
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

QNX SDP 6.6.0 BSPs

©2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All rights
reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, February 20, 2014

Table of Contents

About This Guide ...5
Typographical conventions ...6

Technical support ...8

Chapter 1: Overview of a BSP ..9

Chapter 2: Before you begin ..11

Chapter 3: What's new with QNX SDP 6.6 BSPs ...13

Structure and contents of a QNX SDP 6.6 BSP ..14

Preparing a bootable SD card ...17

Preparing a bootable SD card (Windows 7) ...17

Preparing a bootable SD card (Linux Ubuntu) ...19

Chapter 4: Process to update a BSP to QNX SDP 6.6 ..21

Prerequisites ..22

Download, extract, and build an existing BSP ..23

Interpret initial results and remove unnecessary files ..25

Rebuild the BSP ...26

Update the startup and IPL library source ...30

Update BSPs containing prebuilt kernels and other OS components32

Chapter 5: Clean Up Remaining Warnings ..33

QNX SDP 6.6.0 BSPs

Table of Contents

About This Guide

QNX SDP 6.6.0 BSPs describes what's new with the QNX SDP 6.6.0 BSPs in general,

and explains how to update your QNX 6.5.0 BSPs to be able to build and run them

on QNX SDP 6.6.0. For specific BSPs, please refere to the BSP-specific guides that

accompany each BSP.

See:To find out about:

Overview of a BSP (p. 9)About QNX BSPs in general

Before you begin (p. 11)Where to find more documentation about

BSPs and building embedded systems

What's new with QNX SDP 6.6 BSPs (p.

13)

About QNX 6.6 BSPs

Structure and contents of a QNX SDP 6.6

BSP (p. 14)

The structure of QNX 6.6 BSPs

Preparing a bootable SD card (p. 17)How to prepare prepare a bootable SD

card

Process to update a BSP to QNX SDP 6.6

(p. 21)

Procedure to update a QNX BSP

Download, extract, and build an existing

BSP (p. 23)

How to get started updating your QNX

BSP

Clean Up Remaining Warnings (p. 33)Reduce the number of warnings

If you are using this guide to help you update an existing QNX 6.5.0 or 6.5.0

SP1 BSP to work within a QNX SDP 6.6 environment, before you begin take

a close look at the QNX webpage (www.qnx.com) to see if the BSP that you’re

attempting to update (or perhaps one that’s very similar) has already been

developed for QNX SDP 6.6. Check back often because new QNX BSPs are

regularly developed and posted.

Copyright © 2014, QNX Software Systems Limited 5

http://www.qnx.com/

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Overview of a BSP

After you've installed the QNX Neutrino RTOS, you can download processor-specific

Board Support Packages (BSPs) from our website, http://www.qnx.com/. These

BSPs are designed to help you get the QNX Neutrino RTOS running on certain

platforms.

QNX SDP 6.6 includes updated BSPs on our download site for many of the most

popular and current BSPs for armle-v7 targets; these BSPs have been updated and

validated to build and operate within a QNX SDP 6.6 target environment. Although

the QNX BSP download page may contain QNX 6.5.0 or 6.5.0 SP1 BSPs that haven't

been migrated to QNX SDP 6.6, you might want to use them in a QNX SDP 6.6

environment. This guide describes the types of issues you might encounter when you

attempt to update an older QNX 6.5.0 or 6.5.0 SP1 BSP, and it provides instructions

on how to cleanly build a QNX 6.5.0 or 6.5.0 SP1 BSP within the QNX SDP 6.6

environment.

This document is a guideline only; it will likely not cover all of the possible

issues that you might encounter for every current QNX 6.5.0 or 6.5.0 SP1

BSP. However, its purpose is to address the most common issues that you

might encounter when you attempt to build an existing QNX 6.5.0 or 6.5.0

SP1 BSP within your QNX SDP 6.6 environment.

A BSP typically includes the following:

• IPL — minimally configures the hardware to create an environment that will allow

the startup program, and consequently the microkernel, to run.

• startup — it's purpose is to copy and decompress the image, if necessary, configure

hardware, determine system configuration, and start the kernel.

• default buildfile — specifies any file and commands to include in the image, the

startup order for the executables, the loading options for the files and executables,

as well as the command-line arguments and environment variables for the

executables.

• networking support

• board-specific device drivers, system managers, utilities, etc.

The BSP is contained in an archive named after the industry-recognized name of the

board and/or reference platform that the BSP supports

(soc_vendor-soc-board.zip). BSP packages are available for QNX Neutrino,

Windows, or Linux hosts.

Copyright © 2014, QNX Software Systems Limited 9

http://www.qnx.com/

To use a BSP, you must either unzip the archive and build it on the command

line, or import it into the IDE.

The BSP components are provided in source code form, unless there are restrictions

on the source code, in which case the component is provided only in binary form.

BSPs are provided in a zip archive.

The QNX community website has more information about BSPs; see

http://community.qnx.com/sf/sfmain/do/viewProject/projects.bsp.

10 Copyright © 2014, QNX Software Systems Limited

Overview of a BSP

http://community.qnx.com/sf/sfmain/do/viewProject/projects.bsp

Chapter 2
Before you begin

A number of procedures and guidelines are common to all QNX SDP 6.6 BSPs. This

information is presented here, rather than duplicating it in each BSP-specific user

guide.

About the information in this guide and in the BSP-specific user guides

This user guide presents the guidelines and procedures that are common to all QNX

SDP 6.6 BSPs. For information about a specific BSP, please refer to the user guide

that accompanies that BSP.

Hardware documentation

Before you begin working with your BSP, you should review the documentation for

your particular board's hardware and boot loader. This information is normally provided

by the board vendor. The BSP-specific user guide provided with each QNX SDP 6.6

BSP includes, where possible, a link to a vendor web site, or third-party site where

you'll find general information about the BSP's hardware and firmware.

Software documentation

QNX SDP 6.6 documentation can be found in the QNX Infocenter. Several documents

in the Infocenter are directly relevant to embedding a QNX system on target hardware.

Before starting work with your BSP, you should be familiar with the following

documentation:

Topics coveredChapterManual

General overview of the

QNX OS on embedded

targets

“Overview of Building

Embedded Systems”

Building Embedded

Systems

How to install and build

QNX BSPs

“Working with a BSP”Building Embedded

Systems

How to work with QNX

Image File System (IFS)

“Making an OS image”Building Embedded

Systems

images and how to modify

them

Introduction to working with

the QNX Momentics

“Overview of the IDE”QNX Momentics IDE User's

Guide

Copyright © 2014, QNX Software Systems Limited 11

http://www.qnx.com/developers/docs/index.html

Topics coveredChapterManual

Integrated Development

Environment (IDE)

How to use the QNX

Momentics IDE to generate

“Build images”QNX Momentics IDE User's

Guide

images for embedded

targets

12 Copyright © 2014, QNX Software Systems Limited

Before you begin

Chapter 3
What's new with QNX SDP 6.6 BSPs

For the most part, BSPs for QNX SDP 6.6 work the same way as they did under previous

QNX OS versions. Some important changes have been introduced, however.

About prebuilt binaries and libraries prior to QNX SDP 6.6

Prior to the release of SDP 6.6, QNX did not always supply prebuilt binaries and

libraries for its BSPs. If the source code for a BSP component was included with the

BSP, QNX didn't supply prebuilt binaries and libraries for that component. If the

source code for a component was not included with a BSP, QNX supplied prebuilt

binaries and libraries for that component.

QNX SDP 6.6 prebuilt binaries and libraries

Starting with QNX SDP 6.6, QNX supplies prebuilt binaries and libraries for all BSP

components (device drivers, libraries, utilities, etc.). These are prebuilt and packaged

with the BSP, regardless of whether or not the source code for those components is

included with the BSP. This new packaging model ensures that our customers receive

exactly the same checksum-compatible BSP components that we tested. Even if you

choose to modify a BSP component by changing the source code and building your

own version, you'll always have a copy of the original BSP version available in the BSP

archive.

Ensuring that modified components are included in the IFS image

As with previous QNX OS versions, with QNX SDP 6.6, when a BSP is built, the entire

contents of the BSP's /prebuilt directory gets copied into its /install directory.

This means that all BSP components mentioned above can be found in the /install

directory. This directory is the first one searched when a target IFS image is generated.

However, the binaries, libraries, and utilities that get built from the source code

included with the BSP are no longer copied to the /install directory by default.

This means that if you want to modify the BSP source code, making changes to specific

device drivers or other components, you must execute a make install command

when building that code. This command is required so that the resultant binaries,

libraries, and utilities get copied into the BSP's /install directory, where they can

be found and included when the IFS image is built.

Copyright © 2014, QNX Software Systems Limited 13

Structure and contents of a QNX SDP 6.6 BSP

BSPs can be extracted to, and built from, any directory. You can do this with the QNX

Momentics IDE or with the command line.

BSPs and the QNX SDP 6.6 host installation

QNX BSPs are packaged to operate independently of the host and target environments

of a standard QNX SDP 6.6 installation. BSPs can be extracted to, and built from,

any directory.

When the BSP attempts to build a target image (for example, if your IFS build file

includes a component that is not contained within the BSP itself) the BSP may scan

QNX SDP's /target directory for binaries or libraries, but it won't overwrite anything

in your QNX SDP 6.6 installation's /host or /target directories. Any binaries,

libraries, or images that were generated when the BSP was built will remain in the

BSP directory from which where they were extracted.

Using the QNX Momentics IDE or the command line

You can use the QNX Momentics Integrated Development Environment (IDE), or the

command line, to work with QNX BSPs. The procedures for importing, extracting,

building, and modifying QNX BSPs using either method are documented in the Building

Embedded Systems guide. For instructions on how to use the IDE to work with your

BSP, see “Using BSPs in the IDE”. For instructions on how to use the the command

line to work with your BSP, “Using BSPs on the command line”.

If you are working with the IDE and modify your BSP, you will still need to use

the command line to build the BSP.

Location of the BSP contents

If you used the QNX Momentics IDE to extract the BSP contents, these contents will

be found in the location you specified when importing the BSP. By default, it will be

in a sub-directory within the ide- 5.0-workspace directory of your host

environment. If you manually extracted the BSP, using the command-line unzip

utility, the BSP contents will be in the directory where you extracted the BSP archive.

Whether you use the IDE or the command line, the stucture and contents of the BSP

are the same. Typically, extracting a BSP's .zip archive creates the following

directories:

• /src

• /prebuilt

• /install

14 Copyright © 2014, QNX Software Systems Limited

What's new with QNX SDP 6.6 BSPs

• /images

/src

The /src directory contains all source code that ships with the BSP. Source code is

organised into sub-directories, such as /hardware, /lib, /utils, etc. When the

BSP is built, all the source code within the BSP (including the source code in these

sub-directories) is built.

/prebuilt

The BSP archive is provided with all of the BSP components prebuilt and stored in

the /prebuilt directory. If you build the BSP, the contents of the /prebuilt

directory are copied to the BSP's /install directory.

/install

The /install directory is empty until the BSP is built. When the BSP is built, the

entire contents of the /prebuilt directory are copied into the /install directory.

When the IFS image is being generated, the/install directory is the first location

scanned for components that are specified in the BSP's build file. If the IFS generation

process doesn't find a component in the/install directory, it scans the QNX SDP

6.6 host's /target directory for the component.

If you want to modify BSP components by changing or building any of the BSP

source code, you must use the make install command when building the

relevant source code. This command will cause your modified components to

be copied into the BSP's /install directory, overwriting the prebuilt versions

that were supplied with the BSP.

/images

The/images is the location of:

• the BSP's default build file after the BSP has been built

• any boot images (such as the IFS image, the IPL binary, etc.) after they have been

generated

The table below shows the default locations of common BSP components.

${BSP_ROOT_DIR} is the name of the directory where you extracted the BSP archive.

${CPU_VARIANT} is the specific CPU architecture that this BSP is targeted for. For

SDP 6.6, the supported CPU variants are armle-v7 and x86.

LocationFile

${BSP_ROOT_DIR}/imagesPrebuilt OS image

Copyright © 2014, QNX Software Systems Limited 15

Structure and contents of a QNX SDP 6.6 BSP

LocationFile

${BSP_ROOT_DIR}/in

stall/${CPU_VARIANT}/boot/sys

IPL and/or startup binaries

${BSP_ROOT_DIR}/src/hardware/…
Source code for device drivers, libraries,

and utilities
${BSP_ROOT_DIR}/src/lib/…

${BSP_ROOT_DIR}/src/utils/…

${BSP_ROOT_DIR}/pre

built/${CPU_VARIANT}/lib/dll}

Prebuilt libraries

${BSP_ROOT_DIR}/pre

built/${CPU_VARIANT}/usr/lib}

${BSP_ROOT_DIR}/pre

built/${CPU_VARIANT}/sbin

Prebuilt binaries

${BSP_ROOT_DIR}/pre

built/${CPU_VARIANT}/bin

${BSP_ROOT_DIR}/pre

built/${CPU_VARIANT}/usr/bin

${BSP_ROOT_DIR}/install/usr/in

clude

Generic header files (not architecture-

specific)

About the prebuilt boot image

After you have extracted the BSP (but before you've built it), you will find a prebuilt

QNX IFS image in the BSP's /images directory. This prebuilt IFS image is provided

as a convenience. It allows you to quickly verify the operation of the QNX OS on your

target board, by simply transferring the prebuilt image directly to your target, skipping

the step of building the BSP.

When you actually build the BSP, this prebuilt image will be overwritten by a

new IFS that gets generated as part of the BSP build process. You may,

therefore, want to make a copy of the prebuilt image for future reference. If

you forget to make a copy of the prebuilt image, you can still recover it, by

simply extracting the BSP from the original .zip archive into a new directory.

16 Copyright © 2014, QNX Software Systems Limited

What's new with QNX SDP 6.6 BSPs

Preparing a bootable SD card

Many target systems supported by QNX SDP BSPs are capable of loading the QNX IFS

image from and SD or micro-SD card. You can prepare a bootable SD card from either

of the supported SDP 6.6.0 host environments (Linux and Windows).

About preparing a bootable SD card

Many of the target systems supported by QNX SDP 6.6 BSPs are capable of loading

the QNX IFS boot image from an SD or micro-SD card. Many of these targets are also

capable of executing the primary boot loader (whether it's U-Boot or the QNX Initial

Program Loader (IPL)), directly from the SD card. In most cases, a DOS-compatible

FAT32 partition is required on the SD card.

This section presents instructions for preparing your SD card with a DOS FAT32

filesystem, for each of the supported SDP 6.6 host environments (Windows and Linux).

In either case, you will need a host PC that has an SD slot, or else use an external

USB SD card adapter.

Preparing a bootable SD card (Windows 7)

If your SD card does not already contain a bootable (active) FAT32 partition, you can

use the Windows 7 Disk Management utility to create one.

Creating a bootable FAT32 partition in a Windows 7 environment

The default Windows formatting option that appears when you insert a blank (or

unrecognized) SD card into a Windows PC is not sufficient to format the SD card with

a bootable partition. While it can create a DOS/FAT32 partition, it does not provide

an option for making this partition “Active”, or bootable. If your SD card does not

already contain a bootable (active) FAT32 partition, you can create one with the

Windows 7 Disk Management utility, as follows:

1. Open the Windows Control Panel, and run Administrative Tools.

2. Run the Computer Management application.

3. On the left pane, under the Storage category, select Disk Management.

4. Insert the SD card that you will use to put the QNX images on, and identify the

correct volume as it appears in the “Disk Management” window.

5. Select the correct drive by right-clicking on it, and choose the Format option. Once

the format operation is complete, under the “Status” column, it should show

something like: Healthy (Active, Primary Partition).

Copyright © 2014, QNX Software Systems Limited 17

Preparing a bootable SD card

Marking the FAT32 bootable partition active

If the SD card doesn't show the partition as “Active”, you will need to set it to active.

With many SD cards, all you need to do is:

1. Right-click on the partition icon.

2. Select Mark Partition as Active.

With some SD cards, however, after you have performed the steps to format the card,

the option to Mark Partition as Active will not be available. (It will be greyed out). If

this is the case for your SD card, you will need to complete some additional steps to

make the bootable FAT32 partition active:

1. Open a DOS command prompt (Start Menu > All Programs > Accessories >

Command Prompt).

2. Run the diskpart utility and run the list disk command to get a list of available

drives, then identify your SD card on this list (in this example, Disk 3):

DISKPART> list disk

Disk ### Status Size Free Gyn Gpt
-------- ------ ---- ---- --- ---
Disk 0 Online 40 GB 20 GB
Disk 1 No Media 0 B 0 B
Disk 2 No Media 0 B 0 B
Disk 3 Online 14 GB 0 B

3. Select the disk to target for additional activities, by running the following command:

DISKPART > select disk 3
Disk 3 is now the selected disk.
DISKPART >

4. Run the list partition command, to see a list of the available partitions (we'll use

Partition 1):

DISKPART > list partition

Partition ### Type Size Offset
------------- ------- ------ -------
Partition 1 Primary 14 GB 4096 KB

5. Select this partition:

DISKPART> select partition 1
Partition 1 is now the selected partition.
DISKPART>

6. Make the partition active:

DISKPART> active
DiskPart marked the current partition as active.

7. Verify that the partition is active:

DISKPART> list partition
Partition ### Type Size Offset
------------- ------- ------ -------
*Partition 1 Primary 14 GB 4096 KB

18 Copyright © 2014, QNX Software Systems Limited

What's new with QNX SDP 6.6 BSPs

The “*” beside the partition name indicates that the partition is active. You can now

eject the SD card, and proceed with copying files to the DOS/FAT32 partition on the

disk.

Preparing a bootable SD card (Linux Ubuntu)

If your SD card does not already contain a bootable (active) FAT32 partition, you can

create one from a Linux Ubuntu host.

Creating a bootable FAT32 partition in a Linux Ubuntu environment

The following procedure provides a quick, step-by-step example of the procedure you

can use from a Linux Ubuntu terminal to prepare an SD card with a bootable DOS /

FAT32 filesystem.

• This example uses the SD card /dev/sdd. You can use the mount

command to determine your SD card's actual device name.

• We are working with the SD card as a whole (/dev/sdd), not a partition

on the SD card (e.g. /dev/sdd1).

1. Display disk information and show the existing partitions, if any:

/home/user/> sudo fdisk /dev/sdd

Command (m for help): p

Disk /dev/sdd: 15.9 GB, 15931539456 bytes
64 heads, 32 sectors/track, 15193 cylinders, total 31116288
sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x938b698a

Device Boot Start End Blocks Id System

2. Change default unit to cylinders:

Command (m for help): u
Changing display/entry units to cylinders

3. Create a new, empty DOS partition table:

Command (m for help): o
Building a new DOS disklabel with disk identifier 0xdf0e79d5.
Changes will remain in memory only, until you decide to write
them.
After that, of course, the previous content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be
corrected by w(rite)

4. Add a new partition (Instructions and comments are in parenthesis):

Command (m for help): n
Partition type:
p primary (0 primary, 0 extended, 4 free)

Copyright © 2014, QNX Software Systems Limited 19

Preparing a bootable SD card

e extended
Select (default p): p (The new partition is a primary
partition.)
Partition number (1-4, default 1): (Press Enter for default.)
Using default value 1
First cylinder (2-15193, default 2): (Press Enter for default.)
Using default value 2
Last cylinder, +cylinders or +size{K,M,G} (2-15193, default
15193): (Press Enter for default.)
Using default value 15193

5. Make a partition active, or bootable:

Command (m for help): a
Partition number (1-4): 1 (Select Partition 1 to be active.)

6. Change the partition type to FAT32. (The value c is hexadecimal (decimal 12), the

type for a FAT32 partition.):

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): c
Changed system type of partition 1 to c (W95 FAT32 (LBA))

7. Write the new partition information:

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.

8. Format the new partition with a DOS FAT32 filesystem. Note that now we specify

the partition number (/dev/sdd1):

/home/user> sudo mkfs.vfat -F32 /dev/sdd1
mkfs.vfat 3.0.13 (30 Jun 2012)
/home/user>

Your SD card is now ready to use with the BSP boot images.

20 Copyright © 2014, QNX Software Systems Limited

What's new with QNX SDP 6.6 BSPs

Chapter 4
Process to update a BSP to QNX SDP 6.6

To best illustrate the types of issues you might encounter when you update a QNX

6.5.0 or QNX 6.5.0 SP1 BSP to QNX SDP 6.6, we’ll go through an exercise of taking

an existing QNX 6.5.0 SP1 BSP and working through the various build issues. We'll

also look at code examples taken from the same BSP, which has already been updated

by QNX Software Systems to build and run properly under QNX SDP 6.6.

For this example, we’ll use the Freescale i.MX6Q SabreLite BSP, which has versions

available for both QNX 6.5.0 SP1 and QNX SDP 6.6.

The following illustration shows the process you'd use to determine how to update

BSPs.

QNX 6.5.0 BSP
or

QNX 6.5.0 SP1 BSP

Clean up
remaining
warnings.

BSP requires
updating.

Perform
additional clean &

build tasks.

Interpret results
& remove

unnecessary files.

Update Startup &
IPL library source.

No
Download BSP.

Yes

Updated BSP
for

QNX SDP 6.6

Extract the files.

Build BSP.

Updated
QNX 6.6 version

of the BSP available
on www.qnx.com?

Copyright © 2014, QNX Software Systems Limited 21

Prerequisites

These update instructions assume that you're familiar with the structure and layout

of QNX BSPs in general and that you have:

• installed QNX SDP 6.6, in either a Windows or Linux environment

• verified that you are able to build and run existing QNX SDP 6.6 BSPs without any

issues

• root privilege on your host system, to avoid any issues with permissions when

attempting to edit, copy, move, or delete files

22 Copyright © 2014, QNX Software Systems Limited

Process to update a BSP to QNX SDP 6.6

Download, extract, and build an existing BSP

To download, extract, and build an existing BSP that you want to update:

1. Download the QNX 6.5.0 or 6.5.0 SP1 BSP that you want to update to QNX SDP

6.6, and extract it to your desired directory within the QNX SDP 6.6 host

environment.

For this example, we’ll use the following directory structure:

/root/bsps/sabrelite_650/

After downloading the BSP, you should have something similar to the following:

/root/bsps/sabrelite_650/BSP_freescale-imx6q-sabrelite_br-650_be-650sp1_SVNxxxxxx_JBNyy.zip

where xxxxxx is the SVN ID for the BSP and yy is a unique ID.

2. Extract the BSP archive using the following command at the prompt:

unzip BSP_freescale-imx6q-sabrelite_br-650_be-650sp1_SVNxxxxxx_JBNyy.zip

For this example, we’ll also have the QNX SDP 6.6 version of the same BSP,

extracted to the following location:

/root/bsps/sabrelite_660/

3. To build the QNX 6.5.0 BSP, type the following command at the prompt:

/root/bsps/sabrelite_650/> # make

At this point, the BSP installation process copies various header files and

prebuilt binaries and libraries from the /prebuilt directory for the BSP,

to the equivalent location within the /install directory for the BSP. The

build process will then attempt to recurse through the various source code

directories in the BSP, compiling the code along the way. Typically, this

step won't progress too far before the build process halts due to the initial

errors it encounters. The output below shows the errors from the first attempt

to compile the QNX 6.5.0 SP1 Sabrelite BSP in an QNX 6.6 environment:

In file included from
/root/bsps/sabrelite_650/src/lib/dma/../../../install/usr/include/sys/platform.h:265:0,
from /root/qnx660/target/qnx6/usr/include/stdio.h:30,
from /root/bsps/sabrelite_650/src/lib/dma/sdma/sdma.h:26,
from /root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:23:
/root/qnx660/target/qnx6/usr/include/sys/target_nto.h:93:2: error: #error __OFF_BITS__ value
 is unsupported
In file included from /root/bsps/sabrelite_650/src/lib/dma/sdma/sdma.h:26:0,
from /root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:23:
/root/qnx660/target/qnx6/usr/include/stdio.h:219:37: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/stdio.h:220:1: error: unknown type name 'off_t'
In file included from /root/qnx660/target/qnx6/usr/include/strings.h:33:0,
from /root/qnx660/target/qnx6/usr/include/string.h:36,
from /root/bsps/sabrelite_650/src/lib/dma/sdma/sdma.h:29,
from /root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:23:
/root/qnx660/target/qnx6/usr/include/string.h:153:1: error: unknown type name 'errno_t'
/root/qnx660/target/qnx6/usr/include/string.h:153:46: error: unknown type name 'rsize_t'
/root/qnx660/target/qnx6/usr/include/string.h:153:73: error: unknown type name 'rsize_t'
In file included from /root/bsps/sabrelite_650/src/lib/dma/sdma/sdma.h:33:0,
from /root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:23:
/root/qnx660/target/qnx6/usr/include/sys/mman.h:184:88: error: unknown type name 'off_t'

Copyright © 2014, QNX Software Systems Limited 23

Download, extract, and build an existing BSP

/root/qnx660/target/qnx6/usr/include/sys/mman.h:253:71: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/sys/mman.h:277:75: error: unknown type name 'off_t'
In file included from /root/qnx660/target/qnx6/usr/include/fcntl.h:36:0,
from /root/bsps/sabrelite_650/src/lib/dma/sdma/sdma.h:39,
from /root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:23:
/root/qnx660/target/qnx6/usr/include/unistd.h:419:1: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/unistd.h:419:34: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/unistd.h:423:80: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/unistd.h:424:87: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/unistd.h:444:37: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/unistd.h:531:44: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/unistd.h:538:41: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/unistd.h:565:1: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/unistd.h:568:1: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/unistd.h:568:35: error: unknown type name 'off_t'
In file included from /root/qnx660/target/qnx6/usr/include/fcntl.h:40:0,
from /root/bsps/sabrelite_650/src/lib/dma/sdma/sdma.h:39,
from /root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:23:
/root/qnx660/target/qnx6/usr/include/sys/stat.h:152:3: error: #error __OFF_BITS__ value
 is unsupported
/root/qnx660/target/qnx6/usr/include/sys/stat.h:179:3: error: #error __OFF_BITS__ value
 is unsupported
In file included from /root/bsps/sabrelite_650/src/lib/dma/sdma/sdma.h:39:0,
from /root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:23:
/root/qnx660/target/qnx6/usr/include/fcntl.h:153:3: error: #error __OFF_BITS__ value
 is unsupported
In file included from /root/bsps/sabrelite_650/src/lib/dma/sdma/sdma.h:39:0,
from /root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:23:
/root/qnx660/target/qnx6/usr/include/fcntl.h:243:3: error: #error __OFF_BITS__ value
 is unsupported
In file included from /root/bsps/sabrelite_650/src/lib/dma/sdma/sdma.h:39:0,
from /root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:23:
/root/qnx660/target/qnx6/usr/include/fcntl.h:316:36: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/fcntl.h:316:52: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/fcntl.h:317:38: error: unknown type name 'off_t'
/root/qnx660/target/qnx6/usr/include/fcntl.h:317:54: error: unknown type name 'off_t'
/root/bsps/sabrelite_650/src/lib/dma/sdma/api.c: In function 'ccb_create':
/root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:89:9: warning: implicit declaration
 of function 'mmap' [-Wimplicit-function-declaration]
/root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:89:17: warning: assignment makes
 pointer from integer without a cast [enabled by default]
/root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:98:9: warning: implicit declaration
 of function 'mem_offset64' [-Wimplicit-function-declaration]
/root/bsps/sabrelite_650/src/lib/dma/sdma/api.c: In function 'chan_create':
/root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:147:22: warning: assignment makes
 pointer from integer without a cast [enabled by default]
/root/bsps/sabrelite_650/src/lib/dma/sdma/api.c:174:23: warning: assignment makes
 pointer from integer without a cast [enabled by default]
cc: /root/qnx660/host/linux/x86/usr/lib/gcc/arm-unknown-nto-qnx8.0.0eabi/4.7.3/cc1 error 1
make[7]: *** [api.o] Error 1
make[6]: *** [install] Error 2
make[5]: *** [install] Error 2
make[4]: *** [install] Error 2
make[3]: *** [install] Error 2
make[2]: *** [install] Error 2
make[1]: *** [install] Error 2
make: *** [install] Error 2

The first error we see is a conflict between the constant __OFF_BITS__, as

defined in:

/root/qnx660/target/qnx6/usr/include/sys/target_nto.h

and references to this constant within the BSP source code here:

/src/lib/dma/../../../install/usr/include/sys/platform.h

For detailed information about interpreting these errors, see Interpret initial results

and remove unnecessary files (p. 25)

24 Copyright © 2014, QNX Software Systems Limited

Process to update a BSP to QNX SDP 6.6

Interpret initial results and remove unnecessary files

Typically, files that appear under $QNX_TARGET/usr/include/sys within the host

development environment would not be duplicated within the BSP. However, over the

lifespan of QNX Momentics 6.5.0, it was necessary to make changes or updates to

these and other files that were found under the /usr/include/sys/ directory. To

maintain compatibility between source code that we included with various BSPs, and

the updated versions of these header files, QNX typically includes the updated header

file(s) with any BSP that requires them, in order to build the corresponding source

code. These header files override the ones included in the QNX 6.5.0 SP1 installation.

However, with the advent of a new version of the operating system (i.e., QNX SDP

6.6), the latest versions of these header files are now present within the host

environment itself, and so we no longer need to include those same files within the

BSP archive. In fact, the older BSP versions of these files will now themselves cause

conflicts, and need to be removed so that the base QNX SDP 6.6 versions are the only

ones present in the system. The same is true for all files found under the BSP directory

prebuilt/usr/include/sys.

To process and continue cleaning the BSP:

1. To clean up the first batch of errors, you'll need to type the following commands

at the prompt:

cd /root/bsps/sabrelite_650/prebuilt/usr/include/sys/
ls
asound.h can_dcmd.h platform.h srcversion.h
#

2. Look in the equivalent directory of the QNX SDP 6.6 host environment (under

/root/qnx660/target/qnx6/usr/include/sys).

You’ll see that new versions of all of these files (and many others) are included

with QNX SDP 6.6. Therefore, they can be safely deleted from the BSP.

3. To remove these files, navigate to the directory and remove these files by typing

the following commands at the prompt:

cd /root/bsps/sabrelite_650/prebuilt/usr/include/sys/
rm *

Copyright © 2014, QNX Software Systems Limited 25

Interpret initial results and remove unnecessary files

Rebuild the BSP

Now, let’s try building the same BSP once again by typing the following commands:

You'll likely repeat this next step several times throughout the process of

updating the BSP.

cd /root/bsps/sabrelite_650/
make clean (this command will remove all of the contents of the /install directory)
make

As you can see from the results below, many of the initial errors are now fixed and the

build is much further along in the process. The following output shows the console

output where the next error in the process reveals an issue with a missing library:
/root/qnx660/host/linux/x86/usr/bin/qcc -Vgcc_ntoarmv7 -c -Os -Wc,-Wall -DNDEBUG -I.
-I/root/bsps/sabrelite_650/src/hardware/devc/sermx1/arm/le.v7
-I/root/bsps/sabrelite_650/src/hardware/devc/sermx1/arm
-I/root/bsps/sabrelite_650/src/hardware/devc/sermx1
-I/root/bsps/sabrelite_650/src/hardware/devc
-I/root/bsps/sabrelite_650/src/hardware/devc/../../../install/usr/include/xilinx
-I/root/bsps/sabrelite_650/src/hardware/devc/../../../install/usr/include
-I/root/qnx660/target/qnx6/usr/include -EL
 -DVARIANT_le -DVARIANT_v7 -DVARIANT_sermx1 -DBUILDENV_qss
 /root/bsps/sabrelite_650/src/hardware/devc/sermx1/tto.c
 make[6]: *** No rule to make target `libpm.a', needed by
 `/root/bsps/sabrelite_650/src/hardware/devc/
 sermx1/arm/le.v7/devc-sermx1'. Stop.
 make[6]: Leaving directory `/root/bsps/sabrelite_650/src/hardware/devc/sermx1/arm/le.v7'
 make[5]: *** [install] Error 2
 make[5]: Leaving directory `/root/bsps/sabrelite_650/src/hardware/devc/sermx1/arm'
 make[4]: *** [install] Error 2
 make[4]: Leaving directory `/root/bsps/sabrelite_650/src/hardware/devc/sermx1'
 make[3]: *** [install] Error 2
 make[3]: Leaving directory `/root/bsps/sabrelite_650/src/hardware/devc'
 make[2]: *** [install] Error 2
 make[2]: Leaving directory `/root/bsps/sabrelite_650/src/hardware'
 make[1]: *** [install] Error 2
 make[1]: Leaving directory `/root/bsps/sabrelite_650/src'
 make: *** [install] Error 2

Missing library

The issue here is a missing library (libpm.a), which previously shipped with QNX

Momentics 6.5.0, but no longer ships with QNX SDP 6.6. So, you'll need to modify

the serial driver source code that attempts to use this library. Comparing the /devc

source directory contained within the QNX 6.5 version of the BSP to the equivalent

directory contained within the (already ported) QNX 6.6 version, we see the first diff:
diff -r -b /root/bsps/sabrelite_660/src/hardware/devc /root/bsps/sabrelite_650/src/hardware/devc
< LIBS+=io-char drvr

> LIBS+=io-char pm ps drvr

So, in the QNX 6.5.0 version of the BSP, the common.mk file for the serial driver

source code is including this libpm.a. Notice that from the QNX SDP 6.6 version of

the BSP, this library (and a corresponding libps.a) is no longer needed. Therefore,

26 Copyright © 2014, QNX Software Systems Limited

Process to update a BSP to QNX SDP 6.6

you'll need to edit the file common.mk to change the line with LIBS as shown above,

to remove the references to pm and ps:

LIBS+=io-char pm ps drvr
LIBS+=io-char drvr

Again, looking at the BSP root directory (/root/bsps/sabrelite_650), and

performing a make clean; make operation, the BSP build is able to advance much

further along in the build process.

Touch/input driver

The next issue encountered with the build process for the BSP occurs with the attempt

to compile the touchscreen driver contained within the QNX 6.5.0 version of the BSP.

The issue here is that the touch driver in the QNX QNX 6.5.0 BSP is based on the

older devi input framework, which has not been carried forward to QNX SDP 6.6.

Describing what needs to be done to migrate an input/touch driver to the new mtouch

framework is beyond the scope of this document, but there are several QNX SDP 6.6

BSPs available that include mtouch touchscreen drivers, so these can be used as a

reference for updating your own touch/input driver, if necessary. In this particular

case, we will simply remove the /devi directory altogether:

#cd /root/bsps/sabrelite_650/src/hardware
rm –Rf devi

Returning to the root of the BSP directory, and doing a make clean; make operation,

we see that the next issue with our example BSP is that the network driver source

that’s included with the BSP has many issues regarding re-declaration of enumerators,

conflicting types, and so on:
I../../../../../io-pkt/lib/socket/public -I/root/bsps/sabrelite_650/src/hardware/devnp/mx6x/../../../../
 install/usr/include
-I/root/qnx660/target/qnx6/usr/include -EL -shared
 -DVARIANT_dll -DVARIANT_le -DVARIANT_v7 -DBUILDENV_qss
 /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/bsd_media.c
 In file included from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/mx6q.h:48:0,
 from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/bsd_media.c:22:
 /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/../../../../
 install/usr/include/io-pkt/drvr/mdi.h:290:16:
 error: redeclaration of enumerator 'WaitBusy'
 In file included from /root/qnx660/target/qnx6/usr/include/io-pkt/iopkt_driver.h:59:0,
 from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/mx6q.h:27,
 from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/bsd_media.c:22:
 /root/qnx660/target/qnx6/usr/include/netdrvr/mdi.h:290:16: note: previous definition
 of 'WaitBusy' was here
 In file included from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/mx6q.h:48:0,
 from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/bsd_media.c:22:
 /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/../../../../install/usr/include/
 io-pkt/drvr/mdi.h:290:30:
 error: redeclaration of enumerator 'NoWait'
 In file included from /root/qnx660/target/qnx6/usr/include/io-pkt/iopkt_driver.h:59:0,
 from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/mx6q.h:27,
 from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/bsd_media.c:22:
 /root/qnx660/target/qnx6/usr/include/netdrvr/mdi.h:290:30: note: previous definition of
 'NoWait' was here
 In file included from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/mx6q.h:48:0,
 from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/bsd_media.c:22:
 /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/../../../../install/usr/include/io-pkt/
 drvr/mdi.h:290:38:
 error: redeclaration of enumerator 'IrqNoWait'
 In file included from /root/qnx660/target/qnx6/usr/include/io-pkt/iopkt_driver.h:59:0,
 from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/mx6q.h:27,
 from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/bsd_media.c:22:
 /root/qnx660/target/qnx6/usr/include/netdrvr/mdi.h:290:38: note: previous definition of

Copyright © 2014, QNX Software Systems Limited 27

Rebuild the BSP

 'IrqNoWait' was here
 In file included from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/mx6q.h:48:0,
 from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/bsd_media.c:22:
 /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/../../../../install/usr/include/io-pkt/
 drvr/mdi.h:290:50:
 error: conflicting types for 'MDIWaitType'
 In file included from /root/qnx660/target/qnx6/usr/include/io-pkt/iopkt_driver.h:59:0,
 from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/mx6q.h:27,
 from /root/bsps/sabrelite_650/src/hardware/devnp/mx6x/bsd_media.c:22:
 /root/qnx660/target/qnx6/usr/include/netdrvr/mdi.h:290:50: note: previous declaration of
 'MDIWaitType' was here

 ...
 ...
 ...

Network updates

The reason for these errors is that since QNX 6.5.0 was released, there have been

significant updates to the network driver library routines. In order for the current driver

source to compile correctly, various (updated) network driver-related header files

needed to be included in the BSP. One of the changes was to separate out the

network-specific library functions from the generic driver functions, so that

network-related functions that were previously found in libdrvr.a are now found

in libnetdrvr.a. With the advent of QNX SDP 6.6, additional updates were made

to these routines, and the latest version of libnetdrvr.a (as well as its corresponding

header files) is included with QNX SDP 6.6. As a result, to get the network driver

source building, you'll need to do the following steps:

1. Delete all io-pkt related headers, and the prebuilt libdrvrS.a, from the BSP:

cd root/bsp/sabrelite_650/prebuilt/usr/include/
rm –Rf io-pkt
cd root/bsp_sabrelite_650/prebuilt/armle-v7/usr/lib
rm libdrvrS.a

2. Modify the common.mk file for the mx6x network driver to include libnetdrvr:

cd root/bsp/sabrelite_650/src/hardware/devnp/mx6x/
vim common.mk (edit as shown below)

before:
 LIBS = drvrS cacheS
after:
 LIBS = netdrvrS drvrS cacheS

3. Edit the mx6q.h file, which includes several header files previously associated

with libdrvr, but are now instead associated with libnetdrvr:

Before:
 #include <drvr/mdi.h>
 #include <drvr/eth.h>
 #include <drvr/nicsupport.h>
 #include <drvr/common.h>

After:
 #include <netdrvr/mdi.h>
 #include <netdrvr/eth.h>
 #include <netdrvr/nicsupport.h>
 #include <netdrvr/common.h>

28 Copyright © 2014, QNX Software Systems Limited

Process to update a BSP to QNX SDP 6.6

After completing these steps, return to the BSP root, and do the make clean; make

again; at this point, we see that the network driver builds without errors. We also see

that the BSP now builds to completion (although there are still warnings, which we’ll

discuss later).

Copyright © 2014, QNX Software Systems Limited 29

Rebuild the BSP

Update the startup and IPL library source

Every QNX BSP includes a current snapshot of the QNX startup library code, and for

those BSPs that also include an Initial Program Loader (IPL), we also include the

source to the IPL library. Since we’re updating a QNX 6.5.0 BSP to QNX SDP 6.6 and

because the QNX SDP 6.6 version of the startup library (and IPL library) code includes

various QNX SDP 6.6 BSPs, it’s a simple operation to do a replacement of the QNX

6.5.0 library source with the equivalent QNX SDP 6.6 version.

The startup library code has undergone a number of significant updates, which

correspond to various new features and functionality of the QNX SDP 6.6 kernel, so

updating the startup library code will definitely reduce the likelihood of compatibility

issues and crashes when you attempt to run your updated QNX 6.5.0 BSP in a QNX

SDP 6.6 environment.

To update the startup and IPL library source:

1. Assuming you’ve already downloaded a current QNX SDP 6.6 BSP for the same

CPU architecture as the BSP that you’re updating, you can type the following

commands:

cd /root/bsps/sabrelite_650/src/hardware/startup/
rm –Rf lib
cp –R /root/bsps/sabrelite_660/src/hardware/startup/lib .
cd ../ipl
rm –Rf lib
cp –R /root/bsps/sabrelite_660/src/hardware/ipl/lib

2. Return to the BSP root directory and run the following commands again:

cd /root/bsps/sabrelite_650/
make clean (this command will remove all of the contents of
 the /install directory)
make

Now, your startup code should be compatible with the QNX SDP 6.6 kernel and

environment. In addition, you'll gain the added benefit of replacing library source code

that would have otherwise generated many warnings (due to compiling with a newer,

more strict version of the GNU/gcc toolchain), with library source code that's already

been modified for compilation under the QNX SDP 6.6 toolchain.

In general, the same procedure can (and should) be done for any other source that

typically ships with QNX BSPs (for example, DMA library source, standard device

drivers, etc.). It may save you significant time and effort to take a look through the

various QNX SDP 6.6 BSP offerings, and see what source code is available that might

be compatible with devices or hardware that you’re attempting to port from an existing

QNX 6.5.0 BSP. As an example; earlier, we compared the serial driver source code

from the original QNX 6.5.0 BSP to the same source code in the current QNX SDP

6.6 BSP, to see what changes were necessary to get the 6.5.0 version to build.

30 Copyright © 2014, QNX Software Systems Limited

Process to update a BSP to QNX SDP 6.6

Although this was useful for illustration purposes, a better solution would be to replace

the original QNX 6.5.0 version of the serial driver with the QNX SDP 6.6 version

because the newer version is available.

Copyright © 2014, QNX Software Systems Limited 31

Update the startup and IPL library source

Update BSPs containing prebuilt kernels and other OS components

Typically, QNX BSPs don't include binaries for common OS components such as the

QNX kernel (procnto-*), C library (libc.so), or any other components that are

included as part of a QNX Software Development Platform. However, there have been

occasions where important kernel or libc updates (or updates to other critical

components) were necessary for certain BSPs to operate correctly. Rather than make

a separate patch available, we have included the updated components directly in the

BSP archive to ensure that the proper version is used with the BSP. While it’s unlikely

that the BSP you’re updating will contain any prebuilt OS components such as these,

it’s always good practice to verify and remove them if they exist. Typically, if they're

included, these types of components would be located in the /prebuilt directory

for the BSPs in the following location(s):

prebuilt/armle-v7/boot/sys
prebuilt/armle-v7/lib

Search these directories for any binaries named procnto, procnto-smp,

and so on, or for libraries such as libc.so. If they’re present, delete them

before building your BSP. Similarly, if you see other prebuilt components in

the directory prebuilt/armle-v7, and those same components also exist

in the directory /root/qnx660/target/qnx6/armle-v7/, it’s safe to

assume that you want to use the ones found in qnx660, and delete the older

versions from the BSP.

32 Copyright © 2014, QNX Software Systems Limited

Process to update a BSP to QNX SDP 6.6

Chapter 5
Clean Up Remaining Warnings

Now our example BSP builds to completion and you’ll have already replaced as much

of the QNX 6.5.0 BSP code as possible with the equivalent updated versions found

in the existing QNX SDP 6.6 BSPs. At this point, you should be able to generate an

IFS image from your BSP and test it on your target hardware. However, before doing

that, you may notice that there are several warnings generated when you compile the

BSP source this final time. The following output shows the list of warnings generated

when you compile the QNX 6.5.0 SabreLite BSP example in its current state:
/root/bsps/sabrelite_650/src/hardware/deva/ctrl/mx/mxssi_dll.c: In function 'mx_capture_trigger':
/root/bsps/sabrelite_650/src/hardware/deva/ctrl/mx/mxssi_dll.c:414:13: warning: variable 'tmp' set but not used [-Wunused-but-set-variable]
/root/bsps/sabrelite_650/src/hardware/deva/ctrl/mx/mxssi_dll.c: In function 'mx_capture_trigger2':
/root/bsps/sabrelite_650/src/hardware/deva/ctrl/mx/mxssi_dll.c:714:13: warning: variable 'tmp' set but not used [-Wunused-but-set-variable]
/root/bsps/sabrelite_650/src/hardware/devb/mmcsd/mmcsd.c: In function 'mmc_dump':
/root/bsps/sabrelite_650/src/hardware/devb/mmcsd/mmcsd.c:83:7: warning: variable 'skipping' set but not used [-Wunused-but-set-variable]
/root/bsps/sabrelite_650/src/hardware/devb/mmcsd/mmcsd.c: In function 'mmc_erase':
/root/bsps/sabrelite_650/src/hardware/devb/mmcsd/mmcsd.c:187:16: warning: variable 'ext' set but not used [-Wunused-but-set-variable]
sim_bs.c: In function 'mx6dq_detect':
sim_bs.c:36:14: warning: variable 'mx35' set but not used [-Wunused-but-set-variable]
sim_bs.c: In function 'bs_dinit':
sim_bs.c:112:14: warning: variable 'mx35' set but not used [-Wunused-but-set-variable]
/root/bsps/sabrelite_650/src/hardware/devb/mmcsd/sim_mmc.c: In function 'mmc_evpd_inquiry':
/root/bsps/sabrelite_650/src/hardware/devb/mmcsd/sim_mmc.c:278:17: warning: variable 'is' set but not used [-Wunused-but-set-variable]
/root/bsps/sabrelite_650/src/hardware/devb/mmcsd/sim_mmc.c: In function 'mmc_fake_inquiry':
/root/bsps/sabrelite_650/src/hardware/devb/mmcsd/sim_mmc.c:407:16: warning: variable 'ext' set but not used [-Wunused-but-set-variable]
/root/bsps/sabrelite_650/src/hardware/devb/mmcsd/sim_mmc.c: In function 'mmc_pio_initiate':
/root/bsps/sabrelite_650/src/hardware/devb/mmcsd/sim_mmc.c:941:11: warning: variable 'blkno' set but not used [-Wunused-but-set-variable]
/root/bsps/sabrelite_650/src/hardware/devb/mmcsd/chipsets/sim_mx35.c: In function 'mx35_command':
/root/bsps/sabrelite_650/src/hardware/devb/mmcsd/chipsets/sim_mx35.c:257:18: warning: variable 'intrstien' set but not used
 [-Wunused-but-set-variable]
/root/bsps/sabrelite_650/src/hardware/devb/mmcsd/chipsets/sim_mx35.c:256:18: warning: variable 'intrsten' set but not used
 [-Wunused-but-set-variable]
../../fujitsu/f29f100_ident.c: In function 'f3s_f29f100_ident':
../../fujitsu/f29f100_ident.c:52:34: warning: variable 'amd_mult' set but not used [-Wunused-but-set-variable]
../../intel/i28f008_suspend.c: In function 'f3s_i28f008_suspend':
../../intel/i28f008_suspend.c:44:11: warning: variable 'status' set but not used [-Wunused-but-set-variable]
/root/qnx660/host/linux/x86/usr/bin/ntoarmv7-ar: creating /root/bsps/sabrelite_650/src/hardware/flash/mtd-flash/arm/a.le.v7/libmtd-flash.a
/root/qnx660/host/linux/x86/usr/bin/ntoarmv7-ar: creating /root/bsps/sabrelite_650/src/hardware/ipl/lib/arm/a.le.v7/libipl.a
/root/bsps/sabrelite_650/src/hardware/ipl/boards/mx6q-sabrelite/fat-fs.c:39:1: warning: conflicting types for built-in function 'memcpy'
 [enabled by default]
/root/bsps/sabrelite_650/src/hardware/ipl/boards/mx6q-sabrelite/fat-fs.c:339:1: warning: 'read_cluster' defined but not used
 [-Wunused-function]
/root/bsps/sabrelite_650/src/hardware/spi/mx51ecspi/mxecspi.c: In function 'mx51_options':
/root/bsps/sabrelite_650/src/hardware/spi/mx51ecspi/mxecspi.c:204:20: warning: variable 'err' set but not used [-Wunused-but-set-variable]
/root/qnx660/host/linux/x86/usr/bin/ntoarmv7-ar: creating /root/bsps/sabrelite_650/src/hardware/startup/lib/arm/a.le.v7/libstartup.a
/root/bsps/sabrelite_650/src/utils/r/rtc/qnxrtc.c: In function 'main':
/root/bsps/sabrelite_650/src/utils/r/rtc/qnxrtc.c:487:6: warning: format '%ld' expects argument of type 'long int', but argument 2
 has type '_Int32t' [-Wformat]
/root/bsps/sabrelite_650/src/utils/r/rtc/qnxrtc.c:487:6: warning: format '%ld' expects argument of type 'long int', but argument 3
 has type '_Uint32t' [-Wformat]
/root/bsps/sabrelite_650/src/utils/r/rtc/qnxrtc.c:496:7: warning: format '%ld' expects argument of type 'long int', but argument 2
 has type '_Uint32t' [-Wformat]

As indicated earlier, warnings that didn't appear when the same BSP was compiled

in a QNX 6.5.0 environment but appear when the same code is compiled in a QNX

SDP 6.6.0 environment are due to the updated GNU toolchain (QNX 6.5.0 and QNX

6.5.1 SP1 uses version 4.4.2, which was updated to version 4.7.3 in QNX SDP 6.6).

Typically, the gcc compiler becomes more strict about coding practices with each

updated version. Many of the warnings seen in the output above relate to variables or

functions that are declared, but not subsequently used. Other warnings relate to

typecasting and to general coding practices.

Since the GNU toolchain is widely used in computing environments outside

of QNX, considerable information exists on the internet that describes in detail

Copyright © 2014, QNX Software Systems Limited 33

how to fix the warnings that appear when you compile your updated BSP, so

we won’t go into that level of detail here.

34 Copyright © 2014, QNX Software Systems Limited

Clean Up Remaining Warnings

Index

/images 14
BSP directory 14

/install 14
BSP directory 14

/prebuilt 14
BSP directory 14

/prebuilt directory 28, 32
deleting updated components from 28, 32

/src 14
BSP directory 14

6.6 5
BSP for QNX SDP 5

B

binaries 13
BSP 13

Board Support Package, See BSP
Board Support Packages, See BSP
bootable 17

SD card, creating 17
BSP 5, 9, 11, 13, 14, 21, 22, 23, 25, 30, 32

6.6 compared to previous releases 13
binaries, libraries and utilities 13
build 23
buildfile 9
components 14
content 9
contents 14
directories 14
documentation 11
download 23
extract 23
hardware documentation 11
IFS image 13
interpret results 25
IPL 9
modifying for QNX SDP 6.6 5
obtaining 9
overview 9
prebuilt kernel 32
prerequisites 22
process 21
QNX SDP 6.6 5
software documentation 11
startup 9
structure 14
update IPL library source 30
update process 21
update startup 30

build BSP 23
build file 14

IFS 14
buildfile 9

C

components 14
BSP 14

D

directories 14
BSP 14

documentation 11
BSP 11

download BSP 23

E

extract BSP 23

F

FAT32 partition 17, 19
creating 17
creating (Linux Ubuntu) 19
creating (Windows 7) 17

G

gcc 33
GNU toolchain 33

I

IFS build file 14
IFS image 13

ensuring that it includes modified BSP components 13
generating with modified BSP components 13

IPL 9, 30

K

kernel 32

L

libraries 13
BSP 13

M

make clean 26
removing unnecessary files 26

Copyright © 2014, QNX Software Systems Limited 35

QNX SDP 6.6.0 BSPs

P

prebuilt kernel 32
procnto 32

S

SD card 17, 19
bootable FAT32 partition 17, 19
creating bootable 17

serial driver 26, 31
modifying source code for 26, 31

startup 9, 30

T

Technical support 8
Typographical conventions 6

U

update 21, 22, 23, 30
BSP 21
build BSP 23
IPL 30
prerequisites for BSP update 22
startup 30

utilities 13
BSP 13

36 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Overview of a BSP
	Before you begin
	What's new with QNX SDP 6.6 BSPs
	Structure and contents of a QNX SDP 6.6 BSP
	Preparing a bootable SD card
	Preparing a bootable SD card (Windows 7)
	Preparing a bootable SD card (Linux Ubuntu)

	Process to update a BSP to QNX SDP 6.6
	Prerequisites
	Download, extract, and build an existing BSP
	Interpret initial results and remove unnecessary files
	Rebuild the BSP
	Update the startup and IPL library source
	Update BSPs containing prebuilt kernels and other OS components

	Clean Up Remaining Warnings
	Index

