 48
format 48

Active Control List file 48
adding 45

items 45
APIs 55, 56, 58, 65

decoding functions 58
encoding functions 56

asynchronous 11
publishing 11

attribute 18
names 18
rules 18

attributes 16, 26, 44
adding new to an object 26
deleting 26
name prefixes 16
of PPS objects, changing 26
options 44
special characters prefixed to names 16

B

binary data 17
encoding 17

C

character encoding 21
UTF-8 21

characters 16
special, prefixed to attribute names 16

creating 16
objects 16

critical file descriptors 42
critical option 42

D

data structures 55, 65, 67, 108, 110, 144
pps_attrib_t 67
pps_decoder_state_t 108
pps_decoder_t 110
pps_encoder_t 144

decoding functions 58
deleting 16, 26, 45

attributes 26
items 45

deleting (continued)
objects 16

delta mode 33
depth of directories 15
descriptor 42

file 42
directories 15

depth 15
directory 21

changing 21

E

encoding 17
encoding functions 56
enumerations 66, 71, 136, 145, 146, 147

pps_attrib_flags_t 66
pps_decoder_error_t 71
pps_encoder_error_t 136
pps_node_type_t 145
pps_options_t 146
pps_status_t 147

examples 17
object syntax 17

F

file descriptors 30, 32, 37, 42
critical 42
limit per object 32
notification of available data 32
notification of closing 37
server 42
setting not to block on PPS read 30

files 14, 15
object 14
special 15

filesystem 14, 20
default filepath 14
limitations on persistence 20
PPS 14
support for persistence 20

full mode 33
functions 55, 65, 69, 70, 72, 73, 75, 77, 79, 81, 82, 84,

86, 88, 89, 90, 91, 92, 94, 96, 98, 100, 102,
104, 105, 107, 109, 111, 112, 114, 116, 118,
120, 122, 124, 126, 128, 129, 130, 132, 134,
137, 138, 139, 140, 142, 149

pps_decoder_cleanup() 69
pps_decoder_dump_tree() 70
pps_decoder_flags() 72
pps_decoder_get_bool() 73
pps_decoder_get_double() 75
pps_decoder_get_int() 77
pps_decoder_get_int64() 79
pps_decoder_get_state() 81

© 2014, QNX Software Systems Limited 151

QNX Persistent Publish/Subscribe Developer's Guide

functions (continued)
pps_decoder_get_string() 82
pps_decoder_goto_index() 84
pps_decoder_initialize() 86
pps_decoder_is_integer 88
pps_decoder_length() 89
pps_decoder_name() 90
pps_decoder_next() 91
pps_decoder_parse_json_str() 92
pps_decoder_parse_pps_str() 94
pps_decoder_pop() 96
pps_decoder_push_array() 100
pps_decoder_push_object() 102
pps_decoder_push() 98
pps_decoder_reset() 104
pps_decoder_set_position() 105
pps_decoder_set_state() 107
pps_decoder_status() 109
pps_decoder_type() 111
pps_encoder_add_bool() 112
pps_encoder_add_double() 114
pps_encoder_add_from_decoder() 116
pps_encoder_add_int() 118
pps_encoder_add_int64() 120
pps_encoder_add_json() 122
pps_encoder_add_null() 124
pps_encoder_add_string() 126
pps_encoder_buffer() 128
pps_encoder_cleanup() 129
pps_encoder_delete_attribute() 130
pps_encoder_end_array() 132
pps_encoder_end_object() 134
pps_encoder_initialize() 137
pps_encoder_length() 138
pps_encoder_reset() 139
pps_encoder_start_array() 140
pps_encoder_start_object() 142
ppsparse() 149

G

groups 36
notification 36

creating 36
using 36

H

header files 65
location 65

I

i qualifier 45
item 45

io_notify() 32
functionality in PPS 32

item 45
of a set 45
set 45

adding 45

item (continued)
set (continued)

deleting 45
item qualifier 45

L

libraries 65
location 65

limit to open file descriptors 32
linefeed characters 17
loading objects 23

M

modes 33
subscription 33

N

n attribute qualifier 45
n object qualifier 45
names 17, 18

attribute 18
object 17

NFS server 20
persistence 20

nonpersistence qualifier 45
notification 37

of closed file descriptor 37
notification groups 36

creating 36
using 36

notifications 16
attribute change 16
object change 16
object creation 16
object deletion 16
object truncation 16

O

O_NONBLOCK 30
objects 13, 14, 15, 16, 17, 19, 21, 23, 26, 29, 33, 35, 42,

44, 45
critical option 42
files 14
loading 23
modes of opening 33
modifying attributes of 26
names 17
notification 16

of creation 16
of deletion 16
of lost critical publisher 16
of truncation 16

options 44
persistence 19
publishing and subscribing 13
restoring 23
saving 21

152 © 2014, QNX Software Systems Limited

Index

objects (continued)
size in memory 15
special 15
state changes 29
subscribing to 29
subscribing to all in a directory 35
subscribing to multiple 35
syntax 17
temporary 45

open 33, 40
modes 33
query 40

options 40
options 12, 40, 42, 44, 48

ACL file 48
Active Control List file 48
critical 42
for attributes 44
for objects 44
open 40

pathname 40
PPS 12, 40

nonpersistent 40

P

pathname 40
open 40

options 40
persistence 19, 20, 45

filesystems 20
limitations from filesystem 20
nonpersistence qualifier 45
of PPS objects 19

Persistent Publish/Subscribe 11
PPS 11

persistent storage directory, changing 21
PPS 11, 12, 25, 32

io_notify() functionality 32
options 12
publishing 25
running 12

pps_attrib_flags_t 66
values 66

pps_attrib_t 67
pps_decoder_cleanup() 69
pps_decoder_dump_tree() 70
pps_decoder_error_t 71

values 71
pps_decoder_flags() 72
pps_decoder_get_bool() 73
pps_decoder_get_double() 75
pps_decoder_get_int() 77
pps_decoder_get_int64() 79
pps_decoder_get_state() 81
pps_decoder_get_string() 82
pps_decoder_goto_index() 84
pps_decoder_initialize() 86
pps_decoder_is_integer 88
pps_decoder_length() 89
pps_decoder_name() 90
pps_decoder_next() 91

pps_decoder_parse_json_str() 92
pps_decoder_parse_pps_str() 94
pps_decoder_pop() 96
pps_decoder_push_array() 100
pps_decoder_push_object() 102
pps_decoder_push() 98
pps_decoder_reset() 104
pps_decoder_set_position() 105
pps_decoder_set_state() 107
pps_decoder_state_t 108
pps_decoder_status() 109
pps_decoder_t 110
pps_decoder_type() 111
pps_encoder_add_bool() 112
pps_encoder_add_double() 114
pps_encoder_add_from_decoder() 116
pps_encoder_add_int() 118
pps_encoder_add_int64() 120
pps_encoder_add_json() 122
pps_encoder_add_null() 124
pps_encoder_add_string() 126
pps_encoder_buffer() 128
pps_encoder_cleanup() 129
pps_encoder_delete_attribute() 130
pps_encoder_end_array() 132
pps_encoder_end_object() 134
pps_encoder_error_t 136

values 136
pps_encoder_initialize() 137
pps_encoder_length() 138
pps_encoder_reset() 139
pps_encoder_start_array() 140
pps_encoder_start_object() 142
pps_encoder_t 144
pps_node_type_t 145

values 145
pps_options_t 146

values 146
pps_status_t 147

values 147
ppsparse() 149
priority inheritance 11
Publish/Subscribe 11

Persistent 11
publisher 11, 16, 27

connection to subscriber 11
lost critical for object 16
multiple 27

publishing 11, 25
asynchronous 11

publishing and subscribing 13

Q

qualifiers 45
nonpersistence 45
set item 45

R

reading 30
blocking and nonblocking 30

© 2014, QNX Software Systems Limited 153

QNX Persistent Publish/Subscribe Developer's Guide

restoring objects 23
rules 18

attribute 18

S

separator 45
for items in a set 45

server 42
file descriptors 42

Server objects 51
writing to a single object 51

sets 45
adding items 45
deleting items 45

shutdown 19
saving objects at 19

size 15
of objects in memory 15

state changes 29
object 29

structures 55, 65
subscriber 11, 30, 33

blocking and nonblocking reads 30

subscriber (continued)
connection to publisher 11
object 33

modes of opening 33
subscribing 29, 35

to a PPS object 29
to all objects in a directory 35
to multiple objects in a directory 35

syntax 17, 18
attribute 18
object 17

T

Technical support 10
temporary objects 45
truncating 16

objects 16
Typographical conventions 8

U

UTF-8 21

154 © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	QNX Neutrino PPS service
	Running PPS

	Objects and their attributes
	Object files
	Special objects
	Object and directory sizes

	Change notification
	Object syntax
	Attribute syntax

	Persistence
	Persistent storage
	Saving objects
	Loading objects

	Publishing
	Creating, modifying, and deleting objects and attributes
	Multiple Publishers

	Subscribing
	Blocking and nonblocking reads
	Getting notifications of data on a file descriptor
	io_notify() functionality

	Subscription Modes
	Full mode
	Delta mode

	Subscribing to multiple objects
	Subscribe to all objects in a directory
	Notification groups
	Creating notification groups
	Using notification groups

	Options and qualifiers
	Pathname open options
	Critical option
	Filtering notifications

	Object and attribute qualifiers
	Nonpersistence qualifier
	Item qualifier

	Reading and writing from the command line
	Active Control List configuration file
	ACL configuration file format

	Server objects
	Working with server objects
	Sending messages through PPS server objects
	Sending a message
	Replying to a message
	Supporting cancellation of requests

	PPS encoding and decoding API
	Encoding PPS data
	Decoding PPS data
	Handling unknown data
	Dealing with errors

	Other features of PPS

	PPS API reference
	pps_attrib_flags_t
	pps_attrib_t
	pps_decoder_cleanup()
	pps_decoder_dump_tree()
	pps_decoder_error_t
	pps_decoder_flags()
	pps_decoder_get_bool()
	pps_decoder_get_double()
	pps_decoder_get_int()
	pps_decoder_get_int64()
	pps_decoder_get_state()
	pps_decoder_get_string()
	pps_decoder_goto_index()
	pps_decoder_initialize()
	pps_decoder_is_integer()
	pps_decoder_length()
	pps_decoder_name()
	pps_decoder_next()
	pps_decoder_parse_json_str()
	pps_decoder_parse_pps_str()
	pps_decoder_pop()
	pps_decoder_push()
	pps_decoder_push_array()
	pps_decoder_push_object()
	pps_decoder_reset()
	pps_decoder_set_position()
	pps_decoder_set_state()
	pps_decoder_state_t
	pps_decoder_status()
	pps_decoder_t
	pps_decoder_type()
	pps_encoder_add_bool()
	pps_encoder_add_double()
	pps_encoder_add_from_decoder()
	pps_encoder_add_int()
	pps_encoder_add_int64()
	pps_encoder_add_json()
	pps_encoder_add_null()
	pps_encoder_add_string()
	pps_encoder_buffer()
	pps_encoder_cleanup()
	pps_encoder_delete_attribute()
	pps_encoder_end_array()
	pps_encoder_end_object()
	pps_encoder_error_t
	pps_encoder_initialize()
	pps_encoder_length()
	pps_encoder_reset
	pps_encoder_start_array()
	pps_encoder_start_object()
	pps_encoder_t
	pps_node_type_t
	pps_options_t
	pps_status_t
	ppsparse()

	Index

