
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

Screen Graphics Subsystem
Developer's Guide

©2010–2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Monday, October 6, 2014

Table of Contents

About Screen ..9
Typographical conventions ...11

Technical support ...13

Chapter 2: Overview of Screen ...17

Chapter 3: Understanding composition ...21

Chapter 4: Screen API ..27

Chapter 5: Contexts ..29

Create a context ...30

Context types ...31

Set a context property ...32

Chapter 6: Windows ...33

Window types ...34

Window properties ..36

Window parenting and positioning ..39

Create a window ...41

Create a child window ...43

Pixel formats ..44

Chapter 7: Displays ..47

Multiple displays ..48

Complete sample: Using multiple displays ...50

Chapter 8: Event Types ...55

Chapter 9: Screen Tutorials ...57

Tutorial: Draw and perform vsync operations using windows ..58

Create the background window ...58

Create the child windows ...60

Create the main() function ...63

Complete sample: A vsync application using windows ...67

Tutorial: Draw and perform vsync operations using blits, pixmaps, and buffers70

Create a context and initialize a window ..70

Create buffers and a pixmap ...71

Screen Graphics Subsystem Developer's Guide

Combine buffers with blit functions and properties ...72

Complete sample: A vsync application using blits, pixmaps, and buffers73

Tutorial: Write an application using OpenGL ES ..75

Use OpenGL ES in a windowed vsync application ...75

Complete sample: A windowed vsync application using OpenGL ES86

Tutorial: Screenshots ...99

Capture a window screenshot ..99

Complete sample: a window screenshot example ..102

Capture a display screenshot ..107

Complete sample: A display screenshot example ..110

Tutorial: Rendering text with FreeType and OpenGL ES ...113

Using FreeType library and OpenGL ES to render text ..113

Complete sample: Rendering text with FreeType and OpenGL ES119

Tutorial: Screen events ..131

Injecting a Screen event ...131

Complete sample: Injecting a Screen event ..133

Injecting a Screen mtouch event ...135

Complete sample: Injecting a screen event ..138

Chapter 10: Screen Configuration ..141

Configure Screen ...142

Configure khronos section ..144

Configure winmgr section ...146

Apply your Screen configuration ..167

Troubleshooting ...169

Chapter 11: Screen Library Reference ...179

Function safety ...180

Function execution types ...181

Apply execution ...182

Delayed execution ...182

Flushing execution ..183

Immediate execution ...183

Function types ..184

General (screen.h) ..189

Definitions in screen.h ...189

_screen_mode ...189

Screen CBABC mode types ...190

Screen alpha mode types ...191

Screen color space types ..192

Screen flushing types ..193

Screen idle mode types ..193

Screen mirror types ...194

Screen mouse button types ..195

Table of Contents

Screen object types ...196

Screen pixel format types ...196

Screen power mode types ...199

Screen property types ..200

Screen scaling quality types ...245

Screen sensitivity masks ..246

Screen sensitivity types ..249

Screen touch types ..250

Screen transparency types ..251

Screen usage flag types ...252

Blits (screen.h) ...255

Screen blit types ...255

screen_blit() ...258

screen_fill() ..260

screen_flush_blits() ...261

Buffers (screen.h) ..263

Screen buffer properties ...263

screen_buffer_t ...264

screen_create_buffer() ...264

screen_destroy_buffer() ..265

screen_get_buffer_property_cv() ..265

screen_get_buffer_property_iv() ..267

screen_get_buffer_property_llv() ...268

screen_get_buffer_property_pv() ...269

screen_set_buffer_property_cv() ..270

screen_set_buffer_property_iv() ..271

screen_set_buffer_property_llv() ..272

screen_set_buffer_property_pv() ..273

Contexts (screen.h) ...275

Screen context properties ...275

Screen notification types ..276

screen_context_t ...276

Screen context types ..277

screen_create_context() ...279

screen_destroy_context() ..280

screen_flush_context() ...280

screen_get_context_property_cv() ..281

screen_get_context_property_iv() ..282

screen_get_context_property_llv() ..284

screen_get_context_property_pv() ..285

screen_notify() ..286

screen_set_context_property_cv() ..287

screen_set_context_property_iv() ...288

screen_set_context_property_llv() ..289

screen_set_context_property_pv() ..290

Screen Graphics Subsystem Developer's Guide

Debugging (screen.h) ..292

Screen debug graph types ..292

Screen packet types ..293

screen_print_packet() ..294

Devices (screen.h) ..296

Screen device metric counts ...296

Screen device properties ..297

Screen game button types ..298

screen_device_t ..300

screen_create_device_type() ...300

screen_destroy_device() ...301

screen_get_device_property_cv() ...302

screen_get_device_property_iv() ..303

screen_get_device_property_llv() ...304

screen_get_device_property_pv() ...305

screen_set_device_property_cv() ...306

screen_set_device_property_iv() ..308

screen_set_device_property_llv() ...309

screen_set_device_property_pv() ...310

Displays (screen.h) ...311

Screen display metric count types ...311

Screen display mode types ...313

Screen display properties ...313

Screen display technology types ..315

Screen display types ..316

screen_display_mode_t ..317

screen_display_t ..317

screen_get_display_modes() ...318

screen_get_display_property_cv() ..319

screen_get_display_property_iv() ...320

screen_get_display_property_llv() ..322

screen_get_display_property_pv() ..323

screen_read_display() ..324

screen_set_display_property_cv() ..325

screen_set_display_property_iv() ...326

screen_set_display_property_llv() ..327

screen_set_display_property_pv() ..328

screen_share_display_buffers() ...329

screen_wait_vsync() ...330

Events (screen.h) ..332

Screen event properties ..332

Screen event types ..334

screen_create_event() ..337

screen_destroy_event() ...338

screen_event_t ..338

Table of Contents

screen_get_event() ..339

screen_get_event_property_cv() ..340

screen_get_event_property_iv() ...341

screen_get_event_property_llv() ..344

screen_get_event_property_pv() ..345

screen_inject_event() ...347

screen_send_event() ..348

screen_set_event_property_cv() ...349

screen_set_event_property_iv() ...350

screen_set_event_property_llv() ..353

screen_set_event_property_pv() ..354

Groups (screen.h) ..357

Screen group properties ...357

screen_create_group() ..357

screen_destroy_group() ..358

screen_get_group_property_cv() ..359

screen_get_group_property_iv() ...360

screen_get_group_property_llv() ..361

screen_get_group_property_pv() ..362

screen_group_t ..363

screen_set_group_property_cv() ..364

screen_set_group_property_iv() ...365

screen_set_group_property_llv() ..366

screen_set_group_property_pv() ..367

Pixmaps (screen.h) ...369

Screen pixmap metric counts ...369

Screen pixmap properties ...370

screen_attach_pixmap_buffer() ...371

screen_create_pixmap() ...372

screen_create_pixmap_buffer() ...373

screen_destroy_pixmap() ..373

screen_destroy_pixmap_buffer() ..374

screen_get_pixmap_property_cv() ..375

screen_get_pixmap_property_iv() ..376

screen_get_pixmap_property_llv() ..377

screen_get_pixmap_property_pv() ..378

screen_join_pixmap_group() ...379

screen_leave_pixmap_group() ...380

screen_pixmap_t ...381

screen_ref_pixmap() ..381

screen_set_pixmap_property_cv() ..382

screen_set_pixmap_property_iv() ...383

screen_set_pixmap_property_llv() ..384

screen_set_pixmap_property_pv() ..385

screen_unref_pixmap() ...386

Screen Graphics Subsystem Developer's Guide

Windows (screen.h) ...388

Screen window metric counts ...388

Screen window properties ...393

Screen window types ...395

screen_attach_window_buffers() ...396

screen_create_window() ...397

screen_create_window_buffers() ..398

screen_create_window_group() ..399

screen_create_window_type() ..400

screen_destroy_window() ..401

screen_destroy_window_buffers() ..402

screen_discard_window_regions() ..403

screen_get_window_property_cv() ..404

screen_get_window_property_iv() ..405

screen_get_window_property_llv() ...407

screen_get_window_property_pv() ...408

screen_join_window_group() ...410

screen_leave_window_group() ...411

screen_post_window() ..411

screen_read_window() ..414

screen_ref_window() ..415

screen_set_window_property_cv() ..416

screen_set_window_property_iv() ..417

screen_set_window_property_llv() ..419

screen_set_window_property_pv() ..420

screen_share_window_buffers() ...421

screen_unref_window() ..422

screen_wait_post() ...423

screen_window_t ...424

Table of Contents

About Screen

Screen Graphics Subsystem is a compositing windowing system that can composite

graphics from several different rendering technologies.

Screen allows developers to create specific vertical applications using industry-standard

tools in a UI development environment. UI technologies that Screen can combine

include HTML5, Elektrobit GUIDE, Crank Storyboard, Qt, and native (e.g., OpenGL

ES) code.

Screen

Board support package (BSP)

Hardware

Other frameworks

- Crank Storyboard
- Elektrobit GUIDE
- more...

HTML5 application
environment
- HTML5
- JavaScript
- CSS3

QNX OS

Vertical Applications

HMI

Qt development
environment

Figure 1: Screen

Screen enables developers to create separate windows for the output of each rendering

technology (e.g., HTML5, Qt, Video, or OpenGL ES) so that each window can be

transformed (e.g., scaling, translation, rotation, alpha blending, etc.) to build the final

scene for display.

The Screen Graphics Subsystem Developer's Guide is intended for application

developers. This table may help you find what you need in this guide:

See:To find out about:

Overview of Screen (p. 17)Overview of Screen

Understanding composition (p. 21)Composition

Screen API (p. 27)Screen API

Contexts (p. 29)Contexts

Windows (p. 33)Windows

Displays (p. 47)Displays

Event Types (p. 55)Event Types

Configuring Screen (p. 141)Configuring Screen

Screen Tutorials (p. 57)Screen Tutorials

© 2014, QNX Software Systems Limited 9

See:To find out about:

Screen Library Reference (p. 179)Screen Library Reference

10 © 2014, QNX Software Systems Limited

About Screen

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

© 2014, QNX Software Systems Limited 11

Typographical conventions

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

12 © 2014, QNX Software Systems Limited

About Screen

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

© 2014, QNX Software Systems Limited 13

Technical support

http://www.qnx.com

Chapter 1
About Screen

Screen Graphics Subsystem is a compositing windowing system that can composite

graphics from several different rendering technologies.

Screen allows developers to create specific vertical applications using industry-standard

tools in a UI development environment. UI technologies that Screen can combine

include HTML5, Elektrobit GUIDE, Crank Storyboard, Qt, and native (e.g., OpenGL

ES) code.

Screen

Board support package (BSP)

Hardware

Other frameworks

- Crank Storyboard
- Elektrobit GUIDE
- more...

HTML5 application
environment
- HTML5
- JavaScript
- CSS3

QNX OS

Vertical Applications

HMI

Qt development
environment

Figure 2: Screen

Screen enables developers to create separate windows for the output of each rendering

technology (e.g., HTML5, Qt, Video, or OpenGL ES) so that each window can be

transformed (e.g., scaling, translation, rotation, alpha blending, etc.) to build the final

scene for display.

The Screen Graphics Subsystem Developer's Guide is intended for application

developers. This table may help you find what you need in this guide:

See:To find out about:

Overview of Screen (p. 17)Overview of Screen

Understanding composition (p. 21)Composition

Screen API (p. 27)Screen API

Contexts (p. 29)Contexts

Windows (p. 33)Windows

Displays (p. 47)Displays

© 2014, QNX Software Systems Limited 15

See:To find out about:

Event Types (p. 55)Event Types

Configuring Screen (p. 141)Configuring Screen

Screen Tutorials (p. 57)Screen Tutorials

Screen Library Reference (p. 179)Screen Library Reference

16 © 2014, QNX Software Systems Limited

About Screen

Chapter 2
Overview of Screen

Screen is a compositing windowing system.

Unlike traditional windowing systems that arbitrate access to a single buffer associated

with a display, this compositing windowing system provides the means for applications

to render off-screen.

Rendering to off-screen buffers allows the manipulation of window contents without

having to involve the applications that are doing the rendering. Windows can be moved

around, zoomed in, zoomed out, rotated, or have transparency effects applied to them,

all without requiring the application to redraw or even be aware that such effects are

taking place.

Screen is responsible for:

• running all drivers (e.g., input, display, OpenGL ES)

• allocating memory needed by application windows

• displaying content when rendering completes

Screen integrates multiple graphics and user interface (UI) technologies into a single

scene. This scene is rendered into one image that is associated with a display.

Application

Screen

Board support package

OpenGL ES APIScreen API EGL API

Blitter

Input drivers
(e.g. mtouch, io-hid)

Hardware

Composition Manager

QNX OS

Display drivers
(e.g. OpenWF)GPU Drivers

Figure 3: Screen: A composited windowing system.

© 2014, QNX Software Systems Limited 17

Handling composition

The main responsibility of Screen is to combine all visible window buffers into one

final image that is displayed. This responsibility is handled by the Composition Manager

and is achieved using several classes of hardware. The Composition Manager can be

configured to use available compositing hardware in a way that best meets the needs

of a particular system.

Screen has a plug-in architecture that includes hardware-specific compositing modules

and a module for OpenGL for Embedded Systems (OpenGL ES).

Screen uses GPU-accelerated operations to optimally build the final scene. You may

resort to using software rendering if your hardware cannot satisfy the requests. The

graphics drivers and display controllers that run within Screen are based on the OpenWF

Display (WFD) API.

Communicating with applications

Applications communicate with the Composition Manager using Screen API to perform

such tasks as the following:

• creating and destroying windows.

• creating and destroying pixmaps.

• using accessor functions to set and get native window, pixmap, display, device,

and buffer properties.

• drawing into native buffers that are associated with windows and pixmaps

• making areas, within buffers, that can be displayed.

• Receiving and processing asynchronous events from Screen.

• sending events to other windowed applications.

Applications can render using:

• software; applications access the window buffer and write to it using the CPU.

• OpenGL ES; use EGL to target the window buffer(s) with OpenGL ES calls.

Sample Screen applications

Screen provides a set of sample native applications that demonstrate what you can

do with the Screen API. These sample applications are installed on your host under

each target-specific directory under $QNX_TARGET.

Running these applications will help in determining whether or not you have set the

appropriate Screen configuration.

/usr/bin/calib-touch

This utility loads or creates an mtouch calibration file, /etc/system/con

fig/calib.<hostname>. If the calibration file needs to be created, the

user will be prompted to calibrate.

18 © 2014, QNX Software Systems Limited

Overview of Screen

/usr/bin/display_image

This application displays a specified image to the specified display.

/usr/bin/egl-configs

This utility queries and displays the number of all the frame buffer

configurations for the specified display. If no display is specified, then the

default display is used.

/usr/bin/events

This application uses a window manager connection to Screen. It prints all

events to the console output as they are received.

/usr/bin/font-freetype

This application shows how to render text with FreeType and OpenGL ES

1.X.

/usr/bin/gles1-gears

This application shows windowed gears that use OpenGL ES 1.X for the

rendering API.

/usr/bin/gles2-gears

This application shows windowed gears that use OpenGL ES 2.X for the

rendering API.

/usr/bin/gles2-maze

This application uses OpenGL ES 2.X for the rendering; it demonstrates how

to use texture as well as vertex and fragment shaders.

/usr/bin/print-gestures

This application detects and displays recognized gestures.

/usr/bin/screenshot

This application takes a screenshot of a specified size of the display and

saves the output file in BMP format.

/usr/bin/sw-vsync

This application shows windowed vsync that uses software rendering.

/usr/bin/vcapture-test

This application demonstrates that you can connect to a device for video

input, capture frames from that input source, and then display the captured

frames using Screen.

© 2014, QNX Software Systems Limited 19

/usr/bin/vkey

This application uses the privileged context,

SCREEN_INPUT_PROVIDER_CONTEXT, to create a connection to the

Composition Manager. A key sequence is injected to whichever window has

input focus on the specified display. The application will exit as soon as the

last character is sent.

/usr/bin/yuv-test

This application displays a YUV test pattern.

20 © 2014, QNX Software Systems Limited

Overview of Screen

Chapter 3
Understanding composition

Composition is the process of combining multiple content sources together into a

single image.

Screen, as much as possible, uses hardware layering (pipelines) for composition. When

multiple pipelines and buffers are supported by the device driver, Screen takes

advantage of these hardware capabilities to use each pipeline and to combine the

pipelines at display time. For applications that require complex graphical operations,

you can also use hardware-accelerated options such as OpenGL ES and/or bit-blitting

hardware. Only when your platform does not support any hardware-accelerated options,

will Screen then resort to using the CPU to perform composition.

The following forms of transparency are used for composition:

Destination view port

Allows any content on layers below to be displayed. This transparency mode

has an implicit transparency in that anything outside the specified view port

is transparent.

Source chroma

Allows source pixels of a particular color to be interpreted as transparent.

Unlike a destination view port, source chroma allows for transparent pixels

within the buffer.

Source alpha blending

Allows pixel blending based on the alpha channel of the source pixel. Source

alpha blending is one of the most powerful forms of transparency because

it can blend in the range from fully opaque to fully transparent.

There are two types of composition:

Hardware composition

Composes all visible (enabled) pipelines of the display controller and then

displays them.

Screen composition

Composes mutliple elements that are combined into a single buffer that is

associated to a pipeline and displayed. The composition is handled by the

Composition Manager of Screen.

© 2014, QNX Software Systems Limited 21

Hardware composition

Hardware composition capabilities are constrained by the display controller. Therefore,

they vary from platform to platform.

All visible (enabled) pipelines are composed and displayed. Each layer, at the time it

is displaying, has only one buffer associated to it.

The buffer belongs to a window that can be displayed directly on a pipeline. This

window is considered autonomous because no composition was performed on the

buffer by the Composition Manager. For a window to be displayed autonomously on a

pipeline, this window buffer's format must be supported by its associated pipeline.

Window buffer(s)

..
.

Window 1

Pipeline 1

Pipeline 2

Window 2

Window buffer(s)

..
.

Final display

Figure 4: An example of hardware composition with two windows and two supported

pipelines

This hardware composition example shows two windows. Each window posts a different

buffer and binds to a different pipeline. The output from both pipelines is combined

and fed into the associated display port and then onto the display hardware.

Access to hardware composition capabilites is system

dependent.

In order to use hardware composition, you must:

• have the correct Screen configuration. Determine the pipelines that are on your

display controller and choose the pipeline on which you want to display a window.

The supported pipelines on your wfd device are configured in your graphics.conf

file.

• use screen_set_window_property_iv() to set SCREEN_PROPERTY_PIPELINE to

one of the supported pipelines you have configured in graphics.conf.

22 © 2014, QNX Software Systems Limited

Understanding composition

• use screen_set_window_property_iv() to set the SCREEN_USAGE_OVERLAY bit of

your SCREEN_PROPERTY_USAGE window property.

Screen composition

Many of the composition capabilities that are used in hardware composition can be

achieved in Screen composition by the Composition Manager.

When your platform doesn't have hardware capabilities to support a sufficient number

of pipelines to compose a number of required elements, or to support a particular

behavior, composition can still be achieved by the Composition Manager, an internal

component of Screen.

The Composition Manager combines multiple window buffers into one resultant buffer.

This is the composite buffer (Screen framebuffer).

Window 1

Screen framebuffer Pipeline 1

Window buffer(s)

..
.

Window buffer(s)

..
.

Window 2

Final display

Figure 5: An example of Screen composition with two windows and only one supported

pipeline

This Screen composition example shows two windows; each window posts a different

image. Those images are composed into one composite framebuffer, which binds to

the single pipeline. This output is then fed into the associated display port and then

onto the display hardware.

For Screen composition, don't set the SCREEN_PROPERTY_PIPELINE window property

or the SCREEN_USAGE_OVERLAY bit in your SCREEN_PROPERTY_USAGE window

property.

You can also maximize the advantages of both hardware and Screen composition

capabilities. What this means is that you can combine multiple windows into one

composite buffer, bind this buffer to a pipeline, and still take advantage of hardware

capabilities to combine output from multiple pipelines.

© 2014, QNX Software Systems Limited 23

Buffer(s)
..
.

Window 1

Pipeline 1

Pipeline 2
Window 2

Screen framebuffer

Window buffer(s)

..
.

Window 3

Window buffer(s)

..
.

(Pipeline 2)

Final display

Figure 6: An example of both Screen and hardware composition with three windows,

one composite buffer, and two supported pipelines

This composition example shows three windows. The first window posts and binds to

one specific pipeline. The second and third windows post to a framebuffer where the

buffers from these windows are combined. The framebuffer binds to the second

pipeline. The output from both pipelines is combined and fed into the associated

display port and then onto the display hardware.

For this composition, similar to the hardware composition, you must have the correct

Screen configuration and the appropriate window properties set.

Pipeline ordering and the z-ordering of windows on a layer are applied

independently of each other.

Pipeline ordering takes precedence over z-ordering operations in Screen. Screen

does not have control over the ordering of hardware pipelines. Screen windows

are always arranged in the z-order that is specified by the application.

If your application manually assigns pipelines, you must ensure that the z-order

values make sense with regard to the pipeline order of the target hardware.

For example, if you assign a high z-order value to a window (meaning it is to

24 © 2014, QNX Software Systems Limited

Understanding composition

be placed in the foreground), then you must make a corresponding assignment

of this window to a top layer pipeline. Otherwise the result may not be what

you expect, regardless of the z-order value.

Comparing composition types

Both hardware and Screen composition types each have multiple advantages and

disadvantages. Some are very subtle and sometimes depend on the rate at which the

window's contents are refreshed.

Screen compositionHardware composition

Advantages
• Not as limited by pipeline capabilities• Window buffers don't need to be copied to

a composite framebuffer • Able to display a software cursor or to draw a

background• No processing power of CPU and/or GPU

required to compose buffers • Able to compose multiple buffers for display with

only a single pipeline• Efficient in handling windows with

high-frequency updates • May be able to create windows with a buffer

format that is not supported by a pipeline (i.e.,

Screen composition may be able to convert the

format to one supported by the pipeline when it

copies the window buffer)

Disadvantages
• Window buffers, or part of them, need to be

copied to a composite buffer

• Limited by pipeline capabilities, which can

vary from platform to platform

• •Limited by the number of supported

pipelines, which can vary from platform to

platform

May require processing power of CPU and/or

GPU to compose buffers

• Limited by format support on pipeline

• Can't display more than one buffer per

pipeline

© 2014, QNX Software Systems Limited 25

Chapter 4
Screen API

The Screen API is how your applications communicate with Screen.

The principal components of the Screen API are closely associated with each other.

Context

WindowDisplay

Buffer

Event GroupDevice Pixmap

Figure 7: Screen API components

Context

A context provides the setting for graphics operations within the windowing

environment.

All other API objects are created within the scope of a context and access

to these objects is always with respect to the context associated with the

object. You can identify and gain access to the objects on which you want

to draw (e.g., windows, groups, displays, pixmaps) to set or change their

properties and attributes.

Devices, displays and windows are dependent on the context, which is

associated directly with events, groups, and pixmaps.

Device

A device refers to an input device. This input device (e.g., keyboard, mouse,

joystick, gamepad, and multi-touch) can be focused to specific displays.

Display

A display refers to a physical device that presents images to viewers such

as monitors, touchscreen and displays. Using the display-specific API

components, you can gain access to display properties, modes, and vsync

operations.

Window

© 2014, QNX Software Systems Limited 27

A window represents the fundamental drawing surface. Windows can display

different kinds of content for different purposes, and so there are multiple

types of windows available: application windows, child windows, and

embedded windows.

Pixmap

A pixmap is similar to a bitmap except that it can have multiple bits per

pixel (a measurement of the depth of the pixmap) that store the intensity or

color component values. Bitmaps, by contrast, have a depth of one bit per

pixel.

You can draw directly onto a pixmap surface, outside the viewable area, and

then copy the pixmap to a buffer later on.

Event

An event includes such actions as window creation, setting properties,

keyboard events, and touch events. Events are associated with a context.

Screen API manages one event queue per context.

Group

A group is used to organize and manage multiple windows in your application.

Windows belonging to a group share the same properties; therefore, you

apply sets of properties to all the windows that are in the same group.

Buffer

A buffer is an area of memory not displayed where you can move data around

quickly without taking up CPU cycles. Although a buffer can be created in

the scope of a context, it cannot be used unless attached to a window or

pixmap.

Multiple buffers can be associated with a window whereas only one buffer

can be associated with a pixmap.

28 © 2014, QNX Software Systems Limited

Screen API

Chapter 5
Contexts

The context defines the relationship with the underlying window system.

You can use the context to get and set display and window properties that define

window idle times, keyboard and multi-touch focus settings. You can also use the

context to return the number of displays on the current system. A context can be

associated with a single window, with a group of windows, or with one or more displays.

The following tasks describe how to perform basic context operations.

© 2014, QNX Software Systems Limited 29

Create a context

You must create a context before you create a window. When you call

screen_create_context(), memory is allocated to store the context state. The composition

manager creates an event queue and associates it with the connecting process.

To create a context:

1. Create and initialize the context variable.

screen_context_t screen_context = 0;

2. Call screen_create_context() to create the context. The screen_create_context()

function takes a reference to a variable of type screen_context_t, and a flag

that represents the type of context. In the example below, the context is of type

SCREEN_APPLICATION_CONTEXT indicating that the context can only create

and modify windows within the scope of the current application.

if (screen_create_context(&screen_context,
SCREEN_APPLICATION_CONTEXT) != 0) {
 return EXIT_FAILURE;
}

You must destroy each context and free up the memory whenever your application is

done with it. To destroy a context, call the screen_destroy_context() function.

screen_destroy_context(screen_context);

30 © 2014, QNX Software Systems Limited

Contexts

Context types

When you create a context, you must specify a flag in order to define the type of

context. The context defines the connection between your application and the

underlying windowing system. Depending on the needs of your application, and in

some cases, the permissions of your application, there are a number of different context

types available.

The following context types are supported for your system:

root

permission

required?

DescriptionFlag

No
This context type enables a process to create its own windows

and to control some of the window properties.

SCREEN_APPLICATION_CONTEXT

An application cannot modify a window that was created by

another application and it cannot send an event outside of

its own process space. An application's context is unaware

of other top-level windows in the system.

An application context can parent another window, even if

the window is created in another context within another

processes.

Yes
This context type enables a process to modify all windows in

the system whenever new application windows are created or

destroyed.

SCREEN_WINDOW_MANAGER_CONTEXT

The context also receives notifications when an application

creates new windows, when existing application windows are

destroyed, or when an application tries to change certain

window properties.

Yes
This context type enables a process to send an event to any

application in the system.

SCREEN_INPUT_PROVIDER_CONTEXT

This context does not receive notifications when applications

create new windows, when applications destroy existing

windows, or when an application attempts to change certain

window properties.

YesThis context type provides access to power management

functionality.

SCREEN_POWER_MANAGER_CONTEXT

YesThis context type provides access to display properties.SCREEN_DISPLAY_MANAGER_CONTEXT

© 2014, QNX Software Systems Limited 31

Context types

Set a context property

You can get and set context properties in order to define how your application will

behave within a window.

In Screen API, many get and set methods contain multiple variants, with each variant

corresponding to the type that is associated with a property. For example, the

screen_get_context_property_iv() method takes an integer, while the

screen_get_context_property_llv() takes a long long integer.

To set a context property:

1. Create a variable to pass into the function. The type must match the variant of the

function, and the value must represent a valid flag. In the example below, a Screen

format flag is passed into the function.

int context_idle = 5;

2. Call the variant function. The screen_set_context_property_iv() function takes a

reference to an integer that determines the length of time in seconds before the

window will timeout.

if (screen_set_context_property_iv(screen_context,
SCREEN_PROPERTY_IDLE_TIMEOUT, &context_idle) !=0) {
 return EXIT_FAILURE;
}

You can flush the context of any delayed commands by calling the

screen_flush_context() function. When you call the screen_flush_context() function,

any delayed commands are processed from the buffer, and any associated displays

are updated. If you specify the SCREEN_WAIT_IDLE parameter, the function will not

return until all associated displays have been updated.

if (screen_flush_context(screen_context, SCREEN_WAIT_IDLE) !=0) {
 return EXIT_FAILURE;
};

When debugging your application, it's a good idea to call the screen_flush_context()

function after you call any delayed function. This will help you to determine the exact

function call that caused the error.

32 © 2014, QNX Software Systems Limited

Contexts

Chapter 6
Windows

You can create a window group to organize a set of windows into a hierarchy.

The concept of a window in Screen differs slightly from what you're probably used to

in a traditional windowing system. In Screen, applications are split into several windows

when content comes from different sources, when one or more parts of the application

must be updated independently from others, or when the application tries to target

multiple displays. For example, a user interface that was developed in Adobe AIR can

be overlayed on top of a native document viewer, or a plug-in can be embedded within

a web view or document. Adobe AIR components can be used to form user interface

controls for navigation or media playback. These controls can be contained within a

window that is overlayed over top of a map or multimedia. In this example, the

background window must be updated independently from the foreground user interface

controls.

You must create window groups in order to organize, display, and control the windows

in your application. A window group consists of a parent window and at least one child

window. To create a group, a window must call the screen_create_window_group()

function and provide a name for the group. The name of the window group is then

communicated to the other functions, threads, or even processes, that are responsible

for creating child windows. Any child window can join this group as long as it has the

associated group name. The parent window is notified each time a child window joins

the group. A window handle is included in the notification to allow the parent window

to control certain properties of a child window such as visibility, position, size, and

z-order. A parent window cannot access any of the child windows’ buffers. A child

window remains invisible until it is added to a window group and is made visible by

the owner of the group.

© 2014, QNX Software Systems Limited 33

Window types

There are multiple window types in the Screen API. Each window type has a different

use and different positioning rules, and each window is typically used to display

different types of content.

You specify the window type at window creation time. The following types are available.

SCREEN_APPLICATION_WINDOW

The window type that's used to display the main application. The X and Y

coordinates are always relative to the dimensions of the display.

Application windows can be used to display an application in fullscreen

mode:

SCREEN_CHILD_WINDOW

The subwindow type that's commonly used to display a dialog. You must

add a child window to an application's window group; otherwise, the child

window is invisible. A child window's display properties are relative to the

application window to which it belongs. For example, the X and Y coordinates

of the child window are all relative to the top-left corner of the application

window.

Child windows can be used to display minimized applications:

SCREEN_EMBEDDED_WINDOW

34 © 2014, QNX Software Systems Limited

Windows

Used to embed a window control within an object. Like the child window,

the X and Y coordinates of the embedded window are all relative to the

top-left corner of the application window. You must add an embedded window

to an application's window group, otherwise the embedded window is

invisible.

© 2014, QNX Software Systems Limited 35

Window types

Window properties

Screen API window properties are the properties of a window API object.

Screen distinguishes between parent and owner window properties.

Parent window properties

Parent window properties are the properties of the window that can be changed by a

parent application window or a window manager. A window manager's access to

properties is more limited than that of a parent window. A window manager can only

change the properties of top-level windows and windows that are created by the window

manager itself.

The owner of the window is allowed to set the parent window properties only if the

parent window has set its SCREEN_PROPERTY_SELF_LAYOUT property to true, or

when there is no parent window or window manager present.

Only the parent window has permission to set the

SCREEN_PROPERTY_SELF_LAYOUT property—even if

SCREEN_PROPERTY_SELF_LAYOUT has been set to true.

Owner window properties

Owner window properties are properties that can be changed by the owner of the

window; some owner window properties can be changed by both the owner and the

parent of the window.

Window Property Permissions

The following table lists all of the window properties and indicates whether each can

be changed by the parent window, the window manager or the window owner:

Window

Owner

Parent

Window/Window

Manager

Window Property

YesNoSCREEN_PROPERTY_ALPHA_MODE

YesNoSCREEN_PROPERTY_ALTERNATE_WINDOW

YesYesSCREEN_PROPERTY_ALTERNATE_BRIGHTNESS

YesNoSCREEN_PROPERTY_BRUSH

YesNoSCREEN_PROPERTY_BRUSH_CLIP_POSITION

YesNoSCREEN_PROPERTY_BRUSH_CLIP_SIZE

36 © 2014, QNX Software Systems Limited

Windows

Window

Owner

Parent

Window/Window

Manager

Window Property

YesNoSCREEN_PROPERTY_BUFFER_COUNT

YesNoSCREEN_PROPERTY_BUFFER_SIZE

YesNoSCREEN_PROPERTY_CBABC_MODE

YesYesSCREEN_PROPERTY_CLASS

NoYesSCREEN_PROPERTY_CLIP_POSITION

NoYesSCREEN_PROPERTY_CLIP_SIZE

YesNoSCREEN_PROPERTY_COLOR

YesNoSCREEN_PROPERTY_COLOR_SPACE

YesYesSCREEN_PROPERTY_CONTRAST

YesYesSCREEN_PROPERTY_DEBUG

YesYesSCREEN_PROPERTY_DISPLAY

YesYesSCREEN_PROPERTY_FLIP

YesYesSCREEN_PROPERTY_FLOATING

YesNoSCREEN_PROPERTY_FORMAT

YesYesSCREEN_PROPERTY_GLOBAL_ALPHA

YesYesSCREEN_PROPERTY_HUE

YesNoSCREEN_PROPERTY_ID_STRING

YesNoSCREEN_PROPERTY_IDLE_MODE

YesYesSCREEN_PROPERTY_MIRROR

YesYesSCREEN_PROPERTY_PIPELINE

NoYesSCREEN_PROPERTY_POSITION

YesNoSCREEN_PROPERTY_PROTECTION_ENABLE

YesYesSCREEN_PROPERTY_ROTATION

YesYesSCREEN_PROPERTY_SATURATION

YesYesSCREEN_PROPERTY_SCALE_QUALITY

NoYesSCREEN_PROPERTY_SELF_LAYOUT

YesNoSCREEN_PROPERTY_SENSITIVITY

NoYesSCREEN_PROPERTY_SIZE

© 2014, QNX Software Systems Limited 37

Window properties

Window

Owner

Parent

Window/Window

Manager

Window Property

YesNoSCREEN_PROPERTY_SOURCE_CLIP_POSITION

YesNoSCREEN_PROPERTY_SOURCE_CLIP_SIZE

YesYesSCREEN_PROPERTY_SOURCE_POSITION

YesYesSCREEN_PROPERTY_SOURCE_SIZE

YesNoSCREEN_PROPERTY_STATIC

YesNoSCREEN_PROPERTY_SWAP_INTERVAL

YesNoSCREEN_PROPERTY_TRANSPARENCY

YesNoSCREEN_PROPERTY_USAGE

YesNoSCREEN_PROPERTY_VIEWPORT_POSITION

YesNoSCREEN_PROPERTY_VIEWPORT_SIZE

NoYesSCREEN_PROPERTY_VISIBLE

NoYesSCREEN_PROPERTY_ZORDER

38 © 2014, QNX Software Systems Limited

Windows

Window parenting and positioning

The window type determines what positioning rules are applied to a child window once

the window joins a group. A window's type also determines whether or not it can parent

another window.

The following window properties are relative to the parent window:

visibility

A child window is visible only when the associated parent window is visible.

z-order

The z-order of a child window is relative to the parent window. For example,

a positive value will place the child on top of (or above) its associated parent

window. Conversely, a negative z-order puts the child window underneath

the parent window.

position

The position of the child window is relative to the position of the parent.

Any translation of the parent also affects the child.

size

The size of the child is relative to the parent. Any scaling applied to the

parent is also applied to the child.

transparency

The global alpha of a child window is combined with the global alpha of the

parent.

Application windows

An application window is positioned according to absolute screen coordinates.

Therefore, an application window cannot be the parent of another application window.

An application window is implicitly part of a group that is owned by the window manager

if the application window has registered with Screen.

Child windows

A child window is not visible until it has become the child of an application window.

It does so by using the function, screen_join_window_group() to join the window group

created by its parent application window.

© 2014, QNX Software Systems Limited 39

Window parenting and positioning

Embedded windows

An embedded window can join a window group whose parent is an application window

or a child window. An embedded window behaves like child window except that it is

clipped to the parent window's destination rectangle.

The embedded window type provides the illusion that the contents of both the parent

and child window represent a single logical view. When you scroll, the view of the

content in the parent window and the position of the embedded window are updated

synchronously.

When you zoom in the parent window, the embedded window will change size and be

repositioned independently, without the need for the parent to update the embedded

window. Thus, the position and size of embedded windows are relative to the source

rectangle and the virtual viewport of the associated parent window.

When you pan the source rectangle of the parent window within a larger buffer, the

position of any embedded window will be updated automatically. Alternatively, an

application can move a virtual viewport instead of the source rectangle and achieve

the same effect without requiring a window buffer that is larger than the source size.

All of these rules were created to abstract window managers and group parents from

the underlying window hierarchy. The window manager can move, fade, or scale a

window, and the results will be the same whether the window is a single window or a

more complex hierarchy of several windows.

40 © 2014, QNX Software Systems Limited

Windows

Create a window

Before you can render an animation or display video, you must create a window for

your application. There are a number of different window types. The following procedure

describes how to create a window that can be used to display video.

To create a window:

1. Create a variable for the context and window instances and create a variable to

store the name of the windowgroup.

screen_context_t screen_context = 0;
screen_window_t screen_window = 0;
static const char *window_group_name = "mainwindowgroup";

2. Create a context. The context describes the relationship between the application

and the underlying windowing system.

screen_create_context(&screen_context,
SCREEN_APPLICATION_CONTEXT);

3. Create a window. The screen_create_window() function takes the window variable

and the context variable that you created in the first step.

screen_create_window(&screen_window, screen_context);

4. Create a window group. The window_group_name variable stores the name of the

main window group. Remember that the name of the window group must be unique.

You must add your application window to a window group in order to make the

window visible.

screen_create_window_group(screen_window, window_group_name);

5. Set the window properties. In the following step, the pixel format and usage values

are set for the window. In this example, the window will be used to display a video.

int format = SCREEN_FORMAT_RGBA8888;
screen_set_window_property_iv(screen_window,
SCREEN_PROPERTY_FORMAT, &format);

int usage = SCREEN_USAGE_NATIVE;
screen_set_window_property_iv(screen_window,
SCREEN_PROPERTY_USAGE, &usage);

© 2014, QNX Software Systems Limited 41

Create a window

6. Create a window buffer. In this example, the buffer is used to store video data for

the window. The screen_create_window_buffers() function takes the window and

an integer that defines the number of buffers to create for this window.

screen_create_window_buffers(screen_window, 1);

Although any instances created are destroyed when the application exits, it is best

practice to destroy any window, pixmap and context instances that you created but

no longer require.

The following code snippet is included at the end of the application above.

screen_destroy_window(screen_window);
screen_destroy_context(screen_context);

42 © 2014, QNX Software Systems Limited

Windows

Create a child window

You can use the screen_create_window_type() function to create a child window.

To create a child window:

1. Create a variable for each of the context and window instances.

screen_context_t screen_context = 0;
screen_window_t screen_child_window = 0;

2. Create a context. The context describes the relationship between the application

and the underlying windowing system.

screen_create_context(&screen_context,
SCREEN_APPLICATION_CONTEXT);

3. Create a child window. The screen_create_window_type() function takes the window

and context variables and an integer representing the window type. In this case,

the window is of type SCREEN_CHILD_WINDOW.

int wintype = SCREEN_CHILD_WINDOW;
screen_create_window_type(&screen_child_window, screen_context,
 wintype);

4. Join a window group. The window_group_name should be the name of the window

group created by the parent (or main) window through the

screen_create_window_group() function.

screen_join_window_group(screen_child_window, window_group_name);

© 2014, QNX Software Systems Limited 43

Create a child window

Pixel formats

Window pixel formats define how color space information is stored in the GPU memory.

The RGBA color space uses the Red Green Blue (RGB) color model with extra

information about the alpha (transparency or opacity) channel. Applications that want

to disregard the alpha channel can choose a pixel format with an X.

The Screen API supports the following window pixel formats (pixel format descriptions

from www.fourcc.org):

DescriptionFormat

SCREEN_FORMAT_BYTE

16 bits per pixel (4 bits per channel) RGB with alpha channel.SCREEN_FORMAT_RGBA4444

16 bits per pixel (4 bits per channel) RGB with alpha channel disregarded.SCREEN_FORMAT_RGBX4444

16 bits per pixel, 2 bytes containing R, G, and B values (5 bits per channel with

single bit alpha channel).

SCREEN_FORMAT_RGBA5551

16 bits per pixel, 2 bytes containing R, G, and B values (5 bits per channel with

single bit alpha channel, disregarded).

SCREEN_FORMAT_RGBX5551

16 bits per pixel; uses five bits for red, six bits for green and five bits for blue. This

pixel format represents each pixel in the following order (high byte to low byte):

RRRR RGGG GGGB BBBB.

SCREEN_FORMAT_RGB565

24 bits per pixel (8 bits per channel) RGB.SCREEN_FORMAT_RGB888

32 bits per pixel (8 bits per channel) RGB with alpha channel.SCREEN_FORMAT_RGBA8888

32 bits per pixel (8 bits per channel) RGB with alpha channel disregarded.SCREEN_FORMAT_RGBX8888

9 bits per pixel planar YUV format. 8-bit Y plane and 8-bit 4x4 subsampled V and

U planes. Registered by Intel.

SCREEN_FORMAT_YVU9

Standard NTSC TV transmission format.SCREEN_FORMAT_YUV420

12 bits per pixel planar YUV format. 8-bit Y plane and 2x2 subsampled, interleaved

U and V planes.

SCREEN_FORMAT_NV12

12 bits per pixel planar YUV format. 8-bit Y plane and 8-bit 2x2 subsampled U and

V planes.

SCREEN_FORMAT_YV12

16 bits per pixel packed YUV format. YUV 4:2:2 — Y sample at every pixel, U and

V sampled at every second pixel horizontally on each line. A macropixel contains 2

pixels in 1 u_int32.

SCREEN_FORMAT_UYVY

44 © 2014, QNX Software Systems Limited

Windows

http://www.fourcc.org

DescriptionFormat

16 bits per pixel packed YUV format. YUV 4:2:2 as in UYVY, but with different

component ordering within the u_int32 macropixel.

SCREEN_FORMAT_YUY2

16 bits per pixel packed YUV format. YUV 4:2:2 as for UYVY, but with different

component ordering within the u_int32 macropixel.

SCREEN_FORMAT_YVYU

Packed YUV format. Inverted version of UYVY.SCREEN_FORMAT_V422

Packed YUV format. Combined YUV and alpha.SCREEN_FORMAT_AYUV

© 2014, QNX Software Systems Limited 45

Pixel formats

Chapter 7
Displays

A display represents the physical display hardware such as a monitor or touchscreen

display.

You can use display API functions to:

• query and set display properties

• get display modes that are specific to a given hardware display

• perform vsync operations

Note that to have full access to the display properties of the system, you must be

working within a privileged context. You create a privileged context by calling the

function screen_create_context() with a context type of

SCREEN_DISPLAY_MANAGER_CONTEXT. Your process must have an effective user

ID of root to be able to create this context type. Some API functions will fail to execute

if you are not the correct context.

© 2014, QNX Software Systems Limited 47

Multiple displays

It can be quite tricky to create and manage an application that uses multiple displays,

especially when you consider threading, performance, and graphics optimization.

Fortunately, Screen API provides the necessary functionality to let you create

applications that write to multiple windows and displays simultaneously.

In our vsync application, an hour glass is placed in the top-left corner of an application

window while a vertical bar sweeps from left to right across the screen. This code

sample queries the context to determine the number of displays that are currently

attached to the system. When the bar reaches the right edge of the application window,

instead of returning to the left-hand side of the current display, the application sends

focus to the next display in the list and the bar continues its sweep at the left-hand

side of that other display.

hourglass

bar

bg window

Figure 8: The sample vsync application

The application uses a struct to store the state (either detached, attached, or focused)

of each display.

struct {
 pthread_mutex_t mutex;
 pthread_cond_t cond;
 enum { detached, attached, focused } state;
} *displays;

Before any of the drawing is done, the application iterates though each attached

display, and uses the screen_get_display_property_iv() property to return the state of

the current display. For each attached display, the application initializes a mutex and

calls the pthread_create(), passing in a display() function, to spawn a child thread

This display() function handles all graphics operations for the current display, meaning

that each display will be written to and updated within its own process. This allows

the graphics processor to handle any intensive operations, and ensures that if an error

occurs or a display becomes detached, the application will not fail.

displays = calloc(ndisplays, sizeof(*displays));
for (i = 0; i < ndisplays; i++) {
 int active = 0;
 screen_get_display_property_iv(screen_dpy[i], SCREEN_PROPERTY_ATTACHED, &active);

48 © 2014, QNX Software Systems Limited

Displays

 if (active) {
 if (idx == -1) {
 displays[i].state = focused;
 idx = i;
 } else {
 displays[i].state = attached;
 }
 } else {
 displays[i].state = detached;
 }
 pthread_mutex_init(&displays[i].mutex, NULL);
 pthread_cond_init(&displays[i].cond, NULL);

 pthread_t thread;
 pthread_create(&thread, NULL, display, (void *)i);
}

The display() function sets up the current display and window, then locks the mutex

to determine whether or not the current display is active and has focus.

pthread_mutex_lock(&displays[idx].mutex);
attached = displays[idx].state != detached ? 1 : 0;
focus = displays[idx].state == focused ? 1 : 0;
pthread_mutex_unlock(&displays[idx].mutex);

A while loop checks conditions and handles the flow of execution for ach display. If

the display is currently attached, the display and window properties are initialized. A

buffer is created, a handle to the buffer is returned, and the background color is blitted

to the buffer. If the display has focus, the bar is blitted and written to the buffer at

the current position. Next, the hourglass is written to the buffer and the window is

posted.

The pos variable is incremented continuously, causing the bar to scan from left to

right across the current application window. When the bar reaches the right-most edge

of the screen, the mutex of the next display in the displays structure is locked and

the state of the next attached display is set to focused. This causes the bar to appear

at the left-most edge of the next display in the display list. It then scans across the

screen and repeats this behavior on the next display in the list of displays.

while (1) {
 if (attached) {
 if (!realized) {
 screen_get_display_property_iv(screen_dpy[idx], SCREEN_PROPERTY_SIZE, rect+2);
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, rect+2);
 screen_create_window_buffers(screen_win, 2);
 realized = 1;
 }

 screen_buffer_t screen_buf[2];
 screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)screen_buf);

 int bg[] = { SCREEN_BLIT_COLOR, 0xffffff00, SCREEN_BLIT_END };
 screen_fill(screen_ctx, screen_buf[0], bg);

 if (focus > 0) {
 int bar[] = {
 SCREEN_BLIT_COLOR, 0xff0000ff,
 SCREEN_BLIT_DESTINATION_X, pos,
 SCREEN_BLIT_DESTINATION_WIDTH, barwidth,
 SCREEN_BLIT_END };

 screen_fill(screen_ctx, screen_buf[0], bar);

 if (++pos > rect[2] - barwidth) {
 for (i = (idx+1) % ndisplays; i != idx; i = (i+1) % ndisplays) {
 pthread_mutex_lock(&displays[i].mutex);
 if (displays[i].state == attached) {
 displays[i].state = focused;
 pthread_cond_signal(&displays[i].cond);
 pthread_mutex_unlock(&displays[i].mutex);
 break;
 }
 pthread_mutex_unlock(&displays[i].mutex);

© 2014, QNX Software Systems Limited 49

Multiple displays

 }
 if (i != idx) {
 pthread_mutex_lock(&displays[idx].mutex);
 displays[idx].state = attached;
 pthread_mutex_unlock(&displays[idx].mutex);
 focus = -1;
 }
 pos = 0;
 }
 } else {
 focus = 0;
 }

 int hg[] = {
 SCREEN_BLIT_SOURCE_WIDTH, 100,
 SCREEN_BLIT_SOURCE_HEIGHT, 100,
 SCREEN_BLIT_DESTINATION_X, 10,
 SCREEN_BLIT_DESTINATION_Y, 10,
 SCREEN_BLIT_DESTINATION_WIDTH, 100,
 SCREEN_BLIT_DESTINATION_HEIGHT, 100,
 SCREEN_BLIT_TRANSPARENCY, SCREEN_TRANSPARENCY_SOURCE_OVER,
 SCREEN_BLIT_END
 };

 screen_blit(screen_ctx, screen_buf[0], screen_pbuf, hg);
 screen_post_window(screen_win, screen_buf[0], 1, rect, 0);
 }

 if (!attached && realized) {
 screen_destroy_window_buffers(screen_win);
 screen_flush_context(screen_ctx, 0);
 realized = 0;
 }

 if (focus != -1) {
 pthread_mutex_lock(&displays[idx].mutex);
 if (!focus) {
 printf("%s[%d]: idx=%d\n", __FUNCTION__, __LINE__, idx);
 pthread_cond_wait(&displays[idx].cond, &displays[idx].mutex);
 pos = 0;
 }
 attached = displays[idx].state != detached ? 1 : 0;
 focus = displays[idx].state == focused ? 1 : 0;
 pthread_mutex_unlock(&displays[idx].mutex);
 }
}

The main body of the application handles window and display events. It updates the

displays struct every time a display is attached or detached. In addition to controlling

the flow of execution for the application, it also prints out debug information about

the current execution.

While this is the most complicated of the sample applications, it does provide many

useful best practices for handling and writing to multiple displays.

Complete sample: Using multiple displays

The complete code sample is listed below.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <screen/screen.h>

const int barwidth = 32;

int ndisplays = 0;

struct {
 pthread_mutex_t mutex;
 pthread_cond_t cond;
 enum { detached, attached, focused } state;
} *displays;

screen_pixmap_t screen_pix = NULL;

screen_buffer_t screen_pbuf = NULL;

void pixmap(screen_context_t screen_ctx)
{

50 © 2014, QNX Software Systems Limited

Displays

 int i, j;

 screen_create_pixmap(&screen_pix, screen_ctx);

 int format = SCREEN_FORMAT_RGBA8888;
 screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_FORMAT, &format);

 int usage = SCREEN_USAGE_WRITE | SCREEN_USAGE_NATIVE;
 screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_USAGE, &usage);

 int size[2] = { 100, 100 };
 screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_BUFFER_SIZE, size);

 screen_create_pixmap_buffer(screen_pix);
 screen_get_pixmap_property_pv(screen_pix, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)&screen_pbuf);

 unsigned char *ptr = NULL;
 screen_get_buffer_property_pv(screen_pbuf, SCREEN_PROPERTY_POINTER, (void **)&ptr);

 int stride = 0;
 screen_get_buffer_property_iv(screen_pbuf, SCREEN_PROPERTY_STRIDE, &stride);

 for (i = 0; i < size[1]; i++, ptr += stride) {
 for (j = 0; j < size[0]; j++) {
 ptr[j*4] = 0xa0;
 ptr[j*4+1] = 0xa0;
 ptr[j*4+2] = 0xa0;
 ptr[j*4+3] = ((j >= i && j <= size[1]-i) || (j <= i && j >= size[1]-i)) ? 0xff : 0;
 }
 }
}

void *display(void *arg)
{
 const int idx = (int)arg;
 int rect[4] = { 0, 0 };
 int realized = 0;
 int pos = 0;
 int attached;
 int focus;
 int i;

 screen_context_t screen_ctx;
 screen_create_context(&screen_ctx, SCREEN_APPLICATION_CONTEXT);

 screen_display_t *screen_dpy = calloc(ndisplays, sizeof(screen_display_t));
 screen_get_context_property_pv(screen_ctx, SCREEN_PROPERTY_DISPLAYS, (void **)screen_dpy);

 screen_window_t screen_win;
 screen_create_window(&screen_win, screen_ctx);
 screen_set_window_property_pv(screen_win, SCREEN_PROPERTY_DISPLAY, (void **)&screen_dpy[idx]);

 int usage = SCREEN_USAGE_NATIVE;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_USAGE, &usage);

 pthread_mutex_lock(&displays[idx].mutex);
 attached = displays[idx].state != detached ? 1 : 0;
 focus = displays[idx].state == focused ? 1 : 0;
 pthread_mutex_unlock(&displays[idx].mutex);

 screen_event_t screen_ev;
 screen_create_event(&screen_ev);

 while (1) {
 if (attached) {
 if (!realized) {
 screen_get_display_property_iv(screen_dpy[idx], SCREEN_PROPERTY_SIZE, rect+2);
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, rect+2);
 screen_create_window_buffers(screen_win, 2);
 realized = 1;
 }

 screen_buffer_t screen_buf[2];
 screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)screen_buf);

 int bg[] = { SCREEN_BLIT_COLOR, 0xffffff00, SCREEN_BLIT_END };
 screen_fill(screen_ctx, screen_buf[0], bg);

 if (focus > 0) {
 int bar[] = {
 SCREEN_BLIT_COLOR, 0xff0000ff,
 SCREEN_BLIT_DESTINATION_X, pos,
 SCREEN_BLIT_DESTINATION_WIDTH, barwidth,
 SCREEN_BLIT_END };

 screen_fill(screen_ctx, screen_buf[0], bar);

 if (++pos > rect[2] - barwidth) {
 for (i = (idx+1) % ndisplays; i != idx; i = (i+1) % ndisplays) {
 pthread_mutex_lock(&displays[i].mutex);
 if (displays[i].state == attached) {

© 2014, QNX Software Systems Limited 51

Multiple displays

 displays[i].state = focused;
 pthread_cond_signal(&displays[i].cond);
 pthread_mutex_unlock(&displays[i].mutex);
 break;
 }
 pthread_mutex_unlock(&displays[i].mutex);
 }
 if (i != idx) {
 pthread_mutex_lock(&displays[idx].mutex);
 displays[idx].state = attached;
 pthread_mutex_unlock(&displays[idx].mutex);
 focus = -1;
 }
 pos = 0;
 }
 } else {
 focus = 0;
 }

 int hg[] = {
 SCREEN_BLIT_SOURCE_WIDTH, 100,
 SCREEN_BLIT_SOURCE_HEIGHT, 100,
 SCREEN_BLIT_DESTINATION_X, 10,
 SCREEN_BLIT_DESTINATION_Y, 10,
 SCREEN_BLIT_DESTINATION_WIDTH, 100,
 SCREEN_BLIT_DESTINATION_HEIGHT, 100,
 SCREEN_BLIT_TRANSPARENCY, SCREEN_TRANSPARENCY_SOURCE_OVER,
 SCREEN_BLIT_END
 };

 screen_blit(screen_ctx, screen_buf[0], screen_pbuf, hg);
 screen_post_window(screen_win, screen_buf[0], 1, rect, 0);
 }

 if (!attached && realized) {
 screen_destroy_window_buffers(screen_win);
 screen_flush_context(screen_ctx, 0);
 realized = 0;
 }

 if (focus != -1) {
 pthread_mutex_lock(&displays[idx].mutex);
 if (!focus) {
 printf("%s[%d]: idx=%d\n", __FUNCTION__, __LINE__, idx);
 pthread_cond_wait(&displays[idx].cond, &displays[idx].mutex);
 pos = 0;
 }
 attached = displays[idx].state != detached ? 1 : 0;
 focus = displays[idx].state == focused ? 1 : 0;
 pthread_mutex_unlock(&displays[idx].mutex);
 }
 }

 free(screen_dpy);

 return NULL;
}

int main(int argc, char **argv)
{
 int i, j, idx = -1;

 screen_context_t screen_ctx;
 screen_create_context(&screen_ctx, SCREEN_APPLICATION_CONTEXT);
 screen_get_context_property_iv(screen_ctx, SCREEN_PROPERTY_DISPLAY_COUNT, &ndisplays);

 pixmap(screen_ctx);

 screen_display_t *screen_dpy = calloc(ndisplays, sizeof(screen_display_t));
 screen_get_context_property_pv(screen_ctx, SCREEN_PROPERTY_DISPLAYS, (void **)screen_dpy);

 displays = calloc(ndisplays, sizeof(*displays));
 for (i = 0; i < ndisplays; i++) {
 int active = 0;
 screen_get_display_property_iv(screen_dpy[i], SCREEN_PROPERTY_ATTACHED, &active);
 if (active) {
 if (idx == -1) {
 displays[i].state = focused;
 idx = i;
 } else {
 displays[i].state = attached;
 }
 } else {
 displays[i].state = detached;
 }

 pthread_mutex_init(&displays[i].mutex, NULL);
 pthread_cond_init(&displays[i].cond, NULL);

 pthread_t thread;
 pthread_create(&thread, NULL, display, (void *)i);

52 © 2014, QNX Software Systems Limited

Displays

 }

 screen_event_t screen_ev;
 screen_create_event(&screen_ev);

 while (1) {
 int type = SCREEN_EVENT_NONE;
 screen_get_event(screen_ctx, screen_ev, ~0);
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &type);
 if (type == SCREEN_EVENT_DISPLAY) {
 screen_display_t tmp = NULL;
 screen_get_event_property_pv(screen_ev, SCREEN_PROPERTY_DISPLAY, (void **)&tmp);
 for (i = 0; i < ndisplays; i++) {
 if (tmp == screen_dpy[i]) {
 int active = 0;
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_ATTACHED, &active);

 if (active) {
 int size[2];
 screen_get_display_property_iv(tmp, SCREEN_PROPERTY_SIZE, size);
 if (size[0] == 0 || size[1] == 0) {
 active = 0;
 }
 }

 pthread_mutex_lock(&displays[i].mutex);
 if ((active && displays[i].state == detached) ||
 (!active && displays[i].state != detached)) {
 if (active) {
 for (j = 0; j < ndisplays; j++) {
 printf("%s[%d]: j=%d\n", __FUNCTION__, __LINE__, j);
 if (i != j) {
 pthread_mutex_lock(&displays[j].mutex);
 if (displays[j].state == focused) {
 displays[i].state = attached;
 pthread_mutex_unlock(&displays[j].mutex);
 break;
 }
 pthread_mutex_unlock(&displays[j].mutex);
 }
 }
 if (displays[i].state == detached) {
 displays[i].state = focused;
 }
 } else {
 if (displays[i].state == focused) {
 for (j = (i+1) % ndisplays; j != i; j = (j+1) % ndisplays) {
 printf("%s[%d]: j=%d\n", __FUNCTION__, __LINE__, j);
 pthread_mutex_lock(&displays[j].mutex);
 if (displays[j].state == attached) {
 displays[j].state = focused;
 pthread_cond_signal(&displays[j].cond);
 pthread_mutex_unlock(&displays[j].mutex);
 break;
 }
 pthread_mutex_unlock(&displays[j].mutex);
 }
 }
 displays[i].state = detached;
 }
 pthread_cond_signal(&displays[i].cond);
 }
 pthread_mutex_unlock(&displays[i].mutex);

 break;
 }
 }
 }
 }

 screen_destroy_pixmap(screen_pix);
 screen_destroy_event(screen_ev);
 screen_destroy_context(screen_ctx);

 free(displays);

 return EXIT_SUCCESS;
}

© 2014, QNX Software Systems Limited 53

Multiple displays

Chapter 8
Event Types

The event type is used to determine what caused the event to be dispatched.

You can query the event type by calling the screen_get_event_property_iv(), specifying

the SCREEN_PROPERTY_TYPE constant.

int type;

screen_event_t screen_ev;
screen_create_event(&screen_ev);

screen_get_event(screen_ctx, screen_ev, -1);
screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &type);

The following event types are supported by the Screen API.

DescriptionEvent

A blocking event indicating that no events are

currently in the queue.

SCREEN_EVENT_NONE

Dispatched when a child window is created.SCREEN_EVENT_CREATE

Dispatched when a property is set.SCREEN_EVENT_PROPERTY

Dispatched when a child window is destroyed.SCREEN_EVENT_CLOSE

Dispatched when an unknown input event occurs.SCREEN_EVENT_INPUT

Dispatched when a jog dial input event occurs.SCREEN_EVENT_JOG

Dispatched when a pointer input event occurs.SCREEN_EVENT_POINTER

Dispatched when a keyboard input event occurs.SCREEN_EVENT_KEYBOARD

Dispatched when a user event is detected.SCREEN_EVENT_USER

Dispatched when a child window has posted its first

frame.

SCREEN_EVENT_POST

Dispatched to the window manager indicating that a

rotation effect has completed.

SCREEN_EVENT_EFFECT_COMPLETE

Dispatched when an external display is detected.SCREEN_EVENT_DISPLAY

Dispatched when the window enters idle state.SCREEN_EVENT_IDLE

Dispatched when a handle to a window is lost.SCREEN_EVENT_UNREALIZE

Dispatched when a gamepad input event occurs.SCREEN_EVENT_GAMEPAD

Dispatched when a joystick input event occurs.SCREEN_EVENT_JOYSTICK

© 2014, QNX Software Systems Limited 55

DescriptionEvent

Dispatched when an input device is detected.SCREEN_EVENT_DEVICE

Dispatched when a multi-touch event is detected.SCREEN_EVENT_MTOUCH_TOUCH

Dispatched when a multi-touch move event is

detected, for example when the user moves their

fingers to make an input gesture.

SCREEN_EVENT_MTOUCH_MOVE

Dispatched when a multi-touch release event occurs,

or when the user completes the multi-touch gesture.

SCREEN_EVENT_MTOUCH_RELEASE

56 © 2014, QNX Software Systems Limited

Event Types

Chapter 9
Screen Tutorials

Screen tutorials aim to help you understand how to use the API in your own applications

by providing step-by-step guides.

© 2014, QNX Software Systems Limited 57

Tutorial: Draw and perform vsync operations using windows

This simple sample application uses three windows to illustrate a basic drawing and

vsync operation. The sample provides reusable functions that are called in the

application to create and initialize windows. The sample also includes a complete

event loop that you can use in your own application.

In the sample application, an hourglass is placed in the top-left corner of an application

window while a vertical bar sweeps from left to right across the screen. The background

window is of type SCREEN_APPLICATION_WINDOW, while the hourglass and the bar

are implemented as windows of type SCREEN_CHILD_WINDOW. The application is

shown below:

hourglass

bar

bg window

Figure 9: The sample vsync application

Each window in the application is given an ID at creation time. The ID is used at

runtime to determine which window dispatched the event.

This sample application is used throughout this documentation to illustrate

different ways to perform basic drawing and windowing tasks. The complete

sample application is included below. You can copy and paste the complete

application into a new project, or you can follow along with the tutorial below.

Create the background window

The background window is the parent window for the hourglass child window and the

bar child window. This quick tutorial walks you through the process of creating the

create_bg_window() function that is used to create the background window.

First, create and initialize the background window variable.

screen_window_t screen_bg_win = NULL;

Next, create the create_bg_window() function. This function is called to create

the background window. The function takes a char that is used as a window group

58 © 2014, QNX Software Systems Limited

Screen Tutorials

name, an array of integers that define the size of the window, and a context for the

window to use.

You can create the window with any buffer size. Note that the windowing system will

simply scale the contents if the buffers are larger or smaller than the size of the window

on the screen. However, it is preferable to make the buffer size match the on-screen

dimensions of the window.

The group variable is used in the screen_create_window_group() function to

specify the name for the window group. Since this is the parent window, all child

windows must use this group ID in order to join the group.

screen_window_t create_bg_window(const char *group, int dims[2],
 screen_context_t screen_ctx)
{
 screen_window_t screen_win;
 screen_create_window(&screen_win, screen_ctx);
 screen_create_window_group(screen_win, group);

 ... more code not shown.
 }

Next, in the create_bg_window() function, set the window visibility to 0, indicating

that the window will be invisible. It's important to hide all windows until the window

and any associated buffer are properly initialized; otherwise the window will display

incomplete results on the screen.

int vis = 0;
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_VISIBLE, &vis);

Next, in the create_bg_window() function, set the background color to yellow.

We're using a small trick here by filling the entire window with a solid color without

requiring a large buffer to back it up, and without scaling.

int color = 0xffffff00;
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_COLOR, &color);

The second part of the trick is to create a 1x1 buffer. Currently, the Screen API doesn't

support visible windows without at least one buffer. Instead, create the smallest buffer

possible. The format and usage don't apply since the buffer will never be used. Next,

to avoid scaling, the source viewport size is set to match the on-screen dimensions of

the window.

int rect[4] = { 0, 0, 1, 1 };
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, rect+2);
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SOURCE_SIZE, dims);

The final part of the trick is to move the source viewport completely outside the bounds

of the 1x1 buffer. The Screen API allows this and replaces all areas outside the buffer

with the window's color.

int pos[2] = { -dims[0], -dims[1] };
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SOURCE_POSITION, pos);

Finally, in the create_bg_window() function, create the single 1x1 window buffer

by calling the screen_create_window_buffers() function. Call the

© 2014, QNX Software Systems Limited 59

Tutorial: Draw and perform vsync operations using windows

screen_get_window_property_pv() function and specify the

SCREEN_PROPERTY_RENDER_BUFFERS constant to return a handle to the buffer.

This buffer must still be created in order to make it visible, even though it won't be

used. Remember that the window is still invisible so nothing will appear on the display.

The window will be made visible within the event loop, later on in the tutorial.

screen_buffer_t screen_buf;
screen_create_window_buffers(screen_win, 1);
screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)&screen_buf);
screen_post_window(screen_win, screen_buf, 1, rect, 0);
return screen_win;

Create the child windows

In the sample application, the hourglass and bar are implemented as child windows.

This short walkthrough describes how to create the child windows for the hourglass

and bar. Like the background window, the bar and hourglass windows never change;

we need to fill a single buffer and only post it once.

Create the child window for the bar

First, create and initialize variables to store the hourglass and bar child windows. Also,

create variables to store IDs for each of the window types. The IDs are used to identify

each window during the event loop.

screen_window_t screen_hg_win = NULL;
screen_window_t screen_bar_win = NULL;

const char *hg_id_string = "hourglass";
const char *bar_id_string = "bar";

Next, create the create_bar_window() function. This will be used to create the

child window for the bar. The function takes a string that is used as a window group

name, a char that defines the ID of the window, and an array of integers that define

the size of the window.

Note that you create a new screen_context_t instance for each window. Creating

a separate context for each child window allows us to go over the steps required to

deal with child windows that are created by other processes. Note that window

permissions are handled per context, and not per process.

void create_bar_window(const char *group, const char *id, int dims[2])
{
 screen_context_t screen_ctx;
 screen_create_context(&screen_ctx, SCREEN_APPLICATION_CONTEXT);
}

Next, in the create_bar_window() function, create the child window by calling

the screen_create_window_type() function and by specifying the

SCREEN_CHILD_WINDOW constant. This establishes the window as a child window.

Each child window is passed an ID (created earlier) so that it can be identified by the

event loop.

60 © 2014, QNX Software Systems Limited

Screen Tutorials

After the window is created, the screen_join_window_group() function is called by

specifying the ID of the main window group to which this child window will belong.

Remember that the group ID was passed into the create_bg_window() function

and used as the group ID for the parent window.

screen_window_t screen_win;
screen_create_window_type(&screen_win, screen_ctx, SCREEN_CHILD_WINDOW);
screen_join_window_group(screen_win, group);
screen_set_window_property_cv(screen_win, SCREEN_PROPERTY_ID_STRING, strlen(id), id);

Next, in the create_bar_window() function, set the window visibility to 0, making

the window invisible. Setting the visibility is a responsibility of the parent. Parent

windows must always set the visibility of each child window to true when appropriate.

int vis = 0;
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_VISIBLE, &vis);

Next, in the create_bar_window() function, use the trick from the previous tutorial

to set the background color of the bar.

int color = 0xff0000ff;
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_COLOR, &color);

int rect[4] = { 0, 0, 1, 1 };
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, rect+2);

int pos[2] = { -rect[2], -rect[3] };
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SOURCE_POSITION, pos);

screen_buffer_t screen_buf;
screen_create_window_buffers(screen_win, 1);
screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)&screen_buf);
screen_post_window(screen_win, screen_buf, 1, rect, 0);

Create the child window for the hourglass

The child window for the hourglass is created in much the same manner as the child

window that contains the bar. You can see the complete code sample later on in the

tutorial. The main differences are described below.

First, because the window will never change, use the static window property to tell

Screen that the contents of the buffer won't change and aren't ever expected to post.

This allows Screen to optimize the work required to put this window on the display.

int flag = 1;
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_STATIC, &flag);

Next, in the create_hg_window() function, set the pixel format. Because the

hourglass shape will use transparency, you must use a pixel format with an alpha

channel. Below, RGBA8888 is used.

int format = SCREEN_FORMAT_RGBA8888;
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_FORMAT, &format);

Next, in the create_hg_window() function, set the transparency property so that

the hourglass window buffer source rectangle will appear over top of the background

window. By default, RGBA8888 formats will have the transparency mode set to

SCREEN_TRANSPARENCY_SOURCE_OVER. The windowing system assumes that if an

© 2014, QNX Software Systems Limited 61

Tutorial: Draw and perform vsync operations using windows

application chooses RGBA over RGBX, it intends to do at least some blending. Note

that it is always good practice to set the transparency mode.

int transparency = SCREEN_TRANSPARENCY_SOURCE_OVER;
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_TRANSPARENCY, &transparency);

Next, set the buffer size. Since the hourglass shape is 100x100, simply set the buffer

size to match those dimensions. The source rectangle will default to 100x100 once

the buffer size is set, so there is no need to set it. The on-screen dimensions of the

child window will also default to 100x100.

Remember that parent windows are responsible for setting the position and size of

each child window. Do not set those properties here. Instead, let the event loop do

that once all windows are ready to be made visible.

Memory is allocated for the buffer, then a handle to the buffer is returned by calling

the screen_get_window_property_pv() function and specifying the

SCREEN_PROPERTY_RENDER_BUFFERS constant. A pointer to the buffer is returned

by calling the screen_get_buffer_property_pv() property and specifying the buffer

handle. This pointer will be used to fill the hourglass shape.

int rect[4] = { 0, 0, 100, 100 };
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, rect+2);

screen_buffer_t screen_buf;
screen_create_window_buffers(screen_win, 1);
screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)&screen_buf);

char *ptr = NULL;
screen_get_buffer_property_pv(screen_buf, SCREEN_PROPERTY_POINTER, (void **)&ptr);

Next, in the create_hg_window() function, draw the shape of the hourglass in the

buffer.

The stride is the number of bytes between pixels on different rows. That is, if a pixel

at position (x,y) is at ptr, the pixel at location (x,y+1) will be at ptr+stride. There

is no guarantee that each line is 400 bytes in this case. Drivers often have constraints

that will require the stride to be larger than the width in pixels times the number of

bytes per pixel.

The hourglass shape is simple enough that it can be calculated. Below, the alpha

channel is adjusted to be transparent or opaque based on a test that determines if a

pixel is inside or outside of the hourglass shape.

int stride = 0;
screen_get_buffer_property_iv(screen_buf, SCREEN_PROPERTY_STRIDE, &stride);

for (i = 0; i < rect[3]; i++, ptr += stride) {
 for (j = 0; j < rect[2]; j++) {
 ptr[j*4] = 0xa0;
 ptr[j*4+1] = 0xa0;
 ptr[j*4+2] = 0xa0;
 ptr[j*4+3] = ((j >= i && j <= rect[3]-i)
 || (j <= i && j >= rect[3]-i)) ? 0xff : 0;
 }
}

Finally, call the screen_post_window() function to post the buffer. This will allow the

hourglass child window to become visible when the event loop decides to make it

62 © 2014, QNX Software Systems Limited

Screen Tutorials

visible. It is customary for the first post to have a single dirty rect that covers the

entire buffer.

screen_post_window(screen_win, screen_buf, 1, rect, 0);

Now that you've created functions to create a parent window and two child windows,

you can implement the logic of the sample application. The logic, which creates the

windows and sets up an event loop, is defined in the main() function.

Create the main() function

The main function calls the window creation functions, defines the size of the

application window, and defines the event loop that controls the flow of the sample

application.

Call the window functions

First, create a context of type SCREEN_APPLICATION_CONTEXT. The

SCREEN_APPLICATION_CONTEXT type can be created by any process, regardless

of permission level. The context sets up a connection with Screen that lets you create

windows and control some of their properties. This parent window type

(SCREEN_APPLICATION_CONTEXT) can only control a child window that was created

by the same context.

int main(int argc, char **argv)
{
 int pos[2], size[2];
 int vis = 0;
 int type;

 screen_context_t screen_ctx;
 screen_create_context(&screen_ctx, SCREEN_APPLICATION_CONTEXT);
 ...

Next,you must specify the dimensions for each child window. Remember that the

parent window should always determine the size and position of each child window;

otherwise, the application may face potential race conditions. For example, the video

mode might change during the initialization phase, or the display can be rotated.

Either of these situations can lead to bad layouts. Instead, the parent should choose

a layout and provide the dimensions when creating each child window.

After each window has joined the group and posted, the parent can request that each

window resize if the layout changed. Once everything is perfect, each window can be

made visible.

Below, each display that is associated with the context is queried. The application

chooses the first display to run the sample application on.

int count = 0;
screen_get_context_property_iv(screen_ctx, SCREEN_PROPERTY_DISPLAY_COUNT, &count);
screen_display_t *screen_disps = calloc(count, sizeof(screen_display_t));
screen_get_context_property_pv(screen_ctx, SCREEN_PROPERTY_DISPLAYS, (void **)screen_disps);

screen_display_t screen_disp = screen_disps[0];
free(screen_disps);

© 2014, QNX Software Systems Limited 63

Tutorial: Draw and perform vsync operations using windows

Next, query the size of the display. The display size parameters (dims) are used as

the dimensions for our windows and are passed into each window creation function.

Note that the display size changes when it is rotated. The display size may also change

when the video mode is changed.

int dims[2] = { 0, 0 };
screen_get_display_property_iv(screen_disp, SCREEN_PROPERTY_SIZE, dims);

Next, in themain() function, create a String by calling getpid() to return the process

ID. This ID is passed into the create_bg_window(), create_bar_window(),

and create_hg_window() functions where it is used as the window group ID. Even

though process IDs are unique, there is no guarantee that this string will be unique.

An application must check error codes for EEXIST and change its group name if it

encounters such an error.

The bar_id_string and hg_id_string variables are passed into the child window functions.

These ID strings are used to identify a window during the event loop.

char str[16];
snprintf(str, sizeof(str), "%d", getpid());
screen_bg_win = create_bg_window(str, rotation, dims, screen_ctx);

create_bar_window(str, bar_id_string, rotation, dims);
create_hg_window(str, hg_id_string, rotation, dims);

Create the event loop

The event loop defines how the application responds to and processes events. The

sample application listens for window events to determine when to display a window,

when to close a window, and when to carry on with normal application processing.

screen_event_t screen_ev;
screen_create_event(&screen_ev);
while (1) {
 do {
 ...
 }
}

In the event loop, a screen_event_t object is instantiated and used to capture an

event. There is no need to repeatedly create and destroy event objects. The same event

can be reused several times. You should avoid passing an event object to another

thread for processing. Calling screen_get_event() with a 0 timeout returns immediately.

The event type will be SCREEN_EVENT_NONE if there were no events in the queue.

Calling screen_get_event() with a timeout of -1, or ~0 will block until an event is put

into the event queue.

A handle to the event is returned by calling the screen_get_event_property_iv() function.

Next, an if...else clause is set up to process the event. The application traps the

SCREEN_EVENT_POST event type to ensure that the window has been properly created

and initialized before it is made visible. This event is sent when a child window posts

for the first time, or when a child window joins our group after having successfully

posted at least once. Remember that the screen_post_window() function was called

64 © 2014, QNX Software Systems Limited

Screen Tutorials

as the last step in the create_hg_window(), create_bar_window(), and

create_bg_window() functions.

Once the event is trapped, the screen_get_event_property_pv() function is called to

return a handle to the window that dispatched the event. The

screen_get_window_property_cv() is then called to return the ID String of the child

window. In theory, any process could choose to join our group, or do so accidentally.

You can kick unwanted windows out of your group simply by calling

screen_leave_group() on those window handles.

screen_get_event(screen_ctx, screen_ev, vis ? 0 : ~0);
screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &type);

if (type == SCREEN_EVENT_POST) {
 screen_window_t screen_win;
 screen_get_event_property_pv(screen_ev, SCREEN_PROPERTY_WINDOW, (void **)&screen_win);
 screen_get_window_property_cv(screen_win, SCREEN_PROPERTY_ID_STRING, sizeof(str), str);

 if (!screen_bar_win && !strcmp(str, bar_id_string)) {
 screen_bar_win = screen_win;
 } else if (!screen_hg_win && !strcmp(str, hg_id_string)) {
 screen_hg_win = screen_win;
}

When all windows have been posted, the window properties are set by the parent

window. Remember that all properties are relative to the parent. This includes the

size, position, and z-order of each window. All these changes will be atomic, so the

user won't see frames without the bar or the hourglass. The following code simply sets

the screen size to fullscreen, except for the hourglass window which will be 100x100,

positioned at 10,10. The z-order is set to 0 for the background, 1 for the vertical bar,

and 2 for the hourglass.

if (screen_bar_win && screen_hg_win) {
 vis = 1;

 screen_get_window_property_iv(screen_hg_win, SCREEN_PROPERTY_BUFFER_SIZE, size);
 screen_set_window_property_iv(screen_hg_win, SCREEN_PROPERTY_SIZE, size);

 pos[0] = pos[1] = 10;
 screen_set_window_property_iv(screen_hg_win, SCREEN_PROPERTY_POSITION, pos);

 pos[0] = pos[1] = 0;
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_POSITION, pos);
 screen_set_window_property_iv(screen_bg_win, SCREEN_PROPERTY_POSITION, pos);

 size[0] = barwidth;
 size[1] = dims[1];
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_SIZE, size);

 size[0] = dims[0];
 screen_set_window_property_iv(screen_bg_win, SCREEN_PROPERTY_SIZE, size);

 int zorder = 0;
 screen_set_window_property_iv(screen_bg_win, SCREEN_PROPERTY_ZORDER, &zorder);

 zorder++;
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_ZORDER, &zorder);

 zorder++;
 screen_set_window_property_iv(screen_hg_win, SCREEN_PROPERTY_ZORDER, &zorder);
}

Finally, the child windows are set to visible by calling the

screen_set_window_property_iv() function specifying the SCREEN_PROPERTY_VISIBLE

constant. Since this function is called within the while loop, we know that all windows

will appear on the screen. As usual, all the requests that were made so far have been

batched in a command buffer. To ensure that those commands are flushed out and

© 2014, QNX Software Systems Limited 65

Tutorial: Draw and perform vsync operations using windows

applied, you must call screen_flush_context(). The SCREEN_WAIT_IDLE flag is passed

in to make sure that at least one vsync or refresh period has elapsed, with the bar at

0,0 before moving it by 1 to the right.

screen_set_window_property_iv(screen_bg_win, SCREEN_PROPERTY_VISIBLE, &vis);
screen_set_window_property_iv(screen_hg_win, SCREEN_PROPERTY_VISIBLE, &vis);
screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_VISIBLE, &vis);
screen_flush_context(screen_ctx, SCREEN_WAIT_IDLE);

Next, the SCREEN_EVENT_CLOSE event is trapped in order to process window close

events. When a window is closed, the handle to the window is set to NULL and the

window is destroyed by calling the screen_destroy_window() function. The application

keeps track of which window leaves the group so that it can start again if the missing

window were to join the group and post.

else if (type == SCREEN_EVENT_CLOSE) {
 screen_window_t screen_win;
 screen_get_event_property_pv(screen_ev, SCREEN_PROPERTY_WINDOW, (void **)&screen_win);
 if (screen_win == screen_bar_win) {
 screen_bar_win = NULL;
 } else if (screen_win == screen_hg_win) {
 screen_hg_win = NULL;
 }
 screen_destroy_window(screen_win);

 if (!screen_bar_win || !screen_hg_win) {
 vis = 0;
 }
}

While no close window events are trapped, the X position of the screen_bar_win

child window is incremented by one and the screen_set_window_property_iv() function

is called to update the position of the bar. When the bar reaches the right side of the

screen, it automatically starts over from the left. Note that this sample produces an

animation without actually rendering anything.

To prevent the animation from moving the bar too fast, the screen_flush_context()

function is called with flags set to SCREEN_WAIT_IDLE. This will rate-limit the

animation to the refresh rate of the display.

if (vis) {
 if (++pos[0] > dims[0] - barwidth) {
 pos[0] = 0;
 }
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_POSITION, pos);
 screen_flush_context(screen_ctx, SCREEN_WAIT_IDLE);
}

The windowing system has termination handlers that will release any resource created

by a process when it exits, whether it exits normally or abruptly. Although any instances

created are destroyed when the application exits, it is best practice to destroy any

window, pixmap, and context instances that you created but no longer require.

screen_destroy_event(screen_ev);
screen_destroy_context(screen_ctx);
return EXIT_SUCCESS;

66 © 2014, QNX Software Systems Limited

Screen Tutorials

Complete sample: A vsync application using windows

The complete code sample is listed below.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <screen/screen.h>

const char *hg_id_string = "hourglass";

const char *bar_id_string = "bar";

const int barwidth = 32;

screen_window_t screen_bg_win = NULL;

screen_window_t screen_hg_win = NULL;

screen_window_t screen_bar_win = NULL;

screen_window_t create_bg_window(const char *group, int dims[2], screen_context_t screen_ctx)
{
 /* Start by creating the application window and window group. */
 screen_window_t screen_win;
 screen_create_window(&screen_win, screen_ctx);
 screen_create_window_group(screen_win, group);

 int vis = 0;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_VISIBLE, &vis);

 int color = 0xffffff00;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_COLOR, &color);

 int rect[4] = { 0, 0, 1, 1 };
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, rect+2);
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SOURCE_SIZE, dims);

 int pos[2] = { -dims[0], -dims[1] };
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SOURCE_POSITION, pos);

 screen_buffer_t screen_buf;
 screen_create_window_buffers(screen_win, 1);
 screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)&screen_buf);
 screen_post_window(screen_win, screen_buf, 1, rect, 0);

 return screen_win;
}

void create_bar_window(const char *group, const char *id, int dims[2])
{

 screen_context_t screen_ctx;
 screen_create_context(&screen_ctx, SCREEN_APPLICATION_CONTEXT);

 screen_window_t screen_win;
 screen_create_window_type(&screen_win, screen_ctx, SCREEN_CHILD_WINDOW);
 screen_join_window_group(screen_win, group);
 screen_set_window_property_cv(screen_win, SCREEN_PROPERTY_ID_STRING, strlen(id), id);

 int vis = 0;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_VISIBLE, &vis);

 int color = 0xff0000ff;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_COLOR, &color);

 int rect[4] = { 0, 0, 1, 1 };
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, rect+2);

 int pos[2] = { -rect[2], -rect[3] };
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SOURCE_POSITION, pos);

 screen_buffer_t screen_buf;
 screen_create_window_buffers(screen_win, 1);
 screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)&screen_buf);
 screen_post_window(screen_win, screen_buf, 1, rect, 0);
}

void create_hg_window(const char *group, const char *id, int dims[2])
{
 int i, j;

 screen_context_t screen_ctx;
 screen_create_context(&screen_ctx, SCREEN_APPLICATION_CONTEXT);

 screen_window_t screen_win;
 screen_create_window_type(&screen_win, screen_ctx, SCREEN_CHILD_WINDOW);
 screen_join_window_group(screen_win, group);
 screen_set_window_property_cv(screen_win, SCREEN_PROPERTY_ID_STRING, strlen(id), id);

© 2014, QNX Software Systems Limited 67

Tutorial: Draw and perform vsync operations using windows

 int flag = 1;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_STATIC, &flag);

 int vis = 0;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_VISIBLE, &vis);

 int format = SCREEN_FORMAT_RGBA8888;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_FORMAT, &format);

 int usage = SCREEN_USAGE_WRITE;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_USAGE, &usage);

 int transparency = SCREEN_TRANSPARENCY_SOURCE_OVER;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_TRANSPARENCY, &transparency);

 int rect[4] = { 0, 0, 100, 100 };
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, rect+2);

 screen_buffer_t screen_buf;
 screen_create_window_buffers(screen_win, 1);
 screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)&screen_buf);

 char *ptr = NULL;
 screen_get_buffer_property_pv(screen_buf, SCREEN_PROPERTY_POINTER, (void **)&ptr);

 int stride = 0;
 screen_get_buffer_property_iv(screen_buf, SCREEN_PROPERTY_STRIDE, &stride);

 for (i = 0; i < rect[3]; i++, ptr += stride) {
 for (j = 0; j < rect[2]; j++) {
 ptr[j*4] = 0xa0;
 ptr[j*4+1] = 0xa0;
 ptr[j*4+2] = 0xa0;
 ptr[j*4+3] = ((j >= i && j <= rect[3]-i) || (j <= i && j >= rect[3]-i)) ? 0xff : 0;
 }
 }

 screen_post_window(screen_win, screen_buf, 1, rect, 0);
}

int main(int argc, char **argv)
{
 int pos[2], size[2];
 int vis = 0;
 int type;

 screen_context_t screen_ctx;
 screen_create_context(&screen_ctx, SCREEN_APPLICATION_CONTEXT);

 int count = 0;
 screen_get_context_property_iv(screen_ctx, SCREEN_PROPERTY_DISPLAY_COUNT, &count);
 screen_display_t *screen_disps = calloc(count, sizeof(screen_display_t));
 screen_get_context_property_pv(screen_ctx, SCREEN_PROPERTY_DISPLAYS, (void **)screen_disps);

 screen_display_t screen_disp = screen_disps[0];
 free(screen_disps);

 int dims[2] = { 0, 0 };
 screen_get_display_property_iv(screen_disp, SCREEN_PROPERTY_SIZE, dims);

 char str[16];
 snprintf(str, sizeof(str), "%d", getpid());
 screen_bg_win = create_bg_window(str, dims, screen_ctx);

 create_bar_window(str, bar_id_string, dims);
 create_hg_window(str, hg_id_string, dims);

 screen_event_t screen_ev;
 screen_create_event(&screen_ev);

 while (1) {
 do {

 screen_get_event(screen_ctx, screen_ev, vis ? 0 : ~0);
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &type);

 if (type == SCREEN_EVENT_POST) {

 screen_window_t screen_win;
 screen_get_event_property_pv(screen_ev, SCREEN_PROPERTY_WINDOW, (void **)&screen_win);
 screen_get_window_property_cv(screen_win, SCREEN_PROPERTY_ID_STRING, sizeof(str), str);

 if (!screen_bar_win && !strcmp(str, bar_id_string)) {
 screen_bar_win = screen_win;
 } else if (!screen_hg_win && !strcmp(str, hg_id_string)) {
 screen_hg_win = screen_win;
 }

68 © 2014, QNX Software Systems Limited

Screen Tutorials

 if (screen_bar_win && screen_hg_win) {
 vis = 1;

 screen_get_window_property_iv(screen_hg_win, SCREEN_PROPERTY_BUFFER_SIZE, size);
 screen_set_window_property_iv(screen_hg_win, SCREEN_PROPERTY_SIZE, size);

 pos[0] = pos[1] = 10;
 screen_set_window_property_iv(screen_hg_win, SCREEN_PROPERTY_POSITION, pos);

 pos[0] = pos[1] = 0;
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_POSITION, pos);
 screen_set_window_property_iv(screen_bg_win, SCREEN_PROPERTY_POSITION, pos);

 size[0] = barwidth;
 size[1] = dims[1];
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_SIZE, size);

 size[0] = dims[0];
 screen_set_window_property_iv(screen_bg_win, SCREEN_PROPERTY_SIZE, size);

 int zorder = 0;
 screen_set_window_property_iv(screen_bg_win, SCREEN_PROPERTY_ZORDER, &zorder);
 zorder++;
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_ZORDER, &zorder);
 zorder++;
 screen_set_window_property_iv(screen_hg_win, SCREEN_PROPERTY_ZORDER, &zorder);

 screen_set_window_property_iv(screen_bg_win, SCREEN_PROPERTY_VISIBLE, &vis);
 screen_set_window_property_iv(screen_hg_win, SCREEN_PROPERTY_VISIBLE, &vis);
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_VISIBLE, &vis);
 screen_flush_context(screen_ctx, SCREEN_WAIT_IDLE);
 }
 } else if (type == SCREEN_EVENT_CLOSE) {

 screen_window_t screen_win;
 screen_get_event_property_pv(screen_ev, SCREEN_PROPERTY_WINDOW, (void **)&screen_win);

 if (screen_win == screen_bar_win) {
 screen_bar_win = NULL;
 } else if (screen_win == screen_hg_win) {
 screen_hg_win = NULL;
 }

 screen_destroy_window(screen_win);

 if (!screen_bar_win || !screen_hg_win) {
 vis = 0;
 }
 }
 } while (type != SCREEN_EVENT_NONE);

 if (vis) {
 if (++pos[0] > dims[0] - barwidth) {
 pos[0] = 0;
 }
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_POSITION, pos);
 screen_flush_context(screen_ctx, SCREEN_WAIT_IDLE);
 }
 }

 screen_destroy_event(screen_ev);
 screen_destroy_context(screen_ctx);

 return EXIT_SUCCESS;
}

© 2014, QNX Software Systems Limited 69

Tutorial: Draw and perform vsync operations using windows

Tutorial: Draw and perform vsync operations using blits, pixmaps, and buffers

This section describes how you can create the familiar hourglass and bar example

using pixmaps, buffers, and blits.

The samples in this documentation demonstrate how to accomplish tasks using a

variety of techniques. The result is usually a moving blue bar over a yellow background

with an hourglass positioned at the top left of the application.

This sample show you how you can create such a simple application by copying pixmaps

to buffers, using the screen_blit() function to move data among buffers, and

finally making the images visible on a display.

Hourglass:
hg

Vertical bar:
bar

Background window:
bg

Visible application
window comprises:

bg
bar
hg

screen_post_window(screen_win, screen_buf[0], 1, rect, 0);

Figure 10: The result of the blit-vsync sample application

Create a context and initialize a window

Before you can create your application's background window, you must create a context.

Call the screen_create_context() function with the SCREEN_APPLICATION_CONTEXT

flag to set up a connection with the windowing system that lets you create windows

and control some of their properties. When you use the

SCREEN_APPLICATION_CONTEXT flag, you cannot use the resulting context to

control windows created by other applications.

screen_context_t screen_ctx;
screen_create_context(&screen_ctx, SCREEN_APPLICATION_CONTEXT);

Create the application window—this sample uses a single application window.

screen_window_t screen_win;
screen_create_window(&screen_win, screen_ctx);

70 © 2014, QNX Software Systems Limited

Screen Tutorials

The default buffer usage is read/write. This sample uses blits and fills, so change the

usage to native. You don't need a pointer to the buffers, so there's no need to add

read/write to the usage.

int usage = SCREEN_USAGE_NATIVE;
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_USAGE, &usage);

Create buffers and a pixmap

To let the application process a frame while the windowing system updates the frame

buffer with earlier changes, the sample uses a double-buffered window.

Using a double-buffered window has the added advantage of preventing flickering if

an alpha-blended window is placed on top of the application window.

The default buffer size is usually fullscreen, but you can confirm that by querying the

buffer size.

int rect[4] = { 0, 0 };
screen_create_window_buffers(screen_win, 2);
screen_get_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, rect+2);

The sample stores the hourglass bitmap in a pixmap letting you use the

screen_blit() function to copy the bitmap to the window. This technique is faster

than moving the pixels manually in a for loop or with memcopy.

screen_pixmap_t screen_pix;
screen_create_pixmap(&screen_pix, screen_ctx);

The sample blends the hourglass on top of the yellow background and blue bar letting

the bar show through the areas of the bitmap that are not covered by the hourglass.

To do this, the pixmap must have an alpha channel — RGBA8888.

int format = SCREEN_FORMAT_RGBA8888;
screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_FORMAT, &format);

Unlike the window buffers, to load the hourglass image you must use a pointer to the

pixmap buffer. Later, when you copy the contents of the pixmap to the window using

the screen_blit() function, you'll need a combined usage property of

SCREEN_USAGE_WRITE and SCREEN_USAGE_NATIVE.

usage = SCREEN_USAGE_WRITE | SCREEN_USAGE_NATIVE;
screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_USAGE, &usage);

Specify the size of the hourglass — 100px x 100px.

int size[2] = { 100, 100 };
screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_BUFFER_SIZE, size);

Pixmaps can have only a single buffer, but you must use screen_create_pixmap_buffer()

to create that buffer explicitly. This lets you change several key properties, such as

usage and buffer size, before creating the pixmap buffer. When you've created the

© 2014, QNX Software Systems Limited 71

Tutorial: Draw and perform vsync operations using blits, pixmaps, and buffers

buffer, you can get a handle to it by querying the pixmap's

SCREEN_PROPERTY_RENDER_BUFFERS property.

screen_buffer_t screen_pbuf;
screen_create_pixmap_buffer(screen_pix);
screen_get_pixmap_property_pv(screen_pix, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)&screen_pbuf);

To fill in the hourglass shape, get a pointer to the pixmap buffer by querying the pointer

property of the handle you obtained in the previous step. If you forgot to add read or

write to the usage, this operation returns NULL.

unsigned char *ptr = NULL;
screen_get_buffer_property_pv(screen_pbuf, SCREEN_PROPERTY_POINTER, (void **)&ptr);

The stride is the number of bytes between pixels on different rows, represented by the

stride variable. If a pixel at position (x,y) is at ptr, the pixel at location (x, y+1)

will be at (ptr + stride). Because you set write and native usage, there's no

guarantee that each line is 400 bytes in this case. Drivers often have constraints that

require the stride to be larger than width * bytes per pixel.

int stride = 0;
screen_get_buffer_property_iv(screen_pbuf, SCREEN_PROPERTY_STRIDE, &stride);

Rather than load an image, as a real application might at this stage, the hourglass is

simple enough to calculate. The calculation adjusts the alpha channel to be transparent

or opaque based on a test that determines whether a pixel is inside or outside the

hourglass.

for (i = 0; i < size[1]; i++, ptr += stride) {
 for (j = 0; j < size[0]; j++) {
 ptr[j*4] = 0xa0;
 ptr[j*4+1] = 0xa0;
 ptr[j*4+2] = 0xa0;
 ptr[j*4+3] = ((j >= i && j <= size[1]-i) || (j <= i && j >= size[1]-i)) ? 0xff : 0;
 }
}

Combine buffers with blit functions and properties

To create the illusion of the moving blue bar, you can use blit functions and properties

to combine the buffers you've created and make them visible by posting them to the

application window.

The sample doesn't bother listening for events, so if you want to break the while

loop, just press Ctrl+C to exit the sample or kill the process.

while (1) {
 screen_buffer_t screen_buf[2];
 screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)screen_buf);

The sample fills the buffer with the yellow background color — the format of the color

argument is AARRGGBB. By default a fill operation covers the entire destination buffer.

72 © 2014, QNX Software Systems Limited

Screen Tutorials

For the background window, this is what you want to see, so there's no need to specify

more arguments.

int bg[] = { SCREEN_BLIT_COLOR, 0xffffff00, SCREEN_BLIT_END };
screen_fill(screen_ctx, screen_buf[0], bg);

The vertical blue bar is also a rectangular area, so you can use the screen_fill() function

again. This time you must specify the size, position, and color of the rectangle. The

vertical bar covers the entire height of the window, but not its width.

int bar[] = {
SCREEN_BLIT_COLOR, 0xff0000ff,
SCREEN_BLIT_DESTINATION_X, pos,
SCREEN_BLIT_DESTINATION_WIDTH, barwidth,
SCREEN_BLIT_END };
screen_fill(screen_ctx, screen_buf[0], bar);

To complete the application's graphics, blend the hourglass in the pixmap with the

window buffer. Specify the dimensions of a rectangle to contain the hourglass and set

the transparency mode to indicate that the hourglass should blend with whatever is

already in the window buffer.

int hg[] = {
 SCREEN_BLIT_SOURCE_WIDTH, 100,
 SCREEN_BLIT_SOURCE_HEIGHT, 100,
 SCREEN_BLIT_DESTINATION_X, 10,
 SCREEN_BLIT_DESTINATION_Y, 10,
 SCREEN_BLIT_DESTINATION_WIDTH, 100,
 SCREEN_BLIT_DESTINATION_HEIGHT, 100,
 SCREEN_BLIT_TRANSPARENCY, SCREEN_TRANSPARENCY_SOURCE_OVER,
 SCREEN_BLIT_END
};

Calling screen_post_window() will:

1. Draw the background, the hourglass, and the blue bar onto the window buffer.

2. Make the background, the hourglass and the blue bar visible on the display.

3. Signal the windowing system to redraw the screen.

This function also flushes the blits, so it's not necessary to flush the blits before calling

a post operation.

screen_blit(screen_ctx, screen_buf[0], screen_pbuf, hg);
screen_post_window(screen_win, screen_buf[0], 1, rect, 0);

Finally, to make the blue bar appear to move from left to right across the background,

increment its position by one after each frame, and then wrap the position back to

the origin of the buffer before the bar begins to move off the right-hand edge of the

screen.

if (++pos > rect[2] - barwidth) {
 pos = 0;
 }
}

Complete sample: A vsync application using blits, pixmaps, and buffers

This is the complete listing for the blit, pixpmap, and buffers sample.

#include <stdio.h>
#include <stdlib.h>

© 2014, QNX Software Systems Limited 73

Tutorial: Draw and perform vsync operations using blits, pixmaps, and buffers

#include <string.h>
#include <screen/screen.h>

const int barwidth = 32;

int main(int argc, char **argv)
{
 int i, j, pos = 0;

 screen_context_t screen_ctx;
 screen_create_context(&screen_ctx, SCREEN_APPLICATION_CONTEXT);

 screen_window_t screen_win;
 screen_create_window(&screen_win, screen_ctx);

 int usage = SCREEN_USAGE_NATIVE;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_USAGE, &usage);

 int rect[4] = { 0, 0 };
 screen_create_window_buffers(screen_win, 2);
 screen_get_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, rect+2);

 screen_pixmap_t screen_pix;
 screen_create_pixmap(&screen_pix, screen_ctx);

 int format = SCREEN_FORMAT_RGBA8888;
 screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_FORMAT, &format);

 usage = SCREEN_USAGE_WRITE | SCREEN_USAGE_NATIVE;
 screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_USAGE, &usage);

 int size[2] = { 100, 100 };
 screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_BUFFER_SIZE, size);

 screen_buffer_t screen_pbuf;
 screen_create_pixmap_buffer(screen_pix);
 screen_get_pixmap_property_pv(screen_pix, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)&screen_pbuf);

 unsigned char *ptr = NULL;
 screen_get_buffer_property_pv(screen_pbuf, SCREEN_PROPERTY_POINTER, (void **)&ptr);

 int stride = 0;
 screen_get_buffer_property_iv(screen_pbuf, SCREEN_PROPERTY_STRIDE, &stride);

 for (i = 0; i < size[1]; i++, ptr += stride) {
 for (j = 0; j < size[0]; j++) {
 ptr[j*4] = 0xa0;
 ptr[j*4+1] = 0xa0;
 ptr[j*4+2] = 0xa0;
 ptr[j*4+3] = ((j >= i && j <= size[1]-i) || (j <= i && j >= size[1]-i)) ? 0xff : 0;
 }
 }

 while (1) {
 screen_buffer_t screen_buf[2];
 screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)screen_buf);

 int bg[] = { SCREEN_BLIT_COLOR, 0xffffff00, SCREEN_BLIT_END };
 screen_fill(screen_ctx, screen_buf[0], bg);

 int bar[] = {
 SCREEN_BLIT_COLOR, 0xff0000ff,
 SCREEN_BLIT_DESTINATION_X, pos,
 SCREEN_BLIT_DESTINATION_WIDTH, barwidth,
 SCREEN_BLIT_END };

 screen_fill(screen_ctx, screen_buf[0], bar);

 int hg[] = {
 SCREEN_BLIT_SOURCE_WIDTH, 100,
 SCREEN_BLIT_SOURCE_HEIGHT, 100,
 SCREEN_BLIT_DESTINATION_X, 10,
 SCREEN_BLIT_DESTINATION_Y, 10,
 SCREEN_BLIT_DESTINATION_WIDTH, 100,
 SCREEN_BLIT_DESTINATION_HEIGHT, 100,
 SCREEN_BLIT_TRANSPARENCY, SCREEN_TRANSPARENCY_SOURCE_OVER,
 SCREEN_BLIT_END
 };

 screen_blit(screen_ctx, screen_buf[0], screen_pbuf, hg);
 screen_post_window(screen_win, screen_buf[0], 1, rect, 0);

 if (++pos > rect[2] - barwidth) {
 pos = 0;
 }
 }

 return EXIT_SUCCESS;
}

74 © 2014, QNX Software Systems Limited

Screen Tutorials

Tutorial: Write an application using OpenGL ES

This simple sample application uses a native window to create an EGL on-screen

rendering surface. This surface is the target of the OpenGL ES 1.X rendering.

This sample application uses the components of a grey hourglass, a moving blue

vertical bar, and a yellow background. It aims to demonstrate how to integrate the use

of OpenGL ES 1.X and Screen in one application.

Figure 11: OpenGL Application

You will learn to:

• establish a connection to and initialize the display

• choose an appropriate EGL configuration

• create an OpenGL ES rendering context

• create a native context

• create a native window

• set the appropriate properties for your native window

• create an EGL on-screen rendering surface

• create a main application loop to:

• process events in the native context

• render using OpenGL ES 1.X

• release resources

Use OpenGL ES in a windowed vsync application

The following walkthrough takes you through the process of writing a native application

that uses OpenGL ES for the rendering API.

1. Create the variables you'll need for your application.

Some important variables are:

/* a connection to screen windowing system */
screen_context_t screen_ctx;

© 2014, QNX Software Systems Limited 75

Tutorial: Write an application using OpenGL ES

/* a native handle for our window */
screen_window_t screen_win;
/* a handle used to pop events from our queue */
screen_event_t screen_ev;
/* the EGL swap interval */
EGLint interval = 1
/* the EGL configuration string */
const char *conf_str = NULL;
/* the array where you'll store the vertices */
GLshort points[20];
/* the abstract display on which graphics are drawn */
EGLDisplay egl_disp;
/* the configuration describing the color and ancillary buffers */
EGLConfig egl_conf;
/* your window's rendering surface */
EGLSurface egl_surf;
/* a handle to a rendering context */
EGLContext egl_ctx;
/* the resulting EGL config */
EGLConfig egl_conf = (EGLConfig)0;
/* describes the color and ancillary buffers */
EGLConfig *egl_configs;
/* number of configs that match our attributes */
EGLint egl_num_configs;
/* an EGL integer value */
EGLint val;
/* the return value of EGL functions */
EGLBoolean eglrc;

You'll use the surface attributes to choose between single-buffered and

double-buffered rendering. To avoid having to keep track of indexes in a

one-dimensional array of attribute/value pairs, you can use an aggregate of named

attribute/value pairs of type EGLint (an integer of 32 bits).

struct {
 EGLint render_buffer[2];
 EGLint none;
} egl_surf_attr = {
 /* double-buffering */
 .render_buffer = { EGL_RENDER_BUFFER, EGL_BACK_BUFFER },
 /* End of list */
 .none = EGL_NONE
};

Here is the list of attributes that will be passed to EGL to get you a pixel format

configuration. An EGL configuration is required by EGL when creating surfaces

and rendering contexts. Since you will modify certain values in this list when certain

command-line arguments are provided, you will organize the attributes as an

aggregate of named key/value pairs of EGL integers (EGLint). This way you won't

have to track the index locations of the various attributes in a one-dimensional

array.

struct {
 EGLint surface_type;
 EGLint red_size;
 EGLint green_size;
 EGLint blue_size;
 EGLint alpha_size;
 EGLint samples;
 EGLint config_id;
} egl_conf_attr = {
 /* Ask for displayable and pbuffer surfaces */
 .surface_type = EGL_WINDOW_BIT,
 /* Minimum number of red bits per pixel */
 .red_size = EGL_DONT_CARE,
 /* Minimum number of green bits per pixel */
 .green_size = EGL_DONT_CARE,
 /* Minimum number of blue bits per pixel */
 .blue_size = EGL_DONT_CARE,
 /* Minimum number of alpha bits per pixel */
 .alpha_size = EGL_DONT_CARE,
 /* Minimum number of samples per pixel */
 .samples = EGL_DONT_CARE,
 /* Used to get a specific EGL config */
 .config_id = EGL_DONT_CARE,
};

76 © 2014, QNX Software Systems Limited

Screen Tutorials

2. Process the command-line arguments, if any.

In this sample application, command-line arguments are accepted so that the user

may specify some configuration values. The valid options include:

• -single-buffer (rendering done to a single on-screen buffer)

• -double-buffer (rendering done on alternating back buffers)

• -interval=int (swap interval)

• -config=string (comma-separated list of EGL configuration specifiers)

• -size=widthxheight (size of the viewport)

• -pos=x,y (position of the viewport)

• -verbose (displays EGL configuration used by application)

If no options are indicated as command-line arguments, this application will assume

the following defaults:

DefaultOption

2Number of buffers used for rendering

1Swap interval

RGB pixel format with the smallest

depth supported by the hardware

EGL configuration

fullscreenViewport size

offVerbose

for (i = 1; i < argc; i++) {
 if (strncmp(argv[i], "-config=", strlen("-config=")) == 0) {
 /** EGL configuration **/
 conf_str = argv[i] + strlen("-config=");
 } else if (strncmp(argv[i], "-size=", strlen("-size=")) == 0) {
 /** size of viewport **/
 tok = argv[i] + strlen("-size=");
 size[0] = atoi(tok);
 while (*tok >= '0' && *tok <= '9') {
 tok++;
 }
 size[1] = atoi(tok+1);
 } else if (strncmp(argv[i], "-pos=", strlen("-pos=")) == 0) {
 /** position of viewport**/
 tok = argv[i] + strlen("-pos=");
 pos[0] = atoi(tok);
 while (*tok >= '0' && *tok <= '9') {
 tok++;
 }
 pos[1] = atoi(tok+1);
 } else if (strncmp(argv[i], "-interval=", strlen("-interval=")) == 0) {
 /** swap interval **/
 interval = atoi(argv[i] + strlen("-interval="));
 } else if (strcmp(argv[i], "-single-buffer") == 0) {
 /** single-buffer rendering **/
 nbuffers = 1;
 } else if (strcmp(argv[i], "-double-buffer") == 0) {
 /** double-buffer rendering **/
 nbuffers = 2;
 } else if (strncmp(argv[i], "-verbose", strlen("-verbose")) == 0) {
 /** verbose option selected **/
 verbose = EGL_TRUE;
 } else {
 /** unsupported option **/
 fprintf(stderr, "Invalid command-line option: %s\n", argv[i]);
 }
}

© 2014, QNX Software Systems Limited 77

Tutorial: Write an application using OpenGL ES

3. Establish a connection to the EGL display.

Before you can do any kind of rendering, you must establish a connection to a

display.

In this sample application, you will use the default display.

egl_disp = eglGetDisplay(EGL_DEFAULT_DISPLAY);

4. Initialize the EGL display.

You will be able to do little with the EGL display until it's been initialized. The

second and third arguments of eglInitialize() are both set to NULL because OpenGL

ES 1.X is supported by all versions of EGL; therefore it isn't necessary to check for

the major and minor version numbers.

rc = eglInitialize(egl_disp, NULL, NULL);

5. Choose an EGL configuration.

Choosing an appropriate EGL config is an important part of the initialization

procedure. This is especially true in embedded systems where the difference in

performance between pixel formats can make or break an application.

On desktop systems, a pixel format of RGB111 or better is usually sufficient because

this pixel format returns the best configuration supported by the hardware.

On embedded systems, RGBA8888 may not be an option. Even if RGBA8888 is

supported by the rendering hardware, the system may not be able to handle the

memory bandwidth required by the display controller to paint the display at 60

frames per second.

Specifying an EGL configuration by its ID (EGL_CONFIG_ID) gives you the ability

to get exactly what you want. However, this approach is far from being user-friendly

when there are multiple platforms and windowing systems to consider.

In this sample application the user can choose an appropriate EGL config by

specifiying one of the following:

• a pixel format

• a pixel format and a number of per-pixel samples

• an EGL configuration ID

a. Parse the configuration string from the command-line argument

You establish your EGL configuration attributes from the command-line

arguments.

if (str != NULL) {
 tok = str;
 while (*tok == ' ' || *tok == ',') {
 tok++;
 }
 while (*tok != '\0') {
 if (strncmp(tok, "rgba8888", strlen("rgba8888")) == 0) {
 egl_conf_attr.red_size = 8;
 egl_conf_attr.green_size = 8;

78 © 2014, QNX Software Systems Limited

Screen Tutorials

 egl_conf_attr.blue_size = 8;
 egl_conf_attr.alpha_size = 8;
 tok += strlen("rgba8888");
 } else if (strncmp(tok, "rgba5551", strlen("rgba5551")) == 0) {
 egl_conf_attr.red_size = 5;
 egl_conf_attr.green_size = 5;
 egl_conf_attr.blue_size = 5;
 egl_conf_attr.alpha_size = 1;
 tok += strlen("rgba5551");
 } else if (strncmp(tok, "rgba4444", strlen("rgba4444")) == 0) {
 egl_conf_attr.red_size = 4;
 egl_conf_attr.green_size = 4;
 egl_conf_attr.blue_size = 4;
 egl_conf_attr.alpha_size = 4;
 tok += strlen("rgba4444");
 } else if (strncmp(tok, "rgb565", strlen("rgb565")) == 0) {
 egl_conf_attr.red_size = 5;
 egl_conf_attr.green_size = 6;
 egl_conf_attr.blue_size = 5;
 egl_conf_attr.alpha_size = 0;
 tok += strlen("rgb565");
 } else if (isdigit(*tok)) {
 val = atoi(tok);
 while (isdigit(*(++tok)));
 if (*tok == 'x') {
 egl_conf_attr.samples = val;
 tok++;
 } else {
 egl_conf_attr.config_id = val;
 }
 } else {
 fprintf(stderr, "Invalid configuration specifier: ");
 while (*tok != ' ' && *tok != ',' && *tok != '\0') {
 fputc(*tok++, stderr);
 }
 fputc('\n', stderr);
 }
 /**
 ** Skip any spaces and separators between this token and the next one.
 **/
 while (*tok == ' ' || *tok == ',') {
 tok++;
 }
 }
}

b. Use eglGetConfigs() to find an EGL conguration that matches attributes specified

at the command line.

Here, eglGetConfigs() is used instead of eglChooseConfigs(), which is probably

the most complicated function of EGL. There are many attributes that can be

specified, each with its own matching rules, default value, and sorting order.

It's easy to get confused with all the special rules ending up with the wrong

configuration, or no configuration, without understanding why. So instead of

using eglChooseConfigs(), you will use eglGetConfigs() to get all the EGL

configurations and search for one that matches your specified attributes.

rc = eglGetConfigs(egl_disp, NULL, 0, &egl_num_configs);

c. Allocate sufficient memory to hold all possible matching configurations.

The total number of EGL configurations is stored in egl_num_configs after you've

called the eglGetConfigs() function. The number is used to calculate how much

memory needs to be allocated. You need enough memory to hold all the

configurations so that you can traverse through the configurations to find a

match.

egl_configs = malloc(egl_num_configs * sizeof(*egl_configs));

© 2014, QNX Software Systems Limited 79

Tutorial: Write an application using OpenGL ES

d. Call eglGetConfigs() a second time to store the configurations in the recently

allocated memory.

The list of EGL configurations is expected to be static. Therefore, your list of

configurations for the purpose of matching should be static as well. As long as

the call to eglGetConfigs() succeeds, it isn't necessary to check for

egl_num_configs again.

rc = eglGetConfigs(egl_disp, egl_configs, egl_num_configs, &egl_num_configs);

e. Go through the list of EGL configurations to find one that has all the attributes

specified on the command line.

Some attributes such as surface type or the renderable type are masks, but all

others are integers that you need to compare.

for (i = 0; i < egl_num_configs; i++) {
 /* EGL Configuration ID */
 if (egl_conf_attr.config_id != EGL_DONT_CARE) {
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_CONFIG_ID, &val);
 if (val == egl_conf_attr.config_id) {
 egl_conf = egl_configs[i];
 break;
 } else {
 continue;
 }
 }
 /* Surface Type */
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_SURFACE_TYPE, &val);
 if ((val & egl_conf_attr.surface_type) != egl_conf_attr.surface_type) {
 continue;
 }
 / ** Renderable type has the OpenGL ES bit. */
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_RENDERABLE_TYPE, &val);
 if (!(val & EGL_OPENGL_ES_BIT)) {
 continue;
 }
 /* Red Bits */
 if (egl_conf_attr.red_size != EGL_DONT_CARE) {
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_RED_SIZE, &val);
 if (val != egl_conf_attr.red_size) {
 continue;
 }
 }
 /* Green Bits */
 if (egl_conf_attr.green_size != EGL_DONT_CARE) {
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_GREEN_SIZE, &val);
 if (val != egl_conf_attr.green_size) {
 continue;
 }
 }
 /* Blue Bits */
 if (egl_conf_attr.blue_size != EGL_DONT_CARE) {
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_BLUE_SIZE, &val);
 if (val != egl_conf_attr.blue_size) {
 continue;
 }
 }
 /* Alpha Bits */
 if (egl_conf_attr.alpha_size != EGL_DONT_CARE) {
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_ALPHA_SIZE, &val);
 if (val != egl_conf_attr.alpha_size) {
 continue;
 }
 }
 /* Number of Samples */
 if (egl_conf_attr.samples != EGL_DONT_CARE) {
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_SAMPLES, &val);
 if (val != egl_conf_attr.samples) {
 continue;
 }
 }
 /* This config has the pixel format we asked for, so we can keep it
 and stop looking. */
 egl_conf = egl_configs[i];
 break;
}

80 © 2014, QNX Software Systems Limited

Screen Tutorials

f. Free the array that you allocated for the purpose of finding a matching EGL

configuration.

free(egl_configs);

6. Create an OpenGL ES rendering context.

Now, create an OpenGL ES rendering context. Among other things, this context

keeps track of the OpenGL ES state. You don't need to specify the current rendering

API with the eglBindApi() function because OpenGL ES is the default rendering

API.

The third argument to eglCreateContext() is another EGL rendering context with

which you wish to share data. Pass EGL_NO_CONTEXT to indicate that you won't

need any of the textures or vertex buffer objects created in another EGL rendering

context.

The last argument to eglCreateContext() is an attribute list that you can use to

specify an API version number. You would use it to override the

EGL_CONTEXT_CLIENT_VERSION value from 1 to 2 if you were writing an OpenGL

ES 2.X application.

egl_ctx = eglCreateContext(egl_disp, egl_conf, EGL_NO_CONTEXT, NULL);

7. Create your native context.

rc = screen_create_context(&screen_ctx, 0);

8. Create your native window.

rc = screen_create_window(&screen_win, screen_ctx);

9. Set your native window properties based on the command-line arguments or

defaults.

EGLint buffer_bit_depth, alpha_bit_depth;
eglGetConfigAttrib(egl_disp, egl_conf, EGL_BUFFER_SIZE, &buffer_bit_depth);
eglGetConfigAttrib(egl_disp, egl_conf, EGL_ALPHA_SIZE, &alpha_bit_depth);
switch (buffer_bit_depth) {
 case 32: {
 return SCREEN_FORMAT_RGBA8888;
 }
 case 24: {
 return SCREEN_FORMAT_RGB888;
 }
 case 16: {
 switch (alpha_bit_depth) {
 case 4: {
 return SCREEN_FORMAT_RGBA4444;
 }
 case 1: {
 return SCREEN_FORMAT_RGBA5551;
 }
 default: {
 return SCREEN_FORMAT_RGB565;
 }
 }
 break;
 }
 default: {
 return SCREEN_FORMAT_BYTE;
 }
}
rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_FORMAT, &format);
rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_USAGE, &usage);

© 2014, QNX Software Systems Limited 81

Tutorial: Write an application using OpenGL ES

rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SWAP_INTERVAL,
&interval);
if (size[0] > 0 && size[1] > 0) {
 rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SIZE, size);
} else {
 rc = screen_get_window_property_iv(screen_win, SCREEN_PROPERTY_SIZE, size);
}
if (pos[0] != 0 || pos[1] != 0) {
 rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_POSITION, pos);
}

10. Create your window buffers for rendering.

rc = screen_create_window_buffers(screen_win, nbuffers);

11. Create a Screen event so that the application can listen for and react to relevant

events from the windowing system.

rc = screen_create_event(&screen_ev);

12. Create the EGL on-screen rendering surface.

Now that you've created a native platform window, you can use it to create an EGL

on-screen rendering surface. You'll be able to use this surface as the target of your

OpenGL ES rendering. You'll use the same EGL display and EGL configuration to

create the EGL surface as you used to set the properties on your native window.

The EGL configuration needs to be compatible with the one used to create the

window.

egl_surf = eglCreateWindowSurface(egl_disp, egl_conf, screen_win,
(EGLint*)&egl_surf_attr);

13. Bind the EGL context to the current rendering thread and to a draw-and-read

surface.

In this application, you want to draw to the EGL surface and not really care about

where you read from. Since EGL doesn't allow specifying EGL_NO_SURFACE for

only the read surface, you will use egl_surf for both drawing and reading. Once

eglMakeCurrent() completes successfully, all OpenGL ES calls will be executed on

the context and the surface you provided as arguments.

rc = eglMakeCurrent(egl_disp, egl_surf, egl_surf, egl_ctx);

14. Set the EGL swap interval.

The eglSwapInterval() function specifies the minimum number of video frame

periods per buffer swap for the window associated with the current context. So, if

the interval is 0, the application renders as fast as it can. Interval values of 1 or

more limit the rendering to fractions of the display's refresh rate. (For example,

60, 30, 20, 15, etc. frames per second in the case of a display with a refresh rate

of 60 Hz.)

rc = eglSwapInterval(egl_disp, interval);

15. Initialize the viewport, the geometry, and the color for your application.

82 © 2014, QNX Software Systems Limited

Screen Tutorials

This application is fairly simple, so you just need to initialize the OpenGL ES

viewport and projection matrix. You need to compute the positions of vertices that

will be used to do the rendering. The positions of these vertices are based on the

window's dimensions instead of using scale and translation matrices. It's unlikely

that the size will change often, so this method is more efficient than applying

transformations every time a frame is rendered.

/**
 ** The first four vertices take up 8 shorts. These vertices define a
 ** rectangle that goes from (0,0) to (barwidth,height). A translation
 ** matrix will be used to slide this rectangle across the viewport.
 **/
points[0] = 0;
points[1] = height;
points[2] = barwidth;
points[3] = height;
points[4] = 0;
points[5] = 0;
points[6] = barwidth;
points[7] = 0;
/**
 ** The last six vertices take up 12 shorts. These vertices define two
 ** triangles that share a vertex. Because the OpenGL ES co-ordinate system
 ** starts at the bottom left instead of the top left corner, all y values
 ** need to be inverted. In other words, the hourglass needs to be
 ** translated up and down as the window height increases and decreases
 ** respectively.
 **/
points[8] = 10;
points[9] = height - 10;
points[10] = 110;
points[11] = height - 10;
points[12] = 60;
points[13] = height - 60;
points[14] = 60;
points[15] = height - 60;
points[16] = 110;
points[17] = height - 110;
points[18] = 10;
points[19] = height - 110;
/* Update the viewport and projection matrix */
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrthof(0.0f, (GLfloat)width, 0.0f, (GLfloat)height, -1.0f, 1.0f);
glMatrixMode(GL_MODELVIEW);
/* Set the clear color to yellow for the background*/
glClearColor(1.0f, 1.0f, 0.0f, 1.0f);
/* You will use one vertex array for all of the rendering */
glVertexPointer(2, GL_SHORT, 0, (const GLvoid *)points);
glEnableClientState(GL_VERTEX_ARRAY);

16. Set up the main application loop to handle events and to perform the rendering.

The main application loop runs continuously until either an error occurs or you

receive a SCREEN_EVENT_CLOSE event from the windowing system.

The main application loop consists of two main functions:

• processing of relevant events

• performing the rendering

while (1) {
...
 /* Part 1: Process events */
 while (!screen_get_event(screen_ctx, screen_ev, vis ? 0 : ~0)){...}

 /* Part 2: Render if window is visible */
 if (vis && !pause) {...}
}

a. Process relevant events.

© 2014, QNX Software Systems Limited 83

Tutorial: Write an application using OpenGL ES

The first part of the main applcation loop processes any events that might be

put on your context's queue. The only events that are of interest to you are the

resize and close events. The timeout variable is set to 0 (no wait) or forever

depending on whether the window is visible or not.

while (!screen_get_event(screen_ctx, screen_ev, vis ? 0 : ~0)) {
 rc = screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &val);
 if (rc || val == SCREEN_EVENT_NONE) {
 break;
 }
 switch (val) {
 case SCREEN_EVENT_CLOSE:
 /**
 ** All you have to do when you receive the close event is
 ** exit the application loop. Because there is a loop
 ** within a loop, a simple break won't work - just use a goto
 ** to get out.
 **/
 goto end;
 case SCREEN_EVENT_PROPERTY:
 /**
 ** You are interested in visibility changes so you can pause
 ** or unpause the rendering.
 **/
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_NAME, &val);
 switch (val) {
 case SCREEN_PROPERTY_VISIBLE:
 /**
 ** The visibility status is not included in the
 ** event, so you need to call screen_get_window_property_iv()
 ** to retrieve the value.
 **/
 screen_get_window_property_iv(screen_win, SCREEN_PROPERTY_VISIBLE,
 &vis);
 break;
 }
 break;
 case SCREEN_EVENT_POINTER:
 /**
 ** To provide a way of gracefully terminating your application,
 ** exit if there is a pointer select event in the upper
 ** right corner of your window. This should happen if the mouse's
 ** left button is clicked or if a touch screen display is pressed.
 ** The event will come as a screen pointer event, with an (x,y)
 ** coordinate relative to the window's upper left corner and a
 ** select value. You have to verify ourselves that the co-ordinates
 ** of the pointer are in the upper right hand area.
 **/
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_BUTTONS, &val);
 if (val) {
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_POSITION,
pos);
 if (pos[0] >= size[0] - exit_area_size &&
 pos[1] < exit_area_size) {
 goto end;
 }
 }
 break;
 case SCREEN_EVENT_KEYBOARD:
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_KEY_FLAGS, &val);

 if (val & KEY_DOWN) {
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_KEY_SYM,
&val);
 switch (val) {
 case KEYCODE_ESCAPE:
 goto end;
 case KEYCODE_F:
 pause = !pause;
 break;
 default:
 break;
 }
 }
 break;
 }
}

a. Perform the rendering.

The second part of the main application loop is the rendering. You want to skip

the rendering part if your window isn't visible, so as to leave the CPU and GPU

84 © 2014, QNX Software Systems Limited

Screen Tutorials

to other applications. This approach will enable the system to be more responsive

while the window is invisible.

if (vis && !pause) {
 /* Start by clearing the window */
 glClear(GL_COLOR_BUFFER_BIT);
 /** You could use glLoadIdentity or glPushMatrix here. If you use
 ** glLoadIdentity, you would need to call glLoadIdentity again when
 ** you draw the hourglass. The assumption is that glPushMatrix,
 ** glTranslatef, glPopMatrix are more efficient than
 ** glLoadIdentity, glTranslatef, and glLoadIdentity.
 **/
 glPushMatrix();
 /* Use translation to animate the vertical bar */
 glTranslatef((GLfloat)(i++ % (size[0] - barwidth)), 0.0f, 0.0f);
 /* Make the animated vertical bar to be drawn in blue */
 glColor4f(0.0f, 0.0f, 1.0f, 1.0f);
 /* Render the vertical bar */
 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
 /* You don't want the hourglass to be translated */
 glPopMatrix();
 /* Make the hourglass to be drawn in gray */
 glColor4f(0.62745f, 0.62745f, 0.62745f, 1.0f);
 /* Render the hourglass */
 glDrawArrays(GL_TRIANGLES, 4, 6);
 /**
 ** Posting of the new frame requires a call to eglSwapBuffers.
 ** For now, this is true even when using single buffering. If an
 ** event has occured that invalidates the surface we are currently
 ** using, eglSwapBuffers will return EGL_FALSE and set the error
 ** code to EGL_BAD_NATIVE_WINDOW. At this point, you could destroy
 ** the EGL surface, close the native window, and start again.
 ** This application will simply exit when any errors occur.
 **/
 rc = eglSwapBuffers(egl_disp, egl_surf);
}

17. Release resources.

Before you can destroy any of the resources you've created for this application, you

must deactivate the rendering context used and release the surfaces from where

you were drawing and reading.

This deactivation and release is done by calling eglMakeCurrent() with

EGL_NO_SURFACE and EGL_NO_CONTEXT as arguments. Note that the call to

eglMakeCurrent() will generate an error unless all arguments are EGL_NO_SURFACE

and EGL_NO_CONTEXT, or all arguments are valid EGLSurface and EGLContext

objects.

You will also need to terminate the connection to the EGL display and release any

resources that were allocated for this thread. On most systems, these resources

would likely be released automatically when the program exits, but it's good practice

to do so by calling eglReleaseThread().

eglMakeCurrent(egl_disp, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
eglDestroySurface(egl_disp, egl_surf);
screen_destroy_event(screen_ev); /* Destroy the Screen event */
screen_destroy_window(screen_win); /* Destroy the native window */
screen_destroy_context(screen_ctx); /* Destroy the Screen context */
eglDestroyContext(egl_disp, egl_ctx); /* Destroy the EGL render context */
eglTerminate(egl_disp); /* Terminate connection to display */
eglReleaseThread(); /* Release resources for thread */

© 2014, QNX Software Systems Limited 85

Tutorial: Write an application using OpenGL ES

Complete sample: A windowed vsync application using OpenGL ES

This code sample uses Screen Graphics Subsystem with OpenGL ES 1.X as the

rendering API.

This sample application uses the components of a grey hourglass, a moving blue

vertical bar, and a yellow background. It aims to demonstrate how to integrate the use

of OpenGL ES 1.X and Screen in one application.

Figure 12: OpenGL Application

/**
 ** gles1-vsync
 ** Windowed vsync that uses OpenGL ES 1.X for rendering API.
 **
 ** Features:
 ** - configurable window size through the -size=(width)x(height) option
 ** - configurable window position through the -pos=(x),(y) option
 ** - adjustable swap interval through the -interval=(n) option;
 ** a swap interval of 0 lets the app run as fast as possible
 ** numbers of 1 or more limit the rate to the number of vsync periods
 ** - application responds to size changes from window manager or delegate
 ** - rendering is suspended if window is not visible
 **
 ** Copyright 2010, QNX Software Systems Ltd. All Rights Reserved
 **
 ** Permission to use, copy, modify, and distribute this software and its
 ** documentation for any purpose and without fee is hereby granted,
 ** provided that the above copyright notice appear in all copies and that
 ** both that copyright notice and this permission notice appear in
 ** supporting documentation.
 **
 ** This file is provided AS IS with no warranties of any kind. The author
 ** shall have no liability with respect to the infringement of copyrights,
 ** trade secrets or any patents by this file or any part thereof. In no
 ** event will the author be liable for any lost revenue or profits or
 ** other special, indirect and consequential damages.
 */

/**
 ** Include the header files for libraries we are using.
 **/

#include <ctype.h> /* Header file for isdigit */
#include <stdio.h> /* Header file for fprintf */
#include <stdlib.h> /* Header file for EXIT_FAILURE, EXIT_SUCCESS, atoi */
#include <string.h> /* Header file for strncmp */
#include <sys/keycodes.h> /* Header file for KEYCODE_ESCAPE */
#include <screen/screen.h> /* Header file for the native screen API */
#include <EGL/egl.h> /* Header file for EGL */
#include <GLES/gl.h> /* Header file for OpenGL ES 1.X */

/**
 ** Here is the list of attributes that will be passed to EGL to get us
 ** a pixel format configuration. An EGL configuration is required by
 ** EGL when creating surfaces and rendering contexts. Since we will
 ** modify certain values in this list when certain command line arguments
 ** are provided, we will organize our attributes as an aggregate of named
 ** key/value pairs of EGLint's. This way we won't have to track the
 ** index locations various attributes in a one-dimensional array.
 **/

86 © 2014, QNX Software Systems Limited

Screen Tutorials

struct {
 EGLint surface_type;
 EGLint red_size;
 EGLint green_size;
 EGLint blue_size;
 EGLint alpha_size;
 EGLint samples;
 EGLint config_id;
} egl_conf_attr = {
 .surface_type = EGL_WINDOW_BIT, /* Ask for displayable and pbuffer surfaces */
 .red_size = EGL_DONT_CARE, /* Minimum number of red bits per pixel */
 .green_size = EGL_DONT_CARE, /* Minimum number of green bits per pixel */
 .blue_size = EGL_DONT_CARE, /* Minimum number of blue bits per pixel */
 .alpha_size = EGL_DONT_CARE, /* Minimum number of alpha bits per pixel */
 .samples = EGL_DONT_CARE, /* Minimum number of samples per pixel */
 .config_id = EGL_DONT_CARE, /* used to get a specific EGL config */
};

/* This function will convert EGL error codes into more meaningful messages. */
static void
egl_perror(const char *msg) {
 static const char *errmsg[] = {
 "function succeeded",
 "EGL is not initialized, or could not be initialized, for the specified display",
 "cannot access a requested resource",
 "failed to allocate resources for the requested operation",
 "an unrecognized attribute or attribute value was passed in an attribute list",
 "an EGLConfig argument does not name a valid EGLConfig",
 "an EGLContext argument does not name a valid EGLContext",
 "the current surface of the calling thread is no longer valid",
 "an EGLDisplay argument does not name a valid EGLDisplay",
 "arguments are inconsistent",
 "an EGLNativePixmapType argument does not refer to a valid native pixmap",
 "an EGLNativeWindowType argument does not refer to a valid native window",
 "one or more argument values are invalid",
 "an EGLSurface argument does not name a valid surface configured for rendering",
 "a power management event has occurred",
 };

 fprintf(stderr, "%s: %s\n", msg, errmsg[eglGetError() - EGL_SUCCESS]);
}

/* This function will parse the configuration string and/or select an appropriate
 * configuration based on configuration attributes.*/
EGLConfig choose_config(EGLDisplay egl_disp, const char* str)
{
 EGLConfig egl_conf = (EGLConfig)0; /* the resulting EGL config */
 EGLConfig *egl_configs; /* describes the color and ancillary buffers */
 EGLint egl_num_configs; /* number of configs that match our attributes */
 EGLint val; /* an EGL integer value */
 EGLBoolean rc; /* the return value of EGL functions */
 const char *tok; /* a pointer that will traverse the string */
 EGLint i; /* variable used to loop on matching configs */

 /**
 ** We start by parsing the config string, which is a comma-separated list
 ** of specifiers. We don't have to use strtok because the syntax is quite
 ** simple. All we will need is strncmp and atoi. We start by skipping any
 ** whitespace or separators. The str argument might be null, indicating
 ** that we must find a config that matches the default criteria. In this
 ** case, we must skip any processing of the str and make sure that there
 ** is a default value for all configuration attributes (usually
 ** EGL_DONT_CARE.)
 **/

 if (str != NULL) {
 tok = str;
 while (*tok == ' ' || *tok == ',') {
 tok++;
 }

 /**
 ** Loop as long as there are tokens to be processed.
 **/

 while (*tok != '\0') {
 if (strncmp(tok, "rgba8888", strlen("rgba8888")) == 0) {
 egl_conf_attr.red_size = 8;
 egl_conf_attr.green_size = 8;
 egl_conf_attr.blue_size = 8;
 egl_conf_attr.alpha_size = 8;
 tok += strlen("rgba8888");
 } else if (strncmp(tok, "rgba5551", strlen("rgba5551")) == 0) {
 egl_conf_attr.red_size = 5;
 egl_conf_attr.green_size = 5;
 egl_conf_attr.blue_size = 5;
 egl_conf_attr.alpha_size = 1;
 tok += strlen("rgba5551");
 } else if (strncmp(tok, "rgba4444", strlen("rgba4444")) == 0) {
 egl_conf_attr.red_size = 4;
 egl_conf_attr.green_size = 4;

© 2014, QNX Software Systems Limited 87

Tutorial: Write an application using OpenGL ES

 egl_conf_attr.blue_size = 4;
 egl_conf_attr.alpha_size = 4;
 tok += strlen("rgba4444");
 } else if (strncmp(tok, "rgb565", strlen("rgb565")) == 0) {
 egl_conf_attr.red_size = 5;
 egl_conf_attr.green_size = 6;
 egl_conf_attr.blue_size = 5;
 egl_conf_attr.alpha_size = 0;
 tok += strlen("rgb565");
 } else if (isdigit(*tok)) {
 /**
 ** An integer value could either be an EGL configuration id or
 ** a multi-sampling count. An 'x' immediately after the integer
 ** indicates that it is a multi-sampling specifier.
 **/
 val = atoi(tok);
 while (isdigit(*(++tok)));
 if (*tok == 'x') {
 egl_conf_attr.samples = val;
 tok++;
 } else {
 /**
 ** Using the EGL_CONFIG_ID attribute allows us to get a
 ** configuration by its id without a typecast,
 ** i.e. egl_conf = (EGLConfig)val. Note that the EGL spec says
 ** that when the EGL_CONFIG_ID attribute is specified, all
 ** other attributes are ignored, so we don't have to shorten
 ** the list ourselves in this case.
 **/
 egl_conf_attr.config_id = val;
 }
 } else {
 /**
 ** Print a message on the console if we encounter something we
 ** don't know. This way, the user will know that he might not get
 ** the config he was expecting.
 **/
 fprintf(stderr, "Invalid configuration specifier: ");
 while (*tok != ' ' && *tok != ',' && *tok != '\0') {
 fputc(*tok++, stderr);
 }
 fputc('\n', stderr);
 }

 /**
 ** Skip any spaces and separators between this token and the next one.
 **/

 while (*tok == ' ' || *tok == ',') {
 tok++;
 }
 }
 }

 /* Use eglGetConfigs to retrieve EGL configurations */

 rc = eglGetConfigs(egl_disp, NULL, 0, &egl_num_configs);
 if (rc != EGL_TRUE) {
 egl_perror("eglGetConfigs");
 return egl_conf;
 }
 if (egl_num_configs == 0) {
 fprintf(stderr, "eglGetConfigs: could not find a configuration\n");
 return egl_conf;
 }

 /**
 ** Now the total number of configs has been stored in egl_num_configs.
 ** We will malloc enough memory to hold all the configs. We need this to
 ** traverse the configs to find a perfect match.
 **/

 egl_configs = malloc(egl_num_configs * sizeof(*egl_configs));
 if (egl_configs == NULL) {
 fprintf(stderr, "could not allocate memory for %d EGL configs\n", egl_num_configs);
 return egl_conf;
 }

 /**
 ** The second time we call eglGetConfigs, it is with an array of configs
 ** big enough to store all the results. The list of EGL configs is
 ** expected to be static, which means our list of matching configs should
 ** be static as well. As long as the call succeeds, we don't have to check
 ** for egl_num_configs again.
 **/

 rc = eglGetConfigs(egl_disp, egl_configs,
 egl_num_configs, &egl_num_configs);
 if (rc != EGL_TRUE) {
 egl_perror("eglGetConfigs");
 free(egl_configs);

88 © 2014, QNX Software Systems Limited

Screen Tutorials

 return egl_conf;
 }

 /**
 ** Now we just have to go through the list of configs and find one that
 ** has all the attributes we are looking for. Some attributes like the
 ** surface type or the renderable type are masks. All the others are just
 ** integers that we need to match unless we don't care about the value.
 **/

 for (i = 0; i < egl_num_configs; i++) {
 /**
 ** Make sure the config id matches what we asked for.
 **/

 if (egl_conf_attr.config_id != EGL_DONT_CARE) {
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_CONFIG_ID, &val);
 if (val == egl_conf_attr.config_id) {
 egl_conf = egl_configs[i];
 break;
 } else {
 continue;
 }
 }

 /**
 ** Make sure the surface type matches what we asked for.
 **/

 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_SURFACE_TYPE, &val);
 if ((val & egl_conf_attr.surface_type) != egl_conf_attr.surface_type) {
 continue;
 }

 /**
 ** Make sure the renderable type has the OpenGL ES bit.
 **/

 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_RENDERABLE_TYPE, &val);
 if (!(val & EGL_OPENGL_ES_BIT)) {
 continue;
 }

 /**
 ** Make sure the number of red bits matches what we asked for.
 **/

 if (egl_conf_attr.red_size != EGL_DONT_CARE) {
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_RED_SIZE, &val);
 if (val != egl_conf_attr.red_size) {
 continue;
 }
 }

 /**
 ** Make sure the number of green bits matches what we asked for.
 **/

 if (egl_conf_attr.green_size != EGL_DONT_CARE) {
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_GREEN_SIZE, &val);
 if (val != egl_conf_attr.green_size) {
 continue;
 }
 }

 /**
 ** Make sure the number of blue bits matches what we asked for.
 **/

 if (egl_conf_attr.blue_size != EGL_DONT_CARE) {
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_BLUE_SIZE, &val);
 if (val != egl_conf_attr.blue_size) {
 continue;
 }
 }

 /**
 ** Make sure the number of alpha bits matches what we asked for.
 **/

 if (egl_conf_attr.alpha_size != EGL_DONT_CARE) {
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_ALPHA_SIZE, &val);
 if (val != egl_conf_attr.alpha_size) {
 continue;
 }
 }

 /**
 ** Make sure the number of samples matches what we asked for.
 **/

© 2014, QNX Software Systems Limited 89

Tutorial: Write an application using OpenGL ES

 if (egl_conf_attr.samples != EGL_DONT_CARE) {
 eglGetConfigAttrib(egl_disp, egl_configs[i], EGL_SAMPLES, &val);
 if (val != egl_conf_attr.samples) {
 continue;
 }
 }

 /**
 ** This config has the pixel format we asked for, so we can keep it
 ** and stop looking.
 **/

 egl_conf = egl_configs[i];
 break;
 }

 /**
 ** At this point, it is important to remember to free the array allocated
 ** to hold all configs before returning.
 **/

 free(egl_configs);

 if (egl_conf == (EGLConfig)0) {
 /**
 ** The value of egl_conf will be that of a matching config if one was
 ** found or (EGLConfig)0 if there were no exact matches. The calling
 ** function can decide to do what it wants with the result. For example,
 ** it could ask for a different config if no matches were found, or it can
 ** simply fail and report the error.
 **/

 fprintf(stderr, "eglChooseConfig: could not find a matching configuration\n");
 }

 return egl_conf;
}

int choose_format(EGLDisplay egl_disp, EGLConfig egl_conf)
{
 EGLint buffer_bit_depth, alpha_bit_depth;

 eglGetConfigAttrib(egl_disp, egl_conf, EGL_BUFFER_SIZE, &buffer_bit_depth);
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_ALPHA_SIZE, &alpha_bit_depth);
 switch (buffer_bit_depth) {
 case 32: {
 return SCREEN_FORMAT_RGBA8888;
 }
 case 24: {
 return SCREEN_FORMAT_RGB888;
 }
 case 16: {
 switch (alpha_bit_depth) {
 case 4: {
 return SCREEN_FORMAT_RGBA4444;
 }
 case 1: {
 return SCREEN_FORMAT_RGBA5551;
 }
 default: {
 return SCREEN_FORMAT_RGB565;
 }
 }
 break;
 }
 default: {
 return SCREEN_FORMAT_BYTE;
 }
 }
}

/**
 ** The function is used to initialize the OpenGL ES viewport and
 ** projection matrix. It also computes the position of vertices that will be
 ** used to do rendering. We compute the position of those vertices based on
 ** the window's dimensions instead of using scale and translation matrices.
 ** Because it is unlikely that the size will change very often, this is more
 ** efficient than applying transformations every time a frame is rendered.
 **/

static void resize(GLshort *points, GLint width, GLint height, GLint barwidth)
{
 /**
 ** The first four vertices take up 8 shorts. These vertices define a
 ** rectangle that goes from (0,0) to (barwidth,height). A translation
 ** matrix will be used to slide this rectangle across the viewport.
 **/

 points[0] = 0;
 points[1] = height;
 points[2] = barwidth;

90 © 2014, QNX Software Systems Limited

Screen Tutorials

 points[3] = height;
 points[4] = 0;
 points[5] = 0;
 points[6] = barwidth;
 points[7] = 0;

 /**
 ** The last six vertices take up 12 shorts. These vertices define two
 ** triangles that share a vertex. Because the OpenGL ES coordinate system
 ** starts at the bottom left instead of the top left corner, all y values
 ** need to be inverted. In other words, the hourglass needs to be
 ** translated up and down as the window height increases and decreases
 ** respectively.
 **/

 points[8] = 10;
 points[9] = height - 10;
 points[10] = 110;
 points[11] = height - 10;
 points[12] = 60;
 points[13] = height - 60;
 points[14] = 60;
 points[15] = height - 60;
 points[16] = 110;
 points[17] = height - 110;
 points[18] = 10;
 points[19] = height - 110;

 /* Update the viewport and projection matrix */
 glViewport(0, 0, width, height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrthof(0.0f, (GLfloat)width, 0.0f, (GLfloat)height, -1.0f, 1.0f);
 glMatrixMode(GL_MODELVIEW);
}

/**
 ** This is the entry point of our native application. This is where we will
 ** parse command line arguments, create our window, handle events, and do our
 ** rendering.
 **/

int main(int argc, char **argv)
{
 /**
 ** This is the size for an invisible exit button. We choose a value that's
 ** big enough to be useable with touchscreens and pointer devices.
 **/

 const int exit_area_size = 20;

 /**
 ** Make the sliding vertical blue bar 32 pixels wide. Any number would be
 ** fine here, as long as it is no larger than the width of the window.
 **/

 const int barwidth = 32;

 /**
 ** We will use the surface attributes to choose between single-buffered
 ** and double-buffered rendering. Again, to avoid having to keep track of
 ** indexes in a one-dimensional array of attribute/value pairs, we use
 ** an aggregate of named attribute/value pairs of EGLint's.
 **/

 struct {
 EGLint render_buffer[2];
 EGLint none;
 } egl_surf_attr = {
 .render_buffer = { EGL_RENDER_BUFFER, EGL_BACK_BUFFER }, /* Ask for double-buffering */
 .none = EGL_NONE /* End of list */
 };

 screen_context_t screen_ctx; /* connection to screen windowing system */
 screen_window_t screen_win; /* native handle for our window */
 screen_event_t screen_ev; /* handle used to pop events from our queue */
 EGLDisplay egl_disp; /* abstract display on which graphics are drawn */
 EGLConfig egl_conf; /* describes the color and ancillary buffers */
 EGLSurface egl_surf; /* refers to our window's rendering surface */
 EGLContext egl_ctx; /* a handle to a rendering context */
 int usage = SCREEN_USAGE_OPENGL_ES1; /* we will use OpenGL ES 1.X to do our rendering */
 int size[2] = { -1, -1 }; /* width and height of our window */
 int pos[2] = { 0, 0 }; /* x,y position of our window */
 int nbuffers = 2; /* number of buffers backing the window */
 int format; /* native visual type / screen format */
 int val; /* a generic variable used to set/get window properties */
 EGLint interval = 1; /* EGL swap interval */
 int verbose = EGL_FALSE; /* EGL_TRUE if the verbose option was set */
 int vis = 1; /* boolean that indicates if our window is visible */
 int pause = 0; /* EGL_TRUE if rendering is frozen */
 const char *conf_str = NULL; /* configuration string */

© 2014, QNX Software Systems Limited 91

Tutorial: Write an application using OpenGL ES

 const char *tok; /* used to process command-line arguments */
 int rval = EXIT_FAILURE; /* application exits with value stored here */
 int rc; /* return value from functions */
 int i; /* loop/frame counter */
 GLshort points[20]; /* we'll store the vertices in this array */

 /**
 ** We start by processing the command line arguments. The first argument
 ** is skipped because it contains the name of the program. Arguments
 ** follow the syntax -(option)=(value).
 **/

 for (i = 1; i < argc; i++) {
 if (strncmp(argv[i], "-config=", strlen("-config=")) == 0) {
 /**
 ** The syntax of the EGL configuration option is
 ** -config=[option][,[option]...]. All we need is to do is pass
 ** the string after the '=' to choose_config, which will parse the
 ** options and find the right EGL config.
 **/

 conf_str = argv[i] + strlen("-config=");
 } else if (strncmp(argv[i], "-size=", strlen("-size=")) == 0) {
 /**
 ** The syntax of the size option is -size=(width)x(height).
 ** Because atoi stops processing at the first non-digit character,
 ** we can simply call atoi on the string after the '=' to get the
 ** width, and call atoi again on the string after the 'x' to get
 ** the height.
 **/

 tok = argv[i] + strlen("-size=");
 size[0] = atoi(tok);
 while (*tok >= '0' && *tok <= '9') {
 tok++;
 }
 size[1] = atoi(tok+1);
 } else if (strncmp(argv[i], "-pos=", strlen("-pos=")) == 0) {
 /**
 ** The syntax of the pos option is -pos=(x),(y).
 ** Because atoi stops processing at the first non-digit character,
 ** we can simply call atoi on the string after the '=' to get the
 ** x offset, and call atoi again on the string after the ',' to
 ** get the y offset.
 **/

 tok = argv[i] + strlen("-pos=");
 pos[0] = atoi(tok);
 while (*tok >= '0' && *tok <= '9') {
 tok++;
 }
 pos[1] = atoi(tok+1);
 } else if (strncmp(argv[i], "-interval=", strlen("-interval=")) == 0) {
 /**
 ** The syntax of the interval option is -interval=(number). All
 ** we need is to convert the number that starts after the '='.
 **/

 interval = atoi(argv[i] + strlen("-interval="));
 } else if (strcmp(argv[i], "-single-buffer") == 0) {
 /**
 ** The -single-buffer option on the command line will cause the
 ** rendering to be done to a single on-screen buffer. There are
 ** typically artifacts associated with single-buffered rendering
 ** caused by rendering to a visible surface.
 **/

 nbuffers = 1;
 } else if (strcmp(argv[i], "-double-buffer") == 0) {
 /**
 ** The -double-buffer option on the command line will cause the
 ** rendering to be on alternating back buffers. This eliminates
 ** artifacts associated with single-buffered rendering.
 **/

 nbuffers = 2;
 } else if (strncmp(argv[i], "-verbose", strlen("-verbose")) == 0) {
 /**
 ** The verbose option has no special syntax. It just has to be
 ** present on the command line to cause the verbose messages to
 ** be printed.
 **/

 verbose = EGL_TRUE;
 } else {
 /**
 ** Make sure we say something instead of silently ignoring a
 ** command line option.
 **/

 fprintf(stderr, "Invalid command-line option: %s\n", argv[i]);

92 © 2014, QNX Software Systems Limited

Screen Tutorials

 }
 }

 /**
 ** Before we can do any kind of rendering, we must establish a connection
 ** to a display. We don't have any particular preference, so we'll just
 ** ask for the default display, unless a display id is specified on the
 ** command line.
 **/

 egl_disp = eglGetDisplay(EGL_DEFAULT_DISPLAY);
 if (egl_disp == EGL_NO_DISPLAY) {
 egl_perror("eglGetDisplay");
 goto fail1;
 }

 /**
 ** Now we initialize EGL on the display. We can't do anything with this
 ** EGL display until EGL has been initialized. OpenGL ES 1.X is supported
 ** by all versions of EGL, so it is not necessary to check for the major
 ** and minor version numbers.
 **/

 rc = eglInitialize(egl_disp, NULL, NULL);
 if (rc != EGL_TRUE) {
 egl_perror("eglInitialize");
 goto fail2;
 }

 /**
 ** Choosing an EGL configuration can be a tedious process. Here, we call
 ** choose_config which will do all the necessary work. In this case, this
 ** includes parsing a configuration string and/or select an appropriate
 ** configuration based on some configuration attributes.
 **/

 egl_conf = choose_config(egl_disp, conf_str);
 if (egl_conf == (EGLConfig)0) {
 goto fail2;
 }

 /**
 ** Now we need to create an OpenGL ES rendering context. The context will
 ** keep track of the OpenGL ES 1.X state among other things. We don't have
 ** to specify the current rendering API with an eglBindApi call because
 ** OpenGL ES is the default rendering API. The third argument to
 ** eglCreateContext is another EGL rendering context that we wish to share
 ** data with. We pass EGL_NO_CONTEXT to indicate that we won't need any
 ** of the textures or vertex buffer objects created in another EGL render
 ** context. The last argument is an attribute list that can be used to
 ** specify an API version number. We would use it to override the
 ** EGL CONTEXT CLIENT VERSION default value of 1 to 2 if we were writing
 ** an OpenGL ES 2.X application.
 **/

 egl_ctx = eglCreateContext(egl_disp, egl_conf, EGL_NO_CONTEXT, NULL);
 if (egl_ctx == EGL_NO_CONTEXT) {
 egl_perror("eglCreateContext");
 goto fail2;
 }

 /**
 ** If the application was started with the -verbose command line argument,
 ** we will print a few information strings about the EGL configuration we
 ** end-up using. This might be useful if the -config option was not
 ** provided, or if the user doesn't know the particular details of a given
 ** pixel format. We will get the information by using the
 ** eglGetConfigAttrib with several interesting attribute names.
 **/

 if (verbose) {
 printf("EGL_VENDOR = %s\n", eglQueryString(egl_disp, EGL_VENDOR));
 printf("EGL_VERSION = %s\n", eglQueryString(egl_disp, EGL_VERSION));
 printf("EGL_CLIENT_APIS = %s\n", eglQueryString(egl_disp, EGL_CLIENT_APIS));
 printf("EGL_EXTENSIONS = %s\n\n", eglQueryString(egl_disp, EGL_EXTENSIONS));

 i = -1;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_CONFIG_ID, &i);
 printf("EGL_CONFIG_ID = %d\n", i);

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_RED_SIZE, &i);
 printf("EGL_RED_SIZE = %d\n", i);

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_GREEN_SIZE, &i);
 printf("EGL_GREEN_SIZE = %d\n", i);

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_BLUE_SIZE, &i);
 printf("EGL_BLUE_SIZE = %d\n", i);

© 2014, QNX Software Systems Limited 93

Tutorial: Write an application using OpenGL ES

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_ALPHA_SIZE, &i);
 printf("EGL_ALPHA_SIZE = %d\n", i);

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_DEPTH_SIZE, &i);
 printf("EGL_DEPTH_SIZE = %d\n", i);

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_LEVEL, &i);
 printf("EGL_LEVEL = %d\n", i);

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_NATIVE_RENDERABLE, &i);
 printf("EGL_NATIVE_RENDERABLE = %s\n", i ? "EGL_TRUE" : "EGL_FALSE");

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_NATIVE_VISUAL_TYPE, &i);
 printf("EGL_NATIVE_VISUAL_TYPE = %d\n", i);

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_RENDERABLE_TYPE, &i);
 printf("EGL_RENDERABLE_TYPE = 0x%04x\n", i);

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_SURFACE_TYPE, &i);
 printf("EGL_SURFACE_TYPE = 0x%04x\n", i);

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_TRANSPARENT_TYPE, &i);
 if (i == EGL_TRANSPARENT_RGB) {
 printf("EGL_TRANSPARENT_TYPE = EGL_TRANSPARENT_RGB\n");

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_TRANSPARENT_RED_VALUE, &i);
 printf("EGL_TRANSPARENT_RED = 0x%02x\n", i);

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_TRANSPARENT_GREEN_VALUE, &i);
 printf("EGL_TRANSPARENT_GREEN = 0x%02x\n", i);

 i = 0;
 eglGetConfigAttrib(egl_disp, egl_conf, EGL_TRANSPARENT_BLUE_VALUE, &i);
 printf("EGL_TRANSPARENT_BLUE = 0x%02x\n\n", i);
 } else {
 printf("EGL_TRANSPARENT_TYPE = EGL_NONE\n\n");
 }
 }

 rc = screen_create_context(&screen_ctx, 0);
 if (rc) {
 perror("screen_context_create");
 goto fail3;
 }

 rc = screen_create_window(&screen_win, screen_ctx);
 if (rc) {
 perror("screen_create_window");
 goto fail4;
 }

 format = choose_format(egl_disp, egl_conf);
 rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_FORMAT, &format);
 if (rc) {
 perror("screen_set_window_property_iv(SCREEN_PROPERTY_FORMAT)");
 goto fail5;
 }

 rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_USAGE, &usage);
 if (rc) {
 perror("screen_set_window_property_iv(SCREEN_PROPERTY_USAGE)");
 goto fail5;
 }

 rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SWAP_INTERVAL, &interval);
 if (rc) {
 perror("screen_set_window_property_iv(SCREEN_PROPERTY_SWAP_INTERVAL)");
 goto fail5;
 }

 if (size[0] > 0 && size[1] > 0) {
 rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SIZE, size);
 if (rc) {
 perror("screen_set_window_property_iv(SCREEN_PROPERTY_SIZE)");
 goto fail5;
 }
 } else {
 rc = screen_get_window_property_iv(screen_win, SCREEN_PROPERTY_SIZE, size);
 if (rc) {
 perror("screen_get_window_property_iv(SCREEN_PROPERTY_SIZE)");

94 © 2014, QNX Software Systems Limited

Screen Tutorials

 goto fail5;
 }
 }

 if (pos[0] != 0 || pos[1] != 0) {
 rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_POSITION, pos);
 if (rc) {
 perror("screen_set_window_property_iv(SCREEN_PROPERTY_POSITION)");
 goto fail5;
 }
 }

 rc = screen_create_window_buffers(screen_win, nbuffers);
 if (rc) {
 perror("screen_create_window_buffers");
 goto fail5;
 }

 rc = screen_create_event(&screen_ev);
 if (rc) {
 perror("screen_create_event");
 goto fail5;
 }

 /**
 ** Now that we have created a native platform window we can use it to
 ** create an EGL on-screen rendering surface. We'll be able to use this
 ** surface as the target of our OpenGL ES 1.X rendering. We'll use the
 ** same EGL display and config to create the EGL surface as the ones we
 ** used to create our native window. The EGL config just needs to be
 ** compatible with the one used to create the window.
 **/

 egl_surf = eglCreateWindowSurface(egl_disp, egl_conf,
 screen_win, (EGLint*)&egl_surf_attr);
 if (egl_surf == EGL_NO_SURFACE) {
 egl_perror("eglCreateWindowSurface");
 goto fail6;
 }

 /**
 ** eglMakeCurrent binds ctx to the current rendering thread and to a draw
 ** and a read surface. In our case, we want to draw to our EGL surface and
 ** don't really care about where we read from. EGL does not allow
 ** specifying EGL_NO_SURFACE for the read surface only, so we will simply
 ** use egl_surf for both reading and writing. Once eglMakeCurrent
 ** completes successfully, all OpenGL ES 1.X calls will be executed on
 ** the context and surface provided as arguments.
 **/

 rc = eglMakeCurrent(egl_disp, egl_surf, egl_surf, egl_ctx);
 if (rc != EGL_TRUE) {
 egl_perror("eglMakeCurrent");
 goto fail7;
 }

 /**
 ** The eglSwapInterval function specifies the minimum number of video
 ** frame periods per buffer swap for the window associated with the
 ** current context. If the interval is 0, the application renders as
 ** fast as it can. Interval values of 1 or more limit the rendering
 ** to fractions of the display's refresh rate, i.e. 60, 30, 20, 15, etc
 ** fps in the case of a display with a refresh rate of 60 Hz.
 **/

 rc = eglSwapInterval(egl_disp, interval);
 if (rc != EGL_TRUE) {
 egl_perror("eglSwapInterval");
 goto fail8;
 }

 /**
 ** At this point, we can start doing OpenGL ES stuff. Our application is
 ** quite simple, so we'll just do the initialization here followed by
 ** some basic rendering in our application loop.
 **/

 if (verbose) {
 printf("GL_VENDOR = %s\n", (char *)glGetString(GL_VENDOR));
 printf("GL_RENDERER = %s\n", (char *)glGetString(GL_RENDERER));
 printf("GL_VERSION = %s\n", (char *)glGetString(GL_VERSION));
 printf("GL_EXTENSIONS = %s\n", (char *)glGetString(GL_EXTENSIONS));
 }

 /* The resize function initializes the viewport and geometry */
 resize(points, size[0], size[1], barwidth);

 /* Set the clear color to yellow */
 glClearColor(1.0f, 1.0f, 0.0f, 1.0f);

 /* We will use one vertex array for all of our rendering */

© 2014, QNX Software Systems Limited 95

Tutorial: Write an application using OpenGL ES

 glVertexPointer(2, GL_SHORT, 0, (const GLvoid *)points);
 glEnableClientState(GL_VERTEX_ARRAY);

 /**
 ** This is our main application loop. It keeps on running unless an error
 ** occurs or we receive a close event from the windowing system. The
 ** application loop consists of two parts. The first part processes any
 ** events that have been put in our queue. The second part does the
 ** rendering. When the window is visible, we don't wait if the event queue
 ** is empty and move on to the rendering part immediately. When the window
 ** is not visible we skip the rendering part.
 **/

 i = 0;
 while (1) {
 /**
 ** We start the loop by processing any events that might be in our
 ** queue. The only event that is of interest to us are the resize
 ** and close events. The timeout variable is set to 0 (no wait) or
 ** forever depending if the window is visible or invisible.
 **/

 while (!screen_get_event(screen_ctx, screen_ev, vis ? 0 : ~0)) {
 rc = screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &val);
 if (rc || val == SCREEN_EVENT_NONE) {
 break;
 }
 switch (val) {
 case SCREEN_EVENT_CLOSE:
 /**
 ** All we have to do when we receive the close event is
 ** exit the application loop. Because we have a loop
 ** within a loop, a simple break won't work. We'll just
 ** use a goto to take us out of here.
 **/
 goto end;
 case SCREEN_EVENT_PROPERTY:
 /**
 ** We are interested in visibility changes so we can pause
 ** or unpause the rendering.
 **/

 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_NAME, &val);
 switch (val) {
 case SCREEN_PROPERTY_VISIBLE:
 /**
 ** The new visibility status is not included in the
 ** event, so we must get it ourselves.
 **/
 screen_get_window_property_iv(screen_win, SCREEN_PROPERTY_VISIBLE, &vis);
 break;
 }
 break;
 case SCREEN_EVENT_POINTER:
 /**
 ** To provide a way of gracefully terminating our application,
 ** we will exit if there is a pointer select event in the upper
 ** right corner of our window. This should happen if the mouse's
 ** left button is clicked or if a touch screen display is pressed.
 ** The event will come as a screen pointer event, with an (x,y)
 ** coordinate relative to the window's upper left corner and a
 ** select value. We have to verify ourselves that the coordinates
 ** of the pointer are in the upper right hand area.
 **/
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_BUTTONS, &val);
 if (val) {
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_POSITION, pos);
 if (pos[0] >= size[0] - exit_area_size &&
 pos[1] < exit_area_size) {
 goto end;
 }
 }
 break;
 case SCREEN_EVENT_KEYBOARD:
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_KEY_FLAGS, &val);
 if (val & KEY_DOWN) {
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_KEY_SYM, &val);
 switch (val) {
 case KEYCODE_ESCAPE:
 goto end;
 case KEYCODE_F:
 pause = !pause;
 break;
 default:
 break;
 }
 }
 break;
 }
 }

96 © 2014, QNX Software Systems Limited

Screen Tutorials

 /**
 ** The second part of the application loop is the rendering. We want
 ** to skip the rendering part if our window is not visible. This will
 ** leave the CPU and GPU to other applications and make the system a
 ** little bit more responsive while we are invisible.
 **/

 if (vis && !pause) {
 /* Start by clearing the window */
 glClear(GL_COLOR_BUFFER_BIT);

 /**
 ** We could use glLoadIdentity or glPushMatrix here. If we used
 ** glLoadIdentity, we would have to call glLoadIdentity again when
 ** we draw the hourglass. We assume that glPushMatrix,
 ** glTranslatef, glPopMatrix is more efficient than
 ** glLoadIdentity, glTranslatef, and glLoadIdentity.
 **/
 glPushMatrix();

 /* Use translation to animate the vertical bar */
 glTranslatef((GLfloat)(i++ % (size[0] - barwidth)), 0.0f, 0.0f);

 /* We want the animated vertical bar to be drawn in blue */
 glColor4f(0.0f, 0.0f, 1.0f, 1.0f);

 /* Render the vertical bar */
 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 /* We don't want the hourglass to be translated */
 glPopMatrix();

 /* We want the hourglass to be drawn in gray */
 glColor4f(0.62745f, 0.62745f, 0.62745f, 1.0f);

 /* Render the hourglass */
 glDrawArrays(GL_TRIANGLES, 4, 6);

 /**
 ** Posting of the new frame requires a call to eglSwapBuffers.
 ** For now, this is true even when using single buffering. If an
 ** event has occured that invalidates the surface we are currently
 ** using, eglSwapBuffers will return EGL_FALSE and set the error
 ** code to EGL_BAD_NATIVE_WINDOW. At this point, we could destroy
 ** our EGL surface, close our OpenKODE window, and start again.
 ** This application will simply exit when any errors occur.
 **/

 rc = eglSwapBuffers(egl_disp, egl_surf);
 if (rc != EGL_TRUE) {
 egl_perror("eglSwapBuffers");
 break;
 }
 }
 }

 /**
 ** If we made it here, it means everything ran successfully. We'll thus
 ** change the exit return value to indicate success.
 **/

end:
 rval = EXIT_SUCCESS;

 /**
 ** Before we can destroy any of the resources we have created for this
 ** application, we must deactivate the rendering context that we were
 ** using and release the surfaces we were drawing to and reading from.
 ** This is done by calling eglMakeCurrent with EGL_NO_SURFACE and
 ** EGL_NO_CONTEXT for arguments. Note that the call to eglMakeCurrent
 ** will generate an error unless all arguments are EGL_NO_SURFACE and
 ** EGL_NO_CONTEXT, or all arguments are valid EGLSurface and EGLContext
 ** objects.
 **/

fail8:
 eglMakeCurrent(egl_disp, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);

 /**
 ** Destroy the EGL surface if one was created.
 **/

fail7:
 eglDestroySurface(egl_disp, egl_surf);

fail6:
 screen_destroy_event(screen_ev);
fail5:
 screen_destroy_window(screen_win);
fail4:
 screen_destroy_context(screen_ctx);

© 2014, QNX Software Systems Limited 97

Tutorial: Write an application using OpenGL ES

 /**
 ** Destroy the EGL render context if one was created.
 **/

fail3:
 eglDestroyContext(egl_disp, egl_ctx);

 /**
 ** Terminate our connection to the EGL display. Since we are just about to
 ** exit, we can also release any resources that were allocated for this
 ** thread. This is done by calling eglReleaseThread. On most systems,
 ** those resources would probably be released automatically when the
 ** program exists.
 **/

fail2:
 eglTerminate(egl_disp);
 eglReleaseThread();

 /**
 ** Return with EXIT_SUCCESS or EXIT_FAILURE.
 **/

fail1:
 return rval;
}

98 © 2014, QNX Software Systems Limited

Screen Tutorials

Tutorial: Screenshots

Screen screenshots are pixels read from a source and then copied into a buffer. You

can then manipulate the buffer as required; it can be simply written to a file or used

in other windows or displays.

The Screen API reads pixels from the source and copies them into a provided buffer

to capture the screenshot. The buffer can be either a pixmap or a window buffer, but

must have the usage flag of type SCREEN_USAGE_NATIVE set. The choice of whether

to use a pixmap buffer or a window buffer depends on the application of the screenshot

after it is taken. For example, you may choose to use a pixmap buffer for your

screenshot if you need to capture an image to be used in a different window or on a

different display.

Window screenshot

The screen_read_window() function captures a screenshot of the window. There are

no contraints on the context for this function call, but you must have used either the

screen_create_window() function or the screen_create_window_type() function to create

the window that's the target of this screenshot. When capturing screenshots of multiple

unrelated windows, you will need to make a screen_read_window() function call per

window.

Display screenshot

The screen_read_display() function captures a screenshot of the display. You will need

to be working within a privileged context so that you have full access to the display

properties of the system. You can create a privileged context by calling the function

screen_create_context() with a context type of SCREEN_DISPLAY_MANAGER_CONTEXT.

Your process must have an effective user ID of root to be able to create this context

type. When capturing screenshots of multiple displays, you will need to make one

screen_read_display() function call per display.

Capture a window screenshot

The following procedure describes how to use Screen to capture a screenshot of a

single window. You can store the resulting screenshot in either a pixmap or window

buffer for further manipulation. This particular procedure describes capturing the

screenshot in a pixmap buffer and then writing the screenshot to a bitmap.

This sample application uses the components of a grey hourglass, a moving blue

vertical bar, and a yellow background. It aims to demonstrate how to capture a

screenshot using the Screen API.

© 2014, QNX Software Systems Limited 99

Tutorial: Screenshots

Figure 13: Screenshot Application

You will learn to:

• create a pixmap and buffer to store your screenshot

• retrieve appropriate pixmap properties to prepare for screenshot

• take your screenshot

• write your screenshot to a bitmap file

Before you begin

Before proceeding, you are expected to have already created a Screen context and the

window that will be the target of your screenshot.

In the following procedure, the created context will be referred to as screenshot_ctx.

The targeted window will be referred to as screenshot_win.

1. Create variables for the pixmap, the pixmap buffer, the pixmap buffer pointer, and

the stride:

screen_pixmap_t screen_pix;
screen_buffer_t screenshot_buf;
char *screenshot_ptr = NULL;
int screenshot_stride = 0;

2. Create other variables necessary to support the Screen API calls and the writing of

our screenshot to a bitmap.

In this procedure, you will declare several integer variables to help in setting the

pixmap and its properties. You will also need variables associated with the writing

of the screenshot to bitmap. For this example, a set path and filename are used.

Ensure that you have appropriate permissions to access the directory path of the

file.

char header[54];
char *fname = "/accounts/1000/appdata/com.example.Tutorial_WindowApp."
 "testDev_l_WindowApp85f8001_/data/hourglass_window_screenshot.bmp";
int nbytes;
int fd;
int i;
int usage, format;
int size[2];

3. Create the pixmap for the screenshot and set the usage flag and format properties:

screen_create_pixmap(&screen_pix, screenshot_ctx);

usage = SCREEN_USAGE_READ | SCREEN_USAGE_NATIVE;
screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_USAGE, &usage);

format = SCREEN_FORMAT_RGBA8888;

100 © 2014, QNX Software Systems Limited

Screen Tutorials

screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_FORMAT, &format);

4. Set the buffer size of the pixmap for the screenshot:

Set an appropriate buffer size for the pixmap. The pixmap buffer size doesn't have

to necessarily match the size of the source. Scaling will be applied to make the

screenshot fit into the buffer provided.

size[0] = 200;
size[1] = 200;
screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_BUFFER_SIZE, size);

5. Create the pixmap buffer for the screenshot and get the buffer handle, the pointer,

and the stride.

Memory is allocated for your pixmap buffer; this is the buffer where the pixels from

the source window will be copied to:

screen_create_pixmap_buffer(screen_pix);
screen_get_pixmap_property_pv(screen_pix, SCREEN_PROPERTY_RENDER_BUFFERS,
 (void**)&screenshot_buf);
screen_get_buffer_property_pv(screenshot_buf, SCREEN_PROPERTY_POINTER,
 (void**)&screentshot_ptr);
screen_get_buffer_property_iv(screenshot_buf, SCREEN_PROPERTY_STRIDE,
 &screenshot_stride);

6. Take the window screenshot:

screen_read_window(screenshot_win, screenshot_buf, 0, NULL ,0);

This function takes five arguments: the target of the screenshot, the pixmap buffer,

the number of rectangles defining the area of capture, the array of integers

representing rectangles of the area of capture, and the mutex flag. The arguments

related to the area of capture are 0 and NULL because in this example you are

capturing the target area in its entirety rather than a specific rectangular area. The

last argument (which represents the mutex flag) should always be 0.

7. Create the bitmap file with appropriate permissions; prepare the header and write

the buffer contents to the file. Afterwards, close the file:

fd = creat(fname, S_IRUSR | S_IWUSR);

nbytes = size[0] * size[1] * 4;
write_bitmap_header(nbytes, fd, size);

for (i = 0; i < size[1]; i++) {
 write(fd, screenshot_ptr + i * screenshot_stride, size[0] * 4);
}

close(fd);

The value of nbytes represents the calculated size of the bitmap and is used in the

header of the bitmap itself.

Although any instances created are destroyed when the application exits, it is best

practice to destroy any window, pixmap and context instances that you created but

no longer require.

© 2014, QNX Software Systems Limited 101

Tutorial: Screenshots

In this example, you should destroy the pixmap that you created to perform the

screenshot. After the pixmap buffer has been used to create the bitmap, the pixmap,

and its buffer are no longer required. Therefore you should perform the appropriate

cleanup.

screen_destroy_pixmap(screen_pix);

Complete sample: a window screenshot example

The complete code sample for a window screenshot is listed below.

In the following code sample, an hourglass is placed in the top left corner of an

application window while a vertical bar sweeps from left to right across the screen.

The ground window is of type SCREEN_APPLICATION_WINDOW, while the hourglass

and the bar are implemented as windows of type SCREEN_CHILD_WINDOW.

This code sample performs a screenshot of the hourglass window upon a MTOUCH

touch event. The screenshot of the hourglass window is written to a designated bitmap

on the system.

#include <ctype.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <screen/screen.h>

const char *hg_id_string = "hourglass";

const char *bar_id_string = "bar";

const int barwidth = 32;

screen_window_t screen_bg_win = NULL;

screen_window_t screen_hg_win = NULL;

screen_window_t screen_bar_win = NULL;

/* Create the background window in this example */
screen_window_t create_bg_window(const char *group, int dims[2], screen_context_t screen_ctx)
{
 /* Start by creating the context, application window and window group. */
 screen_window_t screen_win;
 screen_create_window(&screen_win, screen_ctx);
 screen_create_window_group(screen_win, group);

 /* Set the visibility of this window to FALSE; we want to make all windows
 * invisible until all the windows have been created and are ready to be displayed.*/
 int vis = 0;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_VISIBLE, &vis);

 /* Set the color of the background window. */
 int color = 0xffffff00;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_COLOR, &color);

 /* Screen API
 * requires all visible windows to have at least one buffer, so
 * here we will create the smallest possible buffer since you don't need to use this buffer
 * in this example.*/
 int rect[4] = { 0, 0, 1, 1 };
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, rect+2);
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SOURCE_SIZE, dims);

 /* Move the source viewport to outside the bounds of the window buffer to allow the
 * windowing system to replace all areas outside of the buffer with the window color.*/
 int pos[2] = { -dims[0], -dims[1] };
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SOURCE_POSITION, pos);

 /* Create and post the window buffer to make this window visible when we are ready. */
 screen_buffer_t screen_buf;
 screen_create_window_buffers(screen_win, 1);

102 © 2014, QNX Software Systems Limited

Screen Tutorials

 screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)&screen_buf);
 screen_post_window(screen_win, screen_buf, 1, rect, 0);

 return screen_win;
}

/* Create the bar window in this example.*/
void create_bar_window(const char *group, const char *id, int dims[2])
{
 /* Start by creating the another context. A separate context for each child window
 * emphasizes the steps required on how to deal with child windows created by other processes.*/
 screen_context_t screen_ctx;
 screen_create_context(&screen_ctx, SCREEN_APPLICATION_CONTEXT);

 /* Create a child window. */
 screen_window_t screen_win;
 screen_create_window_type(&screen_win, screen_ctx, SCREEN_CHILD_WINDOW);
 screen_join_window_group(screen_win, group);
 screen_set_window_property_cv(screen_win, SCREEN_PROPERTY_ID_STRING, strlen(id), id);

 /* Set the visibility to FALSE. */
 int vis = 0;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_VISIBLE, &vis);

 /* Set the color of the bar window. */
 int color = 0xff0000ff;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_COLOR, &color);

 /* Screen API requires all visible windows to have at
 * least one buffer, so here we will create the smallest possible buffer
 * since you don't need to use this buffer in this example.*/
 int rect[4] = { 0, 0, 1, 1 };
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, rect+2);

 /* Move the source viewport to outside the bounds of the window buffer to allow the
 windowing system to replace all areas outside of the buffer with the window color.*/

 int pos[2] = { -rect[2], -rect[3] };
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SOURCE_POSITION, pos);

 /* Create and post the window buffer to make this window visible when we are ready. */
 screen_buffer_t screen_buf;
 screen_create_window_buffers(screen_win, 1);
 screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)&screen_buf);
 screen_post_window(screen_win, screen_buf, 1, rect, 0);
}

/* Create the hourglass window in this example. */
void create_hg_window(const char *group, const char *id, int dims[2])
{
 int i, j;

 /* Start by creating the another context. A separate context for each child window
 emphasizes the steps required on how to deal with child windows created by other processes.*/
 screen_context_t screen_ctx;
 screen_create_context(&screen_ctx, SCREEN_APPLICATION_CONTEXT);

 /* Create a child window. */
 screen_window_t screen_win;
 screen_create_window_type(&screen_win, screen_ctx, SCREEN_CHILD_WINDOW);
 screen_join_window_group(screen_win, group);
 screen_set_window_property_cv(screen_win, SCREEN_PROPERTY_ID_STRING, strlen(id), id);

 /* Set the static window property to indicate that the contents of this window buffer
 will not change and therefore posting will not be expected.*/
 int flag = 1;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_STATIC, &flag);

 /* Set the visibility to FALSE. */
 int vis = 0;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_VISIBLE, &vis);

 /* Set the pixel format. The hourglass shape will have transparency, so we need
 * a pixel format with an alpha channel; here we choose RGBA8888.*/
 int format = SCREEN_FORMAT_RGBA8888;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_FORMAT, &format);

 /* Set usage flag. Usage flag must be set to write in order for us to draw to the
 * window buffer. */
 int usage = SCREEN_USAGE_WRITE;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_USAGE, &usage);

 /* Set the transparency mode.
 * By default, RGBA8888 formats will have the transparency mode set to
 * source over. The windowing system assumes that if an application chooses
 * rgba over rgbx, it's because it wants to do some blending. However,
 * it is good practice to set the transparency mode. */
 int transparency = SCREEN_TRANSPARENCY_SOURCE_OVER;
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_TRANSPARENCY, &transparency);

 /* Set the window buffer size for the hourglass. */

© 2014, QNX Software Systems Limited 103

Tutorial: Screenshots

 int rect[4] = { 0, 0, 100, 100 };
 screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, rect+2);

 /* Create the window buffer and then get a handle to this buffer. */
 screen_buffer_t screen_buf;
 screen_create_window_buffers(screen_win, 1);
 screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_RENDER_BUFFERS, (void **)&screen_buf);

 /* Get the pointer to this buffer in order to fill the hourglass shape. */
 char *ptr = NULL;
 screen_get_buffer_property_pv(screen_buf, SCREEN_PROPERTY_POINTER, (void **)&ptr);

 /* Get the stride (the number of bytes between pixels on different rows) so that we can
 * use it to draw the hourglass shape. */
 int stride = 0;
 screen_get_buffer_property_iv(screen_buf, SCREEN_PROPERTY_STRIDE, &stride);

 /* Draw the hourglass shape. */
 for (i = 0; i < rect[3]; i++, ptr += stride) {
 for (j = 0; j < rect[2]; j++) {
 ptr[j*4] = 0xa0;
 ptr[j*4+1] = 0xa0;
 ptr[j*4+2] = 0xa0;
 ptr[j*4+3] = ((j >= i && j <= rect[3]-i) || (j <= i && j >= rect[3]-i)) ? 0xff : 0;
 }
 }

 /* Post the window. */
 screen_post_window(screen_win, screen_buf, 1, rect, 0);
}

void write_bitmap_header(int nbytes, int fd, const int size[])
{
 char header[54];

 /* Set standard bitmap header */
 header[0] = 'B';
 header[1] = 'M';
 header[2] = nbytes & 0xff;
 header[3] = (nbytes >> 8) & 0xff;
 header[4] = (nbytes >> 16) & 0xff;
 header[5] = (nbytes >> 24) & 0xff;
 header[6] = 0;
 header[7] = 0;
 header[8] = 0;
 header[9] = 0;
 header[10] = 54;
 header[11] = 0;
 header[12] = 0;
 header[13] = 0;
 header[14] = 40;
 header[15] = 0;
 header[16] = 0;
 header[17] = 0;
 header[18] = size[0] & 0xff;
 header[19] = (size[0] >> 8) & 0xff;
 header[20] = (size[0] >> 16) & 0xff;
 header[21] = (size[0] >> 24) & 0xff;
 header[22] = -size[1] & 0xff;
 header[23] = (-size[1] >> 8) & 0xff;
 header[24] = (-size[1] >> 16) & 0xff;
 header[25] = (-size[1] >> 24) & 0xff;
 header[26] = 1;
 header[27] = 0;
 header[28] = 32;
 header[29] = 0;
 header[30] = 0;
 header[31] = 0;
 header[32] = 0;
 header[33] = 0;
 header[34] = 0; /* image size*/
 header[35] = 0;
 header[36] = 0;
 header[37] = 0;
 header[38] = 0x9;
 header[39] = 0x88;
 header[40] = 0;
 header[41] = 0;
 header[42] = 0x9l;
 header[43] = 0x88;
 header[44] = 0;
 header[45] = 0;
 header[46] = 0;
 header[47] = 0;
 header[48] = 0;
 header[49] = 0;
 header[50] = 0;
 header[51] = 0;
 header[52] = 0;
 header[53] = 0;

104 © 2014, QNX Software Systems Limited

Screen Tutorials

 /* Write bitmap header to file */
 write(fd, header, sizeof(header));
}

void write_bitmap_file(const int size[], const char* screenshot_ptr, const int screenshot_stride)
{
 int nbytes; /* number of bytes of the bimap */
 int fd /* file descriptor */
 int i; /* iterator to iterate over the screenshot buffer */
 char *fname = "/accounts/1000/appdata/com.example.Tutorial_WindowApp."
 "testDev_l_WindowApp85f8001_/data/hourglass_window_screenshot.bmp"; /* bitmap filename */

 /* Calculate the size of the bitmap */
 nbytes = size[0] * size[1] * 4;

 /* Open file*/
 fd = creat(fname, S_IRUSR | S_IWUSR);

 /* Write the standard bitmap header */
 write_bitmap_header(nbytes, fd, size);

 /* Write screenshot buffer contents to file */
 for (i = 0; i < size[1]; i++) {
 write(fd, screenshot_ptr + i * screenshot_stride, size[0] * 4);
 }

}

/* Take window screenshot. */
void take_window_screenshot(screen_window_t screenshot_win, screen_context_t screenshot_ctx)
{
 /* Variables for setting up taking a screenshot. */
 screen_pixmap_t screen_pix;
 screen_buffer_t screenshot_buf;

 char *screenshot_ptr = NULL;
 int screenshot_stride = 0;
 int usage, format;
 int size[2];

 /* Create pixmap. */
 screen_create_pixmap(&screen_pix, screenshot_ctx);

 /* Set Usage Flags. */
 usage = SCREEN_USAGE_READ | SCREEN_USAGE_NATIVE;
 screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_USAGE, &usage);

 /* Set format. */
 format = SCREEN_FORMAT_RGBA8888;
 screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_FORMAT, &format);

 /* Set pixmap buffer size */
 size[0] = 200;
 size[1] = 200;
 screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_BUFFER_SIZE, size);

 /* Create pixmap buffer and get handle to the buffer. */
 screen_create_pixmap_buffer(screen_pix);
 screen_get_pixmap_property_pv(screen_pix, SCREEN_PROPERTY_RENDER_BUFFERS, (void**)&screenshot_buf);

 /* Get a pointer to the buffer. */
 screen_get_buffer_property_pv(screenshot_buf, SCREEN_PROPERTY_POINTER, (void**)&screenshot_ptr);

 /* Get the stride. */
 screen_get_buffer_property_iv(screenshot_buf, SCREEN_PROPERTY_STRIDE, &screenshot_stride);

 /* Take the window screenshot. */
 screen_read_window(screenshot_win, screenshot_buf, 0, NULL ,0);

 /* Write the screenshot buffer to a bitmap file*/
 write_bitmap_file(size, screenshot_ptr, screenshot_stride);

 /* Perform necessary Screen API clean-up. */
 screen_destroy_pixmap(screen_pix);
}

int main(int argc, char **argv)
{
 int pos[2], size[2];
 int vis = 0;
 int type;

 /* Create the context to set up connection with the windowing system. */
 screen_context_t screen_ctx;
 screen_create_context(&screen_ctx, SCREEN_APPLICATION_CONTEXT);

 /* Specify the dimensions when creating our child windows. */

 /* Get all displays available for the context. */
 int count = 0;
 screen_get_context_property_iv(screen_ctx, SCREEN_PROPERTY_DISPLAY_COUNT, &count);

© 2014, QNX Software Systems Limited 105

Tutorial: Screenshots

 screen_display_t *screen_disps = calloc(count, sizeof(screen_display_t));
 screen_get_context_property_pv(screen_ctx, SCREEN_PROPERTY_DISPLAYS, (void **)screen_disps);
 screen_display_t screen_disp = screen_disps[0];
 free(screen_disps);

 /* Get the size of the display; we will use this as the dimensions for our windows. */
 int dims[2] = { 0, 0 };
 screen_get_display_property_iv(screen_disp, SCREEN_PROPERTY_SIZE, dims);

 /* Construct a unique name for the window group. */
 char str[16];
 snprintf(str, sizeof(str), "%d", getpid());

 /* Create the parent window; in this example the background window is the parent. */
 screen_bg_win = create_bg_window(str, dims, screen_ctx);

 /* Create the child windows. */
 create_bar_window(str, bar_id_string, dims);
 create_hg_window(str, hg_id_string, dims);

 /* Create a screen event handle to be used to receive events from the windowing system. */
 screen_event_t screen_ev;
 screen_create_event(&screen_ev);

 while (1) {
 do {
 /* Wait for next event. */
 screen_get_event(screen_ctx, screen_ev, vis ? 0 : ~0);
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &type);

 /* We are interested only in post, close and mtouch events in this example. */
 if (type == SCREEN_EVENT_POST) {

 /* Get the handle for the window for this post event. */
 screen_window_t screen_win;
 screen_get_event_property_pv(screen_ev, SCREEN_PROPERTY_WINDOW, (void **)&screen_win);
 screen_get_window_property_cv(screen_win, SCREEN_PROPERTY_ID_STRING, sizeof(str), str);

 /* Determine which window is posting. */
 if (!screen_bar_win && !strcmp(str, bar_id_string)) {
 screen_bar_win = screen_win;
 } else if (!screen_hg_win && !strcmp(str, hg_id_string)) {
 screen_hg_win = screen_win;
 }

 /* Once the child windows have been created and posted, switch
 * all windows to be visible.*/
 if (screen_bar_win && screen_hg_win) {
 vis = 1;

 /* Set the screen size to full screen, except for the hourglass which will be 100x100
 * and positioned at 10, 10. */
 screen_get_window_property_iv(screen_hg_win, SCREEN_PROPERTY_BUFFER_SIZE, size);
 screen_set_window_property_iv(screen_hg_win, SCREEN_PROPERTY_SIZE, size);

 pos[0] = pos[1] = 10;
 screen_set_window_property_iv(screen_hg_win, SCREEN_PROPERTY_POSITION, pos);

 pos[0] = pos[1] = 0;
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_POSITION, pos);
 screen_set_window_property_iv(screen_bg_win, SCREEN_PROPERTY_POSITION, pos);

 size[0] = barwidth;
 size[1] = dims[1];
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_SIZE, size);

 size[0] = dims[0];
 screen_set_window_property_iv(screen_bg_win, SCREEN_PROPERTY_SIZE, size);

 int zorder = 0;
 screen_set_window_property_iv(screen_bg_win, SCREEN_PROPERTY_ZORDER, &zorder);
 zorder++;
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_ZORDER, &zorder);
 zorder++;
 screen_set_window_property_iv(screen_hg_win, SCREEN_PROPERTY_ZORDER, &zorder);

 /* Set all windows visible. */
 screen_set_window_property_iv(screen_bg_win, SCREEN_PROPERTY_VISIBLE, &vis);
 screen_set_window_property_iv(screen_hg_win, SCREEN_PROPERTY_VISIBLE, &vis);
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_VISIBLE, &vis);
 screen_flush_context(screen_ctx, SCREEN_WAIT_IDLE);
 }
 } else if (type == SCREEN_EVENT_CLOSE) {

 /* Handle the window that just posted the close event. */
 screen_window_t screen_win;
 screen_get_event_property_pv(screen_ev, SCREEN_PROPERTY_WINDOW, (void **)&screen_win);

 /* Track the window that just closed. */
 if (screen_win == screen_bar_win) {
 screen_bar_win = NULL;

106 © 2014, QNX Software Systems Limited

Screen Tutorials

 } else if (screen_win == screen_hg_win) {
 screen_hg_win = NULL;
 }

 /* Destroy the window that just closed, so that resources that
 * were allocated locally can be freed. */
 screen_destroy_window(screen_win);

 /* Update visibility for that window. */
 if (!screen_bar_win || !screen_hg_win) {
 vis = 0;
 }
 }else if (type == SCREEN_EVENT_MTOUCH_TOUCH){
 /* Handle the mtouch event to take screenshot of hourglass window. */
 take_window_screenshot(screen_hg_win, screen_ctx);
 }
 } while (type != SCREEN_EVENT_NONE);

 /* Wrap the position of the bar window back at the origin of the buffer before
 * the bar goes off the edge. Also, to prevent the animation from moving the
 * bar too fast, we will call screen_flush_context with the appropriate flags.
 * This will limit the animation to the refresh rate of the display. */
 if (vis) {
 if (++pos[0] > dims[0] - barwidth) {
 pos[0] = 0;
 }
 screen_set_window_property_iv(screen_bar_win, SCREEN_PROPERTY_POSITION, pos);
 screen_flush_context(screen_ctx, SCREEN_WAIT_IDLE);
 }
 }

 /* Perform necessary cleanup. In this example we will rely on the windowing system
 * to release the resources for the bar and hourglass window contexts when the
 * process exits. */
 screen_destroy_event(screen_ev);
 screen_destroy_context(screen_ctx);

 return EXIT_SUCCESS;
}

Capture a display screenshot

The following procedure describes how to use Screen to capture a screenshot of a

single display. You can store the resulting screenshot in either a pixmap or window

buffer for further manipulation. This particular procedure describes capturing the

screenshot in a pixmap buffer and then writing the screenshot to a bitmap.

This sample application uses the components of a grey hourglass, a moving blue

vertical bar, and a yellow background. It aims to demonstrate how to capture a

screenshot using the Screen API.

Figure 14: Screenshot Application

You will learn to:

• create a pixmap and buffer to store your screenshot

• retrieve appropriate pixmap properties to prepare for screenshot

• take your screenshot

• write your screenshot to a bitmap file

© 2014, QNX Software Systems Limited 107

Tutorial: Screenshots

Before you begin

Before proceeding with the procedures to capture a screenshot, you are expected to

have already created a privileged context using screen_create_context() with the context

type of SCREEN_DISPLAY_MANAGER_CONTEXT. In order to be able to create this

privileged context, remember that your process must have an effective user ID of root.

screen_context_t screen_ctx;
screen_create_context(&screenshot_ctx, SCREEN_DISPLAY_MANAGER_CONTEXT);

In the following procedure, the created context will be referred to as screenshot_ctx.

The targeted display will be referred to as screenshot_disp.

1. Create variables for the pixmap, the pixmap buffer, the pixmap buffer pointer, and

the stride:

screen_pixmap_t screen_pix;
screen_buffer_t screenshot_buf;
char *screenshot_ptr = NULL;
int screenshot_stride = 0;

2. Create other variables necessary to support the Screen API calls and the writing of

our screenshot to a bitmap.

In this procedure, you will declare several integer variables to help in setting the

pixmap and its properties. You will also need variables associated with the writing

of the screenshot to bitmap. For this example, a set path and filename are used.

Ensure that you have appropriate permissions to access the directory path of the

file.

char header[54];
char *fname = "/accounts/1000/appdata/com.example.Tutorial_WindowApp."
 "testDev_l_WindowApp85f8001_/data/hourglass_window_screenshot.bmp";
int nbytes;
int fd;
int i;
int usage, format;
int size[2];

3. Create the pixmap for the screenshot and set the usage flag and format properties:

screen_create_pixmap(&screen_pix, screenshot_ctx);

usage = SCREEN_USAGE_READ | SCREEN_USAGE_NATIVE;
screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_USAGE, &usage);

format = SCREEN_FORMAT_RGBA8888;
screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_FORMAT, &format);

4. Set the buffer size of the pixmap for the screenshot:

Set an appropriate buffer size for the pixmap. The pixmap buffer size doesn't have

to necessarily match the size of the source. Scaling will be applied to make the

screenshot fit into the buffer provided.

size[0] = 200;
size[1] = 200;
screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_BUFFER_SIZE, size);

108 © 2014, QNX Software Systems Limited

Screen Tutorials

5. Create the pixmap buffer for the screenshot and get the buffer handle, the pointer,

and the stride.

Memory is allocated for your pixmap buffer; this is the buffer where the pixels from

the source window will be copied to:

screen_create_pixmap_buffer(screen_pix);
screen_get_pixmap_property_pv(screen_pix, SCREEN_PROPERTY_RENDER_BUFFERS,
 (void**)&screenshot_buf);
screen_get_buffer_property_pv(screenshot_buf, SCREEN_PROPERTY_POINTER,
 (void**)&screentshot_ptr);
screen_get_buffer_property_iv(screenshot_buf, SCREEN_PROPERTY_STRIDE,
 &screenshot_stride);

6. Take the display screenshot.

screen_read_display(screenshot_disp, screenshot_buf, 0, NULL ,0);

This function takes five arguments: the target of the screenshot, the pixmap buffer,

the number of rectangles defining the area of capture, the array of integers

representing rectangles of the area of capture, and the mutex flag. The arguments

related to the area of capture are 0 and NULL because in this example you are

capturing the target area in its entirety rather than a specific rectangular area. The

last argument (which represents the mutex flag) should always be 0.

7. Create the bitmap file with appropriate permissions; prepare the header and write

the buffer contents to the file. Afterwards, close the file:

fd = creat(fname, S_IRUSR | S_IWUSR);

nbytes = size[0] * size[1] * 4;
write_bitmap_header(nbytes, fd, size);

for (i = 0; i < size[1]; i++) {
 write(fd, screenshot_ptr + i * screenshot_stride, size[0] * 4);
}

close(fd);

The value of nbytes represents the calculated size of the bitmap and is used in the

header of the bitmap itself.

Although any instances created are destroyed when the application exits, it is best

practice to destroy any window, pixmap and context instances that you created but

no longer require.

In this example, you should destroy the pixmap that you created to perform the

screenshot. After the pixmap buffer has been used to create the bitmap, the pixmap,

and its buffer are no longer required. Therefore you should perform the appropriate

cleanup.

screen_destroy_pixmap(screen_pix);

© 2014, QNX Software Systems Limited 109

Tutorial: Screenshots

Complete sample: A display screenshot example

The complete code sample for a display screenshot is listed below.

This code sample performs a screenshot of the specified display and then the

screenshot is written to a designated bitmap on the system.

#include <ctype.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <screen/screen.h>

void write_bitmap_header(int nbytes, int fd, const int size[])
{
 char header[54];

 /* Set standard bitmap header */
 header[0] = 'B';
 header[1] = 'M';
 header[2] = nbytes & 0xff;
 header[3] = (nbytes >> 8) & 0xff;
 header[4] = (nbytes >> 16) & 0xff;
 header[5] = (nbytes >> 24) & 0xff;
 header[6] = 0;
 header[7] = 0;
 header[8] = 0;
 header[9] = 0;
 header[10] = 54;
 header[11] = 0;
 header[12] = 0;
 header[13] = 0;
 header[14] = 40;
 header[15] = 0;
 header[16] = 0;
 header[17] = 0;
 header[18] = size[0] & 0xff;
 header[19] = (size[0] >> 8) & 0xff;
 header[20] = (size[0] >> 16) & 0xff;
 header[21] = (size[0] >> 24) & 0xff;
 header[22] = -size[1] & 0xff;
 header[23] = (-size[1] >> 8) & 0xff;
 header[24] = (-size[1] >> 16) & 0xff;
 header[25] = (-size[1] >> 24) & 0xff;
 header[26] = 1;
 header[27] = 0;
 header[28] = 32;
 header[29] = 0;
 header[30] = 0;
 header[31] = 0;
 header[32] = 0;
 header[33] = 0;
 header[34] = 0; /* image size*/
 header[35] = 0;
 header[36] = 0;
 header[37] = 0;
 header[38] = 0x9;
 header[39] = 0x88;
 header[40] = 0;
 header[41] = 0;
 header[42] = 0x9l;
 header[43] = 0x88;
 header[44] = 0;
 header[45] = 0;
 header[46] = 0;
 header[47] = 0;
 header[48] = 0;
 header[49] = 0;
 header[50] = 0;
 header[51] = 0;
 header[52] = 0;
 header[53] = 0;

 /* Write bitmap header to file */
 write(fd, header, sizeof(header));
}

void write_bitmap_file(const int size[], const char* screenshot_ptr, const int screenshot_stride)
{
 int nbytes; /* number of bytes of the bimap */
 int fd; /* file descriptor */
 int i; /* iterator to iterate over the screenshot buffer */

110 © 2014, QNX Software Systems Limited

Screen Tutorials

 char *fname = "screenshot.bmp"; /* bitmap filename */

 /* Calculate the size of the bitmap */
 nbytes = size[0] * size[1] * 4;

 /* Open file*/
 fd = creat(fname, S_IRUSR | S_IWUSR);

 /* Write the standard bitmap header */
 write_bitmap_header(nbytes, fd, size);

 /* Write screenshot buffer contents to file */
 for (i = 0; i < size[1]; i++) {
 write(fd, screenshot_ptr + i * screenshot_stride, size[0] * 4);
 }

}

int main(int argc, char **argv)
{
 screen_context_t screen_ctx;
 screen_display_t screen_disp = NULL;
 screen_display_t *screen_displays;
 screen_pixmap_t screen_pix;
 screen_buffer_t screen_buf;
 char *fname = "screenshot.bmp";
 char *disp = NULL;
 char *tok;
 char header[54];
 int size[2] = { 0, 0 };
 int val;
 void *pointer;
 int stride;
 int nbytes;
 int count, id, type;
 int i, fd, rc;

 /* Parse command-line input. */
 for (i = 1; i < argc; i++) {
 if (strncmp(argv[i], "-size=", strlen("-size=")) == 0) {
 tok = argv[i] + strlen("-size=");
 size[0] = atoi(tok);
 while (*tok >= '0' && *tok <= '9') {
 tok++;
 }
 size[1] = atoi(tok+1);
 } else if (strncmp(argv[i], "-display=", strlen("-display=")) == 0) {
 disp = argv[i] + strlen("-display=");
 } else if (strncmp(argv[i], "-file=", strlen("-file=")) == 0) {
 fname = argv[i] + strlen("-file=");
 } else {
 fprintf(stderr, "invalid command line option: %s\n", argv[i]);
 }
 }

 /* Create the privileged context so that the display properties can be accessed. */
 screen_create_context(&screen_ctx, SCREEN_DISPLAY_MANAGER_CONTEXT);

 /* Get the number of supported displays with this context. */
 count = 0;
 screen_get_context_property_iv(screen_ctx, SCREEN_PROPERTY_DISPLAY_COUNT,
 &count);

 /* Get the displays for this context. */
 if (count > 0) {
 screen_displays = calloc(count, sizeof(screen_display_t));
 screen_get_context_property_pv(screen_ctx, SCREEN_PROPERTY_DISPLAYS,
 (void **)screen_displays);

 /* If no display was specified, use the first supported display available for this context. */
 if (!disp) {
 screen_disp = screen_displays[0];
 /* Otherwise, determine which display has been requested for the screen shot. */
 } else {
 if (isdigit(*disp)) {
 id = strtoul(disp, 0, NULL);
 for (i = 0; i < count; i++) {
 screen_get_display_property_iv(screen_displays[i], SCREEN_PROPERTY_ID,
 &val);
 if (val == id) {
 screen_disp = screen_displays[i];
 break;
 }
 }
 } else {
 if (!strcmp(disp, "internal")) {
 type = SCREEN_DISPLAY_TYPE_INTERNAL;
 } else if (!strcmp(disp, "rgb")) {
 type = SCREEN_DISPLAY_TYPE_COMPONENT_RGB;
 } else if (!strcmp(disp, "dvi")) {

© 2014, QNX Software Systems Limited 111

Tutorial: Screenshots

 type = SCREEN_DISPLAY_TYPE_DVI;
 } else if (!strcmp(disp, "hdmi")) {
 type = SCREEN_DISPLAY_TYPE_HDMI;
 } else {
 type = SCREEN_DISPLAY_TYPE_OTHER;
 }
 for (i = 0; i < count; i++) {
 screen_get_display_property_iv(screen_displays[i], SCREEN_PROPERTY_TYPE,
 &val);
 if (val == type) {
 screen_disp = screen_displays[i];
 break;
 }
 }
 }
 }

 free(screen_displays);
 }

 if (!screen_disp) {
 fputs("no displays\n", stderr);
 return 1;
 }

 /* Create pixmap for the screen shot. */
 screen_create_pixmap(&screen_pix, screen_ctx);

 /* Set usage flag. */
 val = SCREEN_USAGE_READ | SCREEN_USAGE_NATIVE;
 screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_USAGE, &val);

 /* Set format. */
 val = SCREEN_FORMAT_RGBA8888;
 screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_FORMAT, &val);

 /* If size is not specified, get the size from the display. */
 if (size[0] <= 0 || size[1] <= 0) {
 screen_get_display_property_iv(screen_disp, SCREEN_PROPERTY_SIZE, size);
 }

 /* Set the pixmap buffer size. */
 screen_set_pixmap_property_iv(screen_pix, SCREEN_PROPERTY_BUFFER_SIZE, size);

 /* Create the pixmap buffer and get a handle to the buffer. */
 screen_create_pixmap_buffer(screen_pix);

 screen_get_pixmap_property_pv(screen_pix, SCREEN_PROPERTY_RENDER_BUFFERS,
 (void **)&screen_buf);

 /* Get the pointer to the buffer. */
 screen_get_buffer_property_pv(screen_buf, SCREEN_PROPERTY_POINTER, &pointer);

 /* Get the stride. */
 screen_get_buffer_property_iv(screen_buf, SCREEN_PROPERTY_STRIDE, &stride);

 /* Take the display screen shot. */
 screen_read_display(screen_disp, screen_buf, 0, NULL, 0);

 /* Write the screenshot buffer to a bitmap file*/
 write_bitmap_file(size, pointer, stride);

 /* Perform necessary clean-up. */
 screen_destroy_pixmap(screen_pix);
 screen_destroy_context(screen_ctx);

 return 0;
}

112 © 2014, QNX Software Systems Limited

Screen Tutorials

Tutorial: Rendering text with FreeType and OpenGL ES

This is sample application that uses a native window to create an EGL on-screen

rendering surface. Text is rendered on this surface by using the FreeType library with

OpenGL.

This sample application aims to demonstrate how to integrate the use of the FreeType

library, OpenGL ES 1.X, and Screen to render text.

Figure 15: Hello World Application

You will learn to:

• create a native context

• initialize and configure EGL for rendering

• create a native window and setting its properties

• calculate the DPI to use based on your display size and resolution

• load a font

• load background texture

• create a main application loop to:

• process events in the native context

• render text using OpenGL ES 1.X

• release resources

Using FreeType library and OpenGL ES to render text

The following walkthrough takes you through the process of writing a native application

that uses the FreeType library and OpenGL ES for text rendering.

To use FreeType and OpenGL ES for your text rendering in a native application:

1. Create some basic variables you'll need for your application:

int rc; /* a return code */
screen_event_t screen_ev; /* a screen event to handle */
screen_context_t screen_ctx; /* a connection to the screen windowing system */
int vis = 1; /* an indicator if our window is visible */
int pause = 0; /* an indicator if rendering is frozen */
const int exit_area_size = 20; /* a size of area on the window where a user can

© 2014, QNX Software Systems Limited 113

Tutorial: Rendering text with FreeType and OpenGL ES

 * contact (using a pointer) to exit this application */
int size[2] = { 0, 0 }; /* the width and height of your window; will default to
 * the size of display since the window property wasn't
 * explicitly set */
int val; /* a variable used to set/get window properties */
int pos[2] = { 0, 0 }; /* the x,y position of your pointer */

2. Create your native context.

rc = screen_create_context(&screen_ctx, 0);

3. Establish a connection to the EGL display.

Before you can do any kind of rendering, you must establish a connection to a

display.

In this sample application, you will use the default display.

egl_disp = eglGetDisplay(EGL_DEFAULT_DISPLAY);

4. Initialize the EGL display.

You will be able to do little with the EGL display until it's been initialized. The

second and third arguments of eglInitialize() are both set to NULL because OpenGL

ES 1.X is supported by all versions of EGL; therefore it isn't necessary to check for

the major and minor version numbers.

rc = eglInitialize(egl_disp, NULL, NULL);

5. Choose an EGL configuration.

First establish your EGL configuration attributes:

static EGLConfig egl_conf; /* An aray of framebuffer configurations */
int num_configs; /* The number of framebuffer configurations from eglChooseConfig()
 */

EGLint attrib_list[]= { EGL_RED_SIZE, 8,
 EGL_GREEN_SIZE, 8,
 EGL_BLUE_SIZE, 8,
 EGL_BLUE_SIZE, 8,
 EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
 EGL_RENDERABLE_TYPE, EGL_OPENGL_ES_BIT,
 EGL_NONE};

Then you can use eglChooseConfigs() to choose your EGL configuration. The function

eglChooseConfigs() is probably the most complicated function of EGL; there are

many attributes that can be specified, each with its own matching rules, default

value, and sorting order. It's easy to get confused with all the special rules ending

up with the wrong configuration, or no configuration, without understanding why.

Be aware of this fact when you are specifying your EGL configuration attributes.

rc = eglChooseConfig(egl_disp, attrib_list, &egl_conf, 1,
&num_configs))

6. Create an OpenGL ES rendering context.

Now, create an OpenGL ES rendering context. Among other things, this context

keeps track of the OpenGL ES state. You don't need to specify the current rendering

114 © 2014, QNX Software Systems Limited

Screen Tutorials

API with the eglBindApi() function because OpenGL ES is the default rendering

API.

The third argument to eglCreateContext() is another EGL rendering context with

which you wish to share data. Pass EGL_NO_CONTEXT to indicate that you won't

need any of the textures or vertex buffer objects created in another EGL rendering

context.

The last argument to eglCreateContext() is an attribute list that you can use to

specify an API version number. You would use it to override the

EGL_CONTEXT_CLIENT_VERSION value from 1 to 2 if you were writing an OpenGL

ES 2.X application.

egl_ctx = eglCreateContext(egl_disp, egl_conf, EGL_NO_CONTEXT, NULL);

7. Create your native window.

rc = screen_create_window(&screen_win, screen_ctx);

8. Set your native window properties.

a. Set your window format and usage.

int format = SCREEN_FORMAT_RGBX8888;
usage = SCREEN_USAGE_OPENGL_ES1 | SCREEN_USAGE_ROTATION;

rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_FORMAT, &format);
rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_USAGE, &usage);

b. Set your window buffer size.

In this case, you are going to set the buffer size of your window based on the

orientation of the display.

int angle = atoi(getenv("ORIENTATION"));

screen_display_mode_t screen_mode;
rc = screen_get_display_property_pv(screen_disp, SCREEN_PROPERTY_MODE, (void**)&screen_mode);

int size[2];
rc = screen_get_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, size);

int buffer_size[2] = {size[0], size[1]};

if ((angle == 0) || (angle == 180)){
 if (((screen_mode.width > screen_mode.height) && (size[0] < size[1])) ||
 ((screen_mode.width < screen_mode.height) && (size[0] > size[1])))
 {
 buffer_size[1] = size[0];
 buffer_size[0] = size[1];
 }
} else if ((angle == 90) || (angle == 270)){
 if (((screen_mode.width > screen_mode.height) && (size[0] > size[1])) ||
 ((screen_mode.width < screen_mode.height && size[0] < size[1])))
 {
 buffer_size[1] = size[0];
 buffer_size[0] = size[1];
 }
}

rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, buffer_size);

c. Set your window rotation.

rc = screen_set_window_property_iv(screen_win,
SCREEN_PROPERTY_ROTATION, &angle);

© 2014, QNX Software Systems Limited 115

Tutorial: Rendering text with FreeType and OpenGL ES

9. Create your window buffers for rendering.

rc = screen_create_window_buffers(screen_win, nbuffers);

10. Create the EGL on-screen rendering surface.

Now that you've created a native platform window, you can use it to create an EGL

on-screen rendering surface. You'll be able to use this surface as the target of your

OpenGL ES rendering. You'll use the same EGL display and EGL configuration to

create the EGL surface as you used to set the properties on your native window.

The EGL configuration needs to be compatible with the one used to create the

window.

egl_surf = eglCreateWindowSurface(egl_disp, egl_conf, screen_win, NULL);

11. Bind the EGL context to the current rendering thread and to a draw-and-read

surface.

In this application, you want to draw to the EGL surface and not really care about

where you read from. Since EGL doesn't allow specifying EGL_NO_SURFACE for

only the read surface, you will use egl_surf for both drawing and reading. Once

eglMakeCurrent() completes successfully, all OpenGL ES calls will be executed on

the context and the surface you provided as arguments.

rc = eglMakeCurrent(egl_disp, egl_surf, egl_surf, egl_ctx);

12. Set the EGL swap interval.

The eglSwapInterval() function specifies the minimum number of video frame

periods per buffer swap for the window associated with the current context. So, if

the interval is 0, the application renders as fast as it can. Interval values of 1 or

more limit the rendering to fractions of the display's refresh rate. (For example,

60, 30, 20, 15, etc. frames per second in the case of a display with a refresh rate

of 60 Hz.)

rc = eglSwapInterval(egl_disp, interval);

13. Calculate the display resolution based on the display size.

int screen_phys_size[2] = { 0, 0 };

screen_get_display_property_iv(screen_disp, SCREEN_PROPERTY_PHYSICAL_SIZE, screen_phys_size);

/* If using a simulator, {0,0} is returned for physical size of the screen,
 so use 170 as the default dpi when this is the case. */
if ((screen_phys_size[0] == 0) && (screen_phys_size[1] == 0)){
 return 170;
} else{
 int screen_resolution[2] = { 0, 0 };
 screen_get_display_property_iv(screen_disp, SCREEN_PROPERTY_SIZE, screen_resolution);

 int diagonal_pixels = sqrt(screen_resolution[0] * screen_resolution[0]
 + screen_resolution[1] * screen_resolution[1]);
 int diagonal_inches = 0.0393700787 * sqrt(screen_phys_size[0] * screen_phys_size[0]
 + screen_phys_size[1] * screen_phys_size[1]);
 return (int)(diagonal_pixels / diagonal_inches);
}

14. Load your font.

116 © 2014, QNX Software Systems Limited

Screen Tutorials

Pick an appropriate font and ensure that you have the correct directory path to

access that font.

In this example, the function load_font() is a simple utility function. It is written

to facilitate the steps to load and ready the font for use by OpenGL.

font = load_font("/usr/fonts/font_repository/monotype/georgiab.ttf", 8, dpi);

15. Load your background texture.

In this example, the function load_texture() is a simple utility function.

load_texture("app/native/HelloWorld_smaller_bubble.png", NULL, NULL, &tex_x, &tex_y, &background)

16. Initialize the Graphics Library for 2D rendering.

/* Query width and height of the window surface created by utility code */
eglQuerySurface(egl_disp, egl_surf, EGL_WIDTH, &surface_width);
eglQuerySurface(egl_disp, egl_surf, EGL_HEIGHT, &surface_height);

width = (float) surface_width;
height = (float) surface_height;

glViewport(0, 0, (int) width, (int) height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrthof(0.0f, width / height, 0.0f, 1.0f, -1.0f, 1.0f);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

/* Set world coordinates to coincide with screen pixels */
glScalef(1.0f / height, 1.0f / height, 1.0f);

float text_width, text_height;
measure_text(font, "Hello world", &text_width, &text_height);
pos_x = (width - text_width) / 2;
pos_y = height / 2;

/* Setup background polygon */
vertices[0] = 0.0f;
vertices[1] = 0.0f;
vertices[2] = width;
vertices[3] = 0.0f;
vertices[4] = 0.0f;
vertices[5] = height;
vertices[6] = width;
vertices[7] = height;

tex_coord[0] = 0.0f;
tex_coord[1] = 0.0f;
tex_coord[2] = tex_x;
tex_coord[3] = 0.0f;
tex_coord[4] = 0.0f;
tex_coord[5] = tex_y;
tex_coord[6] = tex_x;
tex_coord[7] = tex_y;

17. Create a screen event.

This screen event you create will be used to retrieve event information so that each

event can be handled.

rc = screen_create_event(&screen_ev);

18. Create a main application loop that continues running until an explicit event to

close the application (or a system error) occurs.

This main application loop consists of two parts:

The first part of the loop processes screen events.

while (!screen_get_event(screen_ctx, screen_ev, vis ? 0 : ~0))
{
 rc = screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &val);
 if (rc || val == SCREEN_EVENT_NONE)
 {
 break;
 }
 switch (val) {
 case SCREEN_EVENT_CLOSE:

© 2014, QNX Software Systems Limited 117

Tutorial: Rendering text with FreeType and OpenGL ES

 goto end;
 case SCREEN_EVENT_PROPERTY:
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_NAME, &val);
 switch (val) {
 case SCREEN_PROPERTY_VISIBLE:
 screen_get_window_property_iv(screen_win, SCREEN_PROPERTY_VISIBLE, &vis);
 break;
 }
 break;
 case SCREEN_EVENT_POINTER:
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_BUTTONS, &val);
 if (val) {
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_POSITION, pos);
 screen_get_window_property_iv(screen_win, SCREEN_PROPERTY_SIZE, size);
 fprintf(stderr, "window width: %d, window height: %d\n", size[0], size[1]);
 fprintf(stderr, "pointer x: %d, pointer y: %d\n", pos[0], pos[1]);
 if (pos[0] >= size[0] - exit_area_size &&
 pos[1] < exit_area_size) {
 goto end;
 }
 }
 break;
 }
}

The second part of the loop performs the rendering.

Perform the rendering only if your window is visible. This will leave the CPU and

GPU available to other applications and make the system more responsive while

your window is invisible.

In this example, the function render() is a utility function that renders the

background, sets the color to use for text rendering, renders the text onto the

screen, and updates the screen (posts the new frame).

if (vis && !pause)
{
 rc = render();
}

19. Perform the appropriate cleanup.

/* Destroy the font */
if (font) {
 glDeleteTextures(1, &(font->font_texture));
 free(font);
}
/* Terminate EGL setup */
if (egl_disp != EGL_NO_DISPLAY) {
 eglMakeCurrent(egl_disp, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
 if (egl_surf != EGL_NO_SURFACE) {
 eglDestroySurface(egl_disp, egl_surf);
 egl_surf = EGL_NO_SURFACE;
 }
 if (egl_ctx != EGL_NO_CONTEXT) {
 eglDestroyContext(egl_disp, egl_ctx);
 egl_ctx = EGL_NO_CONTEXT;
 }
 eglTerminate(egl_disp);
 egl_disp = EGL_NO_DISPLAY;
}
eglReleaseThread();

/* Clean up screen */
if (screen_win != NULL) {
 screen_destroy_window(screen_win);
 screen_win = NULL;
}
screen_destroy_event(screen_ev);
screen_destroy_context(screen_ctx);

118 © 2014, QNX Software Systems Limited

Screen Tutorials

Complete sample: Rendering text with FreeType and OpenGL ES

This code sample uses Screen with the FreeType library and OpenGL ES for text

rendering.

Figure 16: Hello World Application

/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <ctype.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/keycodes.h>
#include <screen/screen.h>
#include <ft2build.h>
#include FT_FREETYPE_H
#include <math.h>
#include <EGL/egl.h>
#include <GLES/gl.h>
#include "png.h"

static float width, height;
static GLuint background;
static GLfloat vertices[8];
static GLfloat tex_coord[8];
static float pos_x, pos_y;

struct font_t {
 unsigned int font_texture;
 float pt;
 float advance[128];
 float width[128];
 float height[128];
 float tex_x1[128];
 float tex_x2[128];
 float tex_y1[128];
 float tex_y2[128];
 float offset_x[128];
 float offset_y[128];
 int initialized;
};

typedef struct font_t font_t;

EGLDisplay egl_disp;
EGLSurface egl_surf;

static EGLConfig egl_conf;
static EGLContext egl_ctx;
static screen_window_t screen_win = NULL;
static screen_display_t screen_disp;

© 2014, QNX Software Systems Limited 119

Tutorial: Rendering text with FreeType and OpenGL ES

static int nbuffers = 2;
static int initialized = 0;
static font_t* font;

/* Utility function to calculate the dpi based on the display size */
int calculate_dpi() {
 int screen_phys_size[2] = { 0, 0 };

 screen_get_display_property_iv(screen_disp, SCREEN_PROPERTY_PHYSICAL_SIZE, screen_phys_size);

 /* If using a simulator, {0,0} is returned for physical size of the screen,
 so use 170 as the default dpi when this is the case. */
 if ((screen_phys_size[0] == 0) && (screen_phys_size[1] == 0)) {
 return 170;
 } else{
 int screen_resolution[2] = { 0, 0 };
 screen_get_display_property_iv(screen_disp, SCREEN_PROPERTY_SIZE, screen_resolution);

 int diagonal_pixels = sqrt(screen_resolution[0] * screen_resolution[0]
 + screen_resolution[1] * screen_resolution[1]);
 int diagonal_inches = 0.0393700787 * sqrt(screen_phys_size[0] * screen_phys_size[0]
 + screen_phys_size[1] * screen_phys_size[1]);
 return (int)(diagonal_pixels / diagonal_inches);
 }
}

static inline int
nextp2(int x)
{
 int val = 1;
 while(val < x) val <<= 1;
 return val;
}

/* Utility function to load and ready the font for use by OpenGL */
font_t* load_font(const char* path, int point_size, int dpi) {
 FT_Library library;
 FT_Face face;
 int c;
 int i, j;
 font_t* font;

 if (!initialized) {
 fprintf(stderr, "EGL has not been initialized\n");
 return NULL;
 }

 if (!path){
 fprintf(stderr, "Invalid path to font file\n");
 return NULL;
 }

 if(FT_Init_FreeType(&library)) {
 fprintf(stderr, "Error loading Freetype library\n");
 return NULL;
 }
 if (FT_New_Face(library, path,0,&face)) {
 fprintf(stderr, "Error loading font %s\n", path);
 return NULL;
 }

 if(FT_Set_Char_Size (face, point_size * 64, point_size * 64, dpi, dpi)) {
 fprintf(stderr, "Error initializing character parameters\n");
 return NULL;
 }

 font = (font_t*) malloc(sizeof(font_t));
 font->initialized = 0;

 glGenTextures(1, &(font->font_texture));

 /*Let each glyph reside in 32x32 section of the font texture */
 int segment_size_x = 0, segment_size_y = 0;
 int num_segments_x = 16;
 int num_segments_y = 8;

 FT_GlyphSlot slot;
 FT_Bitmap bmp;
 int glyph_width, glyph_height;

 /*First calculate the max width and height of a character in a passed font*/
 for(c = 0; c < 128; c++) {
 if(FT_Load_Char(face, c, FT_LOAD_RENDER)) {
 fprintf(stderr, "FT_Load_Char failed\n");
 free(font);
 return NULL;
 }

 slot = face->glyph;
 bmp = slot->bitmap;

120 © 2014, QNX Software Systems Limited

Screen Tutorials

 glyph_width = bmp.width;
 glyph_height = bmp.rows;

 if (glyph_width > segment_size_x) {
 segment_size_x = glyph_width;
 }

 if (glyph_height > segment_size_y) {
 segment_size_y = glyph_height;
 }
 }

 int font_tex_width = nextp2(num_segments_x * segment_size_x);
 int font_tex_height = nextp2(num_segments_y * segment_size_y);

 int bitmap_offset_x = 0, bitmap_offset_y = 0;

 GLubyte* font_texture_data = (GLubyte*) malloc(sizeof(GLubyte) * 2 * font_tex_width * font_tex_height);
 memset((void*)font_texture_data, 0, sizeof(GLubyte) * 2 * font_tex_width * font_tex_height);

 if (!font_texture_data) {
 fprintf(stderr, "Failed to allocate memory for font texture\n");
 free(font);
 return NULL;
 }

 /* Fill font texture bitmap with individual bmp data and record appropriate size,
 texture coordinates and offsets for every glyph */
 for(c = 0; c < 128; c++) {
 if(FT_Load_Char(face, c, FT_LOAD_RENDER)) {
 fprintf(stderr, "FT_Load_Char failed\n");
 free(font);
 return NULL;
 }

 slot = face->glyph;
 bmp = slot->bitmap;

 glyph_width = nextp2(bmp.width);
 glyph_height = nextp2(bmp.rows);

 div_t temp = div(c, num_segments_x);

 bitmap_offset_x = segment_size_x * temp.rem;
 bitmap_offset_y = segment_size_y * temp.quot;

 for (j = 0; j < glyph_height; j++) {
 for (i = 0; i < glyph_width; i++) {
 font_texture_data[2 * ((bitmap_offset_x + i) + (j + bitmap_offset_y) * font_tex_width) + 0] =
 font_texture_data[2 * ((bitmap_offset_x + i) + (j + bitmap_offset_y) * font_tex_width) + 1] =
 (i >= bmp.width || j >= bmp.rows)? 0 : bmp.buffer[i + bmp.width * j];
 }
 }

 font->advance[c] = (float)(slot->advance.x >> 6);
 font->tex_x1[c] = (float)bitmap_offset_x / (float) font_tex_width;
 font->tex_x2[c] = (float)(bitmap_offset_x + bmp.width) / (float)font_tex_width;
 font->tex_y1[c] = (float)bitmap_offset_y / (float) font_tex_height;
 font->tex_y2[c] = (float)(bitmap_offset_y + bmp.rows) / (float)font_tex_height;
 font->width[c] = bmp.width;
 font->height[c] = bmp.rows;
 font->offset_x[c] = (float)slot->bitmap_left;
 font->offset_y[c] = (float)((slot->metrics.horiBearingY-face->glyph->metrics.height) >> 6);
 }

 glBindTexture(GL_TEXTURE_2D, font->font_texture);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);

 glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA, font_tex_width, font_tex_height, 0, GL_LUMINANCE_ALPHA , GL_UNSIGNED_BYTE, font_texture_data);

 int err = glGetError();

 free(font_texture_data);

 FT_Done_Face(face);
 FT_Done_FreeType(library);

 if (err != 0) {
 fprintf(stderr, "GL Error 0x%x", err);
 free(font);
 return NULL;
 }

 font->initialized = 1;
 return font;
}

/* Utility function to load background texture */
int load_texture(const char* filename, int* width, int* height, float* tex_x, float* tex_y, unsigned int *tex) {

© 2014, QNX Software Systems Limited 121

Tutorial: Rendering text with FreeType and OpenGL ES

 int i;
 GLuint format;
 png_byte header[8]; /* header for testing if it is a png */

 if (!tex) {
 return EXIT_FAILURE;
 }

 /* Open file as binary */
 FILE *fp = fopen(filename, "rb");
 if (!fp) {
 return EXIT_FAILURE;
 }

 /* Read the header */
 fread(header, 1, 8, fp);

 /* Test if png */
 int is_png = !png_sig_cmp(header, 0, 8);
 if (!is_png) {
 fclose(fp);
 return EXIT_FAILURE;
 }

 /* Create png struct */
 png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
 if (!png_ptr) {
 fclose(fp);
 return EXIT_FAILURE;
 }

 /* Create png info struct */
 png_infop info_ptr = png_create_info_struct(png_ptr);
 if (!info_ptr) {
 png_destroy_read_struct(&png_ptr, (png_infopp) NULL, (png_infopp) NULL);
 fclose(fp);
 return EXIT_FAILURE;
 }

 /* Create png info struct */
 png_infop end_info = png_create_info_struct(png_ptr);
 if (!end_info) {
 png_destroy_read_struct(&png_ptr, &info_ptr, (png_infopp) NULL);
 fclose(fp);
 return EXIT_FAILURE;
 }

 /* Set up error handling (required without using custom error handlers above) */
 if (setjmp(png_jmpbuf(png_ptr))) {
 png_destroy_read_struct(&png_ptr, &info_ptr, &end_info);
 fclose(fp);
 return EXIT_FAILURE;
 }

 /* Initialize png reading */
 png_init_io(png_ptr, fp);

 /* Let libpng know you already read the first 8 bytes */
 png_set_sig_bytes(png_ptr, 8);

 /* Read all the info up to the image data */
 png_read_info(png_ptr, info_ptr);

 /* Variables to pass to get info */
 int bit_depth, color_type;
 png_uint_32 image_width, image_height;

 /* Get info about png */
 png_get_IHDR(png_ptr, info_ptr, &image_width, &image_height, &bit_depth, &color_type, NULL, NULL, NULL);

 switch (color_type)
 {
 case PNG_COLOR_TYPE_RGBA:
 format = GL_RGBA;
 break;
 case PNG_COLOR_TYPE_RGB:
 format = GL_RGB;
 break;
 default:
 fprintf(stderr,"Unsupported PNG color type (%d) for texture: %s", (int)color_type, filename);
 fclose(fp);
 png_destroy_read_struct(&png_ptr, &info_ptr, &end_info);
 return NULL;
 }

 /* Update the png info struct. */
 png_read_update_info(png_ptr, info_ptr);

 /* Row size in bytes. */
 int rowbytes = png_get_rowbytes(png_ptr, info_ptr);

122 © 2014, QNX Software Systems Limited

Screen Tutorials

 /* Allocate the image_data as a big block, to be given to opengl */
 png_byte *image_data = (png_byte*) malloc(sizeof(png_byte) * rowbytes * image_height);

 if (!image_data) {
 /* clean up memory and close file */
 png_destroy_read_struct(&png_ptr, &info_ptr, &end_info);
 fclose(fp);
 return EXIT_FAILURE;
 }

 /* Row_pointers is for pointing to image_data for reading the png with libpng */
 png_bytep *row_pointers = (png_bytep*) malloc(sizeof(png_bytep) * image_height);
 if (!row_pointers) {
 /* clean up memory and close stuff */
 png_destroy_read_struct(&png_ptr, &info_ptr, &end_info);
 free(image_data);
 fclose(fp);
 return EXIT_FAILURE;
 }

 /* Set the individual row_pointers to point at the correct offsets of image_data */
 for (i = 0; i < image_height; i++) {
 row_pointers[image_height - 1 - i] = image_data + i * rowbytes;
 }

 /* Read the png into image_data through row_pointers */
 png_read_image(png_ptr, row_pointers);

 int tex_width, tex_height;

 tex_width = nextp2(image_width);
 tex_height = nextp2(image_height);

 glGenTextures(1, tex);
 glBindTexture(GL_TEXTURE_2D, (*tex));
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 glTexImage2D(GL_TEXTURE_2D, 0, format, tex_width, tex_height, 0, format, GL_UNSIGNED_BYTE, NULL);
 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, image_width, image_height, format, GL_UNSIGNED_BYTE, image_data);

 GLint err = glGetError();

 /* Clean up memory and close file */
 png_destroy_read_struct(&png_ptr, &info_ptr, &end_info);
 free(image_data);
 free(row_pointers);
 fclose(fp);

 if (err == 0) {
 /* Return physical with and height of texture if pointers are not null */
 if(width) {
 *width = image_width;
 }
 if (height) {
 *height = image_height;
 }
 /* Return modified texture coordinates if pointers are not null */
 if(tex_x) {
 *tex_x = ((float) image_width - 0.5f) / ((float)tex_width);
 }
 if(tex_y) {
 *tex_y = ((float) image_height - 0.5f) / ((float)tex_height);
 }
 return EXIT_SUCCESS;
 } else {
 fprintf(stderr, "GL error %i \n", err);
 return EXIT_FAILURE;
 }
}

/* Utility function to perform EGL cleanup */
void egl_cleanup() {
 /* Typical EGL cleanup */
 if (egl_disp != EGL_NO_DISPLAY) {
 eglMakeCurrent(egl_disp, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
 if (egl_surf != EGL_NO_SURFACE) {
 eglDestroySurface(egl_disp, egl_surf);
 egl_surf = EGL_NO_SURFACE;
 }
 if (egl_ctx != EGL_NO_CONTEXT) {
 eglDestroyContext(egl_disp, egl_ctx);
 egl_ctx = EGL_NO_CONTEXT;
 }
 if (screen_win != NULL) {
 screen_destroy_window(screen_win);
 screen_win = NULL;

© 2014, QNX Software Systems Limited 123

Tutorial: Rendering text with FreeType and OpenGL ES

 }
 eglTerminate(egl_disp);
 egl_disp = EGL_NO_DISPLAY;
 }
 eglReleaseThread();

 initialized = 0;
}

/* Utility function to initialize and configure a EGL rendering surface */
int init_egl(screen_context_t screen_ctx) {
 int usage;
 int format = SCREEN_FORMAT_RGBX8888;
 EGLint interval = 1;
 int rc, num_configs;

 EGLint attrib_list[]= { EGL_RED_SIZE, 8,
 EGL_GREEN_SIZE, 8,
 EGL_BLUE_SIZE, 8,
 EGL_BLUE_SIZE, 8,
 EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
 EGL_RENDERABLE_TYPE, EGL_OPENGL_ES_BIT,
 EGL_NONE};

 /* Assuming GL_ES_1 */
 usage = SCREEN_USAGE_OPENGL_ES1 | SCREEN_USAGE_ROTATION;

 /* Establish a connection to the default display */
 egl_disp = eglGetDisplay(EGL_DEFAULT_DISPLAY);
 if (egl_disp == EGL_NO_DISPLAY) {
 egl_cleanup();
 return EXIT_FAILURE;
 }

 /* Initialize EGL on the display */
 rc = eglInitialize(egl_disp, NULL, NULL);
 if (rc != EGL_TRUE) {
 egl_cleanup();
 return EXIT_FAILURE;
 }

 /* Calling eglBindAPI() to specify the current rendering API is not necessary
 * because OpenGL ES is the default rendering API.
 rc = eglBindAPI(EGL_OPENGL_ES_API);

 if (rc != EGL_TRUE) {
 egl_cleanup();
 return EXIT_FAILURE;
 }*/

 if(!eglChooseConfig(egl_disp, attrib_list, &egl_conf, 1, &num_configs)) {
 egl_cleanup();
 return EXIT_FAILURE;
 }

 egl_ctx = eglCreateContext(egl_disp, egl_conf, EGL_NO_CONTEXT, NULL);

 if (egl_ctx == EGL_NO_CONTEXT) {
 egl_cleanup();
 return EXIT_FAILURE;
 }

 rc = screen_create_window(&screen_win, screen_ctx);
 if (rc) {
 perror("screen_create_window");
 egl_cleanup();
 return EXIT_FAILURE;
 }

 rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_FORMAT, &format);
 if (rc) {
 perror("screen_set_window_property_iv(SCREEN_PROPERTY_FORMAT)");
 egl_cleanup();
 return EXIT_FAILURE;
 }

 rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_USAGE, &usage);
 if (rc) {
 perror("screen_set_window_property_iv(SCREEN_PROPERTY_USAGE)");
 egl_cleanup();
 return EXIT_FAILURE;
 }

 rc = screen_get_window_property_pv(screen_win, SCREEN_PROPERTY_DISPLAY, (void **)&screen_disp);
 if (rc) {
 perror("screen_get_window_property_pv");
 egl_cleanup();
 return EXIT_FAILURE;
 }

 int angle = atoi(getenv("ORIENTATION"));

124 © 2014, QNX Software Systems Limited

Screen Tutorials

 screen_display_mode_t screen_mode;
 rc = screen_get_display_property_pv(screen_disp, SCREEN_PROPERTY_MODE, (void**)&screen_mode);
 if (rc) {
 perror("screen_get_display_property_pv");
 egl_cleanup();
 return EXIT_FAILURE;
 }

 int size[2];
 rc = screen_get_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, size);
 if (rc) {
 perror("screen_get_window_property_iv");
 egl_cleanup();
 return EXIT_FAILURE;
 }

 int buffer_size[2] = {size[0], size[1]};

 if ((angle == 0) || (angle == 180)) {
 if (((screen_mode.width > screen_mode.height) && (size[0] < size[1])) ||
 ((screen_mode.width < screen_mode.height) && (size[0] > size[1]))) {
 buffer_size[1] = size[0];
 buffer_size[0] = size[1];
 }
 } else if ((angle == 90) || (angle == 270)){
 if (((screen_mode.width > screen_mode.height) && (size[0] > size[1])) ||
 ((screen_mode.width < screen_mode.height && size[0] < size[1]))) {
 buffer_size[1] = size[0];
 buffer_size[0] = size[1];
 }
 } else {
 fprintf(stderr, "Navigator returned an unexpected orientation angle.\n");
 egl_cleanup();
 return EXIT_FAILURE;
 }

 rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, buffer_size);
 if (rc) {
 perror("screen_set_window_property_iv");
 egl_cleanup();
 return EXIT_FAILURE;
 }

 rc = screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_ROTATION, &angle);
 if (rc) {
 perror("screen_set_window_property_iv");
 egl_cleanup();
 return EXIT_FAILURE;
 }

 rc = screen_create_window_buffers(screen_win, nbuffers);
 if (rc) {
 perror("screen_create_window_buffers");
 egl_cleanup();
 return EXIT_FAILURE;
 }

 egl_surf = eglCreateWindowSurface(egl_disp, egl_conf, screen_win, NULL);
 if (egl_surf == EGL_NO_SURFACE) {
 egl_cleanup();
 return EXIT_FAILURE;
 }

 rc = eglMakeCurrent(egl_disp, egl_surf, egl_surf, egl_ctx);
 if (rc != EGL_TRUE) {
 egl_cleanup();
 return EXIT_FAILURE;
 }

 rc = eglSwapInterval(egl_disp, interval);
 if (rc != EGL_TRUE) {
 egl_cleanup();
 return EXIT_FAILURE;
 }

 initialized = 1;

 return EXIT_SUCCESS;
}

void measure_text(font_t* font, const char* msg, float* width, float* height) {
 int i, c;

 if (!msg) {
 return;
 }

 if (width) {
 /* Width of a text rectangle is a sum advances for every glyph in a string */
 *width = 0.0f;

© 2014, QNX Software Systems Limited 125

Tutorial: Rendering text with FreeType and OpenGL ES

 for(i = 0; i < strlen(msg); ++i) {
 c = msg[i];
 *width += font->advance[c];
 }
 }

 if (height) {
 /* Height of a text rectangle is a high of a tallest glyph in a string */
 *height = 0.0f;

 for(i = 0; i < strlen(msg); ++i) {
 c = msg[i];

 if (*height < font->height[c]) {
 *height = font->height[c];
 }
 }
 }
}

int init() {
 EGLint surface_width, surface_height;

 /* We are going to load MyriadPro-Bold as it looks a little better and scale it to
 fit out bubble nicely. */
 int dpi = calculate_dpi();

 /*font = load_font(
 "/usr/fonts/font_repository/adobe/MyriadPro-Bold.otf", 15, dpi); */
 font = load_font(
 "/usr/fonts/font_repository/monotype/georgiab.ttf", 8, dpi);
 if (!font) {
 return EXIT_FAILURE;
 }

 /* Load background texture */
 float tex_x, tex_y;
 if (EXIT_SUCCESS
 != load_texture("app/native/HelloWorld_smaller_bubble.png",
 NULL, NULL, &tex_x, &tex_y, &background)) {
 fprintf(stderr, "Unable to load background texture\n");
 }

 /* Query width and height of the window surface created by utility code */
 eglQuerySurface(egl_disp, egl_surf, EGL_WIDTH, &surface_width);
 eglQuerySurface(egl_disp, egl_surf, EGL_HEIGHT, &surface_height);

 EGLint err = eglGetError();
 if (err != 0x3000) {
 fprintf(stderr, "Unable to query EGL surface dimensions\n");
 return EXIT_FAILURE;
 }

 width = (float) surface_width;
 height = (float) surface_height;

 /* Initialize GL for 2D rendering */
 glViewport(0, 0, (int) width, (int) height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 glOrthof(0.0f, width / height, 0.0f, 1.0f, -1.0f, 1.0f);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 /* Set world coordinates to coincide with screen pixels */
 glScalef(1.0f / height, 1.0f / height, 1.0f);

 float text_width, text_height;
 measure_text(font, "Hello world", &text_width, &text_height);
 pos_x = (width - text_width) / 2;
 pos_y = height / 2;

 /* Setup background polygon */
 vertices[0] = 0.0f;
 vertices[1] = 0.0f;
 vertices[2] = width;
 vertices[3] = 0.0f;
 vertices[4] = 0.0f;
 vertices[5] = height;
 vertices[6] = width;
 vertices[7] = height;

 tex_coord[0] = 0.0f;
 tex_coord[1] = 0.0f;
 tex_coord[2] = tex_x;
 tex_coord[3] = 0.0f;
 tex_coord[4] = 0.0f;

126 © 2014, QNX Software Systems Limited

Screen Tutorials

 tex_coord[5] = tex_y;
 tex_coord[6] = tex_x;
 tex_coord[7] = tex_y;

 return EXIT_SUCCESS;
}

void render_text(font_t* font, const char* msg, float x, float y) {
 int i, c;
 GLfloat *vertices;
 GLfloat *texture_coords;
 GLshort* indices;

 float pen_x = 0.0f;

 if (!font) {
 fprintf(stderr, "Font must not be null\n");
 return;
 }

 if (!font->initialized) {
 fprintf(stderr, "Font has not been loaded\n");
 return;
 }

 if (!msg) {
 return;
 }

 int texture_enabled;
 glGetIntegerv(GL_TEXTURE_2D, &texture_enabled);
 if (!texture_enabled) {
 glEnable(GL_TEXTURE_2D);
 }

 int blend_enabled;
 glGetIntegerv(GL_BLEND, &blend_enabled);
 if (!blend_enabled) {
 glEnable(GL_BLEND);
 }

 int gl_blend_src, gl_blend_dst;
 glGetIntegerv(GL_BLEND_SRC, &gl_blend_src);
 glGetIntegerv(GL_BLEND_DST, &gl_blend_dst);

 glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);

 int vertex_array_enabled;
 glGetIntegerv(GL_VERTEX_ARRAY, &vertex_array_enabled);
 if (!vertex_array_enabled) {
 glEnableClientState(GL_VERTEX_ARRAY);
 }

 int texture_array_enabled;
 glGetIntegerv(GL_TEXTURE_COORD_ARRAY, &texture_array_enabled);
 if (!texture_array_enabled) {
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
 }

 vertices = (GLfloat*) malloc(sizeof(GLfloat) * 8 * strlen(msg));
 texture_coords = (GLfloat*) malloc(sizeof(GLfloat) * 8 * strlen(msg));

 indices = (GLshort*) malloc(sizeof(GLfloat) * 5 * strlen(msg));

 for(i = 0; i < strlen(msg); ++i) {
 c = msg[i];

 vertices[8 * i + 0] = x + pen_x + font->offset_x[c];
 vertices[8 * i + 1] = y + font->offset_y[c];
 vertices[8 * i + 2] = vertices[8 * i + 0] + font->width[c];
 vertices[8 * i + 3] = vertices[8 * i + 1];
 vertices[8 * i + 4] = vertices[8 * i + 0];
 vertices[8 * i + 5] = vertices[8 * i + 1] + font->height[c];
 vertices[8 * i + 6] = vertices[8 * i + 2];
 vertices[8 * i + 7] = vertices[8 * i + 5];

 texture_coords[8 * i + 0] = font->tex_x1[c];
 texture_coords[8 * i + 1] = font->tex_y2[c];
 texture_coords[8 * i + 2] = font->tex_x2[c];
 texture_coords[8 * i + 3] = font->tex_y2[c];
 texture_coords[8 * i + 4] = font->tex_x1[c];
 texture_coords[8 * i + 5] = font->tex_y1[c];
 texture_coords[8 * i + 6] = font->tex_x2[c];
 texture_coords[8 * i + 7] = font->tex_y1[c];

 indices[i * 6 + 0] = 4 * i + 0;
 indices[i * 6 + 1] = 4 * i + 1;
 indices[i * 6 + 2] = 4 * i + 2;
 indices[i * 6 + 3] = 4 * i + 2;
 indices[i * 6 + 4] = 4 * i + 1;
 indices[i * 6 + 5] = 4 * i + 3;

© 2014, QNX Software Systems Limited 127

Tutorial: Rendering text with FreeType and OpenGL ES

 /* Assume we are only working with typewriter fonts */
 pen_x += font->advance[c];
 }

 glVertexPointer(2, GL_FLOAT, 0, vertices);
 glTexCoordPointer(2, GL_FLOAT, 0, texture_coords);
 glBindTexture(GL_TEXTURE_2D, font->font_texture);

 glDrawElements(GL_TRIANGLES, 6 * strlen(msg), GL_UNSIGNED_SHORT, indices);

 if (!texture_array_enabled) {
 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
 }

 if (!vertex_array_enabled) {
 glDisableClientState(GL_VERTEX_ARRAY);
 }

 if (!texture_enabled) {
 glDisable(GL_TEXTURE_2D);
 }

 glBlendFunc(gl_blend_src, gl_blend_dst);

 if (!blend_enabled) {
 glDisable(GL_BLEND);
 }

 free(vertices);
 free(texture_coords);
 free(indices);
}

int render() {
 /* Typical rendering pass */
 glClear(GL_COLOR_BUFFER_BIT);

 /* Render background quad first */
 glEnable(GL_TEXTURE_2D);

 glEnableClientState(GL_VERTEX_ARRAY);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 glVertexPointer(2, GL_FLOAT, 0, vertices);
 glTexCoordPointer(2, GL_FLOAT, 0, tex_coord);
 glBindTexture(GL_TEXTURE_2D, background);

 glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
 glDisableClientState(GL_VERTEX_ARRAY);
 glDisable(GL_TEXTURE_2D);

 /* Set color to use for text rendering */
 glColor4f(0.35f, 0.35f, 0.35f, 1.0f);

 /* Render the text onto the screen */
 render_text(font, "Hello world", pos_x, pos_y);

 /* Update the screen; Posting of the new frame requires a call to eglSwapBuffers.
 * For now, this is true even when using single buffering. If an
 * event has occured that invalidates the surface we are currently
 * using, eglSwapBuffers() will return EGL_FALSE and set the error
 * code to EGL_BAD_NATIVE_WINDOW.
 */
 int rc = eglSwapBuffers(egl_disp, egl_surf);

 return rc;

}

int main(int argc, char **argv) {
 int rc; /* a return code */
 screen_event_t screen_ev; /* a screen event to handle */
 screen_context_t screen_ctx; /* a connection to the screen windowing system */
 int vis = 1; /* an indicator if our window is visible */
 int pause = 0; /* an indicator if rendering is frozen */

 const int exit_area_size = 20; /* a size of area on the window where a user can
 * contact (using a pointer) to exit this application */

 int size[2] = { 0, 0 }; /* the width and height of your window; will default to
 * the size of display since the window property wasn't
 * explicitly set */

 int val; /* a variable used to set/get window properties */
 int pos[2] = { 0, 0 }; /* the x,y position of your pointer */

 /*Create a screen context that will be the connection to the windowing system;

128 © 2014, QNX Software Systems Limited

Screen Tutorials

 *this is used to create an EGL surface to receive libscreen events */
 screen_create_context(&screen_ctx, 0);

 /* Initialize EGL for rendering with GL ES 1.1;
 * this initialization includes initializing and configuring EGL as well as creating
 * a native window with the appropriate properties to be used as the EGL rendering
 * surface. */
 if (EXIT_SUCCESS != init_egl(screen_ctx)) {
 fprintf(stderr, "Unable to initialize EGL\n");
 screen_destroy_context(screen_ctx);
 return 0;
 }

 /* Initialize application data;
 * this initialization includes loading the font and background and initializing
 * the viewport and geometry for your application. */
 if (EXIT_SUCCESS != init()) {
 fprintf(stderr, "Unable to initialize app logic\n");
 egl_cleanup();
 screen_destroy_context(screen_ctx);
 return 0;
 }

 /* Create a screen event that will be used to retrieve events into so that these
 * events can be handled.*/
 rc = screen_create_event(&screen_ev);
 if (rc) {
 fprintf(stderr, "screen_create_event\n");
 egl_cleanup();
 screen_destroy_context(screen_ctx);
 return 0;
 }

 /* This is your main application loop. It keeps on running unless a close event is
 * received from the windowing system or an error occurs. The application loop consists
 * of two parts. The first part processes any events that have been put in your queue.
 * The second part does the rendering. When the window is visible, you don't wait if
 * the event queue is empty; you move on to the rendering part immediately.
 * When the window is not visible we skip the rendering part. */
 while (1){
 /* The first part of the loop is to handle screen events.
 * We start the loop by processing any events that might be in our
 * queue. The only event that is of interest to us are the resize
 * and close events. The timeout variable is set to 0 (no wait) or
 * forever depending if the window is visible or not. */
 while (!screen_get_event(screen_ctx, screen_ev, vis ? 0 : ~0))
 {
 rc = screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &val);
 if (rc || val == SCREEN_EVENT_NONE)
 {
 break;
 }
 switch (val) {
 case SCREEN_EVENT_CLOSE:
 /* All we have to do when we receive the close event is
 * to exit the application loop. Because we have a loop
 * within a loop, a simple break won't work. We'll just
 * use a goto to take us out of here.*/
 goto end;
 case SCREEN_EVENT_PROPERTY:
 /* We are interested in visibility changes so we can pause
 * or unpause the rendering. */
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_NAME, &val);
 switch (val) {
 case SCREEN_PROPERTY_VISIBLE:
 /* The new visibility status is not included in the
 * event, so we must get it ourselves. */
 screen_get_window_property_iv(screen_win, SCREEN_PROPERTY_VISIBLE, &vis);
 break;
 }
 break;
 case SCREEN_EVENT_POINTER:
 /* To provide a way of gracefully terminating our application,
 * we will exit if there is a pointer select event in the upper
 * right corner of our window. This should happen if the mouse's
 * left button is clicked or if a touch screen display is pressed.
 * The event will come as a screen pointer event, with an (x,y)
 * coordinate relative to the window's upper left corner and a
 * select value. We have to verify ourselves that the coordinates
 * of the pointer are in the upper right hand area. */
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_BUTTONS, &val);
 if (val) {
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_POSITION, pos);
 screen_get_window_property_iv(screen_win, SCREEN_PROPERTY_SIZE, size);
 fprintf(stderr, "window width: %d, window height: %d\n", size[0], size[1]);
 fprintf(stderr, "pointer x: %d, pointer y: %d\n", pos[0], pos[1]);
 if (pos[0] >= size[0] - exit_area_size &&
 pos[1] < exit_area_size) {
 goto end;
 }
 }

© 2014, QNX Software Systems Limited 129

Tutorial: Rendering text with FreeType and OpenGL ES

 break;
 }
 }

 /* The second part of the application loop is the rendering. You want
 * to skip the rendering part if your window is not visible. This will
 * leave the CPU and GPU to other applications and make the system a
 * little bit more responsive while you are invisible. */
 if (vis && !pause)
 {
 rc = render();
 if (rc != EGL_TRUE) break;
 }
 }

 end:
 /* Destroy the font */
 if (font) {
 glDeleteTextures(1, &(font->font_texture));
 free(font);
 }

 /* Terminate EGL setup */
 egl_cleanup();

 /* Clean up screen */
 screen_destroy_event(screen_ev);
 screen_destroy_context(screen_ctx);

 return EXIT_SUCCESS;
}

130 © 2014, QNX Software Systems Limited

Screen Tutorials

Tutorial: Screen events

This is a sample application that injects a screen event into a specified display.

When you are working within the privileged contexts of either

SCREEN_WINDOW_MANAGER_CONTEXT or SCREEN_INPUT_PROVIDER_CONTEXT,

it's possible to inject a Screen event into the system. This sample application

demonstrates how to use the Screen API to do so.

You will learn to:

• create a native context

• create a screen event and set the appropriate properties

• inject the screen event into a specified display

• release resources

Injecting a Screen event

The following walkthrough takes you through the process of injecting a screen event

into a specified display.

1. Create some basic variables you'll need for your application:

screen_context_t screen_ctx; /* a connection to the screen windowing system */
screen_display_t screen_disp; /* a screen display */
screen_display_t *screen_dlist; /* a list of all available displays */
screen_event_t screen_ev; /* a screen event to handle */
int ndisplays; /* number of available displays */
int val; /* a variable used to set/get window properties */
const char *display = "1"; /* the display type */
int rval = EXIT_FAILURE; /* the application return code*/
int rc; /* a return code */

2. Create your native context with a privileged context that allows for the injection of

Screen events. In this example, you will use the SCREEN_INPUT_PROVIDER_CON

TEXT context.

rc = screen_create_context(&screen_ctx, SCREEN_INPUT_PROVIDER_CONTEXT);

3. Identify the display into which your Screen event is to be injected.

In this example, the display used is the internal display, unless it is otherwise

specified as a command-line argument.

rc = screen_get_context_property_iv(screen_ctx,
 SCREEN_PROPERTY_DISPLAY_COUNT,
 &ndisplays);
if (rc) {
 perror("screen_get_context_property_iv(SCREEN_PROPERTY_DISPLAY_COUNT)");
 goto fail2;
}

screen_dlist = calloc(ndisplays, sizeof(*screen_dlist));
if (screen_dlist == NULL) {
 fprintf(stderr, "could not allocate memory for display list\n");
 goto fail2;
}

rc = screen_get_context_property_pv(screen_ctx,

© 2014, QNX Software Systems Limited 131

Tutorial: Screen events

 SCREEN_PROPERTY_DISPLAYS,
 (void **)screen_dlist);
if (rc) {
 perror("screen_get_context_property_pv(SCREEN_PROPERTY_DISPLAYS)");
 free(screen_dlist);
 goto fail2;
}

if (isdigit(*display)) {
 j = atoi(display) - 1;
} else {
 int type = -1;
 if (strcmp(display, "internal") == 0) {
 type = SCREEN_DISPLAY_TYPE_INTERNAL;
 } else if (strcmp(display, "composite") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPOSITE;
 } else if (strcmp(display, "svideo") == 0) {
 type = SCREEN_DISPLAY_TYPE_SVIDEO;
 } else if (strcmp(display, "YPbPr") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPONENT_YPbPr;
 } else if (strcmp(display, "rgb") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPONENT_RGB;
 } else if (strcmp(display, "rgbhv") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPONENT_RGBHV;
 } else if (strcmp(display, "dvi") == 0) {
 type = SCREEN_DISPLAY_TYPE_DVI;
 } else if (strcmp(display, "hdmi") == 0) {
 type = SCREEN_DISPLAY_TYPE_HDMI;
 } else if (strcmp(display, "other") == 0) {
 type = SCREEN_DISPLAY_TYPE_OTHER;
 } else {
 fprintf(stderr, "unknown display type %s\n", display);
 free(screen_dlist);
 goto fail2;
 }
 for (j = 0; j < ndisplays; j++) {
 screen_get_display_property_iv(screen_dlist[j],
 SCREEN_PROPERTY_TYPE,
 &val);
 if (val == type) {
 break;
 }
 }
}

if (j >= ndisplays) {
 fprintf(stderr, "couldn't find display %s\n", display);
 free(screen_dlist);
 goto fail2;
}

screen_disp = screen_dlist[j];
free(screen_dlist);

4. Create a screen event.

This is the screen event that you will be injecting into the display.

rc = screen_create_event(&screen_ev);

5. Set the type of the event that you will be injecting.

In this example, you will be injecting a keyboard event.

val = SCREEN_EVENT_KEYBOARD;
rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &val);

6. Set the value of the keyboard flags that are associated with this keyboard event.

val = KEY_DOWN|KEY_SYM_VALID;
rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_KEY_FLAGS, &val);

7. Set the value of the keyboard symbols that are associated with this keyboard event.

In this example, the keyboard symbols are passed as command-line arguments.

val = argv[i][j];
rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_KEY_SYM, &val);

132 © 2014, QNX Software Systems Limited

Screen Tutorials

8. Inject your Screen event.

rc = screen_inject_event(screen_disp, screen_ev);

9. Release the resources.

screen_destroy_event(screen_ev);
screen_destroy_context(screen_ctx);

Complete sample: Injecting a Screen event

This code sample uses a privileged context to inject a Screen event into a specified

display.

/*
 * $QNXLicenseC:
 * Copyright 2011, QNX Software Systems Limited. All Rights Reserved.
 *
 * This software is QNX Confidential Information subject to
 * confidentiality restrictions. DISCLOSURE OF THIS SOFTWARE
 * IS PROHIBITED UNLESS AUTHORIZED BY QNX SOFTWARE SYSTEMS IN
 * WRITING.
 *
 * You must obtain a written license from and pay applicable license
 * fees to QNX Software Systems Limited before you may reproduce, modify
 * or distribute this software, or any work that includes all or part
 * of this software. For more information visit
 * http://licensing.qnx.com or email licensing@qnx.com.
 *
 * This file may contain contributions from others. Please review
 * this entire file for other proprietary rights or license notices,
 * as well as the QNX Development Suite License Guide at
 * http://licensing.qnx.com/license-guide/ for other information.
 * $
 */

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/keycodes.h>
#include <time.h>
#include <screen/screen.h>

int main(int argc, char **argv)
{
 screen_context_t screen_ctx;
 screen_display_t screen_disp;
 screen_display_t *screen_dlist;
 screen_event_t screen_ev;
 int ndisplays;
 int val;
 const char *display = "1";
 int rval = EXIT_FAILURE;
 int rc;
 int i, j;

 for (i = 1; i < argc; i++) {
 if (strncmp(argv[i], "-display=", strlen("-display=")) == 0) {
 display = argv[i] + strlen("-display=");
 } else {
 break;
 }
 }

 rc = screen_create_context(&screen_ctx, SCREEN_INPUT_PROVIDER_CONTEXT);
 if (rc) {
 perror("screen_context_create");
 goto fail1;
 }

 rc = screen_get_context_property_iv(screen_ctx, SCREEN_PROPERTY_DISPLAY_COUNT, &ndisplays);
 if (rc) {
 perror("screen_get_context_property_iv(SCREEN_PROPERTY_DISPLAY_COUNT)");
 goto fail2;
 }

 screen_dlist = calloc(ndisplays, sizeof(*screen_dlist));
 if (screen_dlist == NULL) {
 fprintf(stderr, "could not allocate memory for display list\n");

© 2014, QNX Software Systems Limited 133

Tutorial: Screen events

 goto fail2;
 }

 rc = screen_get_context_property_pv(screen_ctx, SCREEN_PROPERTY_DISPLAYS, (void **)screen_dlist);
 if (rc) {
 perror("screen_get_context_property_pv(SCREEN_PROPERTY_DISPLAYS)");
 free(screen_dlist);
 goto fail2;
 }

 if (isdigit(*display)) {
 j = atoi(display) - 1;
 } else {
 int type = -1;
 if (strcmp(display, "internal") == 0) {
 type = SCREEN_DISPLAY_TYPE_INTERNAL;
 } else if (strcmp(display, "composite") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPOSITE;
 } else if (strcmp(display, "svideo") == 0) {
 type = SCREEN_DISPLAY_TYPE_SVIDEO;
 } else if (strcmp(display, "YPbPr") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPONENT_YPbPr;
 } else if (strcmp(display, "rgb") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPONENT_RGB;
 } else if (strcmp(display, "rgbhv") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPONENT_RGBHV;
 } else if (strcmp(display, "dvi") == 0) {
 type = SCREEN_DISPLAY_TYPE_DVI;
 } else if (strcmp(display, "hdmi") == 0) {
 type = SCREEN_DISPLAY_TYPE_HDMI;
 } else if (strcmp(display, "other") == 0) {
 type = SCREEN_DISPLAY_TYPE_OTHER;
 } else {
 fprintf(stderr, "unknown display type %s\n", display);
 free(screen_dlist);
 goto fail2;
 }
 for (j = 0; j < ndisplays; j++) {
 screen_get_display_property_iv(screen_dlist[j], SCREEN_PROPERTY_TYPE, &val);
 if (val == type) {
 break;
 }
 }
 }

 if (j >= ndisplays) {
 fprintf(stderr, "couldn't find display %s\n", display);
 free(screen_dlist);
 goto fail2;
 }

 screen_disp = screen_dlist[j];
 free(screen_dlist);

 rc = screen_create_event(&screen_ev);
 if (rc) {
 perror("screen_create_event");
 goto fail2;
 }

 val = SCREEN_EVENT_KEYBOARD;
 rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &val);
 if (rc) {
 perror("screen_set_event_property_iv(SCREEN_PROPERTY_TYPE)");
 goto fail3;
 }

 val = KEY_DOWN|KEY_SYM_VALID;
 rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_KEY_FLAGS, &val);
 if (rc) {
 perror("screen_set_event_property_iv(SCREEN_PROPERTY_KEY_FLAGS)");
 goto fail3;
 }

 for (; i < argc; i++) {
 for (j = 0; argv[i][j]; j++) {
 val = argv[i][j];
 rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_KEY_SYM, &val);
 if (rc) {
 perror("screen_set_event_property_iv(SCREEN_PROPERTY_KEY_SYM)");
 goto fail3;
 }

 rc = screen_inject_event(screen_disp, screen_ev);
 if (rc) {
 perror("screen_inject_event");
 goto fail3;
 }
 }
 }
 rval = EXIT_SUCCESS;

134 © 2014, QNX Software Systems Limited

Screen Tutorials

fail3:
 screen_destroy_event(screen_ev);
fail2:
 screen_destroy_context(screen_ctx);
fail1:
 return rval;
}

Injecting a Screen mtouch event

The following walkthrough takes you through the process of injecting an Screen mtouch

event into a specified display.

1. Create some basic variables you'll need for your application:

screen_context_t screen_ctx; /* a connection to the screen windowing system */
screen_display_t screen_disp; /* a screen display */
screen_display_t *screen_dlist; /* a list of all available displays */
screen_event_t screen_ev; /* a screen event to handle */
int ndisplays; /* number of available displays */
int val; /* a variable used to set/get window properties */
const char *display = "1"; /* the display type */
int rval = EXIT_FAILURE; /* the application return code*/
int rc; /* a return code */

2. Create your native context with a privileged context that allows for the injection of

Screen events. In this example, you will use the SCREEN_INPUT_PROVIDER_CON

TEXT context.

rc = screen_create_context(&screen_ctx, SCREEN_INPUT_PROVIDER_CONTEXT);

3. Identify the display into which your Screen event is to be injected.

In this example, the display used is the internal display, unless it is otherwise

specified as a command-line argument.

rc = screen_get_context_property_iv(screen_ctx,
 SCREEN_PROPERTY_DISPLAY_COUNT,
 &ndisplays);
if (rc) {
 perror("screen_get_context_property_iv(SCREEN_PROPERTY_DISPLAY_COUNT)");
 goto fail2;
}

screen_dlist = calloc(ndisplays, sizeof(*screen_dlist));
if (screen_dlist == NULL) {
 fprintf(stderr, "could not allocate memory for display list\n");
 goto fail2;
}

rc = screen_get_context_property_pv(screen_ctx,
 SCREEN_PROPERTY_DISPLAYS,
 (void **)screen_dlist);
if (rc) {
 perror("screen_get_context_property_pv(SCREEN_PROPERTY_DISPLAYS)");
 free(screen_dlist);
 goto fail2;
}

if (isdigit(*display)) {
 j = atoi(display) - 1;
} else {
 int type = -1;
 if (strcmp(display, "internal") == 0) {
 type = SCREEN_DISPLAY_TYPE_INTERNAL;
 } else if (strcmp(display, "composite") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPOSITE;
 } else if (strcmp(display, "svideo") == 0) {
 type = SCREEN_DISPLAY_TYPE_SVIDEO;
 } else if (strcmp(display, "YPbPr") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPONENT_YPbPr;
 } else if (strcmp(display, "rgb") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPONENT_RGB;
 } else if (strcmp(display, "rgbhv") == 0) {

© 2014, QNX Software Systems Limited 135

Tutorial: Screen events

 type = SCREEN_DISPLAY_TYPE_COMPONENT_RGBHV;
 } else if (strcmp(display, "dvi") == 0) {
 type = SCREEN_DISPLAY_TYPE_DVI;
 } else if (strcmp(display, "hdmi") == 0) {
 type = SCREEN_DISPLAY_TYPE_HDMI;
 } else if (strcmp(display, "other") == 0) {
 type = SCREEN_DISPLAY_TYPE_OTHER;
 } else {
 fprintf(stderr, "unknown display type %s\n", display);
 free(screen_dlist);
 goto fail2;
 }
 for (j = 0; j < ndisplays; j++) {
 screen_get_display_property_iv(screen_dlist[j],
 SCREEN_PROPERTY_TYPE,
 &val);
 if (val == type) {
 break;
 }
 }
}

if (j >= ndisplays) {
 fprintf(stderr, "couldn't find display %s\n", display);
 free(screen_dlist);
 goto fail2;
}

screen_disp = screen_dlist[j];
free(screen_dlist);

4. Create a Screen event.

This is the Screen mtouch event that you will be injecting into the display.

rc = screen_create_event(&screen_ev);

5. Set the type of the event that you will be injecting.

In this example, you will be injecting an mtouch event.

val = SCREEN_EVENT_MTOUCH_TOUCH;
rc = screen_set_event_property_iv(screen_ev,
 SCREEN_PROPERTY_TYPE,
 &val);

6. Set the value of each property that is associated with your mtouch event. The

properties you set be used are used in the mtouch_event structure.

a. Set the value of the device ID that is associated with this mtouch event.

int device = 0;
rc = screen_set
_event_property_iv(screen_ev,
 SCREEN_PROPERTY_DEVICE_INDEX,
 &device);

b. Set the value of the position of the touch point that is associated with this

mtouch event.

int pos[2] = {5, 5};
rc = screen_set_event_property_iv(screen_ev,
 SCREEN_PROPERTY_POSITION,
 &pos);

c. Set the value of the sequence ID that is associated with this mtouch event.

The sequence ID is the sequence number of the mtouch event. You need to

increment this number for each new mtouch event you send.

int seq_id = 1;
rc = screen_set_event_property_iv(screen_ev,

136 © 2014, QNX Software Systems Limited

Screen Tutorials

 SCREEN_PROPERTY_SEQUENCE_ID,
 &pos);

d. Set the value of the size of the touch area that is associated with this mtouch

event.

The size, width and height in pixels, of the touch area.

int size[2] = { 5, 5};
rc = screen_set_event_property_iv(screen_ev,
 SCREEN_PROPERTY_SIZE,
 &size);

e. Set the value of the source position and source size.

In this example, we use the same position and size because the offset of the

window and display are one and the same.

rc = screen_set_event_property_iv(screen_ev,
 SCREEN_PROPERTY_SOURCE_POSITION,
 &pos);
rc = screen_set_event_property_iv(screen_ev,
 SCREEN_PROPERTY_SOURCE_SIZE,
 &size);

f. Set the value of the touch orientation.

int touch_orientation = 1;
rc = screen_set_event_property_iv(screen_ev,
 SCREEN_PROPERTY_TOUCH_ORIENTATION,
 &touch_orientation);

g. Set the value of the touch point ID.

The touch point ID is the order of occurence of the mtouch event for multi-touch

events; multiple mtouch events are used to describe one multi-touch event

(e.g., a two-finger swipe).

int touchId = 1;
rc = screen_set_event_property_iv(screen_ev,
 SCREEN_PROPERTY_TOUCH_ID,
 &touchId);

h. Set the value of the touch pressure.

The amount of pressure on the touch point is a relative value between 0 and

(232-1) where 0 represents the lightest pressure.

int touch_pressure = 1;
rc = screen_set_event_property_iv(screen_ev,
 SCREEN_PROPERTY_TOUCH_PRESSURE,
 &touchId);

7. Inject your Screen event.

rc = screen_inject_event(screen_disp, screen_ev);

8. Release the resources.

screen_destroy_event(screen_ev);
screen_destroy_context(screen_ctx);

© 2014, QNX Software Systems Limited 137

Tutorial: Screen events

Complete sample: Injecting a screen event

This code sample uses a privileged context to inject a Screen event into a specified

display.

/*
 * $QNXLicenseC:
 * Copyright 2011, QNX Software Systems Limited. All Rights Reserved.
 *
 * This software is QNX Confidential Information subject to
 * confidentiality restrictions. DISCLOSURE OF THIS SOFTWARE
 * IS PROHIBITED UNLESS AUTHORIZED BY QNX SOFTWARE SYSTEMS IN
 * WRITING.
 *
 * You must obtain a written license from and pay applicable license
 * fees to QNX Software Systems Limited before you may reproduce, modify
 * or distribute this software, or any work that includes all or part
 * of this software. For more information visit
 * http://licensing.qnx.com or email licensing@qnx.com.
 *
 * This file may contain contributions from others. Please review
 * this entire file for other proprietary rights or license notices,
 * as well as the QNX Development Suite License Guide at
 * http://licensing.qnx.com/license-guide/ for other information.
 * $
 */

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <screen/screen.h>

int main(int argc, char **argv)
{
 screen_context_t screen_ctx;
 screen_display_t screen_disp;
 screen_display_t *screen_dlist;
 screen_event_t screen_ev;
 int ndisplays;
 int val;
 const char *display = "1";
 int rval = EXIT_FAILURE;
 int rc;
 int i, j;

 for (i = 1; i < argc; i++) {
 if (strncmp(argv[i], "-display=", strlen("-display=")) == 0) {
 display = argv[i] + strlen("-display=");
 } else {
 break;
 }
 }

 rc = screen_create_context(&screen_ctx, SCREEN_INPUT_PROVIDER_CONTEXT);
 if (rc) {
 perror("screen_context_create");
 goto fail1;
 }

 rc = screen_get_context_property_iv(screen_ctx, SCREEN_PROPERTY_DISPLAY_COUNT, &ndisplays);
 if (rc) {
 perror("screen_get_context_property_iv(SCREEN_PROPERTY_DISPLAY_COUNT)");
 goto fail2;
 }

 screen_dlist = calloc(ndisplays, sizeof(*screen_dlist));
 if (screen_dlist == NULL) {
 fprintf(stderr, "could not allocate memory for display list\n");
 goto fail2;
 }

 rc = screen_get_context_property_pv(screen_ctx, SCREEN_PROPERTY_DISPLAYS, (void **)screen_dlist);
 if (rc) {
 perror("screen_get_context_property_pv(SCREEN_PROPERTY_DISPLAYS)");
 free(screen_dlist);
 goto fail2;
 }

 if (isdigit(*display)) {
 int want_id = atoi(display);
 for (j = 0; j < ndisplays; ++j) {
 int actual_id = 0; // invalid
 (void)screen_get_display_property_iv(screen_dlist[j],
 SCREEN_PROPERTY_ID, &actual_id);
 if (want_id == actual_id) {

138 © 2014, QNX Software Systems Limited

Screen Tutorials

 break;
 }
 }
 } else {
 int type = -1;
 if (strcmp(display, "internal") == 0) {
 type = SCREEN_DISPLAY_TYPE_INTERNAL;
 } else if (strcmp(display, "composite") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPOSITE;
 } else if (strcmp(display, "svideo") == 0) {
 type = SCREEN_DISPLAY_TYPE_SVIDEO;
 } else if (strcmp(display, "YPbPr") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPONENT_YPbPr;
 } else if (strcmp(display, "rgb") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPONENT_RGB;
 } else if (strcmp(display, "rgbhv") == 0) {
 type = SCREEN_DISPLAY_TYPE_COMPONENT_RGBHV;
 } else if (strcmp(display, "dvi") == 0) {
 type = SCREEN_DISPLAY_TYPE_DVI;
 } else if (strcmp(display, "hdmi") == 0) {
 type = SCREEN_DISPLAY_TYPE_HDMI;
 } else if (strcmp(display, "other") == 0) {
 type = SCREEN_DISPLAY_TYPE_OTHER;
 } else {
 fprintf(stderr, "unknown display type %s\n", display);
 free(screen_dlist);
 goto fail2;
 }
 for (j = 0; j < ndisplays; j++) {
 screen_get_display_property_iv(screen_dlist[j], SCREEN_PROPERTY_TYPE, &val);
 if (val == type) {
 break;
 }
 }
 }

 if (j >= ndisplays) {
 fprintf(stderr, "couldn't find display %s\n", display);
 free(screen_dlist);
 goto fail2;
 }

 screen_disp = screen_dlist[j];
 free(screen_dlist);

 rc = screen_create_event(&screen_ev);
 if (rc) {
 perror("screen_create_event");
 goto fail2;
 }

 int type = SCREEN_EVENT_MTOUCH_TOUCH;
 rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &type);
 if (rc) {
 perror("screen_set_event_property_iv(SCREEN_PROPERTY_TYPE)");
 goto fail3;
 }

 int device = 10;
 rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_DEVICE_INDEX, &device);
 if (rc) {
 perror("screen_set_event_property_iv(SCREEN_PROPERTY_DEVICE_INDEX)");
 goto fail3;
 }

 int pos[2] = { 50, 75 };
 rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_POSITION, pos);
 if (rc) {
 perror("screen_set_event_property_iv(SCREEN_PROPERTY_POSITION)");
 goto fail3;
 }

 int seq_id = 20;
 rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_SEQUENCE_ID, &seq_id);
 if (rc) {
 perror("screen_set_event_property_iv(SCREEN_PROPERTY_SEQUENCE_ID)");
 goto fail3;
 }

 int size[2] = { 5, 5};
 rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_SIZE, size);
 if (rc) {
 perror("screen_set_event_property_iv(SCREEN_PROPERTY_SIZE)");
 goto fail3;
 }

 rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_SOURCE_POSITION, pos);
 if (rc) {
 perror("screen_set_event_property_iv(SCREEN_PROPERTY_SOURCE_POSITION)");
 goto fail3;
 }

© 2014, QNX Software Systems Limited 139

Tutorial: Screen events

 rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_SOURCE_SIZE, &size);
 if (rc) {
 perror("screen_set_event_property_iv(SCREEN_PROPERTY_SOURCE_SIZE)");
 goto fail3;
 }

 int touch_orientation = 1;
 rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_TOUCH_ORIENTATION, &touch_orientation);
 if (rc) {
 perror("screen_set_event_property_iv(SCREEN_PROPERTY_TOUCH_ORIENTATION)");
 goto fail3;
 }

 int touchId = 3;
 rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_TOUCH_ID, &touchId);
 if (rc) {
 perror("screen_set_event_property_iv(SCREEN_PROPERTY_TOUCH_ID)");
 goto fail3;
 }

 int touch_pressure = 1;
 rc = screen_set_event_property_iv(screen_ev, SCREEN_PROPERTY_TOUCH_PRESSURE, &touch_pressure);
 if (rc) {
 perror("screen_set_event_property_iv(SCREEN_PROPERTY_TOUCH_PRESSURE)");
 goto fail3;
 }

 rc = screen_inject_event(screen_disp, screen_ev);
 if (rc) {
 perror("screen_inject_event");
 goto fail3;
 }

 rval = EXIT_SUCCESS;

fail3:
 screen_destroy_event(screen_ev);
fail2:
 screen_destroy_context(screen_ctx);
fail1:
 return rval;
}

140 © 2014, QNX Software Systems Limited

Screen Tutorials

Chapter 10
Screen Configuration

This section describes how to configure libraries, drivers, and Screen parameters using

the configuration file, graphics.conf.

Your target needs access to the files and directories where Screen is installed

(usually, under $QNX_TARGET). You will need the location of these files and

directories when installing and configuring environment variables, configuration

parameters, and drivers. In this document, we use SCREEN-DIR when we refer

to this location.

Some of these steps are platform-dependent. You will need to use the

appropriate target-specific configuration input for your platform. We use

TARGET-SPECIFIC to indicate where platform-dependent configuration input

is required.

© 2014, QNX Software Systems Limited 141

Configure Screen

This section describes how to configure libraries, drivers, and Screen parameters using

the configuration file, graphics.conf.

The graphics.conf file contains configuration information for Screen and is found

under the following directory:

SCREEN-DIR/usr/lib/graphics/TARGET-SPECIFIC

The graphics.conf file is a free-form ASCII text file. It is parsed by Screen or

clients. The file may contain extra tabs and blank lines for formatting purposes.

Keywords in the file are case-sensitive. Comments may be placed anywhere within the

file (except within quotes). Comments begin with the # character and end at the end

of the line.

The file is essentially a set of configurable parameters along with the values that these

parameters are being set to. The parameters are listed within specific defined sections

of the configuration file.

The graphics.conf file includes the following main sections:

khronos

Specifies the libraries and parameters related to Khronos (GPU and WFD

libraries). The libraries and parameters in this section apply to your EGL

display and WFD driver. This section is denoted by the begin khronos

and end khronos statements.

This khronos section consists of two sections:

• egl display

• wfd device

winmgr

Specifies the parameters related to the windowing system. This section is

denoted by the begin winmgr and end winmgr statements. The

parameters in this section include those that apply to:

• the windowing system globally

• the displays

• the class (e.g., framebuffers)

• the touch devices

This winmgr section consists of a combination of these four sections:

• globals

142 © 2014, QNX Software Systems Limited

Screen Configuration

• display

• class

• mtouch

To specify a configuration, you need to follow the format below for the parameter you

are configuring within the appropriate section of the configuration file:

<parameter> = <value>

Each configuration parameter is on its own separate line. If the parameter allows for

multiple values for its configuration, then the values will follow the = after the

parameter and will be separated by either a space or a comma. For example,

<parameter> = <value1>,<value2>,<value3>

or

<parameter> = <value1> <value2> <value3>

A typical graphics.conf file will look something like this:

begin khronos
 begin egl display 1
 egl-dlls = [IMG%s] libusc.so libsrv_um.so libpvr2d.so libIMGegl.so
 glesv1-dlls = libusc.so libsrv_um.so libIMGegl.so libImgGLESv1_CM.so
 glesv2-dlls = libusc.so libsrv_um.so libusc.so libIMGegl.so libImgGLESv2.so
 gpu-dlls = libsrv_um.so libpvr2d.so pvrsrv.so
 gpu-string = SGX540rev120
 aperture = 200
 end egl display

 begin wfd device 1
 wfd-dlls = libomap4modes-panda.so libWFDomap4430.so
 end wfd device
end khronos

begin winmgr
 begin globals
 pointer-qsize = 1
 blit-config = pvr2d
 blits-logsize = 4096
 input-logsize = 8192
 requests-logsize = 65536
 end globals

 begin display hdmi
 formats = rgba8888 rgbx8888 nv12
 video-mode = 1280 x 720 @ 60
 end display

 begin class framebuffer
 display = hdmi
 pipeline = 3
 surface-size = 1280 x 720
 format = rgba8888
 usage = pvr2d
 end class

 begin mtouch
 driver = devi
 options = height=720,width=1280
 end mtouch
end winmgr

© 2014, QNX Software Systems Limited 143

Configure Screen

Configure khronos section

This section specifies the libraries and parameters related to Khronos (GPU and WFD

libraries).

Your graphics.conf configuration file must include a Khronos section where your

EGL display and WFD driver libraries and parameters are specified.

The Khronos section is identified as the section of the configuration file that is enclosed

by begin khronos and end khronos.

begin khronos
 begin egl display 1
 ...
 end egl display

 begin wfd device 1
 ...
 end wfd device
end khronos
...

Within the Khronos section:

• libraries and parameters that are related to the EGL display are specified in the

section starting with begin egl display display_id and ending with end

egl display.

• libraries and parameters that are related to the WFD driver are specified in the

section starting with begin wfd device device_id and ending with end

wfd device.

Configure egl display

This section specifies the GPU and WFD libraries and parameters.

This section must begin with begin egl display display_id and end with

end egl display.

Typically there is only one egl display section. Therefore, the display ID is

conventionally set to 1.

Below is an example of an egl display section of a graphics.conf file:

begin egl display 1
 egl-dlls = [IMG%s] libusc.so libsrv_um.so libpvr2d.so libIMGegl.soD
 glesv1-dlls = libusc.so libsrv_um.so libIMGegl.so libImgGLESv1_CM.so
 glesv2-dlls = libusc.so libsrv_um.so libusc.so libIMGegl.so libImgGLESv2.so
 gpu-dlls = libsrv_um.so libpvr2d.so pvrsrv.so
 gpu-string = SGX540rev120
 aperture = 200
end egl display

This egl display section is not related, in any respect, to physical displays

or to the display configuration section under the winmgr section.

144 © 2014, QNX Software Systems Limited

Screen Configuration

Configuration parameters for egl display

The following are valid parameters that can be configured under the egl display

section:

Possible Value(s)TypeDescriptionParameter

stringThe EGL librariesegl-dlls
• libusc.so

• libsrv_um.so

• libpvr2d.so

• libIMGegl.so

stringThe OpenGL ES 1.X librariesglesv1-dlls
• libusc.so

• libsrv_um.so

• libIMGegl.so

• libImgGLESv1_CM.so

stringThe OpenGL ES 2.X librariesglesv2-dlls
• libusc.so

• libsrv_um.so

• libIMGegl.so

• libImgGLESv2.so

stringThe GPU librariesgpu-dlls
• libsrv_um.so

• libpvr2d.so

• pvrsrv.so

stringThe SGX core. The gpu-string will determine core-specific behavior.gpu-string
• SGX535rev121

• SGX530rev125

• SGX540rev120

Range varies.integerThe number of MB of GPU memory to allocate at startup.aperture

Most of these libraries and parameters will be provided in the default graphics.conf

configuration file delivered with your platform.

Configure wfd device

This section specifies the OpenWF Display libraries and parameters.

This section must begin with begin wfd device device_id and end with end

wfd device.

© 2014, QNX Software Systems Limited 145

Configure Screen

Typically there is only one wfd device section. Therefore, the device ID is

conventionally set to 1.

Below is an example of a wfd device section of a graphics.conf file.

 begin wfd device 1
 wfd-dlls = libj5modes-evm.so libWFDjacinto5.so
 grpx0 = lcd
 grpx1 = hdmi
 grpx2 = hdmi
 video-layer0 = lcd
 video-layer1 = hdmi
 end wfd device

The parameters that can be configured under the wfd device section are

platform-specific. You will need to obtain the valid parameters for your platform by

running the following on your platform:

use libWFDplatform.so

where platform can be any one of the following:

• vesabios

• jacinto5

• omap4430

• omap4460

• omap3730

• omap35xx

• imx6x

The use command will display a message describing the specific parameters and

libraries to configure for the particular platform.

Configure winmgr section

This section specifies the parameters related to the windowing manager system.

Your graphics.conf configuration file must include a winmgr section where your

global, display, class, and touch parameters are specified.

The winmgr section is identified as the section of the configuration file that is enclosed

by begin winmgr and end winmgr.

...
begin winmgr
 begin globals
 ...
 end globals

 begin display hdmi
 ...
 end display

 begin class framebuffer
 ...
 end class

 begin mtouch
 ...

146 © 2014, QNX Software Systems Limited

Screen Configuration

 end mtouch
end winmgr

Within the winmgr section:

• parameters that apply globally to the windowing system are specified in the section

starting with begin globals and ending with end globals; there can only be

one globals section in your configuration file.

• parameters that are related to the display are specified in the section starting with

begin display display_id and ending with end display; here may be

multiple display sections to correspond to each physical display available and

supported by the platform.

• parameters that are related to the class are specified in the section starting with

begin class class_name and ending with end class; there may be multiple

class sections to correspond to each class defined.

• parameters that are related to touch devices are specified in the section starting

with begin mtouch and ending with end mtouch; there may be multiple mtouch

sections to correspond to each touch device available and supported by the platform.

Configure globals

This section specifies the configuration applied globally to the windowing manager

system.

This section must begin with begin globals and end with end globals.

There is only one globals section. The parameters that are set in this section will

be applied to all pipelines.

Below is an example of a globals section of a graphics.conf file.

 begin globals
 blit-config = pvr2d
 blits-logsize = 4096
 end globals

Configuration parameters for globals

The following are valid parameters that can be configured under the globals section:

Possible Value(s)TypeDescriptionParameter

stringThe blitter used when your application explicitly calls

the native blit API functions (screen_blit() and

screen_fill()).

blit-config
• sw (default)

• pvr2d

• bv-j5

Only one blitter can be configured. The

selection of valid blitters depends on your

• gles2blt

© 2014, QNX Software Systems Limited 147

Configure Screen

Possible Value(s)TypeDescriptionParameter

platform; there may be more blitter values

available for your particular platform.

This parameter differs from the blitter

specified in the usage parameter under your

display section in graphics.conf.

The blitter specified in the usage parameter

is the blitter that Screen uses for

composition.

integerThe size (in bytes) of an internal working ring buffer.blits-logsize

long

integer

The minimum time (in seconds) between any activity

before Screen will decide to generate an overdrive

event.

idle-timeout

stringHuman interface device (HID). This parameter can

be configured with multiple values.

input
• keyboard

• mouse

You must ensure that you have io-hid

-dusb running before starting screen if

• gamepad

• joystick

you have a USB input device such as a

keyboard, mouse, gamepad, or USB joystick.

You must also have all of the following

libraries in your LD_LIBRARY_PATH:

• devh-usb.so

• libusbdi.so.2

• libhiddi.so.1

integerThe size (in bytes) of an internal working ring buffer.input-logsize

/shared/keymap/en_US_101stringThe location and name of the default keymap file.

The keymap file specified is used when a new

keymap

keyboard device is created. This is only applicable to

HID keyboards. Although this keymap file can be

specified using the Screen context property,

SCREEN_PROPERTY_KEYMAP, the location of this

file can only be specified using this parameter at time

of configuration. This parameter is optional. If keymap

is not set, then the default keymap at the default

keymap file location will be used.

148 © 2014, QNX Software Systems Limited

Screen Configuration

Possible Value(s)TypeDescriptionParameter

integerThe size (in bytes) of an internal ring buffer.requests-logsize

2048integerThe stack size (in units of 1024 bytes) that Screen

is to use for its threads. stack-sizemust be configured

stack-size

appropriately for blitters/compositors that are using

Mesa (e.g, gles2blt). The default stack size of 4 *

1024 bytes is insufficient for these types of

blitters/compositors.

Configure display display_id

This section specifies the configuration applied to the physical displays supported by

the platform.

This section must begin with begin display display_id and end with end

display.

There can be multiple display sections within a configuration file. The number of

display sections depends on the number of physical displays supported by the

platform.

The display_id is used to identify the display to which the display section pertains.

The display_id can be a number identifying the display or it can be the connection

type of the display. If the display_id is an integer, Screen will apply the configuration

parameters to the display corresponding to the integer specified as the display_id.

Otherwise, if the configuration is a string that matches one of the valid display

connection types, then Screen will apply the configuration parameters to the first

available display whose connection type matches that specified as the display_id.

Below is an example of a display section of a graphics.conf file. In this example,

the display_id is a connection type of hdmi; therefore, the configuration parameters

will be applied to the first available display that supports hdmi.

 begin display hdmi
 formats = rgba8888 rgbx8888 nv12
 video-mode = 1280 x 720 @ 60
 end display

Configuration parameters for display

The following are valid parameters that can be configured under the display section:

Possible Value(s)TypeDescriptionParameter

unsigned

long integer

(hex)

The background color of the display. Use

RGB color code (HEX value) to identify the

color. (e.g., blue = 0xff)

background
• 0x00 (default: black)

© 2014, QNX Software Systems Limited 149

Configure Screen

Possible Value(s)TypeDescriptionParameter

stringContent-based automatic brightness

control; specifies the content type of the

display

cbabc
none

The display content is not

video, UI, or photo.

video

The display content is video.

ui

The display content is UI.

photo

The display content is photo.

stringThe visibility of the cursor on the displaycursor
auto (default)

The cursor will remain

visible on the display until

there is 10 seconds of

cursor inactivity. After that,

the cursor will be made

invisible on the display.

on

The cursor will always

remain visible on the

display, regardless of cursor

inactivity.

off

The cursor will always

remain invisble on the

display regardless of cursor

activity.

stringThe pixel format(s) supported by the

display. This parameter can be configured

with multiple values.

formats
• byte

• rgba4444

• rgbx4444

• rgba5551

• rgbx5111

150 © 2014, QNX Software Systems Limited

Screen Configuration

Possible Value(s)TypeDescriptionParameter

• rgb565

• rgb888

• rgba8888

• rgbx8888

• yvu9

• yuv420

• nv12

• yv12

• uyvy

• yuy2

• v422

• ayuv

0..255unsigned

long integer

The gamma value of the WFD driver. The

range for this gamma value is specific to

the driver.

gamma

string or

unsigned

long integer

The amount of time (in seconds) after

which the display will enter an idle state.

idle-timeout
• off

• 0..ULONG_MAX

stringThe mirror typesmirroring
disabled

Mirroring is disabled.

normal

Mirroring is enabled, and the

aspect ratio of the image is

1:1.

stretch

Mirroring is enabled, and the

image should fill the display

while not preserving the

aspect ratio.

zoom

Mirroring is enabled, and the

image should fill the display

while preserving the aspect

© 2014, QNX Software Systems Limited 151

Configure Screen

Possible Value(s)TypeDescriptionParameter

ratio. Image content may be

clipped.

fill

Mirroring is enabled, and the

image should fill the display

while preserving the aspect

ratio. Image may be shown

with black bars where

applicable.

Default: 15integerThe priority of the update thread (i.e., the

thread that renders the framebuffer(s)).

priority

long integerThe clockwise rotation of a display. Display

rotation is absolute.

rotation
• 0

• 90

• 180

• 270

stringYour preference of display rotation mode.

If the mode of rotation specified isn`t

rotation-mode
blits

Rotated blits with pipeline

rotation where possible

supported by your display controller, the

default is to use blitter rotation.

generic

Generic modes can resize

none

No rotation is supported

port

Port rotation, framebuffer

resizes

pipeline

Pipeline rotation,

framebuffer resizes

integerIndicates whether or not to post

framebuffer on start-up. This parameter is

splash
0(default)

152 © 2014, QNX Software Systems Limited

Screen Configuration

Possible Value(s)TypeDescriptionParameter

considered only if the WFD driver supports

it.
Indicates to post the

framebuffer immediately

(blank screen).

1

Indicates to not post the

framebuffer until the

application requests a post.

2048integerThe stack size (in units of 1024 bytes) that

Screen is to use for its threads. stack-size

stack-size

must be configured appropriately for

blitters/compositors that are using Mesa

(e.g, gles2blt). The default stack size of 4

* 1024 bytes is insufficient for these types

of blitters/compositors.

unsigned

long integer

The x and y adjustments to be added to all

touch events. This configuration must be

in the form: x-adjustment,y-adjustment

touch-adjustments

unsigned

long integer

The initial resolution and refresh rate for

the display port. This configuration must

be one that is reported by the WFD driver.

video-mode

If you set this to values that aren't

supported, then the resolution and refresh

rate will default to the first mode specified

by the driver. The resolution and refresh

rate must be in the form of: widthxheight

@[i]refresh For example, video-mode =

1280x720@60. If i is indicated, then

interlacing is set.

stringContent protection for the window(s) on

the display. Typcially this is set only if the

protection-enable
• true

• false
application is interested in HDCP

(High-Bandwidth Digital Content

Protection).

Configure class

This section specifies the default values for window properties.

This section must begin with begin class class_name and end with end class.

© 2014, QNX Software Systems Limited 153

Configure Screen

The class section is used to set default values for the window properties defined

within the section; these properties are specified through parameters applied to

framebuffers and application windows.

Framebuffers

The number of class sections that can be defined for framebuffers depends on the

number of pipelines available. Generally, one framebuffer is defined per pipeline.

To specify that a class section is used to configure default values for a framebuffer,

the follwing convention is used:

framebuffer<unique_string>

The class_name of the class section must start with the string framebuffer followed

by any unique string to identify the class. For example, some valid <class name>

strings are:

• framebuffer

• framebuffer1

• framebufferA

• etc.

Below is an example of using multiple class sections to specify default vaules for

two framebuffers, each for a specific pipeline:

 begin class framebuffer1
 display = 1
 pipeline = 1
 format = rgba8888
 usage = pvr2d
 id_string = fb1
 end class

 begin class framebuffer2
 display = 2
 pipeline = 2
 format = rgba8888
 usage = pvr2d
 id_string = fb2
 end class

Application windows

There's no explicit limit on the number of class sections that can be defined for

configuring application windows.

To specify that a class section is used to configure default values for an application

window, the class_name of the class section must be a unique string. This string

needs to match the window property, SCREEN_PROPERTY_CLASS, you set in your

application.

154 © 2014, QNX Software Systems Limited

Screen Configuration

Below is an example of using a class section to specify defaults for an application

window:

begin class my_app_win
 visible = true
 surface-size = 640x480
 source-position = 0,0
 source-size = 640x480
 window-position = 0,0
 window-size = 640x480
 id_string = MY_APP_WINDOW
end class

If you use the above class section in your configuration file, then you can simply set

the SCREEN_PROPERTY_CLASS window property in your application code. The setting

of this property will trigger Screen to apply the configured values that are associated

with that class to your application window.

For example, if you use the above class section in your configuration file, you can

use this in your application code:

...
const char my_win_class = "my_app_win";
const int len = strlen(my_win_class);
screen_set_window_property_cv(screen_win, SCREEN_PROPERTY_CLASS, len, my_win_class);
...

instead of this:

...
const int visible = 1
const char id_string = "MY_APP_WINDOW";
const int len = strlen(id_string);
const int buffer_size[2] = { 640, 480};
const int src_pos[2] = { 0, 0};
const int src_size[2] = { 640, 480};
const int win_pos[2] = { 0, 0};
const int win_size[2] = { 640, 480};
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_VISIBLE, &visible);
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_BUFFER_SIZE, buffer_size);
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SOURCE_POSITION, src_pos);
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SOURCE_SIZE, src_size);
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_POSITION, win_pos);
screen_set_window_property_iv(screen_win, SCREEN_PROPERTY_SIZE, win_size);
screen_set_window_property_cv(screen_win, SCREEN_PROPERTY_ID_STRING, len, id_string);
...

to set your window properties.

Configuration parameters for class

The following are valid parameters that can be configured under the class section;

all parameters are valid for both framebuffers and application windows.

Possible Value(s)TypeDescriptionParameter

stringIndication of method of alpha blending to use for alpha

compositing

alpha-mode
non-pre-multiplied

(default)

© 2014, QNX Software Systems Limited 155

Configure Screen

Possible Value(s)TypeDescriptionParameter

Uses straight RGBA

pixel value. For

example, (0, 1, 0,

0.5) is green with

50% opacity

pre-multiplied

Uses pre-multiplied

RGBA pixel value.

For example, a

non-pre-multiplied

value of (0, 1, 0,

0.5) can be

intepreted as (0,

1,0) * 0.5, giving a

pre-multiplied value

of (0, 0.5, 0, 0.5),

which 0.5 is 100%

green intensity but

with 50% opacity

-255..255integerThe brightness of a window. This configuration depends

on the hardware; it can be configured, but may or may

not take effect as determined by your hardware.

brightness

stringContent-based automatic brightness control; specifies

the content type of a window. This configuration

cbabc
• none

• video
depends on the hardware; it can be configured, but

• uimay or may not take effect as determined by your

hardware. • photo

x-position, y-positionintegerThe x- and y- position of a clipped rectangular viewport

within the window buffers. This configuration must be

clip-position

in the form of: x-position,y-position. For example,

clip-position = 100,100.

widthxheightintegerThe width and height (in pixels) of a clipped

rectangular viewport within the window buffers. This

clip-size

configuration must be in the form of: widthxheight For

example, clip-size = 100x100.

unsigned

long

The background color of a window. Use RGB color code

(HEX value) to identify the color. (e.g., blue = 0xff).

color
• 0x00 (default: black)

156 © 2014, QNX Software Systems Limited

Screen Configuration

Possible Value(s)TypeDescriptionParameter

integer

(hex)

-128..127integerThe contrast adjustment of a window. This

configuration depends on the hardware; it can be

contrast

configured, but may or may not take effect as

determined by your hardware.

string or

integer

The connection type to the display or the display on

which the window will be shown. If the configuration

is an integer, screen will interpret the integer as the

display
• internal

• composite

• svideoindication of the display on which the window will be
• YPbPrshown. Otherwise, if the configuration is a string that

matches one of the valid display connection types, • rgb

then Screen will interpret the string as the

configuration of the display connection type.

• rgbhv

• dvi

• hdmi

• 1..2

stringThe pixel format used by a window. Only one format

is expected; this format must be supported by the

display.

format
• byte(default)

• rgba4444

• rgbx4444

• rgba5551

• rgbx5111

• rgb565

• rgb888

• rgba8888

• rgbx8888

• yvu9

• yuv420

• nv12

• yv12

• uyvy

• yuy2

• v422

• ayuv

0..225integerThe global alpha mode to apply to a window.global-alpha

-128..127integerThe hue adjustment of a window.hue

© 2014, QNX Software Systems Limited 157

Configure Screen

Possible Value(s)TypeDescriptionParameter

stringA string to identify the contents of a window.id_string

long

integer

The distance from the bottom that is used when

ordering window groups among each other.

order

1..3unsigned

long

integer

The pipeline identifier. This must refer to a pipeline

defined in the wfd device section of the

configuration file.

pipeline

long

integer

The clockwise rotation of a window. Window rotation

is absolute.

rotation
• 0

• 90

• 180

• 270

-128..127long

integer

The saturation adjustment of a window.saturation

x-position, y-positionintegerThe x and y coordinates of the top-left corner of a

rectangular region within the window buffer

source-position

representing the source viewport of a window. This is

the portion of the window buffer that is to be displayed.

This configuration must be in the format of:

x-position,y-position. For example, source-position

= 100,100.

integerThe width and height (in pixels) of a region within the

window buffer representing the source viewport of the

source-size

window. This is the portion of the window buffer that

is to be displayed. This configuration must be in the

form of: widthxheight. For example, source-size

= 100x100.

unsigned

long

integer

Indicates whether or not the contents of a window are

expected to change

static
0

Window content

isn't static

1

Window content is

static

integerThe width and height of the window buffer. This

configuration must be in the form of: widthxheight For

example, surface-size = 100x100.

surface-size

158 © 2014, QNX Software Systems Limited

Screen Configuration

Possible Value(s)TypeDescriptionParameter

unsigned

long

integer

The minimum number of vsync periods between posts.interval

string
The intended usage for the window buffers; the

resulting usage applied to the window buffers is the

usage
gles1

Used to indicate

that OpenGL ES 1.X
bitwise OR of all the valid entries configured with this

parameter. You can configure this parameter using any

of the following: is used for rendering

the buffer(s)
• one or more valid usage flags (For complete listing

of valid usage flags, refer to Screen usage flag

types .

associated with the

window

gles2
• the blitter to use for composition onto a framebuffer

(the default is sw if no blitter is specified) Used to indicate

that OpenGL ES 2.X• one or more integers representing a valid usage bit

is used for rendering
If this configuration consists of a string that is not

mapped to one of the valid usage flags, then Screen
the buffer(s)

associated with the

window
will interpret the string as the blitter to use for

composition onto a framebuffer.

native

Note that all framebuffers share the same

blitter; therefore if you configure multiple
Used to indicate

that buffer(s)
class sections and define the usage with a associated with the
blitter in each, then the blitter named in the window can be used
usage of the last class section in your

configuration file will be used.
for native API

operations. For

This parameter differs from the blitter

specified in the blit-config parameter under

example, if your

application explicitly

calls (screen_blit()your globals section in graphics.conf.

and/or screen_fill()),The blitter specified in the blit-config

then this flag must

be set.
parameter is the blitter that Screen uses when

your application explicitly calls the native blit

API functions (screen_blit() and screen_fill()). rotation

Used to indicate

that the buffer(s)
When multiple usage flags are configured, each flag

in the configuration must be separated by a comma or
associated with thespace. You can combine the blitter name with the
window can beusage flags in the same configuration line as long as

it is separated by a comma or a space. re-configured from

landscape to portrait

© 2014, QNX Software Systems Limited 159

Configure Screen

Possible Value(s)TypeDescriptionParameter

For example, the following are examples of valid entries

for configuring usage:
orientation without

having the need for

reallocation.• usage = pvr2d

• usage = sw native sw

• usage = 2 4 8
Used to indicate

that the buffer(s)

associated with the

window can be read

from and written to.

vg

Used to indicate

that OpenVG is used

for rendering the

buffer(s) associated

with the window

stringIndicates whether or not a window is visible.visible
• true

• false

x-position,y-positionintegerThe x and y positions of the window screen coordinates.

Remember that the position of child and embedded

window-position

windows are relative to the parent window. For example,

if the position of the application window is (10, 10)

and the position of the child window is (10, 10), then

the position of the child window on the screen is

actually (20, 20). This configuration must be in the

form or: x-position,y-position. For example, window-

position = 10,10.

widthxheightintegerThe width and height (in pixels) of a window. This

configuration must be in the form of: widthxheight.

For example, window-size = 100x100.

window-size

3 (default)integerThe number of buffers that are to be created or

attached to a window. Beyond configuration, the buffer

buffer-count

count can't be set; it can only be queried by the

application. There is no explicit limit for this number.

160 © 2014, QNX Software Systems Limited

Screen Configuration

Configure mtouch

This section specifies the configuration applied to the touch devices supported by the

platform.

This section must begin with begin mtouch and end with end mtouch.

There can be multiple mtouch sections within a configuration file. The number of

mtouch sections depends on the number of physical displays supported by the

platform. If you have mutliple displays, you can configure the driver for each display;

therefore you would have one mtouch section for each of these displays.

From within the mtouch section of the configuration file, filters that are related to

the mtouch devices are specified in the section starting with begin filter and

ending with end filter.

Below is an example of multiple mtouch sections of a graphics.conf file:

 begin mtouch
 driver = devi
 options = height=720,width=1280
 scaling = /armle-v7/usr/lib/graphics/omap4430/scaling_omap4.conf
 display = 1
 end mtouch

 begin mtouch
 driver = egalax
 options = height=800,width=480
 scaling = /armle-v7/usr/lib/graphics/omap4430/scaling_omap4.conf
 display = 2
 end mtouch

Once screen is running, run the calib-touch utility with the -display option

from either your startup script or from a shell to calibrate your touchscreens.

scaling.conf

The scaling.conf file is a free-form ASCII text file. It is parsed by Screen. The file

may contain extra tabs and blank lines for formatting purposes. Keywords in the file

are case-sensitive. Comments may be placed anywhere within the file (except within

quotes). Comments begin with the # character and end at the end of the line.

You must define a mode for the touch coordinates using a scaling.conf

configuration file; you can define only one mode per configuration. The mode

recommended is the scale mode configured with the resolution of your display. For

example, your entry in the scaling.conf file would be:

1280x720:mode=scale

By default, Screen expects scaling.conf file at this location:

/etc/system/config/scaling.conf

© 2014, QNX Software Systems Limited 161

Configure Screen

If your scaling.conf file is not located at the above location or is not named scal

ing.conf, you will need to indicate the correct path and name of your scaling

configuration file using the scaling parameter in your mtouch configuration section.

Configuration parameters for mtouch

The following are valid parameters that can be configured under the mtouch section:

Possible

Value(s)

TypeDescriptionParameter

string
The touch driver loaded by Screen.

driver
• devi

• egalax

If you configure your driver to be devi, you must ensure that

you have the following processes running before starting

screen:

• devi-hid -R width,height touch where width and

height define the resolution of your display. (e.g.,

devi-hid -R1280,720 touch))

• io-hid -dusb (this is the case for configuring a

multitouch display that uses USB for the control.)

For more information about the devi-hid and io-hid

utilities, see its entry in the OS Utilities Reference.

To be able to successfully run io-hid and devi-hid, you

must ensure that you have the following libraries in your

LD_LIBRARY_PATH environment variable:

• devh-usb.so

• libusbdi.so.2

• libhiddi.so.1

• libmtouch-devi.so

Use the following command on your target to get more

information on the options when running devi-hid:

use devi-hid

There is no such requirement if you are using the egalax

driver, as this driver will communicate directly with the

hardware.

stringThe options configuration is driver-dependent. The string you configure

is passed verbatim to the driver itself. It can be used to set the height

options

162 © 2014, QNX Software Systems Limited

Screen Configuration

Possible

Value(s)

TypeDescriptionParameter

and width (in pixels) of a rectangular mtouch surface. Typcially, you

set this to your display resolution (i.e., the configuration you used for

the video-mode under the display section). This configuration must

be in the form of: height=display_height ,width=display_width.

For example, options = height=720,width=1280.

NULL(default)string
The full pathname of the server-side scaling configuration file that

defines the scaling to apply to the touch coordinates. For an example

scaling

of what a scaling configuration file must look like, see Sample

scaling.conf configuration file .

You must define a mode for the touch coordinates using a scal

ing.conf configuration file; you can define only one mode per

configuration. The mode recommended is the scalemode configured

with the resolution of your display. For example, your entry in the

scaling.conf file would be:

1280x720:mode=scale

unsigned

long

integer

The sampling rate (in microseconds) of the touch controller. You will

not get two touch samples within a time less than that configured

here. The effectiveness of this configuration is driver-dependent.

min_event_interval

string or

integer

The connection type to the display that is associated with the mtouch

device. If the configuration is an integer, Screen will interpret the

integer as the identifier of the display to be associated with the mtouch

display
• internal

• composite

• svideodevice; otherwise, if the configuration is a string that matches one of
• YPbPrthe valid display connection types, then Screen will associate the first

display of that type with the mtouch device. • rgb

• rgbhv

• dvi

• hdmi

• 1..2

Configuring mtouch filter

This section specifies the configuration applied to the filters of mtouch devices

supported by the platform.

This section must begin with begin filter and end with end filter.

Below is an example of a mtouch section of a graphics.conf file.

begin filter

© 2014, QNX Software Systems Limited 163

Configure Screen

 type = 1
 options =
end filter

Configuration parameters for filter

The following are valid parameters that can be configured under the filter section:

Possible Value(s)TypeDescriptionParameter

integerThe series of filters that are

applied to the touch

coordinates.

type
ballistic

Minimizes the noise normally seen on successive touch

events that follow a low-speed ballistic trajectory. The

lower the speed of the ballistic movement (e.g., a

stationary finger), the more gain reduction is applied to

the speed of the movement. By doing so, the result is a

solid touch with no noise.

edge-swipe

Detects the passing of a finger over the edge of the touch

surface. This lets you get swipe gestures starting from

outside the screen.

kalman

Minimizes the tracking noise of a moving finger on a

given touch surface by use of the Kalman filter algorithm.

bezel-touch

doa

Options are listed below per filter type:
string

Filter specific options. The

available filter options depend

options

• ballistic

DefaultDescriptionFilter

option

on the filter type. The format

for configuring filter options

is: options= <filter

option>=<value> or, if
256FP scale factorscale

there are multiple options to
8Minimal gainmin_gainspecify, then each

option-value pair will be
32Low speed

threshold

low_speed
separated by a comma: op

tions= <filter op

tion1>=<value>,<filter

option2>=<value>
• edge_swipe_detect

164 © 2014, QNX Software Systems Limited

Screen Configuration

Possible Value(s)TypeDescriptionParameter

Table 1: Filter order

DefaultDescriptionFilter option

2Filter

Order

filter_order

Table 2: Left edge (x=0)

DefaultDescriptionFilter option

1Apply detectionxl_enable

50Bezel widthxl_bezel

25Speed thresholdxl_speed

0Jitter controlxl_jitter

0Reject physical

bezel

xl_reject_physical_bezel

Table 3: Right edge (x=max(raw_x))

DefaultDescriptionFilter option

1Apply detectionxh_enable

50Bezel widthxh_bezel

25Speed thresholdxh_speed

0Jitter controlxh_jitter

0Reject physical

bezel

xh_reject_physical_bezel

Table 4: Top edge (y=0)

DefaultDescriptionFilter option

1Apply detectionyl_enable

80Bezel widthyl_bezel

25Speed thresholdyl_speed

0Jitter controlyl_jitter

© 2014, QNX Software Systems Limited 165

Configure Screen

Possible Value(s)TypeDescriptionParameter

DefaultDescriptionFilter option

0Reject physical

bezel

yl_reject_physical_bezel

Table 5: Bottom edge (y=max(raw_y))

DefaultDescriptionFilter option

1Apply detectionyh_enable

50Bezel widthyh_bezel

25Speed thresholdyh_speed

0Jitter controlyh_jitter

0Reject physical

bezel

yh_reject_physical_bezel

edge-swipe filter options nomenclature:

• xl: x-low border, near x=0;

• xh: x-high border, near x=maximal X touch

coordinate;

• yl: y-low border, near y=0;

• yh: y-high border, near y=maximal Y touch

coordinate;

• kalman

Table 6: Noise variance

DefaultDescriptionFilter option

32Process noise variance (X)proc_noise_x_var

32Process noise variance (Y)proc_noise_y_var

100Measurement noise variance(X)meas_noise_x_var

100Measurement noise variance

(Y)

meas_noise_y_var

166 © 2014, QNX Software Systems Limited

Screen Configuration

Possible Value(s)TypeDescriptionParameter

Table 7: Adaptive speed threshnold

DefaultDescriptionFilter option

30Adaptive speed threshold

1

slot_threshold_1

20Adaptive speed threshold

2

slot_threshold_2

10Adaptive speed threshold

3

slot_threshold_3

5Adaptive speed threshold

4

slot_threshold_4

• bezel_touch

DefaultDescriptionFilter option

140Filter parallel thresholdparrallel_threshold

70Filter perpendicular

threshold

perpendicular_threshold

Apply your Screen configuration

The following procedure describes how to apply your Screen configuration to a platform

that is running QNX Neutrino RTOS.

Prior to starting this procedure, ensure the following:

• Your target hardware is running QNX Neutrino RTOS.

• You can run a shell and commands such as pidin.

• If applicable, you have already installed the most recent compatible graphics patch

for your platform and have verified that Screen applications can run successfully.

• You have modified graphics.conf with your desired configuration parameters.

To apply your Screen configuration:

1. Stop screen by using the following command:

slay screen

2. Verify that your screen process has stopped. Run:

pidin ar

© 2014, QNX Software Systems Limited 167

Configure Screen

and, verify that the screen process is not running.

3. Set the GRAPHICS_ROOT variable to include the appropriate graphics directory:

export GRAPHICS_ROOT=SCREEN-DIR/usr/lib/graphics/TARGET-SPECIFIC

For example, if you are using an OMAP3 board with the screen directory location

mounted to /, you would need to set your GRAPHICS_ROOT_ to be:

export GRAPHICS_ROOT=/armle-v7/usr/lib/graphics/omap3

4. Set your LD_LIBRARY_PATH environment variable to include the directories of

the shared libraries that Screen needs.

export LD_LIBRARY_PATH=SCREEN-DIR/usr/lib:SCREEN-DIR/lib:SCREEN-DIR/lib/dll:$GRAPHICS_ROOT:$LD_LIBRARY_PATH

For example, if you are using VMware as the target, you would need to set your

LD_LIBRARY_PATH to be:

export LD_LIBRARY_PATH=/usr/lib:/lib:/lib/dll:$GRAPHICS_ROOT:$LD_LIBRARY_PATH

5. Optional: If you are configuring mtouch and using the devi driver, ensure that you

have io-hid and devi-hid running. Run:

pidin ar

From the output of pidin ar, verify that io-hid and devi-hid are running.

See an example display of the proceses that could be running on your platform:

 pid Arguments
 1 procnto-smp-instr -v
 4098 devc-seromap -e -p -F -b115200 -c48000000/16
0x48020000^2,106
 4099 slogger
 4100 pipe
 4101 i2c-omap35xx-omap4 -p 0x48070000 -i 88
 4102 i2c-omap35xx-omap4 -p 0x48072000 -i 89
 4103 i2c-omap35xx-omap4 -p 0x48060000 -i 93
 4104 i2c-omap35xx-omap4 -p 0x48350000 -i 94
 8201 io-audio -d omap4pdm
 16394 devb-mmcsd-blaze cam silent blk noatime,cache=8m
mmcsd
ioport=0x4809c100,ioport=0x4a056000,irq=115,dma=30,dma=61,dma=62
 dos exe=all
 16395 spi-master -u 0 -d omap4430
base=0x48098100,irq=97,sdma=0
 16396 spi-master -u 3 -d omap4430
base=0x480ba100,irq=80,sdma=0
 16397 io-usb -domap4430-mg ioport=0x4a0ab000,irq=124
-dehci-omap3 ioport=0x4a064c00,irq=109
 20494 io-pkt-v4 -ptcpip -dsmsc9500 mac=004460515624
 24591 dhcp.client
 32784 devc-pty
 32786 inetd
 36881 qconn
 36883 sh
 73748 fs-cifs 10.222.109.24:/test /t screen
 176149 io-hid -dusb

168 © 2014, QNX Software Systems Limited

Screen Configuration

 180246 devi-hid -PrR1280 touch
 184343 pidin ar

To confirm that io-hid is running with devh-usb.so, you can run the command:

pidin -p io-hid mem

pid tid name prio STATE code
data stack
176149 1 t/bin/io-hid 10r SIGWAITINFO 36K
124K 24K(516K)*
176149 2 t/bin/io-hid 21r RECEIVE 36K
124K 4096(12K)
176149 3 t/bin/io-hid 10r RECEIVE 36K
124K 4096(20K)
176149 5 t/bin/io-hid 10r REPLY 36K
124K 4096(20K)
176149 6 t/bin/io-hid 10r RECEIVE 36K
124K 4096(20K)
 libc.so.3 @ 1000000 460K
 16K
 libhiddi.so.1 @78000000 32K
4096
 devh-usb.so @78009000 16K
4096
 libusbdi.so.2 @7800e000 40K
8192

6. Restart screen by using the following command:

SCREEN-DIR/sbin/screen

7. Verify that there were no warnings generated from your new configuration by using

the following command:

sloginfo

Troubleshooting

Here are some common problems you might encounter after applying your configuration.

Why is screen (or my Screen application) not running?

It's possible that there was an invalid configuration parameter set or that some

of the libraries required for your configuration could not be found. There are

two ways to help find out why screen or your Screen application is not running:

1. Ensure that screen is no longer running on your platform by checking the

processes that are running; use the following command:

pidin ar

From the output of pidin ar, look for the screen process.

© 2014, QNX Software Systems Limited 169

Configure Screen

pidin ar
 pid Arguments
 1 procnto-smp-instr -v
 4098 devc-seromap -e -p -F -b115200 -c48000000/16
0x48020000^2,106
 4099 slogger
 4100 pipe
 4101 i2c-omap35xx-omap4 -p 0x48070000 -i 88
 4102 i2c-omap35xx-omap4 -p 0x48072000 -i 89
 4103 i2c-omap35xx-omap4 -p 0x48060000 -i 93
 4104 i2c-omap35xx-omap4 -p 0x48350000 -i 94
 8201 io-audio -d omap4pdm
 16394 devb-mmcsd-blaze cam silent blk noatime,cache=8m
 mmcsd
ioport=0x4809c100,ioport=0x4a056000,irq=115,dma=30,dma=61,dma=62
 dos exe=all
 16395 spi-master -u 0 -d omap4430
base=0x48098100,irq=97,sdma=0
 16396 spi-master -u 3 -d omap4430
base=0x480ba100,irq=80,sdma=0
 16397 io-usb -domap4430-mg ioport=0x4a0ab000,irq=124
 -dehci-omap3 ioport=0x4a064c00,irq=109
 20494 io-pkt-v4 -ptcpip -dsmsc9500 mac=004460515624
 24591 dhcp.client
 32784 devc-pty
 32786 inetd
 36881 qconn
 36883 sh
 57364 fs-cifs 10.222.109.24:/test /t screen
 5799960 /t/650SDP/B999/daily/nto/armle-v7/sbin/screen
 6815765 pidin ar

2. If screen is running, slay the screen process by using the following

command:

slay screen

Use pidin ar again to confirm that the screen process has shut down. It

is possible that you will have to slay screen more than once before the

process shuts down.

3. Set up your environment for debugging; you can do either one or both of the

following:

• Option 1: Set the LD_DEBUG environment variable to use debugging

symbols:

export LD_DEBUG=libs

This will display information on missing libraries, if any, when you are

running screen or your Screen application.

• Option 2: Use sloginfo by first clearing the logs with the command:

sloginfo -c and then starting sloginfo with the -w option:

sloginfo -w &. The -w option will display logs from sloginfo as

events arrive.

170 © 2014, QNX Software Systems Limited

Screen Configuration

4. Restart screen by using the following command:

SCREEN-DIR/sbin/screen

5. If you had trouble running your Screen application, try running it again; you

should be able to see if the problem involves missing libraries.

Why do I get only a solid colored screen when I run my OpenGL ES 2.x application on my i.MX 6 board?

It's likely that, due to a known issue, you don't have libGLSLC.so in your

LD_LIBRARY_PATH environment variable.

If running SCREEN-DIR/usr/bin/gles1-gears works, but running

SCREEN-DIR/usr/bin/gles2-gears doesn't, then chances are you'll need

to do the following:

1. Stop screen by using the following command:

slay screen

2. Copy libGLSLC.so from

SCREEN-DIR/usr/lib/graphics/TARGET-SPECIFIC

to

SCREEN-DIR/usr/lib/

For example, for an i.MX 6 board with the screen directory location mounted

to /, the command would be:

cp /usr/lib/graphics/imx6/libGLSLC.so /usr/lib/

3. Restart screen by using the following command:

SCREEN-DIR/sbin/screen

4. Try running your OpenGL ES 2.x application again.

Why is screen (or my Screen application) not displaying what I'm expecting?

There can be many reasons why what you see on the display isn't what you're

expecting. It's possible that some of your configuration values aren't compatible.

The best way to confirm that you're using the correct configuration values, or

that Screen is using the values you are expecting, is to look at the files under

/dev/screen/.

Under /dev/screen/ on your target, you can use the following files to help

you see what values Screen is applying to your application at the time you cat

the file.

/dev/screen/0/dpy-display_id

© 2014, QNX Software Systems Limited 171

Configure Screen

The configuration for each of your displays (e.g.,

/dev/screen/0/dpy-1).

/dev/screen/0/win-window_id /win-window_id

The configuration for each of your framebuffers (e.g.,

/dev/screen/0/win-0/win-0).

/dev/screen/0/win-window_id /win-window_id-bmp_id.bmp

The bitmap of what's drawn into your framebuffer at the moment when

you touch this file (e.g., /dev/screen/1564694/win-1/win-1-

1.bmp, /dev/screen/1564694/win-1/win-1-2.bmp, etc.).

/dev/screen/pid /win-window_id /win-window_id

The configuration for each of your windows (e.g.,

/dev/screen/1564694/win-1/win-1).

/dev/screen/pid /win-window_id /win-window_id-bmp_id.bmp

The bitmap of what is drawn into your window buffers at the moment

when you touch these files (e.g., /dev/screen/1564694/win-

1/win-1-1.bmp, /dev/screen/1564694/win-1/win-1-2.bmp,

etc.).

Here are examples of what these files may look like:

• /dev/screen/0/dpy-1 (p. 172)

• /dev/screen/0/win-0/win-0 (p. 174)

• /dev/screen/1564694/win-1/win-1 (p. 175)

You can capture all relevant information to your current Screen configuration

by doing the following from your target:

1. Make a copy of your /dev/screen directory into your file system; for example:

cp -r /dev/screen /dev-screen-copy

2. Tar the copied directory to capture the status of your system:

tar czvf screen-log.tgz /dev-screen-copy

Sample /dev/screen/0/dpy-1 file

This file lists the display configurations that Screen is using.

The dpy-1 file in /dev/screen/0/ shows the configurations of the display that

Screen is currently using.

172 © 2014, QNX Software Systems Limited

Screen Configuration

From your target, you can see the display configurations that Screen is currently using

by looking at the dpy-display_id file in /dev/screen/0/. The values you see

from this file are the values that are currently used at the moment when you cat the

file.

 # cat /dev/screen/0/dpy-1

device id = 1
port id = 1
port type = HDMI
WFD_QNX_bchs extension = 0
WFD_QNX_vsync extension = 1
WFD_QNX_port_mode_info = 1
WFD_QNX_cbabc = 1
active = 1
device_id = LLG-4615-0-2010-1
video mode = 1280 x 720 @ 60 (progressive)
native resolution = 1280 x 1024
physical size = 360 x 290
detachable = 1
protection enabled = off
rotation support = WFD_ROTATION_SUPPORT_NONE
rotation mode = blits
rotation = 0, 0
fill port area = 0
writeback = 0
destination = WFD_INVALID_HANDLE
gamma range = [1 .. 1]
gamma = 1
aspect ratio = 0:0
refresh = 0
formats = rgba8888 rgbx8888 nv12
power mode = SCREEN_POWER_MODE_ON
mirror mode = disabled
viewport = (0,0 0x0)
cbabc mode = WFD_PORT_CBABC_MODE_NONE_QNX
updates = 0
counter = 1
priority = 15
rebuild = 1
splash = 0
background color = ff000000
transparent color = 00000000
capture buffer = (none)
frame buffer = win-0
rotation buffer = (none)
cursor = disabled
cursor updates = 0
window manager = (none)
composition module = pvr2d (loaded)
effect module = (null) (not loaded)
keep awakes = 0
focus = (none)
scene = (empty)
bypass = 0
dirty = (none)
windows = (none)
background = (0,0;1280,720)
holes = (none)
update mutex = 0x1615cc
update condvar = 0x1615d4
plane 0 {

© 2014, QNX Software Systems Limited 173

Configure Screen

 pipeline id = 1
 order = 2
 scale range = [0.125 .. 7]
 rotation support = WFD_ROTATION_SUPPORT_NONE
 usage = SCREEN_USAGE_DISPLAY
 format = SCREEN_FORMAT_RGBX8888
 cursor = off
 source = (none)
}
plane 1 {
 pipeline id = 4
 order = 3
 scale range = [1 .. 1]
 rotation support = WFD_ROTATION_SUPPORT_NONE
 usage = (none)
 format = SCREEN_FORMAT_RGBA8888
 cursor = off
 source = (none)
}
metrics.total.attach = 1
metrics.total.power = 0
metrics.total.idle = 0
metrics.total.events = 0
metrics.delta.attach = 0
metrics.delta.power = 0
metrics.delta.idle = 0
metrics.delta.events = 0

Sample /dev/screen/0/win-0/win-0 file

This file lists the values of the framebuffer parameters that Screen is using.

The win-0 file in /dev/screen/0/ shows the configurations of the framebuffers

that Screen is currently using.

From your target, you can see the configurations of the framebuffer that Screen is

currently using by looking at the win-0 file in /dev/screen/0/win-0. The values

you see from this file are the values that are currently used at the moment when you

cat the file.

For example, you can use this command from your shell:

 # cat /dev/screen/0/win-0/win-0

to see the framebuffer parameters currently used:

type = SCREEN_ROOT_WINDOW
autonomous = 1
status = WIN_STATUS_REALIZED
replaced = 0
references = 1
id string =
display id = 1
plane id = 4
parent = (none)
children = (none)
window above = (none)
window below = (none)
alternate window = (none)

174 © 2014, QNX Software Systems Limited

Screen Configuration

insert id = 0
reclip = 0
updates = 0
locked = 0
valid = 0x00000008
class = framebuffer
flags = WIN_FLAG_VISIBLE WIN_FLAG_FLOATING
buffer size = 1280x720
format = SCREEN_FORMAT_RGBA8888
usage = SCREEN_USAGE_DISPLAY
order = 0
sensitivity = SCREEN_SENSITIVITY_TEST
swap interval = 1
holes = (none)
regions = (none)
flip = 0
mirror = 0
source viewport = (0,0 1280x720)
source clip rectangle = (0,0;1280,720)
clipped source viewport = (0,0;1280,720 1280x720)
destination rectangle = (0,0 1280x720)
destination clip rectangle = (0,0;1280,720)
clipped destination rectangle = (0,0;1280,720 1280x720)
rotation = 0
clipped rotation = 0
transparency = SCREEN_TRANSPARENCY_SOURCE_OVER
global alpha = 255 -> 255
brightness = 0
contrast = 0
hue = 0
saturation = 0
scale quality = 0
idle mode = normal
page viewport = (none)
protection_enable = off
cbabc mode = SCREEN_CBABC_MODE_NONE
rcvids = (none)
metrics.total.updates.count = 1
metrics.total.updates.pixels = 921600 pixels
metrics.total.updates.reads = 0 bytes
metrics.total.updates.writes = 3 Mbytes
metrics.delta.updates.count = 1
metrics.delta.updates.pixels = 921600 pixels
metrics.delta.updates.reads = 0 bytes
metrics.delta.updates.writes = 3 Mbytes

Sample /dev/screen/<pid>/win-1/win-1 file

This file lists the values of the window parameters that Screen is using for the process

specified by the process ID.

The win-window_id file in /dev/screen/pid/ shows the values of the window

parameters that Screen is currently using.

From your target, you can see the values of the window parameters that Screen is

currently using by looking at the win-window_id file in

/dev/screen/pid/win-window_id. The values you see from this file are the

values that are currently used at the moment when you cat the file.

For example, for process 1564694 with only one application window, you can use

this command from your shell:

© 2014, QNX Software Systems Limited 175

Configure Screen

 # cat /dev/screen/1564694/win-1/win-1

to see the window parameters currently used:

type = SCREEN_APPLICATION_WINDOW
autonomous = 0
status = WIN_STATUS_VISIBLE
replaced = 0
references = 1
id string = gles1-gears
display id = 1
plane id = 4
parent = (none)
children = (none)
window above = (none)
window below = (none)
alternate window = (none)
insert id = 1
reclip = 0
updates = 0
locked = 0
valid = 0x0000001c
class =
flags = WIN_FLAG_VISIBLE WIN_FLAG_FLOATING
buffer size = 1280x720
format = SCREEN_FORMAT_RGBA8888
usage = SCREEN_USAGE_OPENGL_ES1
order = 0
sensitivity = SCREEN_SENSITIVITY_TEST
swap interval = 1
holes = (none)
regions = (0,0;1280,720)
flip = 0
mirror = 0
source viewport = (0,0 1280x720)
source clip rectangle = (0,0;1280,720)
clipped source viewport = (0,0;1280,720 1280x720)
destination rectangle = (0,0 1280x720)
destination clip rectangle = (0,0;1280,720)
clipped destination rectangle = (0,0;1280,720 1280x720)
rotation = 0
clipped rotation = 0
transparency = SCREEN_TRANSPARENCY_NONE
global alpha = 255 -> 255
brightness = 0
contrast = 0
hue = 0
saturation = 0
scale quality = 0
idle mode = normal
page viewport = (none)
protection_enable = off
cbabc mode = SCREEN_CBABC_MODE_NONE
rcvids = 65563
metrics.total.objcnt = 0
metrics.total.apicnt = 0
metrics.total.drawcnt = 0
metrics.total.tricnt = 0
metrics.total.vtxcnt = 0
metrics.total.teximg = 0
metrics.total.subdata = 0
metrics.total.events = 0
metrics.total.blits.count = 0
metrics.total.blits.pixels = 0 pixels

176 © 2014, QNX Software Systems Limited

Screen Configuration

metrics.total.blits.reads = 0 bytes
metrics.total.blits.writes = 0 bytes
metrics.total.posts.count = 2675
metrics.total.posts.pixels = 2465 Mpixels
metrics.total.updates.count = 2674
metrics.total.updates.pixels = 2464 Mpixels
metrics.total.updates.reads = 9857 Mbytes
metrics.delta.objcnt = 0
metrics.delta.apicnt = 0 (0 / post)
metrics.delta.drawcnt = 0 (0 / post)
metrics.delta.tricnt = 0 (0 / post)
metrics.delta.vtxcnt = 0 (0 / post)
metrics.delta.teximg = 0
metrics.delta.subdata = 0
metrics.delta.events = 0
metrics.delta.blits.count = 0
metrics.delta.blits.pixels = 0 pixels
metrics.delta.blits.reads = 0 bytes
metrics.delta.blits.writes = 0 bytes
metrics.delta.posts.count = 2675
metrics.delta.posts.pixels = 2465 Mpixels
metrics.delta.updates.count = 2674
metrics.delta.updates.pixels = 2464 Mpixels
metrics.delta.updates.reads = 9857 Mbytes

© 2014, QNX Software Systems Limited 177

Configure Screen

Chapter 11
Screen Library Reference

Two important aspects to note when using Screen are Function safety and Function

execution types.

Function safety

Function safety refers to the situations under which it is safe to use the Screen API

functions.

Function execution types

Function execution refers to the execution timeliness of the Screen API functions.

© 2014, QNX Software Systems Limited 179

Function safety

Function safety refers to whether or not it's safe to use the Screen API functions in

certain situations.

Screen API functions are thread-safe and will behave as documented even in a

multithreaded environement. However, Screen API functions are neither interrupt-safe

nor signal-safe. Don't use Screen API functions in an interrupt handler or a signal

handler.

Classification:

Screen API

ValueSafety

NoInterrupt

handler

NoSignal handler

YesThread

180 © 2014, QNX Software Systems Limited

Screen Library Reference

Function execution types

Function execution timeliness essentially refers to whether or not the operations

performed by Screen are immediate or delayed.

Each Screen API function can be categorized by its execution type:

Immediate execution

Immediate execution describes API functions where the command from the

function call is executed immediately and isn't queued for batch processing.

Flushing execution

Flushing execution describes API functions where the command from the

function call is queued for batch processing, and then the command buffer

is immediately flushed to process all queued commands—previously queued

ones included.

Delayed execution

Delayed execution describes API functions where the command from the

function call is queued for batch processing.

Apply execution

Apply execution describes API functions where the command from the

function call is added to the queue for batch processing, and then this queue

is immediately flushed to process all queued commands—previously queued

ones included. The display is redrawn if necessary.

Most of the Screen API functions aren't executed immediately. Instead, the commands

resulting from the function calls are queued at the API for batch processing later in

time. As your application makes multiple API function calls, commands accumulate

in a command buffer that's associated with a context. These commands are

batch-processed either when the command buffer is full, or when an API function of

the type flushing execution is called. By batch-processing these commands, a large

number of commands can be submitted in one atomic operation and the communication

between the client and the Composition Manager is reduced to fewer, larger messages.

However, it's important to note that functions that are executed immediately may

additionally flush a set of queued commands. Furthermore, a function that flushes

any queued commands may or may not necessarily cause a redraw of the display.

You should understand the exact execution type of each API function. Knowing how

and when these functions will be executed in the scope of your Screen application

will be fundamental to your development.

© 2014, QNX Software Systems Limited 181

Function execution types

Apply execution

Apply execution describes API functions where the command from the function call

is added to the queue for batch processing, and then this queue is immediately flushed

to process all queued commands—previously queued ones included. The display is

redrawn if necessary.

Apply execution functions have essentially the same behavior as those of flushing

execution, with the exception that apply execution functions cause the contents of

the display to be updated when applicable.

For example, screen_flush_context() is of type apply execution. This API function adds

the flush command to the batch-processing command queue. Then the function

proceeds to flush this queue, and in doing so, communicates with the Composition

Manager. The contents of the display will also be updated.

The return value from apply execution functions indicates whether or not all commands

flushed from the batch-processing queue have been executed successfully. A successful

return value indicates that all queued commands were processed and executed without

errors. An unsuccessful return value indiates an error in either the execution of a

previously queued command, or the flushing command (the command from the call

of the apply execution function).

Delayed execution

Delayed execution describes API functions where the command from the function call

is queued for batch processing.

Delayed execution functions queue the command so that it can be batch-processed

later. The command remains on the command buffer until it's flushed and processed

by a flushing execution function. A less frequent reason for flushing the command

buffer is if it is full and can't accomodate the delayed execution function command.

In this case, the command buffer is flushed and any previously queued commands

are processed. Once the command buffer is empty, the command from the delayed

execution function is queued to be batch-processed later.

For example, screen_set_context_property_cv() is of type delayed execution. This API

function simply queues the command for setting the specified context property. The

value of the property isn't actually set until a flushing exeuction function is called, or

until a delayed execution function is called when the command buffer is full.

The return value from delayed execution functions indicates whether or not the

command was successfully queued for batch-processing later.

182 © 2014, QNX Software Systems Limited

Screen Library Reference

Flushing execution

Flushing execution describes API functions where the command from the function

call is queued for batch processing, and then the command buffer is immediately

flushed to process all queued commands—previously queued ones included.

This behavior (adding commands to the command buffer and then immediately flushing

it) typically happens because the execution of the API function depends on commands

previously queued on the command buffer. In addition, the API function requires

immediate communication with the Composition Manager.

For example, screen_get_context_property_cv() is of type flushing execution. This API

function queues the command for retrieving the specified context property. Then the

function proceeds to flush the command buffer, and after doing so, communicates

with the Composition Manager. This function needs to flush the command buffer

because the value of the property being retrieved may depend on a previously queued

command, such as setting the value of the property. Therefore, the set command for

the property should be processed first, before retrieving the value.

The return value from flushing execution functions indicates whether or not all

commands flushed from the batch-processing queue have been executed successfully.

A successful return value indicates that all queued commands were processed and

executed without errors. An unsuccessful return value indiates an error in either the

execution of a previously queued command, or the flushing command (the command

from the call of the flushing execution function).

The Composition Manager doesn't stop processing batched commands when

it detects an error. All commands queued for batch-processing will be processed

until the batch-processing command queue is empty.

Immediate execution

Immediate execution describes API functions where the command from the function

call is executed immediately and isn't queued for batch processing.

Some API functions, although categorized as immediate exeuction, may block for

some period of time. The execution of the command is immediate, but the API function

may need to communicate with the Composition Manager. This means that the client

application will be blocked until this communication is complete and the required

command to execute the API function is executed.

For example, both screen_create_context() and screen_get_event() are immediate

execution types. Both API functions need to communicate with the Composition

Manager. The screen_create_context() function normally returns in a timely manner

when a connection to the services is established. Conversely, screen_get_event() may

© 2014, QNX Software Systems Limited 183

Function execution types

block for long periods of time if the event queue is empty and a large or infinite timeout

is specified.

Immediate execution functions neither cause the contents on a display to change nor

flush any queued commands. Any previously queued commands for batch processing

remain on the client side after you call immediate exeuction API functions —even if

the immediate execution requires communication with the Composition Manager.

The return value from immediate execution functions indicates whether or not the

execution of the API function was successful.

Function types

The tables in this section list the type of each function, where the type indicates the

expected timeliness of each function call.

Blits

Function typeFunction

Delayed Executionscreen_blit() (p. 258)

Delayed Executionscreen_fill() (p. 260)

Flushing Executionscreen_flush_blits() (p. 261)

Buffers

Function typeFunction

Immediate Executionscreen_create_buffer() (p. 264)

Immediate Executionscreen_destroy_buffer() (p. 265)

Immediate Executionscreen_get_buffer_property_cv() (p. 265)

Immediate Executionscreen_get_buffer_property_iv() (p. 267)

Immediate Executionscreen_get_buffer_property_llv() (p. 268)

Immediate Executionscreen_get_buffer_property_pv() (p. 269)

Immediate Executionscreen_set_buffer_property_cv() (p. 270)

Immediate Executionscreen_set_buffer_property_iv() (p. 271)

Immediate Executionscreen_set_buffer_property_llv() (p. 272)

Immediate Executionscreen_set_buffer_property_pv() (p. 273)

184 © 2014, QNX Software Systems Limited

Screen Library Reference

Contexts

Function typeFunction

Immediate Executionscreen_create_context() (p. 279)

Apply Executionscreen_destroy_context() (p. 280)

Apply Executionscreen_flush_context() (p. 280)

Flushing Executionscreen_get_context_property_cv() (p. 281)

Flushing Executionscreen_get_context_property_iv() (p. 282)

Flushing Executionscreen_get_context_property_llv() (p. 284)

Flushing Executionscreen_get_context_property_pv() (p. 285)

Immediate Executionscreen_notify() (p. 286)

Delayed Executionscreen_set_context_property_cv() (p. 287)

Delayed Executionscreen_set_context_property_iv() (p. 288)

Delayed Executionscreen_set_context_property_llv() (p. 289)

Delayed Executionscreen_set_context_property_pv() (p. 290)

Devices

Function typeFunction

Immediate Executionscreen_create_device_type() (p. 300)

Flushing Executionscreen_destroy_device() (p. 301)

Flushing Executionscreen_get_device_property_cv() (p. 302)

Flushing Executionscreen_get_device_property_iv() (p. 303)

Flushing Executionscreen_get_device_property_llv() (p. 304)

Flushing Executionscreen_get_device_property_pv() (p. 305)

Delayed Executionscreen_set_device_property_cv() (p. 306)

Delayed Executionscreen_set_device_property_iv() (p. 308)

Delayed Executionscreen_set_device_property_llv() (p. 309)

Delayed Executionscreen_set_device_property_pv() (p. 310)

© 2014, QNX Software Systems Limited 185

Function execution types

Displays

Function typeFunction

Flushing Executionscreen_get_display_property_cv() (p. 319)

Flushing Executionscreen_get_display_property_iv() (p. 320)

Flushing Executionscreen_get_display_property_llv() (p. 322)

Flushing Executionscreen_get_display_property_pv() (p. 323)

Delayed Executionscreen_set_display_property_cv() (p. 325)

Delayed Executionscreen_set_display_property_iv() (p. 326)

Delayed Executionscreen_set_display_property_llv() (p. 327)

Delayed Executionscreen_set_display_property_pv() (p. 328)

Flushing Executionscreen_get_display_modes() (p. 318)

Immediate Executionscreen_read_display() (p. 324)

Flushing Executionscreen_share_display_buffers() (p. 329)

Immediate Executionscreen_wait_vsync() (p. 330)

Events

Function typeFunction

Immediate Executionscreen_create_event() (p. 337)

Immediate Executionscreen_destroy_event() (p. 338)

Immediate Executionscreen_get_event() (p. 339)

Immediate Executionscreen_get_event_property_cv() (p. 340)

Immediate Executionscreen_get_event_property_iv() (p. 341)

Immediate Executionscreen_get_event_property_llv() (p. 344)

Immediate Executionscreen_get_event_property_pv() (p. 345)

Immediate Executionscreen_inject_event() (p. 347)

Immediate Executionscreen_send_event() (p. 348)

Immediate Executionscreen_set_event_property_cv() (p. 349)

Immediate Executionscreen_set_event_property_iv() (p. 350)

Immediate Executionscreen_set_event_property_llv() (p. 353)

Immediate Executionscreen_set_event_property_pv() (p. 354)

186 © 2014, QNX Software Systems Limited

Screen Library Reference

Groups

Function typeFunction

Immediate Executionscreen_create_group() (p. 357)

Flushing Executionscreen_destroy_group() (p. 358)

Flushing Executionscreen_get_group_property_cv() (p. 359)

Flushing Executionscreen_get_group_property_iv() (p. 360)

Flushing Executionscreen_get_group_property_llv() (p. 361)

Flushing Executionscreen_get_group_property_pv() (p. 362)

Delayed Executionscreen_set_group_property_cv() (p. 364)

Delayed Executionscreen_set_group_property_iv() (p. 365)

Delayed Executionscreen_set_group_property_llv() (p. 366)

Delayed Executionscreen_set_group_property_pv() (p. 367)

Pixmaps

Function typeFunction

Flushing Executionscreen_attach_pixmap_buffer() (p. 371)

Immediate Executionscreen_create_pixmap() (p. 372)

Flushing Executionscreen_create_pixmap_buffer() (p. 373)

Flushing Executionscreen_destroy_pixmap() (p. 373)

Flushing Executionscreen_destroy_pixmap_buffer() (p. 374)

Flushing Executionscreen_get_pixmap_property_cv() (p. 375)

Flushing Executionscreen_get_pixmap_property_iv() (p. 376)

Flushing Executionscreen_get_pixmap_property_llv() (p. 377)

Flushing Executionscreen_get_pixmap_property_pv() (p. 378)

Delayed Executionscreen_join_pixmap_group() (p. 379)

Delayed Executionscreen_leave_pixmap_group() (p. 380)

Immediate Executionscreen_ref_pixmap() (p. 381)

Delayed Executionscreen_set_pixmap_property_cv() (p. 382)

Delayed Executionscreen_set_pixmap_property_iv() (p. 383)

Delayed Executionscreen_set_pixmap_property_llv() (p. 384)

© 2014, QNX Software Systems Limited 187

Function execution types

Function typeFunction

Delayed Executionscreen_set_pixmap_property_pv() (p. 385)

Immediate Executionscreen_unref_pixmap() (p. 386)

Windows

Function typeFunction

Flushing Executionscreen_attach_window_buffers() (p. 396)

Immediate Executionscreen_create_window() (p. 397)

Immediate Executionscreen_create_window_type() (p. 400)

Flushing Executionscreen_create_window_buffers() (p. 398)

Delayed Executionscreen_create_window_group() (p. 399)

Flushing Executionscreen_destroy_window() (p. 401)

Flushing Executionscreen_destroy_window_buffers() (p. 402)

Delayed Executionscreen_discard_window_regions() (p. 403)

Flushing Executionscreen_get_window_property_cv() (p. 404)

Flushing Executionscreen_get_window_property_iv() (p. 405)

Flushing Executionscreen_get_window_property_llv() (p. 407)

Flushing Executionscreen_get_window_property_pv() (p. 408)

Delayed Executionscreen_join_window_group() (p. 410)

Delayed Executionscreen_leave_window_group() (p. 411)

Apply Executionscreen_post_window() (p. 411)

Apply Executionscreen_read_window() (p. 414)

Immediate Executionscreen_ref_window() (p. 415)

Delayed Executionscreen_set_window_property_cv() (p. 416)

Delayed Executionscreen_set_window_property_iv() (p. 417)

Delayed Executionscreen_set_window_property_llv() (p. 419)

Delayed Executionscreen_set_window_property_pv() (p. 420)

Flushing Executionscreen_share_window_buffers() (p. 421)

Immediate Executionscreen_unref_window() (p. 422)

Immediate Executionscreen_wait_post() (p. 423)

188 © 2014, QNX Software Systems Limited

Screen Library Reference

General (screen.h)

Constants and Datatypes that are available for multiple Screen API objects.

Definitions in screen.h

Preprocessor macro definitions for the screen.h header file in the library.

Definitions:

#define SCREEN_MODE_PREFERRED_INDEX (-1)

Defines the mode preferred index.

Used as a convenience value to pass when setting SCREEN_PROPERTY_MODE to fall

back to the default video mode without having to first query all the modes supported

by the display to find the one with SCREEN_MODE_PREFERRED set in flags.

Library:

libscreen

_screen_mode

A structure to contain values related to Screen display mode.

Synopsis:

typedef struct _screen_mode {
 _Uint32t width ;
 _Uint32t height ;
 _Uint32t refresh ;
 _Uint32t interlaced ;
 _Uint32t aspect_ratio [2];
 _Uint32t flags ;
 _Uint32t index ;
 _Uint32t reserved [6];
}screen_display_mode_t;

Data:

_Uint32t width

Width of display.

_Uint32t height

Height of display.

_Uint32t refresh

Refresh of display.

© 2014, QNX Software Systems Limited 189

General (screen.h)

_Uint32t interlaced

Interlace mode of display.

_Uint32t aspect_ratio[2]

Aspect ratio of display.

_Uint32t flags

Mutext flags of display.

_Uint32t index

Index of display.

_Uint32t reserved[6]

Reserved bits.

Library:

libscreen

Screen content mode types

Types of content modes.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_CBABC_MODE_NONE = 0x7671
 SCREEN_CBABC_MODE_VIDEO = 0x7672
 SCREEN_CBABC_MODE_UI = 0x7673
 SCREEN_CBABC_MODE_PHOTO = 0x7674
};

Data:

SCREEN_CBABC_MODE_NONE

The window content is not video, UI or photo.

SCREEN_CBABC_MODE_VIDEO

The window content is video.

SCREEN_CBABC_MODE_UI

190 © 2014, QNX Software Systems Limited

Screen Library Reference

The window content is UI.

SCREEN_CBABC_MODE_PHOTO

The window content is photo.

Library:

libscreen

Description:

The CBABC (content-based automatic brightness control) refers to the brightness

control that is based on content, not ambient light. However, this enumeration is used

mainly to describe the content type of the window, rather than the brightness control.

If not set, the type will default to the mode of the display framebuffer.

Screen Alpha Blending Modes

Types of available alpha blending modes.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_NON_PRE_MULTIPLIED_ALPHA = 0
 SCREEN_PRE_MULTIPLIED_ALPHA = 1
};

Data:

SCREEN_NON_PRE_MULTIPLIED_ALPHA

The non pre-multiplied alpha content.

This is the default. In this case, the source blending is done using the

equation:

c(r,g,b) = s(r,g,b) * s(a) + d(r,g,b) * (1 - s(a))

SCREEN_PRE_MULTIPLIED_ALPHA

The pre-multiplied alpha content.

In this case, the source blending is done using the equation:

c(r,g,b) = s(r,g,b) + d(r,g,b) * (1 - s(a))

© 2014, QNX Software Systems Limited 191

General (screen.h)

Library:

libscreen

Description:

Screen color space types

The window/pixmap supported color space types.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_COLOR_SPACE_UNCORRECTED = 0x0
 SCREEN_COLOR_SPACE_SRGB = 0x1
 SCREEN_COLOR_SPACE_LRGB = 0x2
 SCREEN_COLOR_SPACE_BT601 = 0x3
 SCREEN_COLOR_SPACE_BT601_FULL = 0x4
 SCREEN_COLOR_SPACE_BT709 = 0x5
 SCREEN_COLOR_SPACE_BT709_FULL = 0x6
};

Data:

SCREEN_COLOR_SPACE_UNCORRECTED

The default.

SCREEN_COLOR_SPACE_SRGB

SCREEN_COLOR_SPACE_LRGB

Linear RGB.

SCREEN_COLOR_SPACE_BT601

SCREEN_COLOR_SPACE_BT601_FULL

SCREEN_COLOR_SPACE_BT709

SCREEN_COLOR_SPACE_BT709_FULL

Library:

libscreen

192 © 2014, QNX Software Systems Limited

Screen Library Reference

Description:

Screen flushing types

Types of flushing options.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_WAIT_IDLE = (1 << 0)
 SCREEN_PROTECTED = (1 << 1)
};

Data:

SCREEN_WAIT_IDLE

Indicates that the function will block until the operation has completed.

SCREEN_PROTECTED

Library:

libscreen

Description:

Screen idle mode types

Types of idle modes.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_IDLE_MODE_NORMAL = 0
 SCREEN_IDLE_MODE_KEEP_AWAKE = 1
};

Data:

SCREEN_IDLE_MODE_NORMAL

The default idle mode; the display is allowed to go idle after the period of

time indicated by SCREEN_PROPERTY_IDLE_TIMEOUT and potentially

turn off.

© 2014, QNX Software Systems Limited 193

General (screen.h)

SCREEN_IDLE_MODE_KEEP_AWAKE

The idle mode which will prevent the display from going idle after a period

of no input - such as video playback.

By default, the display will go idle after the period of time indicated by

SCREEN_PROPERTY_IDLE_TIMEOUT.

Library:

libscreen

Description:

Screen mirror types

Types of mirrors.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_MIRROR_DISABLED = 0
 SCREEN_MIRROR_NORMAL = 1
 SCREEN_MIRROR_STRETCH = 2
 SCREEN_MIRROR_ZOOM = 3
 SCREEN_MIRROR_FILL = 4
};

Data:

SCREEN_MIRROR_DISABLED

Mirroring is disabled.

SCREEN_MIRROR_NORMAL

Mirroring is enabled and that the aspect-ratio of the image is 1:1.

SCREEN_MIRROR_STRETCH

Mirroring is enabled and that the image should fill the screen while not

preserving the aspect-ratio.

SCREEN_MIRROR_ZOOM

Mirroring is enabled and that the image should fill the screen while preserving

the aspect-ratio.

194 © 2014, QNX Software Systems Limited

Screen Library Reference

Image content may be clipped.

SCREEN_MIRROR_FILL

Mirroring is enabled and that the image should fill the screen while preserving

the aspect-ratio.

Image may be shown with black bars where applicable.

Library:

libscreen

Description:

Screen mouse button types

Types of mouse buttons.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_LEFT_MOUSE_BUTTON = (1 << 0)
 SCREEN_MIDDLE_MOUSE_BUTTON = (1 << 1)
 SCREEN_RIGHT_MOUSE_BUTTON = (1 << 2)
};

Data:

SCREEN_LEFT_MOUSE_BUTTON

SCREEN_MIDDLE_MOUSE_BUTTON

SCREEN_RIGHT_MOUSE_BUTTON

Library:

libscreen

© 2014, QNX Software Systems Limited 195

General (screen.h)

Description:

Screen object types

Types of Screen API objects.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_OBJECT_TYPE_CONTEXT = 0
 SCREEN_OBJECT_TYPE_GROUP = 1
 SCREEN_OBJECT_TYPE_DISPLAY = 2
 SCREEN_OBJECT_TYPE_DEVICE = 3
 SCREEN_OBJECT_TYPE_PIXMAP = 4
 SCREEN_OBJECT_TYPE_WINDOW = 8
};

Data:

SCREEN_OBJECT_TYPE_CONTEXT

SCREEN_OBJECT_TYPE_GROUP

SCREEN_OBJECT_TYPE_DISPLAY

SCREEN_OBJECT_TYPE_DEVICE

SCREEN_OBJECT_TYPE_PIXMAP

SCREEN_OBJECT_TYPE_WINDOW

Library:

libscreen

Description:

Screen pixel format types

Types of supported pixel formats.

Synopsis:

#include <screen/screen.h>

196 © 2014, QNX Software Systems Limited

Screen Library Reference

 enum {
 SCREEN_FORMAT_BYTE = 1
 SCREEN_FORMAT_RGBA4444 = 2
 SCREEN_FORMAT_RGBX4444 = 3
 SCREEN_FORMAT_RGBA5551 = 4
 SCREEN_FORMAT_RGBX5551 = 5
 SCREEN_FORMAT_RGB565 = 6
 SCREEN_FORMAT_RGB888 = 7
 SCREEN_FORMAT_RGBA8888 = 8
 SCREEN_FORMAT_RGBX8888 = 9
 SCREEN_FORMAT_YVU9 = 10
 SCREEN_FORMAT_YUV420 = 11
 SCREEN_FORMAT_NV12 = 12
 SCREEN_FORMAT_YV12 = 13
 SCREEN_FORMAT_UYVY = 14
 SCREEN_FORMAT_YUY2 = 15
 SCREEN_FORMAT_YVYU = 16
 SCREEN_FORMAT_V422 = 17
 SCREEN_FORMAT_AYUV = 18
 SCREEN_FORMAT_NFORMATS
};

Data:

SCREEN_FORMAT_BYTE

SCREEN_FORMAT_RGBA4444

16 bits per pixel (4 bits per channel) RGB with alpha channel

SCREEN_FORMAT_RGBX4444

16 bits per pixel (4 bits per channel) RGB with alpha channel disregarded

SCREEN_FORMAT_RGBA5551

16 bits per pixel, 2 bytes containing R, G, and B values (5 bits per channel

with single-bit alpha channel)

SCREEN_FORMAT_RGBX5551

16 bits per pixel, 2 bytes containing R, G, and B values (5 bits per channel

with single-bit alpha channel disregarded)

SCREEN_FORMAT_RGB565

16 bits per pixel; uses five bits for red, six bits for green and five bits for

blue.

This pixel format represents each pixel in the following order (high byte to

low byte): RRRR RGGG GGGB BBBB

© 2014, QNX Software Systems Limited 197

General (screen.h)

SCREEN_FORMAT_RGB888

24 bits per pixel (8 bits per channel) RGB

SCREEN_FORMAT_RGBA8888

32 bits per pixel (8 bits per channel) RGB with alpha channel

SCREEN_FORMAT_RGBX8888

32 bits per pixel (8 bits per channel) RGB with alpha channel disregarded

SCREEN_FORMAT_YVU9

9 bits per pixel planar YUV format.

8-bit Y plane and 8-bit 4x4 subsampled U and V planes. Registered by Intel.

SCREEN_FORMAT_YUV420

Standard NTSC TV transmission format.

SCREEN_FORMAT_NV12

12 bits per pixel planar YUV format.

8-bit Y plane and 2x2 subsampled, interleaved U and V planes.

SCREEN_FORMAT_YV12

12 bits per pixel planar YUV format.

8-bit Y plane and 8-bit 2x2 subsampled U and V planes.

SCREEN_FORMAT_UYVY

16 bits per pixel packed YUV format.

YUV 4:2:2 - Y sampled at every pixel, U and V sampled at every second pixel

horizontally on each line. A macropixel contains 2 pixels in 1 uint32.

SCREEN_FORMAT_YUY2

16 bits per pixel packed YUV format.

YUV 4:2:2 - as in UYVY, but with different component ordering within the

uint32 macropixel.

198 © 2014, QNX Software Systems Limited

Screen Library Reference

SCREEN_FORMAT_YVYU

16 bits per pixel packed YUV format.

YUV 4:2:2 - as in UYVY, but with different component ordering within the

uint32 macropixel.

SCREEN_FORMAT_V422

Packed YUV format.

Inverted version of UYVY.

SCREEN_FORMAT_AYUV

Packed YUV format.

Combined YUV and alpha

SCREEN_FORMAT_NFORMATS

Library:

libscreen

Description:

Formats with an alpha channel will have source alpha enabled automatically.

Applications that want the Screen library to disregard the alpha channel can choose

a pixel format with an X.

Screen power mode types

Types of power modes.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_POWER_MODE_OFF = 0x7680
 SCREEN_POWER_MODE_SUSPEND = 0x7681
 SCREEN_POWER_MODE_LIMITED_USE = 0x7682
 SCREEN_POWER_MODE_ON = 0x7683
};

Data:

© 2014, QNX Software Systems Limited 199

General (screen.h)

SCREEN_POWER_MODE_OFF

The power mode in an inactive state.

SCREEN_POWER_MODE_SUSPEND

The power mode in a state of being partially off; the display or device is no

longer active.

The power usage in this state can be greater than in SCREEN_POW

ER_MODE_OFF, but will allow for a faster transition to active state.

SCREEN_POWER_MODE_LIMITED_USE

The power mode in a state of reduced power; the display or device is active,

but may be slower to update than if it was in SCREEN_POWER_MODE_ON.

SCREEN_POWER_MODE_ON

The power mode in an active state.

Library:

libscreen

Description:

Screen property types

Types of properties that are associated with Screen API objects.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_PROPERTY_ALPHA_MODE = 1
 SCREEN_PROPERTY_GAMMA = 2
 SCREEN_PROPERTY_BRIGHTNESS = 3
 SCREEN_PROPERTY_BUFFER_COUNT = 4
 SCREEN_PROPERTY_BUFFER_SIZE = 5
 SCREEN_PROPERTY_BUTTONS = 6
 SCREEN_PROPERTY_CLASS = 7
 SCREEN_PROPERTY_COLOR_SPACE = 8
 SCREEN_PROPERTY_CONTRAST = 9
 SCREEN_PROPERTY_DEVICE = 10
 SCREEN_PROPERTY_DEVICE_INDEX = 10
 SCREEN_PROPERTY_DISPLAY = 11
 SCREEN_PROPERTY_EGL_HANDLE = 12
 SCREEN_PROPERTY_FLIP = 13
 SCREEN_PROPERTY_FORMAT = 14
 SCREEN_PROPERTY_FRONT_BUFFER = 15

200 © 2014, QNX Software Systems Limited

Screen Library Reference

 SCREEN_PROPERTY_GLOBAL_ALPHA = 16
 SCREEN_PROPERTY_PIPELINE = 17
 SCREEN_PROPERTY_GROUP = 18
 SCREEN_PROPERTY_HUE = 19
 SCREEN_PROPERTY_ID_STRING = 20
 SCREEN_PROPERTY_INPUT_VALUE = 21
 SCREEN_PROPERTY_INTERLACED = 22
 SCREEN_PROPERTY_JOG_COUNT = 23
 SCREEN_PROPERTY_KEY_CAP = 24
 SCREEN_PROPERTY_KEY_FLAGS = 25
 SCREEN_PROPERTY_KEY_MODIFIERS = 26
 SCREEN_PROPERTY_KEY_SCAN = 27
 SCREEN_PROPERTY_KEY_SYM = 28
 SCREEN_PROPERTY_MIRROR = 29
 SCREEN_PROPERTY_NAME = 30
 SCREEN_PROPERTY_OWNER_PID = 31
 SCREEN_PROPERTY_PHYSICALLY_CONTIGUOUS = 32
 SCREEN_PROPERTY_PLANAR_OFFSETS = 33
 SCREEN_PROPERTY_POINTER = 34
 SCREEN_PROPERTY_POSITION = 35
 SCREEN_PROPERTY_PROTECTED = 36
 SCREEN_PROPERTY_RENDER_BUFFERS = 37
 SCREEN_PROPERTY_ROTATION = 38
 SCREEN_PROPERTY_SATURATION = 39
 SCREEN_PROPERTY_SIZE = 40
 SCREEN_PROPERTY_SOURCE_POSITION = 41
 SCREEN_PROPERTY_SOURCE_SIZE = 42
 SCREEN_PROPERTY_STATIC = 43
 SCREEN_PROPERTY_STRIDE = 44
 SCREEN_PROPERTY_SWAP_INTERVAL = 45
 SCREEN_PROPERTY_TRANSPARENCY = 46
 SCREEN_PROPERTY_TYPE = 47
 SCREEN_PROPERTY_USAGE = 48
 SCREEN_PROPERTY_USER_DATA = 49
 SCREEN_PROPERTY_USER_HANDLE = 50
 SCREEN_PROPERTY_VISIBLE = 51
 SCREEN_PROPERTY_WINDOW = 52
 SCREEN_PROPERTY_RENDER_BUFFER_COUNT = 53
 SCREEN_PROPERTY_ZORDER = 54
 SCREEN_PROPERTY_PHYSICAL_ADDRESS = 55
 SCREEN_PROPERTY_SCALE_QUALITY = 56
 SCREEN_PROPERTY_SENSITIVITY = 57
 SCREEN_PROPERTY_MIRROR_MODE = 58
 SCREEN_PROPERTY_DISPLAY_COUNT = 59
 SCREEN_PROPERTY_DISPLAYS = 60
 SCREEN_PROPERTY_CBABC_MODE = 61
 SCREEN_PROPERTY_EFFECT = 62
 SCREEN_PROPERTY_FLOATING = 63
 SCREEN_PROPERTY_ATTACHED = 64
 SCREEN_PROPERTY_DETACHABLE = 65
 SCREEN_PROPERTY_NATIVE_RESOLUTION = 66
 SCREEN_PROPERTY_PROTECTION_ENABLE = 67
 SCREEN_PROPERTY_SOURCE_CLIP_POSITION = 68
 SCREEN_PROPERTY_PHYSICAL_SIZE = 69
 SCREEN_PROPERTY_FORMAT_COUNT = 70
 SCREEN_PROPERTY_FORMATS = 71
 SCREEN_PROPERTY_SOURCE_CLIP_SIZE = 72
 SCREEN_PROPERTY_TOUCH_ID = 73
 SCREEN_PROPERTY_VIEWPORT_POSITION = 74
 SCREEN_PROPERTY_VIEWPORT_SIZE = 75
 SCREEN_PROPERTY_TOUCH_ORIENTATION = 76
 SCREEN_PROPERTY_TOUCH_PRESSURE = 77
 SCREEN_PROPERTY_TIMESTAMP = 78
 SCREEN_PROPERTY_SEQUENCE_ID = 79

© 2014, QNX Software Systems Limited 201

General (screen.h)

 SCREEN_PROPERTY_IDLE_MODE = 80
 SCREEN_PROPERTY_IDLE_STATE = 81
 SCREEN_PROPERTY_KEEP_AWAKES = 82
 SCREEN_PROPERTY_IDLE_TIMEOUT = 83
 SCREEN_PROPERTY_KEYBOARD_FOCUS = 84
 SCREEN_PROPERTY_MTOUCH_FOCUS = 85
 SCREEN_PROPERTY_POINTER_FOCUS = 86
 SCREEN_PROPERTY_ID = 87
 SCREEN_PROPERTY_POWER_MODE = 88
 SCREEN_PROPERTY_MODE_COUNT = 89
 SCREEN_PROPERTY_MODE = 90
 SCREEN_PROPERTY_CLIP_POSITION = 91
 SCREEN_PROPERTY_CLIP_SIZE = 92
 SCREEN_PROPERTY_COLOR = 93
 SCREEN_PROPERTY_MOUSE_WHEEL = 94
 SCREEN_PROPERTY_CONTEXT = 95
 SCREEN_PROPERTY_DEBUG = 96
 SCREEN_PROPERTY_ALTERNATE_WINDOW = 97
 SCREEN_PROPERTY_DEVICE_COUNT = 98
 SCREEN_PROPERTY_BUFFER_POOL = 99
 SCREEN_PROPERTY_OBJECT_TYPE = 100
 SCREEN_PROPERTY_DEVICES = 101
 SCREEN_PROPERTY_KEYMAP_PAGE = 102
 SCREEN_PROPERTY_SELF_LAYOUT = 103
 SCREEN_PROPERTY_GROUP_COUNT = 104
 SCREEN_PROPERTY_GROUPS = 105
 SCREEN_PROPERTY_PIXMAP_COUNT = 106
 SCREEN_PROPERTY_PIXMAPS = 107
 SCREEN_PROPERTY_WINDOW_COUNT = 108
 SCREEN_PROPERTY_WINDOWS = 109
 SCREEN_PROPERTY_KEYMAP = 110
 SCREEN_PROPERTY_MOUSE_HORIZONTAL_WHEEL = 111
 SCREEN_PROPERTY_TOUCH_TYPE = 112
 SCREEN_PROPERTY_NATIVE_IMAGE = 113
 SCREEN_PROPERTY_SCALE_FACTOR = 114
 SCREEN_PROPERTY_DPI = 115
 SCREEN_PROPERTY_METRIC_COUNT = 116
 SCREEN_PROPERTY_METRICS = 117
 SCREEN_PROPERTY_BUTTON_COUNT = 118
 SCREEN_PROPERTY_VENDOR = 119
 SCREEN_PROPERTY_PRODUCT = 120
 SCREEN_PROPERTY_BRUSH_CLIP_POSITION = 121
 SCREEN_PROPERTY_BRUSH_CLIP_SIZE = 122
 SCREEN_PROPERTY_ANALOG0 = 123
 SCREEN_PROPERTY_ANALOG1 = 124
 SCREEN_PROPERTY_BRUSH = 125
 SCREEN_PROPERTY_TRANSFORM = 127
 SCREEN_PROPERTY_TECHNOLOGY = 129
 SCREEN_PROPERTY_REFERENCE_COLOR = 138
};

Data:

SCREEN_PROPERTY_ALPHA_MODE

A single integer that defines how alpha should be interpreted.

The alpha mode must be of type Screen alpha mode types (p. 191). When

retrieving or setting this property type, ensure that you have sufficient storage

202 © 2014, QNX Software Systems Limited

Screen Library Reference

for one integer. The following API objects have this property and share this

same definition:

• pixmap

• window

• In the configuration file, , the value of this property can be set so that

windows of a specified class will have this property initialized to the

value. The following are valid settings that can be used for this

property in graphics.conf:

• alpha-mode = pre-multipled

• alpha-mode = non-pre-multipled

SCREEN_PROPERTY_GAMMA

A single integer that indicates the gamma value of the current display; a

property of a display object.

When retrieving or setting this property type, ensure that you provide

sufficient storage for one integer.

SCREEN_PROPERTY_BRIGHTNESS

A single integer between [-255..255] that is used to adjust the brightness

of a window; a property of a window object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer. In the configuration file, graphics.conf, the value of

this property can be set so that windows of a specified class will have this

property initialized to the value. The following is the usage for setting this

property in graphics.conf:

• brightness = [brightness -255..255]

SCREEN_PROPERTY_BUFFER_COUNT

A single integer that indicates the number of buffers that were created or

attached to the window; a property of a window object.

When retrieving this property type, ensure that you have sufficient storage

for one integer. Also note that this property is local to the window object.

This means that a query for this property will not trigger a flush of the

command buffer despite that screen_get_window_property_iv() is of type

© 2014, QNX Software Systems Limited 203

General (screen.h)

flushing execution. In the configuration file, graphics.conf, the value of this

property can be set so that windows of a specified class will have this property

initialized to the value (beyond initialization, this property can only queried

and not set. The following is the usage for setting this property in

graphics.conf:

• buffer-count = [number of buffers]

SCREEN_PROPERTY_BUFFER_SIZE

A pair of integers containing the width and height, in pixels, of the buffer.

When retrieving or setting this property type, ensure that you provide

sufficient storage for two integers. The following API objects have this

property and share this same definition:

• buffer

• pixmap

• window

• In the configuration file, , the value of this property can be set so that

windows of a specified class will have this property initialized to the

value. The following is the usage for setting this property in

graphics.conf:

• surface-size [width] x [height]

SCREEN_PROPERTY_BUTTONS

A single integer which is a bitmask indicating which buttons are pressed; a

property of an event object or device object.

Note that D-pad, A, B, X, Y, Start, Select, Left, and Right are all considered

buttons on gamepads. Currently, there is no button-map on gamepads

equivalent to keymaps for keyboards. When retrieving this property type,

ensure that you provide sufficient storage for one integer. The

SCREEN_PROPERTY_BUTTONS property is applicable to the following events

and device types:

• SCREEN_EVENT_GAMEPAD

• SCREEN_EVENT_JOYSTICK

• SCREEN_EVENT_MTOUCH_TOUCH

• SCREEN_EVENT_MTOUCH_MOVE

• SCREEN_EVENT_MTOUCH_RELEASE

204 © 2014, QNX Software Systems Limited

Screen Library Reference

• SCREEN_EVENT_POINTER: In the case of a pointer, SCREEN_PROPER

TY_BUTTONSmust be a combination of type Screen mouse button types

(p. 195).

SCREEN_PROPERTY_CLASS

The name of a class as defined in the configuration file, graphics.conf; a

property of a window object.

The class specifies a set of window property and value pairs which will be

applied to the window as initial or or default values. When retrieving or

setting this property type, ensure that you have sufficient storage for a

character buffer.

SCREEN_PROPERTY_COLOR_SPACE

A single integer that indicates the color space of a buffer.

The color space must be of type Screen color space types (p. 192). The default

value is SCREEN_COLOR_SPACE_UNCORRECTED. When retrieving or setting

this property type, ensure that you have sufficient storage for one integer.

The following API objects have this property and share this same definition:

• pixmap

• window

SCREEN_PROPERTY_CONTRAST

A single integer between [-128..127] that is used to adjust the contrast of

a window; a property of a window object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer. In the configuration file, graphics.conf, the value of

this property can be set so that windows of a specified class will have this

property initialized to the value. The following is the usage for setting this

property in graphics.conf:

• contrast = [window contrast -128..127]

SCREEN_PROPERTY_DEVICE

A single integer representing the object handle for the input device that the

event came from; a property of an event object.

© 2014, QNX Software Systems Limited 205

General (screen.h)

When retrieving this property type, ensure that you provide sufficient storage

for one integer. The SCREEN_PROPERTY_DEVICE property is applicable to

the following events:

• SCREEN_EVENT_GAMEPAD

• SCREEN_EVENT_INPUT

• SCREEN_EVENT_JOG

• SCREEN_EVENT_JOYSTICK

• SCREEN_EVENT_KEYBOARD

• SCREEN_EVENT_MTOUCH_TOUCH

• SCREEN_EVENT_MTOUCH_MOVE

• SCREEN_EVENT_MTOUCH_RELEASE

• SCREEN_EVENT_POINTER

• SCREEN_EVENT_DEVICE

SCREEN_PROPERTY_DEVICE_INDEX

Deprecated:

This property has been deprecated.

Use SCREEN_PROPERTY_DEVICE instead.

SCREEN_PROPERTY_DISPLAY

A display handle.

When retrieving or setting this property type, ensure that you have sufficient

storage for one void pointer. The following API objects have this property,

each with its own variant of the definition:

• device: The display that is the focus for the specified input device. A

value of NULL indicates that the input device is focused on the default

display.

• event:

• In the case of the SCREEN_EVENT_PROPERTY event,

SCREEN_PROPERTY_DISPLAY is the property of either a device or

a window, depending on the recipient object of the event.

• In the case of the SCREEN_EVENT_DISPLAY event,

SCREEN_PROPERTY_DISPLAY is the handle of the new external

display that has been detected.

206 © 2014, QNX Software Systems Limited

Screen Library Reference

• In the case of the SCREEN_EVENT_IDLE event, SCREEN_PROPER

TY_DISPLAY is the handle of the display in which a window entered

an idle state.

• window: The display that the specified window will be shown on if the

window is visible. A value of NULL indicates that the window will be

shown on the default display. Note that setting SCREEN_PROPERTY_DIS

PLAY invalidates the pipeline. In the configuration file, graphics.conf,

the value of this property can be set so that windows of a specified class

will have its property initialized to this value. The following are valid

settings that can be used for this property in graphics.conf:

• display = internal

• display = composite

• display = svideo

• display = YPbPr

• display = rgb

• display = rgbhv

• display = dvi

• display = hdmi

• display = [display id]

SCREEN_PROPERTY_EGL_HANDLE

A handle to the EGL driver; a property of a buffer object.

When retrieving or setting this property type, ensure that you provide

sufficient storage for one void pointer.

SCREEN_PROPERTY_FLIP

A single integer that indicates whether or not the window contents are

flipped; a property of a window object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer.

SCREEN_PROPERTY_FORMAT

A single integer that indicates the pixel format of the buffer.

The format must be of type Screen pixel format types (p. 196). When retrieving

or setting this property type, ensure that you provide sufficient storage for

© 2014, QNX Software Systems Limited 207

General (screen.h)

one integer. The following API objects have this property and share this same

definition:

• buffer

• pixmap

• window

• When you set a format with alpha (e.g., SCREEN_FORMAT_RG

BA4444), the SCREEN_PROPERTY_TRANSPARENCY property is set

to SCREEN_TRANSPARENCY_SOURCE_OVER as a convenience. If

this is not your intention, then we recommend that you use a pixel

format type that disregards the alpha channel (e.g. SCREEN_FOR

MAT_RGBX4444).

• In the configuration file, graphics.conf, the value of this property can

be set so that windows of a specified class will have its property

initialized to this value. The following are valid settings that can be

used for this property in graphics.conf:

• format = byte

• format = rgba4444

• format = rgbx4444

• format = rgba5551

• format = rgbx5551

• format = rgb565

• format = rgb888

• format = rgba8888

• format = rgbx8888

• format = yvu9

• format = nv12

• format = yv12

• format = uyvy

• format = yuy2

• format = yvyu

• format = v422

• format = ayuv

• format = [pixel format type 0..16]

SCREEN_PROPERTY_FRONT_BUFFER

A handle to the last buffer of the window to have been posted; a property

of a window object.

208 © 2014, QNX Software Systems Limited

Screen Library Reference

When retrieving this property type, ensure that you have sufficient storage

for one void pointer.

SCREEN_PROPERTY_GLOBAL_ALPHA

A single integer that indicates the global alpha value to be applied to the

window; a property of a window object.

This value must be between 0 and 255. When retrieving or setting this

property type, ensure that you have sufficient storage for one integer. In the

configuration file, graphics.conf, the value of this property can be set so

that windows of a specified class will have this property initialized to the

value. The following is the usage for setting this property in graphics.conf:

• global-alpha = [global alpha 0..255]

SCREEN_PROPERTY_PIPELINE

A single integer that contains the pipeline ID; a property of a window object.

Screen uses, as much as possible, hardware layering (pipelines) for

composition. You must determine the pipelines that are on your system and

then you choose the pipeline on which you want to display a window.

Pipeline ordering and the z-ordering of windows on a layer are not related

to each other. If your application assigns pipelines manually, it must ensure

that the z-order values makes sense with regard to the pipeline order of the

target hardware. Pipeline ordering takes precedence over z-ordering

operations in Screen. Screen does not control the ordering of hardware

pipelines. It always arranges windows in the z-order specified by the

application.

If you assign a framebuffer to the top layer in a graphics configuration on a

non-composited window (which does not have the correct z-order set), your

application cannot display a new window (no matter its z-order) above the

framebuffer. The same constraint applies if you assign a framebuffer to the

bottom layer of a graphics configuration. In this case, your application cannot

display a window below the framebuffer.

Using the SCREEN_USAGE_OVERLAY flag in SCREEN_PROPERTY_USAGE

is recommended. Otherwise, Screen may ignore SCREEN_PROPER

TY_PIPELINE.

In the configuration file, graphics.conf, the value of this property can be set

so that windows of a specified class will have this property initialized to the

value. The following is the usage for setting this property in graphics.conf:

© 2014, QNX Software Systems Limited 209

General (screen.h)

• pipeline = [pipeline id]

SCREEN_PROPERTY_GROUP

The group that the API object is associated with.

When retrieving or setting this property type, ensure that you have sufficient

storage according to the definition of the property for the specific API object.

The following API objects have this property, each with its own variant of

this definition(s):

• event: The window group that is associated with the event.

SCREEN_PROPERTY_GROUP is applicable for the following events:

• SCREEN_EVENT_IDLE The pointer to a group of type screen_group_t

that has changed to idle state.

• SCREEN_EVENT_PROPERTY The pointer to a group of type

screen_group_t that has had a property changed.

• SCREEN_EVENT_CREATE The name of the group that the window

has joined. Typically this property would be relevant only to a

SCREEN_EVENT_CREATE event for a child or embedded window. For

an application window, the SCREEN_EVENT_CREATE is forwarded

to the windowing system immediately and will have no group

associated with it. However, a SCREEN_EVENT_CREATE event for a

child or embedded window does not really exist unless it is associated

with a parent (window group). Therefore, the SCREEN_EVENT_CREATE

event for a child or embedded window has a group association.

• pixmap:

• The name of the group that the pixmap is associated with when

SCREEN_PROPERTY_GROUP is used with

screen_get_pixmap_property_cv(). When retrieving this property type,

ensure that you have sufficient storage for a character buffer.

• The pointer to a group of type screen_group_t, that the pixmap is

associated with when SCREEN_PROPERTY_GROUP is used with

screen_get_pixmap_property_pv(). When retrieving this property type,

ensure that you have sufficient storage for a structure of type

screen_group_t.

• window

• The name of the group that the window has created or parented when

SCREEN_PROPERTY_GROUP is used with

screen_get_window_property_cv(). When retrieving this property type,

210 © 2014, QNX Software Systems Limited

Screen Library Reference

ensure that you have sufficient storage for a character buffer. If the

window has not created or parented a group, then this property refers

to the group that the window has joined.

• The pointer to a group of type screen_group_t, that the window has

created or parented when SCREEN_PROPERTY_GROUP is used with

screen_get_window_property_pv(). When retrieving this property type,

ensure that you have sufficient storage for a for a structure of type

screen_group_t. If the window has not created or parented a group,

then this property refers to the group that the window has joined.

SCREEN_PROPERTY_HUE

A single integer between [-128..127] that is used to adjust the hue of a

window; a property of a window object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer. In the configuration file, graphics.conf, the value of

this property can be set so that windows of a specified class will have this

property initialized to the value. The following is the usage for setting this

property in graphics.conf:

• hue = [global alpha -128..127]

SCREEN_PROPERTY_ID_STRING

A string that can be used by window manager or parent to identify the

contents of the specified API object.

When retrieving or setting this property type, ensure that you provide a

character buffer. The following API objects have this property and share this

same definition:

• device

• display (SCREEN_PROPERTY_ID_STRING can only be retrieved and not

set for a display object)

• pixmap

• window

• In the configuration file, graphics.conf, the value of this property can

be set so that windows of a specified class will have this property

initialized to the value. The following is the usage for setting this

property in graphics.conf:

• id_string = [string]

© 2014, QNX Software Systems Limited 211

General (screen.h)

SCREEN_PROPERTY_INPUT_VALUE

A single integer that indicates the input value associated with the specific

event; a property of an event object.

When retrieving or setting this property type, ensure that you provide

sufficient storage for one integer. SCREEN_PROPERTY_INPUT_VALUE is

applicable only to a SCREEN_EVENT_INPUT event.

SCREEN_PROPERTY_INTERLACED

A single integer that indicates whether or not the buffer contains interlaced

fields instead of progressive data; a property of a buffer object.

When retrieving or setting this property type, ensure that you provide

sufficient storage for one integer.

SCREEN_PROPERTY_JOG_COUNT

A single integer that indicates the jog count associated with the specific

event; a property of an event object.

When retrieving or setting this property type, ensure that you provide

sufficient storage for one integer. SCREEN_PROPERTY_JOG_COUNT is

applicable only to a SCREEN_EVENT_JOG event.

SCREEN_PROPERTY_KEY_CAP

A single integer that indicates the keyboard cap associated with the specific

event; a property of an event object.

When retrieving or setting this property type, ensure that you provide

sufficient storage for one integer. SCREEN_PROPERTY_KEY_CAP is

applicable only to a SCREEN_EVENT_KEYBOARD event.

SCREEN_PROPERTY_KEY_FLAGS

A single integer that indicates the keyboard flags associated with the specific

event; a property of an event object.

When retrieving or setting this property type, ensure that you provide

sufficient storage for one integer. SCREEN_PROPERTY_KEY_FLAGS is

applicable only only to a SCREEN_EVENT_KEYBOARD event.

212 © 2014, QNX Software Systems Limited

Screen Library Reference

SCREEN_PROPERTY_KEY_MODIFIERS

A single integer that indicates the keyboard modifiers associated with the

specific API object.

When retrieving or setting this property type, ensure that you provide

sufficient storage for one integer. The following API objects have this property

and share this same definition:

• display(SCREEN_PROPERTY_KEY_MODIFIERS can only be retrieved

and not set for a display object)

• device(SCREEN_PROPERTY_KEY_MODIFIERS can only be retrieved and

not set for a device object)

• event: This is only applicable for the following events:

• SCREEN_EVENT_MTOUCH_TOUCH

• SCREEN_EVENT_MTOUCH_MOVE

• SCREEN_EVENT_MTOUCH_RELEASE

• SCREEN_EVENT_POINTER

• SCREEN_EVENT_KEYBOARD

• SCREEN_EVENT_GAMEPAD

• SCREEN_EVENT_JOYSTICK

SCREEN_PROPERTY_KEY_SCAN

A single integer that indicates the keyboard scan associated with the specific

event; a property of an event object.

When retrieving or setting this property type, ensure that you provide

sufficient storage for one integer. SCREEN_PROPERTY_KEY_SCAN is

applicable only to a SCREEN_EVENT_KEYBOARD event.

SCREEN_PROPERTY_KEY_SYM

A single integer that indicates the keyboard symbols associated with the

specific event; a property of an event object.

When retrieving or setting this property type, ensure that you provide

sufficient storage for one integer. SCREEN_PROPERTY_KEY_SYM is

applicable only to a SCREEN_EVENT_KEYBOARD event.

SCREEN_PROPERTY_MIRROR

© 2014, QNX Software Systems Limited 213

General (screen.h)

A single integer (0 or 1) that indicates whether or not contents of the API

object are mirrored (flipped horizontally); a property of a window object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer.

SCREEN_PROPERTY_NAME

A single integer containing the name of the window group.

When retrieving or setting this property type, ensure you provide sufficient

storage a character buffer. The following API objects have this property, and

share this same definition:

• event (Applicable only to a SCREEN_EVENT_PROPERTY event)

• group

SCREEN_PROPERTY_OWNER_PID

A single integer that indicates the process id of the process responsible for

creating the window; a property of a window object.

This property can be used by window managers to identify windows. When

retrieving this property type, ensure that you have sufficient storage for one

integer.

SCREEN_PROPERTY_PHYSICALLY_CONTIGUOUS

A single integer that indicates whether or not the buffer is physically

contiguous; a property of a buffer object.

When retrieving or setting this property type, ensure you provide sufficient

storage for one integer.

SCREEN_PROPERTY_PLANAR_OFFSETS

Three integers that provide the offset from the base address for each of the

Y, U and V components of planar YUV formats; a property of a buffer object.

When retrieving or setting this property type, ensure that you have sufficient

storage for three integers.

SCREEN_PROPERTY_POINTER

214 © 2014, QNX Software Systems Limited

Screen Library Reference

A pointer that can be used by software renderers to read from and/or write

to the buffer; a property of a buffer object.

When this property is used, ensure that you provide sufficient storage space

for one void pointer. The buffer must have been realized with a usage

containing SCREEN_USAGE_READ and/or SCREEN_USAGE_WRITE for this

property to be a valid pointer.

SCREEN_PROPERTY_POSITION

Integers that define position of the screen coordinates of the related API

object.

The following API objects have this property, each with its own variant of

this definition:

• event: The x and y values for the contact point of the mtouch or pointer.

When retrieving or setting this property type, ensure that you have

sufficient storage for two integers. This is only applicable for the following

events:

• SCREEN_EVENT_MTOUCH_TOUCH

• SCREEN_EVENT_MTOUCH_MOVE

• SCREEN_EVENT_MTOUCH_RELEASE

• SCREEN_EVENT_POINTER

• window: The x and y positions of the window screen coordinates.

Remember that the position of child and embedded windows are relative

to the parent window. For example, if the position of the application

window is {10, 10} and the position of the child window is {10, 10}, then

the position of the child window on the screen is actually {20, 20}. When

retrieving or setting this property type, ensure that you have sufficient

storage for two integers. In the configuration file, , the value of this

property can be set so that windows of a specified class will have this

property initialized to the value. The following is the usage for setting

this property in graphics.conf:

• window-position = [x-position] , [y-position]

SCREEN_PROPERTY_PROTECTED

A single integer that specifies whether or not there is protection for the

buffer; a property of a buffer object.

© 2014, QNX Software Systems Limited 215

General (screen.h)

The content of the buffer will not be displayed unless there is a secure link

present. Operations on the buffer such as reading from, writing to, or mapping

a region of the buffer to a different address space will be prohibited. Note

that setting protection on a buffer does not invoke a request for

authentication. Typically, the window that owns the buffer will have its

window property, SCREEN_PROPERTY_PROTECTION_ENABLE, set. The

request for authentication will be made when the window is posted and its

SCREEN_PROPERTY_VISIBLE property indicates that the window is visible.

When retrieving or setting this property type, ensure that you provide

sufficient storage for one integer.

SCREEN_PROPERTY_RENDER_BUFFERS

A handle to the buffer or buffers available for rendering.

When retrieving this property type, ensure that you provide sufficient storage

according to the API object type. The following API objects have this property,

each with its own variant of this definition:

• pixmap: Only one buffer is allowed for a pixmap object. When retrieving

SCREEN_PROPERTY_RENDER_BUFFERS for a pixmap object, ensure

that you have sufficient storage for one void pointer.

• window: Multiple buffers may be available for rendering for a window

object. When retrieving SCREEN_PROPERTY_RENDER_BUFFERS for a

window, ensure that you have sufficient storage for one void pointer for

each available buffer. Use the window property SCREEN_PROPERTY_REN

DER_BUFFER_COUNT to determine the number of buffers that are

available for rendering.

SCREEN_PROPERTY_ROTATION

A single integer that defines the current rotation of the API object.

When retrieving or setting this property type, ensure that you provide

sufficient storage for one integer. The following API objects have this

property, each with its own variant of this definition:

• display: The current rotation of the display. The rotation value is one of:

0, 90, 180, 270 degrees clockwise. It's used for the positioning and

sizing of the display. Changing the display rotation, does not implicitly

change any window properties.

• window: The current rotation of the window. Window rotation is absolute.

In the configuration file, graphics.conf, the value of this property can be

216 © 2014, QNX Software Systems Limited

Screen Library Reference

set so that windows of a specified class will have this property initialized

to the value. The following is the usage for setting this property in

graphics.conf:

• rotation = [rotation 0, 90, 180, 270]

SCREEN_PROPERTY_SATURATION

A single integer between [-128..127] that is used to adjust the saturation

of a window; a property of a window object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer. In the configuration file, graphics.conf, the value of

this property can be set so that windows of a specified class will have its

property initialized to this value. The following is the usage for setting this

property in graphics.conf:

• saturation = [saturation -128..127]

SCREEN_PROPERTY_SIZE

The size of the associated API object.

When retrieving or setting this property type, ensure that you provide

sufficient storage according to the API object. The following API objects

have this property, each with its own variant of this definition:

• buffer: A single integer that indicates the size, in bytes, of the buffer.

When retrieving or setting this property type, ensure that you have

sufficient storage for one integer.

• display: A pair of integers that define the width and height, in pixels, of

the current video resolution. When retrieving this property type, ensure

that you have sufficient storage for two integers. Note that the display

size changes with the display rotation. For example, if the video mode is

1024x768 and the rotation is 0 degrees, the display size will indicate

1024x768. When the display rotation is set to 90 degrees, the display

size will become 768x1024. (SCREEN_PROPERTY_SIZE can only be

retrieved and not set for a display object)

• event: A pair of integers that define the width and height, in pixels, of

the touch or contact area. This is only applicable for the following events:

• SCREEN_EVENT_MTOUCH_TOUCH

• SCREEN_EVENT_MTOUCH_MOVE

• SCREEN_EVENT_MTOUCH_RELEASE

© 2014, QNX Software Systems Limited 217

General (screen.h)

• window: A pair of integers that define the width and height, in pixels, of

the window. When retrieving this property type, ensure that you have

sufficient storage for two integers. In the configuration file, graphics.conf,

the value of this property can be set so that windows of a specified class

will have this property initialized to the value. The following is the usage

for setting this property in graphics.conf:

• window-size = [width] x [height]

SCREEN_PROPERTY_SOURCE_POSITION

A pair of integers that define the x-and y- position of a source viewport within

the window buffers.

When retrieving or setting this property type, ensure that you have sufficient

storage for two integers. The following API objects have this property, each

with its own variant of this defnition:

• event: This is only applicable for the following events:

• SCREEN_EVENT_MTOUCH_TOUCH

• SCREEN_EVENT_MTOUCH_MOVE

• SCREEN_EVENT_MTOUCH_RELEASE

• SCREEN_EVENT_POINTER

• window: The x and y coordinates of the top left corner of a rectangular

region within the window buffer representing the source viewport of the

window. This is the portion of the window buffer that is to be displayed.

In the configuration file, graphics.conf, the value of this property can be

set so that windows of a specified class will have this property initialized

to the value. The following is the usage for setting this property in

graphics.conf:

• source-position = [x-position], [y-position]

SCREEN_PROPERTY_SOURCE_SIZE

A pair of integers that define the width and height, pixels, of a source

viewport within the window buffers.

When retrieving or setting this property type, ensure that you have sufficient

storage for two integers. The following API objects have this property, each

with its own variant of this definition:

• event: This is only applicable for the following events:

218 © 2014, QNX Software Systems Limited

Screen Library Reference

SCREEN_EVENT_MTOUCH_TOUCH•

• SCREEN_EVENT_MTOUCH_MOVE

• SCREEN_EVENT_MTOUCH_RELEASE

• window: The width and height of a rectangular region within the window

buffer representing the source viewport of the window. This is the portion

of the window buffer that is to be displayed. In the configuration file,

graphics.conf, the value of this property can be set so that windows of a

specified class will have this property initialized to the value. The

following is the usage for setting this property in graphics.conf:

• source-size = [width] x [height]

SCREEN_PROPERTY_STATIC

A single integer that indicates whether or not the contents of a window are

expected to change; a property of a window object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer. In the configuration file, graphics.conf, the value of

this property can be set so that windows of a specified class will have this

property initialized to the value. The following is the usage for setting this

property in graphics.conf:

• static = [static 0,1]

SCREEN_PROPERTY_STRIDE

A single integer that indicates the number of bytes between the same pixels

on adjacent rows; a property of a buffer object.

When retrieving or setting this property type, ensure that you provide

sufficient storage for one integer.

SCREEN_PROPERTY_SWAP_INTERVAL

A single integer that specifies the minimum number of vsync periods between

posts; a property of a window object, When retrieving or setting this property

type, ensure that you have sufficient storage for one integer.

In the configuration file, graphics.conf, the value of this property can be set

so that windows of a specified class will have this property initialized to the

value. The following is the usage for setting this property in graphics.conf:

• interval = [swap interval]

© 2014, QNX Software Systems Limited 219

General (screen.h)

SCREEN_PROPERTY_TRANSPARENCY

A single integer that defines the transparency type of an API object.

The following API objects have this property, each with its own variant of

this definition:

• display: How multiple layers are combined. The transparencies that are

applicable to a display object are:

• SCREEN_TRANSPARENCY_SOURCE_COLOR

• SCREEN_TRANSPARENCY_SOURCE_OVER

When retrieving this property type for a display object, ensure that you

have sufficient storage for one integer.

• window How the alpha channel of the window is used to combine a

window with other windows or the background color underneath it.

Although the window transparency property can be set, the actual

transparency applied is dependent on hardware. If the hardware supports

it, the transparency specified by this property will be applied, otherwise

a best effort algorithm will be used to apply the window transparency.

Transparency must be of the type Screen transparency types (p. 251).

When retrieving or setting this property type, ensure that you have

sufficient storage for one integer. This property is set to

SCREEN_TRANSPARENCY_SOURCE_OVER as a convenience when you

set SCREEN_PROPERTY_FORMAT to a format with alpha (e.g.,

SCREEN_FORMAT_RGBA4444). Therefore, if this is not your intention,

then we recommend that you use a pixel format type that disregards the

alpha channel (e.g. SCREEN_FORMAT_RGBX4444).

SCREEN_PROPERTY_TYPE

A single integer that indicates the type of the specified buffer object.

When retrieving this property type, ensure that you provide sufficient storage

for one integer. The following API objects have this property, each with its

own variant of this definition:

• device: The type of input device. Valid input device types are:

• SCREEN_EVENT_POINTER

• SCREEN_EVENT_KEYBOARD

• SCREEN_EVENT_GAMEPAD

• SCREEN_EVENT_JOYSTICK

• SCREEN_EVENT_MTOUCH_TOUCH

220 © 2014, QNX Software Systems Limited

Screen Library Reference

• display: The type of display port. Valid display ports must be of type

Screen display types (p. 316).

• event: The type of event. Valid event types must be of type Screen event

types (p. 334).

• window: The type of window. Valid window types must be of type Screen

window types (p. 395).

SCREEN_PROPERTY_USAGE

A single integer that is a bitmask indicating the intended usage for the

buffers associated with the API object.

The default usage for a buffer is SCREEN_USAGE_READ|SCREEN_US

AGE_WRITE. SCREEN_PROPERTY_USAGE must be a combination of type

Screen usage flag types (p. 252). When retrieving or setting this property

type, ensure that you have sufficient storage for one integer. Note that

changing SCREEN_PROPERTY_USAGE affects the pipeline when the overlay

usage bit (SCREEN_USAGE_OVERLAY) is added or removed. The following

API objects have this property, and share the same definition:

• pixmap

• window

• In the configuration file, graphics.conf, the value of this property can

be set so that windows of a specified class will have this property

initialized to this value. The following are valid usage flags and their

implications that you can use to set this property in graphics.conf:

• sw (read or write)

• gles1 (OpenGL 1.X)

• gles2 (OpenGL 2.X)

• vg (OpenVG)

• native (native API operations such as blits or fills)

• rotation (re-configure orientation without re-allocation)

• The following is the usage for setting this property in graphics.conf:

• usage = [usage flag1, usage flag2, ...]

• e.g., usage = sw, gles1

SCREEN_PROPERTY_USER_DATA

© 2014, QNX Software Systems Limited 221

General (screen.h)

Four integers containing data associated with the user; a property of an event

object.

SCREEN_PROPERTY_USER_DATA can be queried or set in association with

an event of type SCREEN_EVENT_USER. When retrieving or setting this

property type, ensure that you have sufficient storage for four integers.

SCREEN_PROPERTY_USER_HANDLE

A handle that is passed to the application window when events are associated

with the window; a handle to an object to associate the API object with user

data.

When retrieving or setting this property type, ensure that you have sufficient

storage for one void pointer. The following API objects have this property,

and share this same definition:

• device

• group

• window

SCREEN_PROPERTY_VISIBLE

A single integer that specifies whether or not the window is visible; a property

of a window object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer. In the configuration file, , the value of this property

can be set so that windows of a specified class will have this property

initialized to the value. The following are valid settings that can be used for

this property in graphics.conf:

• visible = true

• visible = false

SCREEN_PROPERTY_WINDOW

A pointer to a window.

When retrieving or setting this property type, ensure that you have sufficient

storage for one void pointer. The following API objects have this property,

each with its own variant of this definition:

• device The window on which the input device is focused. All input from

the device will be directed to this particular window.

222 © 2014, QNX Software Systems Limited

Screen Library Reference

• event (SCREEN_PROPERTY_WINDOW can only be retrieved and not set

for an event object)For the following events, SCREEN_PROPERTY_WINDOW

refers to the window associated with the event:

• SCREEN_EVENT_CREATE

• SCREEN_EVENT_POST

• SCREEN_EVENT_CLOSE

• SCREEN_EVENT_UNREALIZE

For the following events, SCREEN_PROPERTY_WINDOW refers to the

window associated with the input device for which the event is intended:

• SCREEN_EVENT_GAMEPAD

• SCREEN_EVENT_JOYSTICK

• SCREEN_EVENT_KEYBOARD

• SCREEN_EVENT_MTOUCH_TOUCH

• SCREEN_EVENT_MTOUCH_MOVE

• SCREEN_EVENT_MTOUCH_RELEASE

• SCREEN_EVENT_POINTER

For the following event, SCREEN_PROPERTY_WINDOW refers to the

window whose property is being set:

• SCREEN_EVENT_PROPERTY

SCREEN_PROPERTY_RENDER_BUFFER_COUNT

A single integer that indicates he number of render buffers associated with

the window; a property of a window object.

When retrieving this property type, ensure that you have sufficient storage

for one integer.

SCREEN_PROPERTY_ZORDER

A single integer that indicates the distance from the bottom that is used

when ordering window groups amongst each other; a property of a window

object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer. In the configuration file, graphics.conf, the value of

this property can be set so that windows of a specified class will have this

property initialized to the value. The following is the usage for setting this

property in graphics.conf:

© 2014, QNX Software Systems Limited 223

General (screen.h)

• order = [zorder]

SCREEN_PROPERTY_PHYSICAL_ADDRESS

A single long long integer that corresponds to the physical address of the

buffer; a property of a buffer object.

This property is only valid when the buffer is physically contiguous. When

retrieving or setting this property type, ensure that you provide sufficient

storage for one long integer.

SCREEN_PROPERTY_SCALE_QUALITY

A single integer that indicates the amount of filtering performed by the

windowing system when scaling is required to draw the window; a property

of a window object.

The scale quality must be of type Screen scale quality types (p. 245). When

retrieving or setting this property type, ensure that you have sufficient storage

for one integer.

SCREEN_PROPERTY_SENSITIVITY

A single integer that indicates the window input behavior; a property of a

window object.

The sensitivity must be of type Screen sensitivity types (p. 249) or an integer

that is a bitmask combination of Screen sensitivity masks (p. 246). When

retrieving or setting this property type, ensure that you have sufficient storage

for one integer.

SCREEN_PROPERTY_MIRROR_MODE

A single integer that defines whether or not the display is currently in mirror

mode.

Mirror mode indicates that the internal and external displays display the

same signal. When retrieving or setting this property type, ensure that you

have sufficient storage for one integer. The following API objects have this

property, and share this same definition:

• display

• event (Applicable only to a SCREEN_EVENT_DISPLAY event)

224 © 2014, QNX Software Systems Limited

Screen Library Reference

SCREEN_PROPERTY_DISPLAY_COUNT

A single integer containing the number of displays associated with this

context; a property of a context object.

When retrieving this property type, ensure that you have sufficient storage

for one integer.

SCREEN_PROPERTY_DISPLAYS

An array of display pointers; a property of a context object.

When retrieving this property type, ensure that you have sufficient storage

for one void pointer for each display. Retrieve the SCREEN_PROPERTY_DIS

PLAY_COUNT property to find out how many displays are associated with

this context; Once you know the number of displays, you can allocate

sufficient storage to retrieve SCREEN_PROPERTY_DISPLAYS.

SCREEN_PROPERTY_CBABC_MODE

A single integer that indicates what the window content is; a property of a

window object.

The content mode must be of type Screen content mode types (p. 190). When

getting or setting this property type, ensure that you have sufficient storage

for one integer. In the configuration file, graphics.conf, the value of this

property can be set so that windows of a specified class will have this property

initialized to the value. The following are valid settings that can be used for

this property in graphics.conf:

• cbabc = none

• cbabc = video

• cbabc = ui

• cbabc = photo

SCREEN_PROPERTY_EFFECT

A single integer that indicates the effect associated with the specific event;

a property of an event object.

Effects must be of type Screen effect types. When retrieving or setting this

property type, ensure that you have sufficient storage for one integer. This

property is only applicable for a SCREEN_EVENT_EFFECT_COMPLETE event.

© 2014, QNX Software Systems Limited 225

General (screen.h)

SCREEN_PROPERTY_FLOATING

A single integer that indicates whether or not the window is a floating window;

a property of a window object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer.

SCREEN_PROPERTY_ATTACHED

A single integer that indicates whether or not the display is currently

attached.

When retrieving or setting this property type, ensure you have sufficient

storage for one integer. The following API objects have this property, each

with its own variant of this definition:

• display: Indicates whether or not the display is connected. Display objects

may exist in a context, but are not considered connected until they are

attached.

• event:

• In the case of the SCREEN_EVENT_DISPLAY event, this indicates

that a display has changed its state; the display has either connected

or disconnected.

• In the case of the SCREEN_EVENT_DEVICE event, this indicates that

either a new device has been created and is now conntected, or that

a device has disconnected and been deleted. Unlike displays, device

objects only exist in a context if they are attached. (SCREEN_PROP

ERTY_ATTACHED can only be retrieved and not set for device event.)

SCREEN_PROPERTY_DETACHABLE

A single integer that indicates whether or not the display can be detached;

a property of a display object.

When retrieving this property type, ensure that you have sufficient storage

for one integer.

SCREEN_PROPERTY_NATIVE_RESOLUTION

A pair of integers that define the width and height of the native video

resolution; a property of a display object.

226 © 2014, QNX Software Systems Limited

Screen Library Reference

When retrieving this property type, ensure that you have sufficient storage

for two integers.

SCREEN_PROPERTY_PROTECTION_ENABLE

A single integer that indicates whether or not content protection is enabled

for the API object.

You require a secure link in order to have protection enabled. When retrieving

or setting this property type, ensure that you have sufficient storage for one

integer. The following API objects have this property, each with its own

variant of this definition:

• display: Indicates whether or not content protection is needed for the

window(s) on the display. Content protection is considered enabled as

long as one window on the display has its content protection enabled

and its SCREEN_PROPERTY_VISIBLE property indicates that the window

is visible. The SCREEN_PROPERTY_PROTECTION_ENABLE property of

a display is dynamic; its value depends on the SCREEN_PROPERTY_PRO

TECTION_ENABLE property of the window(s) that are on the display.

SCREEN_PROPERTY_PROTECTION_ENABLE can only be retrieved and

not set for a display object.

• window: Indicates whether or not authentication is to be requested before

the content of the window can be displayed. Authentication is requested

when the window is posted and its SCREEN_PROPERTY_VISIBLE

property indicates that the window is visible.

• event: (Applicable only to a SCREEN_EVENT_DISPLAY event) Indicates

that a disabling of content protection is detected. This is likely due to

the loss of a secure link to the display.

SCREEN_PROPERTY_SOURCE_CLIP_POSITION

A pair of integers that define the x- and y- position of a clipped source

rectangular viewport within the window buffers; a property of a window

object.

When retrieving or setting this property type, ensure that you have sufficient

storage for two integers.

SCREEN_PROPERTY_PHYSICAL_SIZE

A pair of integers that define the width and height, in millimeters, of the

display; a property of a display object.

© 2014, QNX Software Systems Limited 227

General (screen.h)

When retrieving this property type, ensure that you have sufficient storage

for two integers.

SCREEN_PROPERTY_FORMAT_COUNT

A single integer that indicates the number of formats that the display

supports; a property of a display object.

When retrieving this property type, ensure that you have sufficient storage

for at least one integer.

SCREEN_PROPERTY_FORMATS

An array of integers of size SCREEN_PROPERTY_FORMAT_COUNT that

defines the formats supported by the display; a property of a display object.

If the display has many layers, the list is the union of all the formats

supported on all layers. Formats are of type Screen pixel format types (p.

196). When retrieving this property type, ensure that you have sufficient

storage for one integer.

SCREEN_PROPERTY_SOURCE_CLIP_SIZE

A pair of integers that define the width and height, in pixels, of a clipped

source rectangular viewport within he window buffers; a property of a window

object.

When retrieving or setting this property type, ensure that you have sufficient

storage for two integers.

SCREEN_PROPERTY_TOUCH_ID

A single integer that indicates the multi-touch contact id associated with

the specific event; a property of an event object.

When retrieving this property type, ensure that you have sufficient storage

for one integer.

SCREEN_PROPERTY_VIEWPORT_POSITION

A pair of integers that define the x and y position of a rectangular region

within the API object.

228 © 2014, QNX Software Systems Limited

Screen Library Reference

When retrieving or setting this property type, ensure that you have sufficient

storage for two integers. The following API objects have this property, each

with its own variant of this definition:

• display: The x and y coordinates of the top left corner of a rectangular

region within the display that is intended to be mapped to and redrawn

to the display. In order for you to access this display property, you need

to be working within a privileged context. That is, a the context in which

you are accessing this display property must have been created with at

least the bit mask of SCREEN_DISPLAY_MANAGER_CONTEXT.

• window: The x and y coordinates of the top left corner of a virtual viewport.

The virtual viewport is typically used to achieve the effect of scrolling or

panning a source whose size is larger than the size of your window buffer.

SCREEN_PROPERTY_VIEWPORT_SIZE

A pair of integers that define the width and height of a rectangular region

within the API object.

When retrieving or setting this property type, ensure that you have sufficient

storage for two integers. The following API objects have this property, each

with its own variant of this definition:

• display: The width and height, in pixels, of a rectangular region within

the display that is intended to be mapped to and redrawn to the display.

In order for you to access this display property, you need to be working

within a privileged context. That is, a the context in which you are

accessing this display property must have been created with at least the

bit mask of SCREEN_DISPLAY_MANAGER_CONTEXT.

• window: The width and height, in pixels, of a virtual viewport. The virtual

viewport is typically used to achieve the effect of scrolling or panning a

source whose size is larger than the size of your window buffer.

SCREEN_PROPERTY_TOUCH_ORIENTATION

A single integer that indicates the multi-touch orientation associated with

the specific event; a property of an event object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer. This property is only applicable for the following

events:

• SCREEN_EVENT_MTOUCH_TOUCH

• SCREEN_EVENT_MTOUCH_MOVE

© 2014, QNX Software Systems Limited 229

General (screen.h)

• SCREEN_EVENT_MTOUCH_RELEASE

SCREEN_PROPERTY_TOUCH_PRESSURE

A single integer that indicates the multi-touch pressure associated with the

specific event; a property of an event object.

When retrieving or setting this property type, ensure that you have sufficient

storage or one integer. This property is only applicable for the following

events: events:

• SCREEN_EVENT_MTOUCH_TOUCH

• SCREEN_EVENT_MTOUCH_MOVE

• SCREEN_EVENT_MTOUCH_RELEASE

SCREEN_PROPERTY_TIMESTAMP

A single long long integer that indicates a timestamp associated with the

API object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one long long integer. It is important to note that screen uses

the realtime clock and not the monotonic clock when calculating the

timestamp. The following API objects have this property, each with its own

variant of this definition:

• event: The timestamp at which the event was received by screen

(SCREEN_PROPERTY_TIMESTAMP can only be retrieved and not set for

an event object).

• window: The timestamp to indicate the start of a frame. This timestamp

can be used by the application to measure the elapsed time taken to

perform functions of interest. For example, the application can measure

the time between when the timestamap is set and when the window is

posted (e.g., when OpenGL swap buffers). This timestamp allows for the

application to track CPU time. The application can set the timestamp to

any specific time. Then, the application uses the

screen_get_window_property_llv() function to retrieve the

SCREEN_PROPERTY_METRICS property of the window to look at the

timestamp for comparison to the set timestamp.

SCREEN_PROPERTY_SEQUENCE_ID

A single integer that indicates the the multi-touch sequence id associated

with the specific event; a property of a Screen API event object.

230 © 2014, QNX Software Systems Limited

Screen Library Reference

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer. This property is only applicable for the following

events:

• SCREEN_EVENT_MTOUCH_TOUCH

• SCREEN_EVENT_MTOUCH_MOVE

• SCREEN_EVENT_MTOUCH_RELEASE

• SCREEN_EVENT_KEYBOARD

SCREEN_PROPERTY_IDLE_MODE

A single integer indicating the idle mode of the window; a property of a

window object.

The idle mode must be of type Screen idle mode types (p. 193). When

retrieving or setting this property type, ensure that you have sufficient storage

for one integer.

SCREEN_PROPERTY_IDLE_STATE

A single integer that indicates the idle state of the API object.

The idle state will be 1 if the system is idle, indicating that no input was

received after the idle timeout period (SCREEN_PROPERTY_IDLE_TIME

OUT). The idle state will be 0, if an input event was received prior to the

idle timeout period expiring. When retrieving this property type, ensure that

you have sufficient storage for one integer. The following API objects have

this property, each sharing a similiar definition:

• display: The idle state that is applicable to the entire display.

• event (Applicable only to a SCREEN_EVENT_IDLE event): Indicates that

an idle state change has taken place for either a display or group object.

Query the SCREEN_PROPERTY_OBJECT_TYPE property of the event to

determine the object type of this event.

• group : The idle state that is applicable to only the group. A group is

considered in idle state if none of the windows that are part of the group

have received input after the idle timeout period for the group.

SCREEN_PROPERTY_KEEP_AWAKES

A single integer that indicates the number of windows with an idle mode of

type SCREEN_IDLE_MODE_KEEP_AWAKE that are visible on a display; a

property of a display object.

© 2014, QNX Software Systems Limited 231

General (screen.h)

When retrieving this property type, ensure that you have sufficient storage

for one integer.

SCREEN_PROPERTY_IDLE_TIMEOUT

A single long long integer that indicates the amount of time, in seconds,

after which the system will enter an idle state.

When retrieving or setting this property type, ensure that you have sufficient

storage for one long long integer. The following API objects have this property,

each sharing a similar definition:

• context: The amount of time after which the display of the context will

enter an idle state.

• display: The amount of time after which the display will enter an idle

state.

• group: The amount of time after which the group will enter in an idle

state.

SCREEN_PROPERTY_KEYBOARD_FOCUS

A window handle which corresponds to the window that currently has

keyboard focus.

When retrieving or setting this property type, ensure that you have sufficient

storage according to the definition of the property for the specific API object.

The following API objects have this property, each with its own variant of

this definition:

• context: A handle to the top-level window (application window) on the

display that currently has the keyboard focus. You must be working within

a privileged context of type SCREEN_WINDOW_MANAGER_CONTEXT to

be able to set this property.

• display: A handle to the top-level window (application window) on the

display that currently has the keyboard focus. You must be working within

a privileged context of type SCREEN_WINDOW_MANAGER_CONTEXT to

be able to set this property.

• group: A handle to the immediate window in the group that currently has

the keyboard focus. You must be the owner of the group, screen_group_t,

to be able to set this property.

• window: A single integer that indicates whether or not the window

currently has the keyboard focus. (SCREEN_PROPERTY_KEYBOARD_FO

CUS can only be retrieved and not set for a window object)

232 © 2014, QNX Software Systems Limited

Screen Library Reference

SCREEN_PROPERTY_MTOUCH_FOCUS

A window handle which corresponds to the window that currently has mtouch

focus.

When retrieving or setting this property type, ensure that you have sufficient

storage for one void pointer. The following API objects have this property,

each with its own variant of this definition:

• context: A handle to the top-level window (application window) on the

display that currently has the mtouch focus. You must be working within

a privileged context of type SCREEN_WINDOW_MANAGER_CONTEXT to

be able to set this property.

• display: A handle to the top-level window (application window) on the

display that currently has the mtouch focus. You must be working within

a privileged context of type SCREEN_WINDOW_MANAGER_CONTEXT to

be able to set this property.

• group: A handle to the immediate window in the group that currently has

the mtouch focus. You must be the owner of the group, screen_group_t,

to be able to set this property.

SCREEN_PROPERTY_POINTER_FOCUS

A window handle which corresponds to the window that currently has pointer

focus.

When etrieving or setting this property type, ensure that you have sufficient

storage for one void pointer. The following API objects have this property,

each with its own variant of this definition:

• context: A handle to the top-level window (application window) on the

display that currently has the pointer focus. You must be working within

a privileged context of type SCREEN_WINDOW_MANAGER_CONTEXT to

be able to set this property.

• display: A handle to the top-level window (application window) on the

display that currently has the pointer focus. You must be working within

a privileged context of type SCREEN_WINDOW_MANAGER_CONTEXT to

be able to set this property.

• group: A handle to the immediate window in the group that currently has

the pointer focus. You must be the owner of the group, screen_group_t,

to be able to set this property.

SCREEN_PROPERTY_ID

© 2014, QNX Software Systems Limited 233

General (screen.h)

A single integer that indicates the identification of the display; a property

of a display object.

When retrieving this property type, ensure that you have sufficient storage

for one integer.

SCREEN_PROPERTY_POWER_MODE

A single integer that defines the power mode.

Power modes must be of type Screen power mode types (p. 199). When

retrieving or setting this property type, ensure that you have sufficient storage

for one integer. The following API objects have this property, and share this

same definition:

• device

• display

SCREEN_PROPERTY_MODE_COUNT

A single integer that indicates the number of modes supported by the display;

a property of display object.

When retrieving this property type, ensure that you have sufficient storage

for one integer.

SCREEN_PROPERTY_MODE

A pointer to a structure of type screen_display_mode_t whose content is

based on the current video mode.

When retrieving or setting this property type, ensure that you have sufficient

storage for screen_display_mode_t for each mode. Retrieve the

SCREEN_PROPERTY_MODE_COUNT property to find out how many modes

are supported by this display; Once you know the number of displays, you

can allocate sufficient storage to retrieve SCREEN_PROPERTY_MODE. When

setting this property type, you can pass SCREEN_MODE_PREFERRED_INDEX

to fall back to the default video mode without having to first query all the

modes supported by the display to find the one with SCREEN_MODE_PRE

FERRED set in flags of screen_display_mode_t. The following API objects

have this property, and share this same definition:

• display

• event (Applicable only to a SCREEN_EVENT_DISPLAY event)

234 © 2014, QNX Software Systems Limited

Screen Library Reference

SCREEN_PROPERTY_CLIP_POSITION

A pair of integers that define the x- and y- position of a clipped rectangular

viewport within the window buffers; a property of a window object.

When retrieving or setting this property type, ensure that you have sufficient

storage for two integers. In the configuration file, graphics.conf, the value

of this property can be set so that windows of a specified class will have this

property initialized to the value. The following is the usage for setting this

property in graphics.conf:

• clip-position = [x-position], [y-position]

SCREEN_PROPERTY_CLIP_SIZE

A pair of integers that define the width and height , in pixels, of a clipped

rectangular viewport within the window buffers; a property of a window

object.

When retrieving or setting this property type, ensure that you have sufficient

storage for two integers. In the configuration file, graphics.conf, the value

of this property can be set so that windows of a specified class will have this

property initialized to the value. The following is the usage for setting this

property in graphics.conf:

• clip-size = [width] x [height]

SCREEN_PROPERTY_COLOR

A single integer that indicates the background color of the window; a property

of a window object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer. In the configuration file, graphics.conf, the value of

this property can be set so that windows of a specified class will have this

property initialized to the value. The following is the usage for setting this

property in graphics.conf:

• color = [window background color]

SCREEN_PROPERTY_MOUSE_WHEEL

A single integer that indicates the number and direction of mouse wheel

ticks in a vertical direction; a property of an event object.

© 2014, QNX Software Systems Limited 235

General (screen.h)

Wheel ticks in an upward direction are indicated by a negative (-) number,

while those in the downward direction are indicated by a positive (+) one.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer. This property is only applicable for a

SCREEN_EVENT_POINTER event.

SCREEN_PROPERTY_CONTEXT

A pointer to the context associated with the API object.

When retrieving this property type, ensure that you have sufficient storage

for one integer. The following API objects have this property, and share this

same definition:

• device

• display

• event

• group

• pixmap

• window

SCREEN_PROPERTY_DEBUG

A single integer that enables an on-screen plot or a list of window statistics

as a debugging aid; a property of a window object.

The debug type must be a bitmask that represents a combination of the

types Screen debug graph types (p. 292). When retrieving or setting this

property type, ensure that you have sufficient storage for one integer.

SCREEN_PROPERTY_ALTERNATE_WINDOW

A handle to an alternate window; a property of a window object.

When retrieving or setting this property type, ensure that you have sufficient

storage for a void pointer.

SCREEN_PROPERTY_DEVICE_COUNT

A single integer containing the number of display devices associated with

this context; a property of a context object.

When retrieving this property type, ensure that you have sufficient storage

for one integer.

236 © 2014, QNX Software Systems Limited

Screen Library Reference

SCREEN_PROPERTY_BUFFER_POOL

Deprecated:

This property has been deprecated.

Do not use.

SCREEN_PROPERTY_OBJECT_TYPE

A single integer that indicates the object type associated the with the specific

event; a property of an event object.

When retrieving this property type, ensure that you have sufficient storage

for one integer. Object types must be of type Screen object types (p. 196).

This property is only applicable for a SCREEN_EVENT_PROPERTY event.

SCREEN_PROPERTY_DEVICES

An array of device pointers; a property of a context object.

When retrieving this property type, ensure that you have sufficient storage

for one void pointer for each device. Retrieve the SCREEN_PROPERTY_DE

VICE_COUNT property to find out how many devices are associated with

this context; Once you know the number of devices, you can allocate

sufficient storage to retrieve SCREEN_PROPERTY_DEVICES.

SCREEN_PROPERTY_KEYMAP_PAGE

A single integer that indicates which page of a multi-page keymap must be

used to translate scan codes into key caps and key symbols.

Setting the keymap page on a USB or Bluetooth keyboard has no effect.

Setting the keymap page on an external keyboard device created by an input

provider context will cause the input provider context to receive a notification

of the change.

SCREEN_PROPERTY_SELF_LAYOUT

A single integer that indicates whether or not the window has self layout

capabilities; a property of a window object.

When set to true(1), the owner of the window can change window properties

that could otherwise only be changed by its parent. When set to false(0),

the owner of the window is permitted to change only its owner window

© 2014, QNX Software Systems Limited 237

General (screen.h)

properties. Note that only the parent window, or a window manager, can set

this property. When retrieving or setting this property type, ensure that you

have sufficient storage for one integer. The following are parent window

properties that can be set by the owner of the window only if

SCREEN_PROPERTY_SELF_LAYOUT is set to true(1):

• SCREEN_PROPERTY_SIZE

• SCREEN_PROPERTY_POSITION

• SCREEN_PROPERTY_CLIP_SIZE

• SCREEN_PROPERTY_CLIP_POSITION

• SCREEN_PROPERTY_VISIBLE

• SCREEN_PROPERTY_ZORDER

• SCREEN_PROPERTY_DISPLAY

• SCREEN_PROPERTY_GLOBAL_ALPHA

SCREEN_PROPERTY_GROUP_COUNT

A single integer containing the number of groups associated with this context

a property of a context object.

When retrieving this property type, ensure that you have sufficient storage

for one integer.

SCREEN_PROPERTY_GROUPS

An array of group pointers; a property of a context object.

When retrieving this property type, ensure that you have sufficient storage

for one void pointer for each group. Retrieve the SCREEN_PROPER

TY_GROUP_COUNT property to find out how many groups are associated

with this context; once you know the number of groups, you can allocate

sufficient storage to retrieve SCREEN_PROPERTY_GROUPS.

SCREEN_PROPERTY_PIXMAP_COUNT

A single integer containing the number of pixmaps associated with this

context; a property of a context object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer.

SCREEN_PROPERTY_PIXMAPS

238 © 2014, QNX Software Systems Limited

Screen Library Reference

An array of pixmap pointers; a property of a context object.

When retrieving this property type, ensure that you have sufficient storage

for one void pointer for each pixmap. Retrieve the SCREEN_PROPER

TY_PIXMAP_COUNT property to find out how many pixmaps are associated

with this context; Once you know the number of pixmaps, you can allocate

sufficient storage to retrieve SCREEN_PROPERTY_PIXMAPS.

SCREEN_PROPERTY_WINDOW_COUNT

A single integer containing the number of windows associated with this

context; a property of a context object.

When retrieving this property type, ensure that you have sufficient storage

for one integer.

SCREEN_PROPERTY_WINDOWS

An array of window pointers; a property of a context object.

When retrieving this property type, ensure that you have sufficient storage

for one void pointer for each window. Retrieve the SCREEN_PROPERTY_WIN

DOW_COUNT property to find out how many windows are associated with this

context; Once you know the number of windows, you can allocate sufficient

storage to retrieve SCREEN_PROPERTY_WINDOWS.

SCREEN_PROPERTY_KEYMAP

A character string specifying a keymap.

When retrieving or setting this property type, ensure that you provide a

character buffer. The following API objects have this property, each with its

own variant of the definition:

• context: The default keymap. Unless specifically assigned, this keymap

is applied to all input devices.

• device: The keymap that is assigned to the specified input device. The

keymap is only applicable to that device and is not persistent. For

example, if the input device is removed and then replaced, the default

keymap will be applied to it until a keymap is specifically set for the

input device again.

SCREEN_PROPERTY_MOUSE_HORIZONTAL_WHEEL

© 2014, QNX Software Systems Limited 239

General (screen.h)

A single integer that indicates the number and direction of mouse wheel

ticks in a horizontal direction; a property of an event object.

Wheel ticks toward the left are indicated by a negative (-) number, while

those toward the right are indicated by a positive (+) one. When retrieving

or setting this property type, ensure that you have sufficient storage for one

integer. This property is only applicable for a SCREEN_EVENT_POINTER

event.

SCREEN_PROPERTY_TOUCH_TYPE

A single integer that indicates the touch associated the with the specific

event; a property of an event object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer. Touch types must be of type Screen touch types (p.

250). This property is only applicable for the following events:

• SCREEN_EVENT_MTOUCH_TOUCH

• SCREEN_EVENT_MTOUCH_MOVE

• SCREEN_EVENT_MTOUCH_RELEASE

SCREEN_PROPERTY_NATIVE_IMAGE

A pointer to the image; a property of a buffer object.

When retrieving or setting this property type, ensure that you have sufficient

storage for one void pointer.

SCREEN_PROPERTY_SCALE_FACTOR

A single integer that indicates the number of bits of the desired sub-pixel

precision.

When retrieving or setting this property type, ensure that you have sufficient

storage for one integer. The following API objects have this property:

• event: The default value is 0.

• window: The default value is 16. Note that setting this property,

SCREEN_PROPERTY_SCALE_FACTOR, prior to retrieving

SCREEN_PROPERTY_TRANSFORM will affect the values for the

transformation matrix.

SCREEN_PROPERTY_DPI

240 © 2014, QNX Software Systems Limited

Screen Library Reference

A pair of integers which represent the dpi measurement; a property of a

display object.

The dpi is calculated from the physical dimensions and resolution of the

display. When retrieving this property type, ensure that you have sufficient

storage for one integer.

SCREEN_PROPERTY_METRIC_COUNT

A single integer that indicates the number of metrics associated with an API

object.

Note that the actual value of the number of metrics may vary between API

objects. When retrieving this property type, ensure that you have sufficient

storage for one integer. The following API objects have this property, and

share this same definition:

• device

• display

• pixmap

• window

SCREEN_PROPERTY_METRICS

A array of metrics associated with an API object.

Note that the size of the array of metrics may vary between API objects.

When retrieving this property type, ensure that you have sufficient storage

for one void pointer for each metric. Retrieve the SCREEN_PROPERTY_MET

RIC_COUNT property to find out how many metrics are associated with the

API object; once you know the number of metrics, you can allocate sufficient

storage to retrieve SCREEN_PROPERTY_METRICS. The following API objects

have this property, and share this same definition:

• device

• display

• pixmap

• window

SCREEN_PROPERTY_BUTTON_COUNT

A single integer that indicates the number of buttons on the input device;

a property of a device object.

© 2014, QNX Software Systems Limited 241

General (screen.h)

You can set this property on input devices you create. In the case of mtouch,

this property refers to the number of buttons on the stylus, not necessarily

the touch points. All users can query the value on the created device. When

retrieving or setting this property type, ensure that you have sufficient storage

for one integer.

SCREEN_PROPERTY_VENDOR

A string that can be used to identify the vendor of the specified API object.

When retrieving or setting this property type, ensure that you provide a

character buffer. The following API objects have his property, and share this

same definition:

• device

• display

SCREEN_PROPERTY_PRODUCT

A string that can be used to identify the product name of the specified API

object.

When retrieving or setting this property type, ensure that you provide a

character buffer. The following API objects have his property, and share this

same definition:

• device

• display

SCREEN_PROPERTY_BRUSH_CLIP_POSITION

A pair of integers that define the x- and y- position of a clipped rectangular

area within the window buffers where brush strokes are allowed to be drawn;

a property of a window object.

When retrieving or setting this property type, ensure that you have sufficient

storage for two integers.

SCREEN_PROPERTY_BRUSH_CLIP_SIZE

A pair of integers that define the width and height, in pixels, of a clipped

rectangular area within the window buffers where brush strokes are allowed

to be drawn; a property of a window object.

242 © 2014, QNX Software Systems Limited

Screen Library Reference

When retrieving or setting this property type, ensure that you have sufficient

storage for two integers.

SCREEN_PROPERTY_ANALOG0

The x, y and z values for one analog controller; a property of an event object.

For analog controllers that do not have three degrees of freedom, only x and

y values are valid; z will have a value of 0. Regardless of two or three degress

of freedom of your analog controller(s), when retrieving or setting this property

type, ensure that you have sufficient storage for three integers. This property

is only applicable for the following events:

• SCREEN_EVENT_GAMEPAD:

• SCREEN_EVENT_JOYSTICK:

SCREEN_PROPERTY_ANALOG1

The rx, ry, and rz values for a second analog controller for the

SCREEN_EVENT_GAMEPAD event.

For analog controllers that do not have three degrees of freedom, only x and

y values are valid; z will have a value of 0. Regardless of two or three degress

of freedom of your analog controller(s), when retrieving or setting this property

type, ensure that you have sufficient storage for three integers.

SCREEN_PROPERTY_BRUSH

The pixmap that contains the brush to be used when the window property,

SCREEN_PROPERTY_SENSITIVITY, has a brush bit set and the

corresponding type of input event is delivered to the window; a property of

a window object.

The sensitivity values that can be set to enable brush drawing in your

sensitivity mask are:

• SCREEN_SENSITIVITY_MASK_POINTER_BRUSH for a mouse

• SCREEN_SENSITIVITY_MASK_FINGER_BRUSH for touch

• SCREEN_SENSITIVITY_MASK_STYLUS_BRUSH for a stylus

The pixmap can use an RGB color format for color information. The alpha

channel can be used to define the brush shape. The pixmap buffer size will

determine the size of the brush. No drawing will occur if the window has a

© 2014, QNX Software Systems Limited 243

General (screen.h)

brush sensitivity bit set and no brush pixmap. When retrieving or setting this

property type, ensure that you have sufficient storage for one void pointer.

SCREEN_PROPERTY_TRANSFORM

A set of integers that represent the 3x3 transformation matrix used to convert

buffer or device coordinates to display coordinates.

The transformation matrix is stored in row-major order. This property is

typically used when you have a known coordinate and need to know where

it would be located on the display screen. Screen creates a vector V=(X, Y,

1.0) from the raw coordinates, (X, Y). Then, Screen multiplies the

transformation matrix T with this vector (T x V) to achieve a resultant vector

of (Xa, Ya, Wa). This resultant vector is then divided by Wa to result in (Xab,

Yab, 1.0), which provides (Xab, Yab) as the transformed display coordinates.

When retrieving this property, ensure that you have sufficient storage for 9

integers. Note that setting the SCREEN_PROPERTY_SCALE_FACTOR property

of a window or device prior to retrieving this property affects the values of

this transformation matrix. The following API objects have this property, and

share this same definition:

• device (input devices of type SCREEN_EVENT_MTOUCH_TOUCH) When

setting this property, the last row of the transformation matrix must be

[0, 0, non-zero].

• window (SCREEN_PROPERTY_TRANSFORM can only be retrieved and

not set for a window object)

SCREEN_PROPERTY_TECHNOLOGY

An integer that is used to identify the technology used by a particular object

handle; a property of a display object.

When retrieving this property type, ensure that you provide enough storage

for one integer.

SCREEN_PROPERTY_REFERENCE_COLOR

An integer that is a color to be used with specific transparency modes; a

property of a window or display object.

The transparency modes that use this property are:

• SCREEN_TRANSPARENCY_TEST

• SCREEN_TRANSPARENCY_REVERSED_TEST

244 © 2014, QNX Software Systems Limited

Screen Library Reference

• SCREEN_TRANSPARENCY_SOURCE_COLOR

When the transparency mode is SCREEN_TRANSPARENCY_TEST or

SCREEN_TRANSPARENCY_REVERSED_TEST, transparency is applied to

each pixel based on a comparison with the reference color.

When the transparency mode is SCREEN_TRANSPARENCY_SOURCE_COLOR,

transparency is applied to each pixel matching the reference color.

When retrieving or setting this property, ensure that you have sufficient

storage for one integer. If this attribute is not specified, then a default of 0

will be used.

Library:

libscreen

Description:

Full read/write access to Screen API object properties is product dependent.

Screen scale quality types

Types of scaling qualities.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_QUALITY_NORMAL = 0
 SCREEN_QUALITY_FASTEST = 1
 SCREEN_QUALITY_NICEST = 2
};

Data:

SCREEN_QUALITY_NORMAL

The suggested amount of filtering that is slower than

SCALE_QUALITY_FASTEST, but should have better quality.

SCREEN_QUALITY_FASTEST

The suggested amount of filtering that is faster than

SCALE_QUALITY_NORMAL, but may have reduced quality.

SCREEN_QUALITY_NICEST

© 2014, QNX Software Systems Limited 245

General (screen.h)

The suggested amount of filtering that is slower than

SCALE_QUALITY_NORMAL, but should have better quality.

Library:

libscreen

Description:

Each enumerator specifies the suggested amount of filtering to be performed by the

windowing system when scaling is required to draw the window. This amount of filtering

is not a constant quantity; it is specfied relative to each of the other possible scale

qualities.

Screen sensitivity masks

Types of sensitivity masks.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_SENSITIVITY_MASK_ALWAYS = (1 << 0)
 SCREEN_SENSITIVITY_MASK_NEVER = (2 << 0)
 SCREEN_SENSITIVITY_MASK_NO_FOCUS = (1 << 3)
 SCREEN_SENSITIVITY_MASK_FULLSCREEN = (1 << 4)
 SCREEN_SENSITIVITY_MASK_CONTINUE = (1 << 5)
 SCREEN_SENSITIVITY_MASK_STOP = (2 << 5)
 SCREEN_SENSITIVITY_MASK_POINTER_BRUSH = (1 << 7)
 SCREEN_SENSITIVITY_MASK_FINGER_BRUSH = (1 << 8)
 SCREEN_SENSITIVITY_MASK_STYLUS_BRUSH = (1 << 9)
 SCREEN_SENSITIVITY_MASK_OVERDRIVE = (1 << 10)
};

Data:

SCREEN_SENSITIVITY_MASK_ALWAYS

Pointer and touch events are always forwarded to the window's context if

they interect with the window - regardless of transparency.

The window receives keyboard, gamepad, joystick events if it has input focus.

Raising a window, pointer or multi-touch release event in that window will

cause it to acquire input focus.

SCREEN_SENSITIVITY_MASK_NEVER

The window never receives pointer or multi-touch events.

246 © 2014, QNX Software Systems Limited

Screen Library Reference

The window never acquires input focus, even after it has been raised. The

window will only receive input events that are directly injected into it from

outside sources.

SCREEN_SENSITIVITY_MASK_NO_FOCUS

Pointer and touch events are forwarded to the window's context if they

intersect the window and are in an area of the window that is not fully

transparent.

The window does not acquire input focus after being raised or after a pointer

or multi-touch release event occurs. Therefore, the window will not receive

keyboard, gamepad, or joystick input unless it is sent directly into the window

from an outside source.

SCREEN_SENSITIVITY_MASK_FULLSCREEN

Pointer and touch events are forwarded to the window's context no matter

where they are on the screen.

The window is considered full screen for the purposes of input hit tests.

Transparency is ignored. The window will receive keyboard, gamepad, and

joystick events as long as the window is visible.

SCREEN_SENSITIVITY_MASK_CONTINUE

Windows underneath this window can receive pointer or multi-touch events

even if this window has input focus.

SCREEN_SENSITIVITY_MASK_STOP

The window never receives pointer or multi-touch events.

The window never acquires input focus, even after it has been raised. The

window will only receive input events that are directly injected into it from

outside sources.

SCREEN_SENSITIVITY_MASK_POINTER_BRUSH

The window receives pointer events, even in areas of transparency, if the

source coordinates of the event are within the brush clip rectangle.

© 2014, QNX Software Systems Limited 247

General (screen.h)

This mode supercedes SCREEN_SENSITIVITY_MASK_NEVER. The windowing

system also draws brush strokes based on the pointer events directly onto

the screen and the window buffer.

SCREEN_SENSITIVITY_MASK_FINGER_BRUSH

The window receives multi-touch events with a finger contact type, even in

areas of transparency, if the source coordinates of the event are within the

brush clip rectangle.

This mode supercedes SCREEN_SENSITIVITY_MASK_NEVER. The windowing

system also draws brush strokes based on the touch events directly onto the

screen and the window buffer. Multiple contacts will cause multiple brush

strokes to be drawn.

SCREEN_SENSITIVITY_MASK_STYLUS_BRUSH

The window receives multi-touch events with a stylus contact type, even in

areas of transparency, if the source coordinates of the event are within the

brush clip rectangle.

This mode supercedes SCREEN_SENSITIVITY_MASK_NEVER. The windowing

system also draws brush strokes based on the touch events directly onto the

screen and the window buffer. Multiple contacts will cause multiple brush

strokes to be drawn.

SCREEN_SENSITIVITY_MASK_OVERDRIVE

Setting this bit causes the system to go into overdrive when the window gets

an input event.

The effect of this sensitivity mask depends on the power management

algorithms in place and on the platform in general.

Library:

libscreen

Description:

These masks are intended to be combined in a single integer bitmask representing

combinations of desired senstivites to be applied to a window.

248 © 2014, QNX Software Systems Limited

Screen Library Reference

Screen sensitivity types

Types of sensitivities.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_SENSITIVITY_TEST = 0
 SCREEN_SENSITIVITY_ALWAYS = 1
 SCREEN_SENSITIVITY_NEVER = 2
 SCREEN_SENSITIVITY_NO_FOCUS = 3
 SCREEN_SENSITIVITY_FULLSCREEN = 4
};

Data:

SCREEN_SENSITIVITY_TEST

The default sensitivity.

Pointer and multi-touch events are forwarded to the window's context if they

intersect with the window and are in an area of the window that is not fully

transparent. The window receives keyboard, gamepad, joystick events if it

has input focus. Raising a window, pointer or multi-touch release event in

the window will cause the window to acquire input focus.

SCREEN_SENSITIVITY_ALWAYS

That pointer and touch events are always forwarded to the window's context

if they interect with the window - even if the window is transparent in that

area.

The window receives keyboard, gamepad, joystick events if it has input focus.

Raising a window, pointer or multi-touch release event in that window will

cause it to acquire input focus.

SCREEN_SENSITIVITY_NEVER

The window never receives pointer or multi-touch events.

The window never acquires input focus, even after it has been raised. The

window will only receive input events that are directly injected into it from

outside sources.

SCREEN_SENSITIVITY_NO_FOCUS

© 2014, QNX Software Systems Limited 249

General (screen.h)

Pointer and touch events are forwarded to the window's context if they

intersect the window and are in an area of the window that is not fully

transparent.

The window does not acquire input focus after being raised or after a pointer

or multi-touch release event occurs. Therefore, the window will not receive

keyboard, gamepad, or joystick input unless it is sent directly into the window

from an outside source.

SCREEN_SENSITIVITY_FULLSCREEN

Pointer and touch events are forwarded to the window's context no matter

where they are on the screen.

The window is considered full screen for the purposes of input hit tests.

Transparency is ignored. The window will receive keyboard, gamepad, and

joystick events if it has input focus. Raising the window or a pointer or

multi-touch release event in the window will cause it to acquire input focus.

Library:

libscreen

Description:

Screen touch types

Types of touch.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_TOUCH_FINGER = 0
 SCREEN_TOUCH_STYLUS = 1
};

Data:

SCREEN_TOUCH_FINGER

SCREEN_TOUCH_STYLUS

250 © 2014, QNX Software Systems Limited

Screen Library Reference

Library:

libscreen

Description:

Screen transparency types

Types of window transparencies.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_TRANSPARENCY_SOURCE = 0
 SCREEN_TRANSPARENCY_TEST = 1
 SCREEN_TRANSPARENCY_SOURCE_COLOR = 2
 SCREEN_TRANSPARENCY_SOURCE_OVER = 3
 SCREEN_TRANSPARENCY_NONE = 4
 SCREEN_TRANSPARENCY_DISCARD = 5
 SCREEN_TRANSPARENCY_REVERSED_TEST = 6
};

Data:

SCREEN_TRANSPARENCY_SOURCE

Destination pixels are replaced by source pixels, including the alpha channel.

SCREEN_TRANSPARENCY_TEST

Destination pixels are replaced by source pixels when the source pixel value

is greater than the reference value.

See SCREEN_PROPERTY_REFERENCE_COLOR.

SCREEN_TRANSPARENCY_SOURCE_COLOR

Destination pixels are replaced by source pixels when the source color does

not match the reference color value.

See SCREEN_PROPERTY_REFERENCE_COLOR.

SCREEN_TRANSPARENCY_SOURCE_OVER

Typical alpha blending; the source pixels are blended over the destination

pixels.

SCREEN_TRANSPARENCY_NONE

© 2014, QNX Software Systems Limited 251

General (screen.h)

Destination pixels are replaced by fully-visible source pixels.

SCREEN_TRANSPARENCY_DISCARD

Source is considered completely transparent; the destination is not modified.

SCREEN_TRANSPARENCY_REVERSED_TEST

Destination pixels are replaced by source pixels when the source pixel value

is less than the reference value.

See SCREEN_PROPERTY_REFERENCE_COLOR.

Library:

libscreen

Description:

Screen usage flag types

Types of usage flags.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_USAGE_READ = (1 << 1)
 SCREEN_USAGE_WRITE = (1 << 2)
 SCREEN_USAGE_NATIVE = (1 << 3)
 SCREEN_USAGE_OPENGL_ES1 = (1 << 4)
 SCREEN_USAGE_OPENGL_ES2 = (1 << 5)
 SCREEN_USAGE_OPENGL_ES3 = (1 << 11)
 SCREEN_USAGE_OPENVG = (1 << 6)
 SCREEN_USAGE_VIDEO = (1 << 7)
 SCREEN_USAGE_CAPTURE = (1 << 8)
 SCREEN_USAGE_ROTATION = (1 << 9)
 SCREEN_USAGE_OVERLAY = (1 << 10)
};

Data:

SCREEN_USAGE_READ

Flag to indicate that buffer(s) associated with the API object can be read

from.

SCREEN_USAGE_WRITE

252 © 2014, QNX Software Systems Limited

Screen Library Reference

Flag to indicate that buffer(s) associated with the API object can be written

to.

SCREEN_USAGE_NATIVE

Flag to indicate that buffer(s) associated with the API object can be used

for native API operations.

If using blits or fills, this flag must be set on the API object.

SCREEN_USAGE_OPENGL_ES1

Flag to indicate that OpenGL ES 1.X is used for rendering the buffer

associated with the API object.

SCREEN_USAGE_OPENGL_ES2

Flag to indicate that OpenGL ES 2.X is used for rendering the buffer

associated with the API object.

SCREEN_USAGE_OPENGL_ES3

Flag to indicate that OpenGL ES 3.X is used for rendering the buffer

associated with the API object.

SCREEN_USAGE_OPENVG

Flag to indicate that OpenVG is used for rendering the buffer associated

with the API object.

SCREEN_USAGE_VIDEO

Flag to indicate that the buffer can be written to by a video decoder.

SCREEN_USAGE_CAPTURE

Flag to indicate that the buffer can be written to by capture devices (such

as cameras, analog-to-digital-converters, ...), and read by a hardware video

encoder.

SCREEN_USAGE_ROTATION

Flag to indicate that the buffer can be re-configured from landscape to

portrait orientation without reallocation.

Rotation

© 2014, QNX Software Systems Limited 253

General (screen.h)

SCREEN_USAGE_OVERLAY

Flag to indicate the use of a non-composited layer.

The Screen API uses a composited layer by default. The SCREEN_US

AGE_OVERLAY flag is used to override this default behaviour to use a

non-composited layer instead. Note that when the overlay usage bit is added

or removed, then changing SCREEN_USAGE_OVERLAY affects the pipeline.

Set this SCREEN_USAGE_OVERLAY flag when you are targeting a

non-composited pipeline.

Library:

libscreen

Description:

Usage flags are used when allocating buffers. Depending on the usage, different

constraints such as width, height, stride granularity or special alignment must be

observed. The usage is also valuable in determining the amount of caching that can

be set on a particular buffer.

254 © 2014, QNX Software Systems Limited

Screen Library Reference

Blits (screen.h)

Blit API functions and properties are used when combining buffers.

From Blit API functions, the connection to screen should have been acquired with the

function screen_create_context().

Any source and destination buffers required by the Blit API functions are specified

with buffer handles. These handles are typcially acquired by querying the

SCREEN_PROPERTY_RENDER_BUFFERS property of a pixmap or window with the

screen_get_pixmap_property() or screen_get_window_property() functions respectively.

Screen blit types

Types of blit attributes.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_BLIT_END = 0
 SCREEN_BLIT_SOURCE_X = 1
 SCREEN_BLIT_SOURCE_Y = 2
 SCREEN_BLIT_SOURCE_WIDTH = 3
 SCREEN_BLIT_SOURCE_HEIGHT = 4
 SCREEN_BLIT_DESTINATION_X = 5
 SCREEN_BLIT_DESTINATION_Y = 6
 SCREEN_BLIT_DESTINATION_WIDTH = 7
 SCREEN_BLIT_DESTINATION_HEIGHT = 8
 SCREEN_BLIT_GLOBAL_ALPHA = 9
 SCREEN_BLIT_TRANSPARENCY = 10
 SCREEN_BLIT_SCALE_QUALITY = 11
 SCREEN_BLIT_COLOR = 12
};

Data:

SCREEN_BLIT_END

Used to terminate the token-value pairs in an attribute list.

SCREEN_BLIT_SOURCE_X

The horizontal position of the rectangle in the source buffer.

The offset is the distance, in pixels, from the left edge of the source buffer.

If this attribute is not specified, then a default of 0 will be used.

SCREEN_BLIT_SOURCE_Y

© 2014, QNX Software Systems Limited 255

Blits (screen.h)

The vertical position of the rectangle in the source buffer.

The offset is the distance, in pixels, from the top edge of the source buffer.

If this attribute is not specified, then a default of 0 will be used.

SCREEN_BLIT_SOURCE_WIDTH

The width, in pixels, of the rectangle in the source buffer.

If this attribute is not specified, then the source buffer width will be used.

The horizontal and vertical scale factors don't have to be equal. It is

acceptable to specify a source width that is larger than the destination width

while the source height is smaller than the destination height, and vice

versa.

SCREEN_BLIT_SOURCE_HEIGHT

The height, in pixels, of the rectangle in the source buffer.

If this attribute is not specified, then the source buffer height will be used.

The horizontal and vertical scale factors don't have to be equal. It is

acceptable to specify a source width that is larger than the destination width

while the source height is smaller than the destination height, and vice

versa.

SCREEN_BLIT_DESTINATION_X

The horizontal position of the rectangle in the destination buffer.

The offset is the distance, in pixels, from the left edge of the destination

buffer. If this attribute is not specified, then a default of 0 will be used.

SCREEN_BLIT_DESTINATION_Y

The vertical position of the rectangle in the destination buffer.

The offset is the distance, in pixels, from the top edge of the destination

buffer. If this attribute is not specified, then a default of 0 will be used.

SCREEN_BLIT_DESTINATION_WIDTH

The width, in pixels, of the rectangle in the destination buffer.

256 © 2014, QNX Software Systems Limited

Screen Library Reference

The width does not have to match the source width. If the destination width

is larger, the source rectangle will be stretched. If the destination width is

smaller than the source width, the source rectangle will be compressed. If

this attribute is not specified, then the destination buffer width will be used.

SCREEN_BLIT_DESTINATION_HEIGHT

The height, in pixels, of the rectangle in the destination buffer.

The height does not have to match the source height. If the destination

height is larger, the source rectangle will be stretched. If the destination

height is smaller than the source height, the source rectangle will be

compressed. If this attribute is not specified, then the destination buffer

height will be used.

SCREEN_BLIT_GLOBAL_ALPHA

A global transparency value that is used to blend the source onto the

destination.

If this attribute is not specified, then a default of 255 will be used; this

default indicates that no global transparency will be applied to the source.

SCREEN_BLIT_TRANSPARENCY

A transparency operation.

The transparency setting defines how the alpha channel, if present, is used

to combine the source and destination pixels. The transparency values must

be of type Screen transparency types (p. 251). If this attribute is not specified,

then a default of SCREEN_TRANSPARENCY_NONE will be used.

SCREEN_BLIT_SCALE_QUALITY

A scale quality value.

The scale quality setting defines the type and amount of filtering applied

when scaling is required. If the source and destination rectangles are

identical in size, the scale quality setting is not used. The scale quality value

must be of type Screen scale quality types (p. 245). If this attribute is not

specified, then a default of SCREEN_QUALITY_NORMAL will be used.

SCREEN_BLIT_COLOR

© 2014, QNX Software Systems Limited 257

Blits (screen.h)

The color used by the blit operation.

The color format is red bits 16 to 23, green in bits 8 to 15 and blue in bits

0 to 7. If this attribute is not specified, then a default of #ffffff (white)

will be used.

Library:

libscreen

Description:

screen_blit()

Copy pixel data from one buffer to another.

Synopsis:

#include <screen/screen.h>

int screen_blit(screen_context_t ctx,
 screen_buffer_t dst,
 screen_buffer_t src,
 const int *attribs)

Arguments:

ctx

A connection to Screen

dst

The buffer which data will be copied to.

src

The buffer which the pixels will be copied from.

attribs

A list that contains the attributes that define the blit. This list must consist

of a series of token-value pairs terminated with a SCREEN_BLIT_END token.

The tokens used in this list must be of type Screen blit types (p. 255).

258 © 2014, QNX Software Systems Limited

Screen Library Reference

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function requests pixels from one buffer be copied to another. The operation is

not processed until a flushing execution API function is called, or your application

posts changes to one of the context's windows.

The attribs argument is allowed to be NULL or empty (i.e. contains a single element

that is set to SCREEN_BLIT_END). If attribs is empty, then the following defaults

will be applied:

• the source rectangle's vertical and horizontal positions are 0

• the destination rectangle's vertical and horizontal positions are 0

• the source rectangle includes the entire source buffer

• the destination buffer includes the entire destination buffer

• the transparency is SCREEN_TRANSPARENCY_NONE

• the global alpha value is 255 (or opaque)

• the scale quality is SCREEN_QUALITY_NORMAL.

To change any of this default behavior, set attribs with pairings of the following

valid tokens and their desired values:

• SCREEN_BLIT_SOURCE_X

• SCREEN_BLIT_SOURCE_Y

• SCREEN_BLIT_SOURCE_WIDTH

• SCREEN_BLIT_SOURCE_HEIGHT

• SCREEN_BLIT_DESTINATION_X

• SCREEN_BLIT_DESTINATION_Y

• SCREEN_BLIT_DESTINATION_WIDTH

• SCREEN_BLIT_DESTINATION_HEIGHT

• SCREEN_BLIT_SCALE_QUALITY

• SCREEN_BLIT_GLOBAL_ALPHA

• SCREEN_BLIT_TRANSPARENCY (valid transparency values are: SCREEN_TRANS

PARENCY_NONE, SCREEN_TRANSPARENCY_TEST, and SCREEN_TRANSPAREN

CY_SOURCE_OVER)

Returns:

0 if the blit command was queued, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

© 2014, QNX Software Systems Limited 259

Blits (screen.h)

screen_fill()

Fill an area of a specified buffer.

Synopsis:

#include <screen/screen.h>

int screen_fill(screen_context_t ctx,
 screen_buffer_t dst,
 const int *attribs)

Arguments:

ctx

A connection to Screen

dst

The buffer which data will be copied to.

attribs

A list that contains the attributes that define the blit. This list must consist

of a series of token-value pairs terminated with a SCREEN_BLIT_END token.

The tokens used in this list must be of type Screen blit types (p. 255).

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function requests that a rectangular area of the destination buffer be filled with

a solid color.

The attribs argument is allowed to be NULL or empty (i.e. contains a single element

that is set to SCREEN_BLIT_END). If attribs is empty, then the following defaults

will be applied:

• the destination rectangle's vertical and horizontal positions are 0

• the destination buffer includes the entire destination buffer

• the global alpha value is 255 (or opaque)

• the color is #ffffff (white)

260 © 2014, QNX Software Systems Limited

Screen Library Reference

To change any of this default behavior, set attribs with pairings of the following

valid tokens and their desired values:

• SCREEN_BLIT_DESTINATION_X

• SCREEN_BLIT_DESTINATION_Y

• SCREEN_BLIT_DESTINATION_WIDTH

• SCREEN_BLIT_DESTINATION_HEIGHT

• SCREEN_BLIT_GLOBAL_ALPHA

• SCREEN_BLIT_COLOR

Returns:

0 if the blit command was queued, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

screen_flush_blits()

Flush all the blits issued.

Synopsis:

#include <screen/screen.h>

int screen_flush_blits(screen_context_t ctx,
 int flags)

Arguments:

ctx

A connection to Screen

flags

A flag used by the mutex. Specify SCREEN_WAIT_IDLE if the function is

required to block until all the blits have been completed.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function flushes all delayed blits and fills since the last call to this function, or

since the last call to screen_post_window(). Note that this is a flush of delayed blits

© 2014, QNX Software Systems Limited 261

Blits (screen.h)

and does not imply a flush of the command buffer. The blits will start executing shortly

after you call the function. The blits may not be complete when the function returns,

unless the SCREEN_WAIT_IDLE flag is set. This function has no effect on other

non-blit delayed calls. The screen_post_window() function performs an implicit flush

of any pending blits. The content that is to be presented via the call to

screen_post_window() is most likely the result of any pending blit operations

completing.

The connection to Screen must have been acquired with the function

screen_create_context().

Returns:

0 if the blit buffer was flushed, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details). Note that the error may also have been

caused by any delayed execution function that's just been flushed.

262 © 2014, QNX Software Systems Limited

Screen Library Reference

Buffers (screen.h)

A buffer is memory where pixels can be drawn to or read from.

The information and state variables associated with each buffer is stored in memory

allocated when the buffer is created with screen_create_buffer() Note that memory is

allocated to store all information pertaining to the buffer, but not for the buffer itself.

When buffers are created by the composited windowing system through calls to

screen_create_window_buffers() and screen_create_pixmap_buffer(), it isn't necessary

to create buffer objects with screen_create_buffer(). screen_create_buffer() is used to

create buffers which must be attached to windows or pixmaps.

Usage flags are used when allocating buffers. Depending on the usage, different

constraints such as width, height, stride granularity or special alignment must be

observed. The usage is also valuable in determining the amount of caching that can

be set on a particular buffer.

Depending on which function was called, the buffers can be queried using the

SCREEN_PROPERTY_RENDER_BUFFERS property with either

screen_get_window_property() or screen_get_pixmap_property() API functions.

Screen buffer properties

Types of properties that are associated with Screen buffer API objects.

Full read/write access to Screen API object properties is system dependent.

These properties are described in full under Screen property types (p. 200).

Settable?Gettable?Buffer property

YesYesSCREEN_PROPERTY_BUFFER_SIZE

YesYesSCREEN_PROPERTY_FORMAT

YesYesSCREEN_PROPERTY_INTERLACED

YesYesSCREEN_PROPERTY_PHYSICALLY_CONTIGUOUS

YesYesSCREEN_PROPERTY_PLANAR_OFFSETS

YesYesSCREEN_PROPERTY_POINTER

YesYesSCREEN_PROPERTY_PROTECTED

YesYesSCREEN_PROPERTY_SIZE

YesYesSCREEN_PROPERTY_STRIDE

YesYesSCREEN_PROPERTY_PHYSICAL_ADDRESS

© 2014, QNX Software Systems Limited 263

Buffers (screen.h)

screen_buffer_t

A handle for the screen buffer.

Synopsis:

#include <screen/screen.h>

typedef struct _screen_buffer* screen_buffer_t;

Library:

libscreen

Description:

screen_create_buffer()

Create a buffer handle that can later be attached to a window or a pixmap.

Synopsis:

#include <screen/screen.h>

int screen_create_buffer(screen_buffer_t *pbuf)

Arguments:

pbuf

An address where the function can store a handle for the native buffer.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function creates a buffer object, which describes memory where pixels can be

drawn to or read from. Applications must use screen_destroy_buffer() when a buffer

is no longer used.

Returns:

0 if the buffer was created, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

264 © 2014, QNX Software Systems Limited

Screen Library Reference

screen_destroy_buffer()

Destroy a buffer and frees associated resources.

Synopsis:

#include <screen/screen.h>

int screen_destroy_buffer(screen_buffer_t buf)

Arguments:

buf

The handle of the buffer you want to destroy. This buffer must have been

created with screen_create_buffer().

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function destroys the buffer object associated with the buffer handle. Any resources

created for this buffer will also be released. The buffer handle can no longer be used

as argument in subsequent screen calls. The actual memory buffer described by this

buffer handle is not released by this operation. The application is responsible for

freeing its own external buffers. Only buffers created with screen_create_buffer() must

be destroyed with this function.

Returns:

0 if the buffer was destroyed, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

screen_get_buffer_property_cv()

Retrieve the current value of the specified buffer property of type char.

Synopsis:

#include <screen/screen.h>

int screen_get_buffer_property_cv(screen_buffer_t buf,
 int pname,

© 2014, QNX Software Systems Limited 265

Buffers (screen.h)

 int len,
 char *param)

Arguments:

buf

The handle of the buffer whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

len

The maximum number of bytes that can be written to param.

param

The buffer where the retrieved value(s) will be stored. This buffer must be

an array of type char with a maximum length of len.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function stores the current value of a buffer property in a user-provided buffer.

No more than len bytes of the specified type will be written.

Currently there are no buffer properties which can be retrieved using this function.

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details).

266 © 2014, QNX Software Systems Limited

Screen Library Reference

screen_get_buffer_property_iv()

Retrieve the current value of the specified buffer property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_get_buffer_property_iv(screen_buffer_t buf,
 int pname,
 int *param)

Arguments:

buf

The handle of the buffer whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type int. parammay be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function stores the current value of a buffer property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_BUFFER_SIZE

• SCREEN_PROPERTY_FORMAT

• SCREEN_PROPERTY_INTERLACED

• SCREEN_PROPERTY_PHYSICALLY_CONTIGUOUS

• SCREEN_PROPERTY_PLANAR_OFFSETS

• SCREEN_PROPERTY_PROTECTED

© 2014, QNX Software Systems Limited 267

Buffers (screen.h)

• SCREEN_PROPERTY_SIZE

• SCREEN_PROPERTY_STRIDE

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details).

screen_get_buffer_property_llv()

Retrieve the current value of the specified buffer property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_get_buffer_property_llv(screen_buffer_t buf,
 int pname,
 long long *param)

Arguments:

buf

The handle of the buffer whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type long long.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function stores the current value of a buffer property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

268 © 2014, QNX Software Systems Limited

Screen Library Reference

• SCREEN_PROPERTY_PHYSICAL_ADDRESS

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details).

screen_get_buffer_property_pv()

Retrieve the current value of the specified buffer property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_get_buffer_property_pv(screen_buffer_t buf,
 int pname,
 void **param)

Arguments:

buf

The handle of the buffer whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type void*.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function stores the current value of a buffer property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_EGL_HANDLE

© 2014, QNX Software Systems Limited 269

Buffers (screen.h)

• SCREEN_PROPERTY_POINTER

• SCREEN_PROPERTY_NATIVE_IMAGE

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details).

screen_set_buffer_property_cv()

Set the value of the specified buffer property of type char.

Synopsis:

#include <screen/screen.h>

int screen_set_buffer_property_cv(screen_buffer_t buf,
 int pname,
 int len,
 const char *param)

Arguments:

buf

The handle of the buffer whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

len

The maximum number of bytes that can be read from param.

param

A pointer to a buffer containing the new value(s). This buffer must be an

array of type char with a maximum length of len.

Library:

libscreen

270 © 2014, QNX Software Systems Limited

Screen Library Reference

Description:

Function Type: Immediate Execution (p. 183)

This function sets the value of a buffer property from a user-provided buffer. The buffer

must have been created with the function screen_create_buffer().

Currently there are no buffer properties which can be set using this function.

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_buffer_property_iv()

Set the value of the specified buffer property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_set_buffer_property_iv(screen_buffer_t buf,
 int pname,
 const int *param)

Arguments:

buf

The handle of the buffer whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type int. param may be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

© 2014, QNX Software Systems Limited 271

Buffers (screen.h)

Description:

Function Type: Immediate Execution (p. 183)

This function sets the value of a buffer property from a user-provided buffer. The buffer

must have been created with the function screen_create_buffer().

You can use this function to set the value of the following properties:

• SCREEN_PROPERTY_BUFFER_SIZE

• SCREEN_PROPERTY_FORMAT

• SCREEN_PROPERTY_INTERLACED

• SCREEN_PROPERTY_PHYSICALLY_CONTIGUOUS

• SCREEN_PROPERTY_PLANAR_OFFSETS

• SCREEN_PROPERTY_PROTECTED

• SCREEN_PROPERTY_SIZE

• SCREEN_PROPERTY_STRIDE

Returns:

0 if the value(s) of the property was set to new value(s), or -1 if an error occurred

(errno is set; refer to /usr/include/errno.h for more details).

screen_set_buffer_property_llv()

Set the value of the specified buffer property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_set_buffer_property_llv(screen_buffer_t buf,
 int pname,
 const long long *param)

Arguments:

buf

The handle of the buffer whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

272 © 2014, QNX Software Systems Limited

Screen Library Reference

A pointer to a buffer containing the new value(s). This buffer must be of

type long long.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function sets the value of a buffer property from a user-provided buffer. The buffer

must have been created with the function screen_create_buffer().

You can use this function to set the value of the following properties:

• SCREEN_PROPERTY_PHYSICAL_ADDRESS

Returns:

0 if the value(s) of the property was set to new value(s), or -1 if an error occurred

(errno is set; refer to /usr/include/errno.h for more details).

screen_set_buffer_property_pv()

Set the value of the specified buffer property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_set_buffer_property_pv(screen_buffer_t buf,
 int pname,
 void **param)

Arguments:

buf

The handle of the buffer whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

© 2014, QNX Software Systems Limited 273

Buffers (screen.h)

A pointer to a buffer containing the new value(s). This buffer must be of

type void*.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function sets the value of a buffer property from a user-provided buffer. The buffer

must have been created with the function screen_create_buffer().

You can use this function to set the value of the following properties:

• SCREEN_PROPERTY_EGL_HANDLE

• SCREEN_PROPERTY_POINTER

• SCREEN_PROPERTY_NATIVE_IMAGE

Returns:

0 if the value(s) of the property was set to new value(s), or -1 if an error occurred

(errno is set; refer to /usr/include/errno.h for more details).

274 © 2014, QNX Software Systems Limited

Screen Library Reference

Contexts (screen.h)

A context defines the relationship with the underlying windowing system.

Once connected to the windowing system, you can use the context to:

• create and control windows

• get and send events

• query and set state variables (properties)

The connection you have to the windowing system through the context remains active

until you call screen_destroy_context(). Each context has its own event queue, even

when several contexts are created in the same process. Permissions are also per

context, not per process.

A context can be associated with one or more windows, or with one or more displays.

Screen context properties

Types of properties that are associated with Screen context API objects.

Full read/write access to Screen API object properties is system dependent.

These properties are described in full under Screen property types (p. 200)

Settable?Gettable?Context property

NoYesSCREEN_PROPERTY_DISPLAYS

YesYesSCREEN_PROPERTY_IDLE_TIMEOUT

YesYesSCREEN_PROPERTY_KEYBOARD_FOCUS

YesYesSCREEN_PROPERTY_MTOUCH_FOCUS

YesYesSCREEN_PROPERTY_POINTER_FOCUS

NoYesSCREEN_PROPERTY_DEVICE_COUNT

NoYesSCREEN_PROPERTY_DEVICES

NoYesSCREEN_PROPERTY_GROUP_COUNT

NoYesSCREEN_PROPERTY_GROUPS

NoYesSCREEN_PROPERTY_PIXMAP_COUNT

NoYesSCREEN_PROPERTY_PIXMAPS

NoYesSCREEN_PROPERTY_WINDOW_COUNT

NoYesSCREEN_PROPERTY_WINDOWS

YesYesSCREEN_PROPERTY_KEYMAP

© 2014, QNX Software Systems Limited 275

Contexts (screen.h)

Screen notification types

Types of notifications.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_NOTIFY_VSYNC = 0
 SCREEN_NOTIFY_UPDATE = 1
 SCREEN_NOTIFY_INPUT = 2
 SCREEN_NOTIFY_EVENT = 3
};

Data:

SCREEN_NOTIFY_VSYNC

Notification of a vsync.

SCREEN_NOTIFY_UPDATE

Notification of an update.

SCREEN_NOTIFY_INPUT

Notification of an event from an input device.

SCREEN_NOTIFY_EVENT

Notification of an event.

Library:

libscreen

Description:

screen_context_t

A handle for the screen context.

Synopsis:

#include <screen/screen.h>

typedef struct _screen_context* screen_context_t;

276 © 2014, QNX Software Systems Limited

Screen Library Reference

Library:

libscreen

Description:

This handle is used to identify the scope of the relationship with the underlying

windowing system. A handle to the screen context is used to:

• create screen API objects

• retrieve and send events

Screen context types

The types of context masks.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_APPLICATION_CONTEXT = 0
 SCREEN_WINDOW_MANAGER_CONTEXT = (1 << 0)
 SCREEN_INPUT_PROVIDER_CONTEXT = (1 << 1)
 SCREEN_POWER_MANAGER_CONTEXT = (1 << 2)
 SCREEN_DISPLAY_MANAGER_CONTEXT = (1 << 3)
};

Data:

SCREEN_APPLICATION_CONTEXT

A context type that allows a process to create its own windows and control

some of the window properties.

Applications can't modify windows that were created by other applications

and can't send events outside their process space. Application contexts

aren't aware of other top-level windows in the system; neither are they allowed

to operate on them. Application contexts are allowed to parent other windows,

even if they are created in other contexts in other processes, and are allowed

to control those windows.

SCREEN_WINDOW_MANAGER_CONTEXT

A context type that requests a privileged context to allow a process to modify

all windows in the system when new application windows are created or

destroyed.

© 2014, QNX Software Systems Limited 277

Contexts (screen.h)

The context also receives notifications when applications create new windows,

existing application windows are destroyed, or when an application tries to

change certain window properties. A process must have an effective user ID

of root to create a context of this type successfully.

SCREEN_INPUT_PROVIDER_CONTEXT

A context type that requests a privileged context to allow a process to send

events to any application in the system.

This context type doesn't receive notifications when applications create new

windows, when applications destroy existing windows, or when an application

attempts to change certain window properties. A process must have an

effective user ID of root to create a context of this type successfully.

SCREEN_POWER_MANAGER_CONTEXT

A context type that requests a privileged context to provide access to power

management functionality in order to change display power modes.

A process must have an effective user ID of root to create a context of this

type successfully.

SCREEN_DISPLAY_MANAGER_CONTEXT

A context type that requests a privileged context to allow a process to modify

all display properties in the system.

A process must have an effective user ID of root to create a context of this

type successfully.

Library:

libscreen

Description:

These bits are intended to be combined in a single integer representing combinations

of desired privileges to be applied to a context.

278 © 2014, QNX Software Systems Limited

Screen Library Reference

screen_create_context()

Establish a connection with the composited windowing system.

Synopsis:

#include <screen/screen.h>

int screen_create_context(screen_context_t *pctx,
 int flags)

Arguments:

pctx

A pointer to a screen_context_t where a handle for the new context can

be stored.

flags

The type of context to be created. The value must be of type Screen context

types (p. 277).

Library:

libscreen

Description:

Function type: Immediate Execution (p. 183)

The screen_create_context() function tries to establish communication with the

composited windowing system resource manager (Screen). To do this, the function

opens /dev/screen and sends the proper connect sequence. If the call succeeds,

memory is allocated to store context state. The composition manager then creates an

event queue and associates it with the connecting process.

Returns:

0 if the context was created, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

© 2014, QNX Software Systems Limited 279

Contexts (screen.h)

screen_destroy_context()

Terminate a connection with the composited windowing system.

Synopsis:

#include <screen/screen.h>

int screen_destroy_context(screen_context_t ctx)

Arguments:

ctx

The connection to Screen that is to be terminated. This context must have

been created with screen_create_context().

Library:

libscreen

Description:

Function type: Apply Execution (p. 182)

This function closes an existing connection with the composited windowing system

resource manager; the context is freed and can no longer be used. All windows and

pixmaps associated with this connection will be destroyed. All events waiting in the

event queue will be discarded. This operation does not flush the command buffer.

Any pending asynchronous commands are discarded.

Returns:

0 if the context was destroyed, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details). Note that the error may also have been

caused by any delayed execution function that's just been flushed.

screen_flush_context()

Flush a context, given a context and a set of flags.

Synopsis:

#include <screen/screen.h>

int screen_flush_context(screen_context_t ctx,
 int flags)

280 © 2014, QNX Software Systems Limited

Screen Library Reference

Arguments:

ctx

The connection to Screen that is to be flushed. This context must have been

created with screen_create_context().

flags

The flag to indicate whether or not to wait until contents of all displays have

been updated or to execute immediately.

Library:

libscreen

Description:

Function type: Apply Execution (p. 182)

This function flushes any delayed command and causes the contents of displays to

be updated, when applicable. If SCREEN_WAIT_IDLE is specified, the function will

not return until the contents of all affected displays have been updated. Passing no

flags causes the function to return immediately.

If debugging, you can call this function after all delayed execution function calls as

a way to determine the exact function call which may have caused an error.

Returns:

0 if the context was flushed, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details). Note that the error may also have been

caused by any delayed execution function that's just been flushed.

screen_get_context_property_cv()

Retrieve the current value of the specified context property of type char.

Synopsis:

#include <screen/screen.h>

int screen_get_context_property_cv(screen_context_t ctx,
 int pname,
 int len,
 char *param)

Arguments:

© 2014, QNX Software Systems Limited 281

Contexts (screen.h)

ctx

The handle of the context whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

len

The maximum number of bytes that can be written to param.

param

The buffer where the retrieved value(s) will be stored. This buffer must be

an array of type char with a maximum length of len.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of a context property in a user-provided buffer.

No more than len bytes of the specified type will be written.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_KEYMAP

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_context_property_iv()

Retrieve the current value of the specified context property of type integer.

Synopsis:

#include <screen/screen.h>

282 © 2014, QNX Software Systems Limited

Screen Library Reference

int screen_get_context_property_iv(screen_context_t ctx,
 int pname,
 int *param)

Arguments:

ctx

The handle of the context whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type int. parammay be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of a context property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_DEVICE_COUNT

• SCREEN_PROPERTY_DISPLAY_COUNT

• SCREEN_PROPERTY_GROUP_COUNT

• SCREEN_PROPERTY_IDLE_STATE

• SCREEN_PROPERTY_PIXMAP_COUNT

• SCREEN_PROPERTY_WINDOW_COUNT

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

© 2014, QNX Software Systems Limited 283

Contexts (screen.h)

screen_get_context_property_llv()

Retrieve the current value of the specified context property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_get_context_property_llv(screen_context_t ctx,
 int pname,
 long long *param)

Arguments:

ctx

The handle of the context whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type long long.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of a context property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_IDLE_TIMEOUT

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

284 © 2014, QNX Software Systems Limited

Screen Library Reference

screen_get_context_property_pv()

Retrieve the current value of the specified context property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_get_context_property_pv(screen_context_t ctx,
 int pname,
 void **param)

Arguments:

ctx

The handle of the context whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type void*.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of a context property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_DEVICES

• SCREEN_PROPERTY_DISPLAYS

• SCREEN_PROPERTY_GROUPS

• SCREEN_PROPERTY_KEYBOARD_FOCUS

• SCREEN_PROPERTY_MTOUCH_FOCUS

• SCREEN_PROPERTY_POINTER_FOCUS

• SCREEN_PROPERTY_PIXMAPS

© 2014, QNX Software Systems Limited 285

Contexts (screen.h)

• SCREEN_PROPERTY_WINDOWS

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_notify()

Send asynchronous notifications to Screen.

Synopsis:

#include <screen/screen.h>

int screen_notify(screen_context_t ctx,
 int flags,
 const void *obj,
 const struct sigevent *event)

Arguments:

ctx

The handle of the context of the notification.

flags

The type of notification that you want to be notified of. Valid notification

types are of type Screen notification flag types (p. 276).

obj

The object within the specified context that the notification is for. For

example, this object could be a window, or a display, etc.

event

The notification.

Library:

libscreen

286 © 2014, QNX Software Systems Limited

Screen Library Reference

Description:

Function Type: Immediate Execution (p. 183)

This function sends an asynchronous event to Screen. For security reasons, the

notification is sent without its associated data.

Returns:

0 if , or -1 if an error occurred (errno is set; refer to /usr/include/errno.h for

more details).

screen_set_context_property_cv()

Set the value of the specified context property of type char.

Synopsis:

#include <screen/screen.h>

int screen_set_context_property_cv(screen_context_t ctx,
 int pname,
 int len,
 const char *param)

Arguments:

ctx

The handle of the context whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

len

The maximum number of bytes that can be read from param.

param

A pointer to a buffer containing the new value(s). This buffer must be of an

array of type char with a maximum length of len.

Library:

libscreen

© 2014, QNX Software Systems Limited 287

Contexts (screen.h)

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a context property from a user-provided buffer. No more

than len bytes will be read from param.

You can use this function to set the value of the following properties:

• SCREEN_PROPERTY_KEYMAP

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_context_property_iv()

Set the value of the specified context property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_set_context_property_iv(screen_context_t ctx,
 int pname,
 const int *param)

Arguments:

ctx

The handle of the context whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type int. param may be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

288 © 2014, QNX Software Systems Limited

Screen Library Reference

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a context property from a user-provided buffer.

Currently, there are no context properties which can be set using this function.

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_context_property_llv()

Set the value of the specified context property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_set_context_property_llv(screen_context_t ctx,
 int pname,
 const long long *param)

Arguments:

ctx

The handle of the context whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type long long.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

© 2014, QNX Software Systems Limited 289

Contexts (screen.h)

This function sets the value of a context property from a user-provided buffer.

You can use this function to set the value of the following properties:

• SCREEN_PROPERTY_IDLE_TIMEOUT

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_context_property_pv()

Set the value of the specified context property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_set_context_property_pv(screen_context_t ctx,
 int pname,
 void **param)

Arguments:

ctx

The handle of the context whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type void*.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a context property from a user-provided buffer.

290 © 2014, QNX Software Systems Limited

Screen Library Reference

You can use this function to set the value of the following properties:

• SCREEN_PROPERTY_KEYBOARD_FOCUS

• SCREEN_PROPERTY_MTOUCH_FOCUS

• SCREEN_PROPERTY_POINTER_FOCUS

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

© 2014, QNX Software Systems Limited 291

Contexts (screen.h)

Debugging (screen.h)

Statistics that can be enabled to facilitate debugging your applications.

When debugging an error in your application, it's a good idea to call

screen_flush_context() after you call any API function which is of the type: delayed

execution. Calling screen_flush_context() will help you in determining the exact function

call that caused the error.

Screen debug graph types

Types of debug graphs.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_DEBUG_GRAPH_FPS = (1 << 0)
 SCREEN_DEBUG_GRAPH_POSTS = (1 << 1)
 SCREEN_DEBUG_GRAPH_BLITS = (1 << 2)
 SCREEN_DEBUG_GRAPH_UPDATES = (1 << 3)
 SCREEN_DEBUG_GRAPH_CPU_TIME = (1 << 4)
 SCREEN_DEBUG_GRAPH_GPU_TIME = (1 << 5)
 SCREEN_DEBUG_STATISTICS = (1 << 7)
};

Data:

SCREEN_DEBUG_GRAPH_FPS

Frames per second; the number of posts over time.

SCREEN_DEBUG_GRAPH_POSTS

Pixel count of pixels in dirty rectangles over time.

SCREEN_DEBUG_GRAPH_BLITS

Pixel count of pixels that were in blit requests over time.

SCREEN_DEBUG_GRAPH_UPDATES

Pixel count of pixels used by composition manager in the window to update

the framebuffer over time.

SCREEN_DEBUG_GRAPH_CPU_TIME

The time spent on the CPU drawing each frame.

292 © 2014, QNX Software Systems Limited

Screen Library Reference

SCREEN_DEBUG_GRAPH_GPU_TIME

The time spent on the GPU drawing each frame.

SCREEN_DEBUG_STATISTICS

Certain staticstics of a window.

The statistics are updated once per second and therefore represent a one

second average. The statistics that are displayed are:

• cpu usage, cpu time, gpu time

• private mappings, free memory

• window fps, display fps

• events

• objects

• draws

• triangles

• vertices

Library:

libscreen

Description:

All masks except SCREEN_DEBUG_STATISTICS are intended to be combined in a

single integer bitmask. The bitmask represents combinations of desired debug graphs

to be displayed. Only one window can enable debug graphs at a time; the last window

to have enabled debug will have its values displayed in the graph. All data but the

FPS is normalized to buffer size and refresh rate of display.

Screen packet types

Types of packets.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_REQUEST_PACKET = 0
 SCREEN_BLIT_PACKET = 1
 SCREEN_INPUT_PACKET = 2
 SCREEN_EVENT_PACKET = 3
};

© 2014, QNX Software Systems Limited 293

Debugging (screen.h)

Data:

SCREEN_REQUEST_PACKET

A binary chunk from the request ring buffer.

(/dev/screen/request/)

SCREEN_BLIT_PACKET

A binary chunk from the blit ring buffer or log.

(/dev/screen/0/blit#/)

SCREEN_INPUT_PACKET

A binary chunk from the input ring buffer or log.

(/dev/screen/input/)

SCREEN_EVENT_PACKET

A binary chunk from the event queue.

(/dev/screen/pid/)

Library:

libscreen

Description:

Screen packet types are for debugging purposes only. It identifies binary chunks that

are used only by the screeninfo utility (a command- line tool in /dev/screen/ that is

only visible if you have root access) that is used to decode these packets.

screen_print_packet()

Print a screen packet to a specified file.

Synopsis:

#include <screen/screen.h>

int screen_print_packet(int type,
 void *packet,
 FILE *fd)

294 © 2014, QNX Software Systems Limited

Screen Library Reference

Arguments:

type

The type of packet to be printed. The packet must be of type

Screen_Packet_Types.

packet

The address of the packet to be printed.

fd

The file object where the packet is to be printed to.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function prints out the information relevant to the specified packet to a specified

file.

Returns:

0 if the operation was successful, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

© 2014, QNX Software Systems Limited 295

Debugging (screen.h)

Devices (screen.h)

Devices represent input devices. Input devices can be focused to specific displays.

A valid input device includes:

• keyboard

• mouse

• joystick

• gamepad

• multi-touch

The information and state variables associated with each input device is stored in

memory allocated when the device is created with screen_create_device_type() You

need to be within a privileged context to be able to create input devices. You can

create a privileged context by calling the function screen_create_context() with a

context type of SCREEN_INPUT_PROVIDER_CONTEXT. Your process can have an

effective user ID of any type to create this context.

Screen device metric count types

Types of metric counts for devices.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_DEVICE_METRIC_EVENT_COUNT = 0
 SCREEN_DEVICE_METRIC_POWER_ON_COUNT = 1
};

Data:

SCREEN_DEVICE_METRIC_EVENT_COUNT

The number of input events generated by the device since the last time

Screen device metric count types were queried.

SCREEN_DEVICE_METRIC_POWER_ON_COUNT

The number of times that the device has been powered on since the last

time Screen device metrics were queried.

Library:

libscreen

296 © 2014, QNX Software Systems Limited

Screen Library Reference

Description:

The metrics are on a per device basis and the counts are reset after being queried.

That is, the counts are reset to 0 after you call screen_get_device_property_llv() to

retrieve SCREEN_PROPERTY_METRICS.

Screen device properties

Types of properties that are associated with Screen device API objects.

Full read/write access to Screen API object properties is system dependent.

These properties are described in full under Screen property types (p. 200).

Settable?Gettable?Device property

YesYesSCREEN_PROPERTY_BUTTONS

YesYesSCREEN_PROPERTY_DISPLAY

YesYesSCREEN_PROPERTY_ID_STRING

NoYesSCREEN_PROPERTY_KEY_MODIFIERS

NoYesSCREEN_PROPERTY_TYPE

YesYesSCREEN_PROPERTY_USER_HANDLE

YesYesSCREEN_PROPERTY_WINDOW

YesYesSCREEN_PROPERTY_POWER_MODE

YesYesSCREEN_PROPERTY_CONTEXT

YesYesSCREEN_PROPERTY_KEYMAP_PAGE

YesYesSCREEN_PROPERTY_KEYMAP

NoYesSCREEN_PROPERTY_METRIC_COUNT

YesYesSCREEN_PROPERTY_BUTTON_COUNT

YesYesSCREEN_PROPERTY_VENDOR

YesYesSCREEN_PROPERTY_PRODUCT

YesYesSCREEN_PROPERTY_ANALOG0

YesYesSCREEN_PROPERTY_ANALOG1

YesYesSCREEN_PROPERTY_MAXIMUM_TOUCH_ID

© 2014, QNX Software Systems Limited 297

Devices (screen.h)

Screen game button types

Types of game buttons.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_A_GAME_BUTTON = (1 << 0)
 SCREEN_B_GAME_BUTTON = (1 << 1)
 SCREEN_C_GAME_BUTTON = (1 << 2)
 SCREEN_X_GAME_BUTTON = (1 << 3)
 SCREEN_Y_GAME_BUTTON = (1 << 4)
 SCREEN_Z_GAME_BUTTON = (1 << 5)
 SCREEN_MENU1_GAME_BUTTON = (1 << 6)
 SCREEN_MENU2_GAME_BUTTON = (1 << 7)
 SCREEN_MENU3_GAME_BUTTON = (1 << 8)
 SCREEN_MENU4_GAME_BUTTON = (1 << 9)
 SCREEN_L1_GAME_BUTTON = (1 << 10)
 SCREEN_L2_GAME_BUTTON = (1 << 11)
 SCREEN_L3_GAME_BUTTON = (1 << 12)
 SCREEN_R1_GAME_BUTTON = (1 << 13)
 SCREEN_R2_GAME_BUTTON = (1 << 14)
 SCREEN_R3_GAME_BUTTON = (1 << 15)
 SCREEN_DPAD_UP_GAME_BUTTON = (1 << 16)
 SCREEN_DPAD_DOWN_GAME_BUTTON = (1 << 17)
 SCREEN_DPAD_LEFT_GAME_BUTTON = (1 << 18)
 SCREEN_DPAD_RIGHT_GAME_BUTTON = (1 << 19)
};

Data:

SCREEN_A_GAME_BUTTON

SCREEN_B_GAME_BUTTON

SCREEN_C_GAME_BUTTON

SCREEN_X_GAME_BUTTON

SCREEN_Y_GAME_BUTTON

SCREEN_Z_GAME_BUTTON

SCREEN_MENU1_GAME_BUTTON

298 © 2014, QNX Software Systems Limited

Screen Library Reference

SCREEN_MENU2_GAME_BUTTON

SCREEN_MENU3_GAME_BUTTON

SCREEN_MENU4_GAME_BUTTON

SCREEN_L1_GAME_BUTTON

SCREEN_L2_GAME_BUTTON

SCREEN_L3_GAME_BUTTON

SCREEN_R1_GAME_BUTTON

SCREEN_R2_GAME_BUTTON

SCREEN_R3_GAME_BUTTON

SCREEN_DPAD_UP_GAME_BUTTON

SCREEN_DPAD_DOWN_GAME_BUTTON

SCREEN_DPAD_LEFT_GAME_BUTTON

SCREEN_DPAD_RIGHT_GAME_BUTTON

Library:

libscreen

Description:

These enumerator values are used as constants to map buttons from different controllers

to a common game control layout. Typically, you create a structure to represent your

game controller and map the buttons to constants in this enumeration.

© 2014, QNX Software Systems Limited 299

Devices (screen.h)

screen_device_t

A handle for the screen device.

Synopsis:

#include <screen/screen.h>

typedef struct _screen_device* screen_device_t;

Library:

libscreen

Description:

screen_create_device_type()

Create a device of specified type to be associated with a context.

Synopsis:

#include <screen/screen.h>

int screen_create_device_type(screen_device_t *pdev,
 screen_context_t ctx,
 int type)

Arguments:

pdev

A pointer to a screen_device_t where a handle for the new input device can

be stored.

ctx

The handle of the context in which the input device is to be created. This

context must have been created with the context type of SCREEN_IN

PUT_PROVIDER_CONTEXT using screen_create_context().

type

The type of input device to be created.

300 © 2014, QNX Software Systems Limited

Screen Library Reference

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

The screen_create_device_type() function creates a input device object to be associated

with a context. Note that you need to be within a privileged context to call this function.

The following are valid input devices which can be created:

• SCREEN_EVENT_KEYBOARD

• SCREEN_EVENT_POINTER

• SCREEN_EVENT_JOYSTICK

• SCREEN_EVENT_GAMEPAD

• SCREEN_EVENT_MTOUCH_TOUCH Applications must use screen_destroy_device()

when a device is no longer used.

Returns:

0 if the input device was created, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

screen_destroy_device()

Destroy a input device and frees associated resources.

Synopsis:

#include <screen/screen.h>

int screen_destroy_device(screen_device_t dev)

Arguments:

dev

The handle of the input device that you want to destroy.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

© 2014, QNX Software Systems Limited 301

Devices (screen.h)

This function destroys the a input device object associated with the device handle.

Any resources created for this input device will be released. Input devices created

with screen_create_device_type() must be destroyed with this function.

This function is of type flushing execution because must there be any entries in the

command buffer that have reference to this device, the entries will be flushed and

processed before destroying the device.

Returns:

0 if the input device was destroyed, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details). Note that the error may also have been

caused by any delayed execution function that's just been flushed.

screen_get_device_property_cv()

Retrieve the current value of the specified device property of type char.

Synopsis:

#include <screen/screen.h>

int screen_get_device_property_cv(screen_device_t dev,
 int pname,
 int len,
 char *param)

Arguments:

dev

The handle of the device whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

len

The maximum number of bytes that can be written to param.

param

The buffer where the retrieved value(s) will be stored. This buffer must be

an array of type char with a maximum length of len.

302 © 2014, QNX Software Systems Limited

Screen Library Reference

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of a device property in a user-provided buffer.

No more than len bytes of the specified type will be written.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_KEYMAP

• SCREEN_PROPERTY_ID_STRING

• SCREEN_PROPERTY_VENDOR

• SCREEN_PROPERTY_PRODUCT

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_device_property_iv()

Retrieve the current value of the specified device property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_get_device_property_iv(screen_device_t dev,
 int pname,
 int *param)

Arguments:

dev

The handle of the device whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

© 2014, QNX Software Systems Limited 303

Devices (screen.h)

The buffer where the retrieved value(s) will be stored. This buffer must be

of type int. parammay be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of a device property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_BUTTON_COUNT

• SCREEN_PROPERTY_BUTTONS

• SCREEN_PROPERTY_KEY_MODIFIERS

• SCREEN_PROPERTY_KEYMAP_PAGE

• SCREEN_PROPERTY_METRIC_COUNT

• SCREEN_PROPERTY_POWER_MODE

• SCREEN_PROPERTY_TYPE

• SCREEN_PROPERTY_ANALOG0

• SCREEN_PROPERTY_ANALOG1

• SCREEN_PROPERTY_TRANSFORM

• SCREEN_PROPERTY_SCALE_FACTOR

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_device_property_llv()

Retrieve the current value of the specified device property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_get_device_property_llv(screen_device_t dev,
 int pname,
 long long *param)

304 © 2014, QNX Software Systems Limited

Screen Library Reference

Arguments:

dev

The handle of the device whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type long long.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of a device property in a user-provided buffer.

The values of the following properties can be queried using this function:

• SCREEN_PROPERTY_METRICS

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_device_property_pv()

Retrieve the current value of the specified device property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_get_device_property_pv(screen_device_t dev,
 int pname,
 void **param)

© 2014, QNX Software Systems Limited 305

Devices (screen.h)

Arguments:

dev

The handle of the device whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type void*.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of a device property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_CONTEXT

• SCREEN_PROPERTY_DISPLAY

• SCREEN_PROPERTY_USER_HANDLE

• SCREEN_PROPERTY_WINDOW

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_set_device_property_cv()

Set the value of the specified device property of type char.

Synopsis:

#include <screen/screen.h>

306 © 2014, QNX Software Systems Limited

Screen Library Reference

int screen_set_device_property_cv(screen_device_t dev,
 int pname,
 int len,
 const char *param)

Arguments:

dev

The handle of the device whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

len

The maximum number of bytes that can be read from param.

param

A pointer to a buffer containing the new value(s). This buffer must be an

array of type char with a maximum length of len.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a device property from a user-provided buffer. No more

than len bytes will be read from param.

You can use this function to set the value of the following properties:

• SCREEN_PROPERTY_ID_STRING

• SCREEN_PROPERTY_KEYMAP

• SCREEN_PROPERTY_PRODUCT

• SCREEN_PROPERTY_VENDOR

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

© 2014, QNX Software Systems Limited 307

Devices (screen.h)

screen_set_device_property_iv()

Set the value of the specified device property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_set_device_property_iv(screen_device_t dev,
 int pname,
 const int *param)

Arguments:

dev

The handle of the device whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type int. param may be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a device property from a user-provided buffer.

You can use this function to set the value of the following properties:

• SCREEN_PROPERTY_BUTTON_COUNT

• SCREEN_PROPERTY_KEYMAP_PAGE

• SCREEN_PROPERTY_POWER_MODE

• SCREEN_PROPERTY_TRANSFORM

• SCREEN_PROPERTY_SCALE_FACTOR

308 © 2014, QNX Software Systems Limited

Screen Library Reference

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_device_property_llv()

Set the value of the specified device property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_set_device_property_llv(screen_device_t dev,
 int pname,
 const long long *param)

Arguments:

dev

The handle of the device whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type long long.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a device property from a user-provided buffer.

Currently there are no device properties which can be set using this function.

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

© 2014, QNX Software Systems Limited 309

Devices (screen.h)

screen_set_device_property_pv()

Set the value of the specified device property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_set_device_property_pv(screen_device_t dev,
 int pname,
 void **param)

Arguments:

dev

The handle of the device whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type void*.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a device property from a user-provided buffer.

You can use this function to set the value of the following properties:

• SCREEN_PROPERTY_DISPLAY

• SCREEN_PROPERTY_USER_HANDLE

• SCREEN_PROPERTY_WINDOW

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

310 © 2014, QNX Software Systems Limited

Screen Library Reference

Displays (screen.h)

A display represents the physical display hardware such as a monitor or touch screen

display.

You can use display API functions to:

• query and set display properties

• get display modes that are specific to a given hardware display

• perform vsync operations

Note that to have full access to the display properties of the system, you must be

working within a privileged context. You create a privileged context by calling the

function screen_create_context() with a context type of

SCREEN_DISPLAY_MANAGER_CONTEXT. Your process must have an effective user

ID of root to be able to create this context type. Some API functions will fail to execute

if you are not the the correct context.

Screen display metric count types

Types of metric counts for displays.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_DISPLAY_METRIC_ATTACH_COUNT = 0
 SCREEN_DISPLAY_METRIC_POWER_ON_COUNT = 1
 SCREEN_DISPLAY_METRIC_IDLE_COUNT = 2
 SCREEN_DISPLAY_METRIC_EVENT_COUNT = 3
 SCREEN_DISPLAY_METRIC_UPDATE_COUNT = 4
 SCREEN_DISPLAY_METRIC_UPDATE_PIXELS = 5
 SCREEN_DISPLAY_METRIC_UPDATE_READS = 6
 SCREEN_DISPLAY_METRIC_UPDATE_WRITES = 7
};

Data:

SCREEN_DISPLAY_METRIC_ATTACH_COUNT

The number of times the display has been attached (connected) since the

last time Screen display metrics were queried.

SCREEN_DISPLAY_METRIC_POWER_ON_COUNT

The number of times the display has been powered on since the last time

Screen display metrics were queried.

© 2014, QNX Software Systems Limited 311

Displays (screen.h)

SCREEN_DISPLAY_METRIC_IDLE_COUNT

The number of times the display has been in idle state since the last time

Screen display metrics were queried.

SCREEN_DISPLAY_METRIC_EVENT_COUNT

The number of input events that has been focused (or sent) to the display

since the last time Screen display metrics were queried.

SCREEN_DISPLAY_METRIC_UPDATE_COUNT

The number of times that the framebuffer of the display has been updated

since the last time Screen display metrics were queried.

SCREEN_DISPLAY_METRIC_UPDATE_PIXELS

The number of pixels that the framebuffer of the display has updated since

the last time Screen display metrics were queried.

SCREEN_DISPLAY_METRIC_UPDATE_READS

The number of bytes that has been read from the framebuffer of the display

since the last time Screen display metrics have been queried.

The number of bytes read is an estimation calculated based on the number

of pixels updated by the framebuffer.

SCREEN_DISPLAY_METRIC_UPDATE_WRITES

The number of bytes that has been written to the framebuffer of the display

since the last time Screen display metrics have been queried.

The number of bytes written is an estimation calculated based on the number

of pixels updated by the framebuffer.

Library:

libscreen

Description:

The metrics are on a per display basis and the counts are reset after being queried.

That is, the counts are reset to 0 after you call screen get_display_property_llv() to

retrieve SCREEN_PROPERTY_METRICS.

312 © 2014, QNX Software Systems Limited

Screen Library Reference

Screen mode types

The screen mode types.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_MODE_PREFERRED = 0x1
};

Data:

SCREEN_MODE_PREFERRED

Used in the flags of the type screen_display_mode_t to indicate that this

mode is the preferred mode.

Library:

libscreen

Description:

Screen display properties

Types of properties that are associated with Screen display API objects.

Full read/write access to Screen API object properties is system dependent.

These properties are described in full under Screen property types (p. 200).

Settable?Gettable?Configurable?Display property

YesYesYesSCREEN_PROPERTY_GAMMA

NoYesNoSCREEN_PROPERTY_ID_STRING

NoYesNoSCREEN_PROPERTY_KEY_MODIFIERS

NoYesNoSCREEN_PROPERTY_ROTATION

YesYesNoSCREEN_PROPERTY_SIZE

NoYesNoSCREEN_PROPERTY_TRANSPARENCY

NoYesNoSCREEN_PROPERTY_TYPE

YesYesNoSCREEN_PROPERTY_MIRROR_MODE

NoYesNoSCREEN_PROPERTY_ATTACHED

© 2014, QNX Software Systems Limited 313

Displays (screen.h)

Settable?Gettable?Configurable?Display property

NoYesNoSCREEN_PROPERTY_DETACHABLE

NoYesNoSCREEN_PROPERTY_NATIVE_RESOLUTION

NoYesNoSCREEN_PROPERTY_PROTECTION_ENABLE

NoYesNoSCREEN_PROPERTY_PHYSICAL_SIZE

NoYesNoSCREEN_PROPERTY_FORMAT_COUNT

NoYesNoSCREEN_PROPERTY_FORMATS

NoYesNoSCREEN_PROPERTY_VIEWPORT_POSITION

NoYesNoSCREEN_PROPERTY_VIEWPORT_SIZE

NoYesNoSCREEN_PROPERTY_IDLE_STATE

NoYesNoSCREEN_PROPERTY_KEEP_AWAKES

YesYesNoSCREEN_PROPERTY_IDLE_TIMEOUT

YesYesNoSCREEN_PROPERTY_KEYBOARD_FOCUS

YesYesNoSCREEN_PROPERTY_MTOUCH_FOCUS

YesYesNoSCREEN_PROPERTY_POINTER_FOCUS

YesYesNoSCREEN_PROPERTY_ID

YesYesNoSCREEN_PROPERTY_POWER_MODE

NoYesNoSCREEN_PROPERTY_MODE_COUNT

YesYesNoSCREEN_PROPERTY_MODE

YesYesNoSCREEN_PROPERTY_CONTEXT

YesYesNoSCREEN_PROPERTY_DPI

NoYesNoSCREEN_PROPERTY_METRIC_COUNT

NoYesNoSCREEN_PROPERTY_METRICS

YesYesNoSCREEN_PROPERTY_BUTTON_COUNT

YesYesNoSCREEN_PROPERTY_VENDOR

YesYesNoSCREEN_PROPERTY_PRODUCT

NoYesNoSCREEN_PROPERTY_TECHNOLOGY

314 © 2014, QNX Software Systems Limited

Screen Library Reference

Screen display technology types

Types of technologies for a display.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_DISPLAY_TECHNOLOGY_UNKNOWN = 0
 SCREEN_DISPLAY_TECHNOLOGY_CRT = 1
 SCREEN_DISPLAY_TECHNOLOGY_LCD = 2
 SCREEN_DISPLAY_TECHNOLOGY_PLASMA = 3
 SCREEN_DISPLAY_TECHNOLOGY_LED = 4
 SCREEN_DISPLAY_TECHNOLOGY_OLED = 5
};

Data:

SCREEN_DISPLAY_TECHNOLOGY_UNKNOWN

Any other display technology that isn't enumerated.

SCREEN_DISPLAY_TECHNOLOGY_CRT

All monochrome and standard tricolor CRTs.

SCREEN_DISPLAY_TECHNOLOGY_LCD

All active and passive matrix LCDs.

SCREEN_DISPLAY_TECHNOLOGY_PLASMA

All PDP types including DC and AC plasma displays.

SCREEN_DISPLAY_TECHNOLOGY_LED

Inorganic LED.

SCREEN_DISPLAY_TECHNOLOGY_OLED

Organic LED/OEL.

Library:

libscreen

© 2014, QNX Software Systems Limited 315

Displays (screen.h)

Description:

Screen display types

Types of connections to a display.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_DISPLAY_TYPE_INTERNAL = 0x7660
 SCREEN_DISPLAY_TYPE_COMPOSITE = 0x7661
 SCREEN_DISPLAY_TYPE_SVIDEO = 0x7662
 SCREEN_DISPLAY_TYPE_COMPONENT_YPbPr = 0x7663
 SCREEN_DISPLAY_TYPE_COMPONENT_RGB = 0x7664
 SCREEN_DISPLAY_TYPE_COMPONENT_RGBHV = 0x7665
 SCREEN_DISPLAY_TYPE_DVI = 0x7666
 SCREEN_DISPLAY_TYPE_HDMI = 0x7667
 SCREEN_DISPLAY_TYPE_DISPLAYPORT = 0x7668
 SCREEN_DISPLAY_TYPE_OTHER = 0x7669
};

Data:

SCREEN_DISPLAY_TYPE_INTERNAL

An internal connection type to the display.

SCREEN_DISPLAY_TYPE_COMPOSITE

A composite connection type to the display.

SCREEN_DISPLAY_TYPE_SVIDEO

A S-Video connection type to the display.

SCREEN_DISPLAY_TYPE_COMPONENT_YPbPr

A component connection type to the display - specifically the YPbPr signal

of the component connection.

SCREEN_DISPLAY_TYPE_COMPONENT_RGB

A component connection type to the display - specifically the RGB signal

of the component connection.

SCREEN_DISPLAY_TYPE_COMPONENT_RGBHV

A component connection type to the display - specifically the RBGHV signal

of the component connection.

316 © 2014, QNX Software Systems Limited

Screen Library Reference

SCREEN_DISPLAY_TYPE_DVI

A DVI connection type to the display.

SCREEN_DISPLAY_TYPE_HDMI

A HDMI connection type to the display.

SCREEN_DISPLAY_TYPE_DISPLAYPORT

A DisplayPort connection type to the display.

SCREEN_DISPLAY_TYPE_OTHER

A connection type to the display which is one other than internal, composite,

S-Video, component, DVI, HDMI, or DisplayPort.

Library:

libscreen

Description:

screen_display_mode_t

A structure to contain values related to Screen display mode.

Synopsis:

#include <screen/screen.h>

typedef struct _screen_mode screen_display_mode_t;

Library:

libscreen

Description:

screen_display_t

A handle for the screen display.

Synopsis:

#include <screen/screen.h>

typedef struct _screen_display* screen_display_t;

© 2014, QNX Software Systems Limited 317

Displays (screen.h)

Library:

libscreen

Description:

screen_get_display_modes()

Retrieve the display modes supported by a specified display.

Synopsis:

#include <screen/screen.h>

int screen_get_display_modes(screen_display_t display,
 int max,
 screen_display_mode_t *param)

Arguments:

display

The handle of the display whose display modes are being queried.

max

The maximum number of display modes that can be written to the array of

modes pointed to by param.

param

The buffer where the retrieved display modes will be stored.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function returns the video modes that are supported by a display. All elements

in the list are unique. Note that several modes can have identical resolutions and

differ only in refresh rate or aspect ratio. You can obtain the number of modes

supported by querying the SCREEN_PROPERTY_MODE_COUNT property. No more than

max modes will be stored.

318 © 2014, QNX Software Systems Limited

Screen Library Reference

Returns:

0 if a query was successful and the display mode is stored in param, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details). Note

that the error may also have been caused by any delayed execution function that's just

been flushed.

screen_get_display_property_cv()

Retrieve the current value of the specified display property of type char.

Synopsis:

#include <screen/screen.h>

int screen_get_display_property_cv(screen_display_t disp,
 int pname,
 int len,
 char *param)

Arguments:

disp

The handle of the display whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

len

The maximum number of bytes that can be written to param.

param

The buffer where the retrieved value(s) will be stored. This buffer must be

an array of type char with a maximum length of len.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

© 2014, QNX Software Systems Limited 319

Displays (screen.h)

This function stores the current value of a display property in a user-provided buffer.

No more than len bytes of the specified type will be written.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_ID_STRING

• SCREEN_PROPERTY_VENDOR

• SCREEN_PROPERTY_PRODUCT

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_display_property_iv()

Retrieve the current value of the specified display property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_get_display_property_iv(screen_display_t disp,
 int pname,
 int *param)

Arguments:

disp

The handle of the display whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type int. parammay be a single integer or an array of integers depending

on the property being set.

320 © 2014, QNX Software Systems Limited

Screen Library Reference

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of a display property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_ID

• SCREEN_PROPERTY_ATTACHED

• SCREEN_PROPERTY_DETACHABLE

• SCREEN_PROPERTY_FORMAT_COUNT

• SCREEN_PROPERTY_GAMMA

• SCREEN_PROPERTY_IDLE_STATE

• SCREEN_PROPERTY_KEEP_AWAKES

• SCREEN_PROPERTY_KEY_MODIFIERS

• SCREEN_PROPERTY_MIRROR_MODE

• SCREEN_PROPERTY_MODE_COUNT

• SCREEN_PROPERTY_POWER_MODE

• SCREEN_PROPERTY_PROTECTION_ENABLE

• SCREEN_PROPERTY_ROTATION

• SCREEN_PROPERTY_TRANSPARENCY

• SCREEN_PROPERTY_TYPE

• SCREEN_PROPERTY_DPI

• SCREEN_PROPERTY_NATIVE_RESOLUTION

• SCREEN_PROPERTY_PHYSICAL_SIZE

• SCREEN_PROPERTY_SIZE

• SCREEN_PROPERTY_FORMATS

• SCREEN_PROPERTY_VIEWPORT_POSITION

• SCREEN_PROPERTY_VIEWPORT_SIZE

• SCREEN_PROPERTY_METRIC_COUNT

• SCREEN_PROPERTY_TECHNOLOGY

• SCREEN_PROPERTY_REFERENCE_COLOR

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

© 2014, QNX Software Systems Limited 321

Displays (screen.h)

screen_get_display_property_llv()

Retrieve the current value of the specified display property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_get_display_property_llv(screen_display_t disp,
 int pname,
 long long *param)

Arguments:

disp

The handle of the device whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type long long.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of a display property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_IDLE_TIMEOUT

• SCREEN_PROPERTY_METRICS

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

322 © 2014, QNX Software Systems Limited

Screen Library Reference

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_display_property_pv()

Retrieve the current value of the specified display property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_get_display_property_pv(screen_display_t disp,
 int pname,
 void **param)

Arguments:

disp

The handle of the display whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type void*.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of a display property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_CONTEXT

• SCREEN_PROPERTY_MODE

• SCREEN_PROPERTY_KEYBOARD_FOCUS

• SCREEN_PROPERTY_MTOUCH_FOCUS

• SCREEN_PROPERTY_POINTER_FOCUS

© 2014, QNX Software Systems Limited 323

Displays (screen.h)

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_read_display()

Take a screenshot of the display and store the resulting image in the specified buffer.

Synopsis:

#include <screen/screen.h>

int screen_read_display(screen_display_t disp,
 screen_buffer_t buf,
 int count,
 const int *read_rects,
 int flags)

Arguments:

disp

The handle of the display that is the target of the screenshot.

buf

The buffer where the resulting image will be stored.

count

The number of rectables supplied in the read_rects argument.

read_rects

A pointer to (count * 4) integers that define the areas of display that need

to be grabbed for the screenshot.

flags

The mutex flags; must be set to 0.

Library:

libscreen

324 © 2014, QNX Software Systems Limited

Screen Library Reference

Description:

Function Type: Immediate Execution (p. 183)

This function takes a screenshot of a display and stores the result in a user-provided

buffer. The buffer can be a pixmap buffer or a window buffer. The buffer must have

been created with the usage flag SCREEN_USAGE_NATIVE in order for the operation

to succeed. You need to be working within a privileged context so that you have full

access to the display properties of the system. Therefore, a context which was created

with the type SCREEN_DISPLAY_MANAGER_CONTEXTmust be used. When capturing

screenshots of multiple displays, you will need to make one screen_read_display()

function call per display. The call blocks until the operation is completed. If count is

0 and read_rects is NULL, the entire display is grabbed. Otherwise, read_rects must

point to count * 4 integers defining rectangles in screen coordinates that need to be

grabbed. Note that the buffer size does not have to match the display size. Scaling

will be applied to make the screenshot fit into the buffer provided.

Returns:

0 if a the operation was successful and the pixels are written to buf, or -1 of an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_display_property_cv()

Set the value of the specified display property of type char.

Synopsis:

#include <screen/screen.h>

int screen_set_display_property_cv(screen_display_t disp,
 int pname,
 int len,
 const char *param)

Arguments:

disp

The handle of the display whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

len

© 2014, QNX Software Systems Limited 325

Displays (screen.h)

The maximum number of bytes that can be read from param.

param

A pointer to a buffer containing the new value(s). This buffer must be an

array of type char with a maximum length of len.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a display property from a user-provided buffer. No more

than len bytes will be read from param.

Currently there are no display properties that can be queried using this function.

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_display_property_iv()

Set the value of the specified display property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_set_display_property_iv(screen_display_t disp,
 int pname,
 const int *param)

Arguments:

disp

The handle of the display whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

326 © 2014, QNX Software Systems Limited

Screen Library Reference

param

A pointer to a buffer containing the new value(s). This buffer must be of

type int. param may be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a display property from a user-provided buffer.

You can use this function to set the value of the following properties:

• SCREEN_PROPERTY_GAMMA

• SCREEN_PROPERTY_MIRROR_MODE

• SCREEN_PROPERTY_MODE

• SCREEN_PROPERTY_POWER_MODE

• SCREEN_PROPERTY_PROTECTION_ENABLE

• SCREEN_PROPERTY_ROTATION

• SCREEN_PROPERTY_VIEWPORT_POSITION

• SCREEN_PROPERTY_VIEWPORT_SIZE

• SCREEN_PROPERTY_REFERENCE_COLOR

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_display_property_llv()

Set the value of the specified display property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_set_display_property_llv(screen_display_t disp,
 int pname,
 const long long *param)

Arguments:

© 2014, QNX Software Systems Limited 327

Displays (screen.h)

disp

The handle of the display whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type long long.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a display property from a user-provided buffer.

You can use this function to set the value of the following properties:

• SCREEN_PROPERTY_IDLE_TIMEOUT

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_display_property_pv()

Set the value of the specified display property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_set_display_property_pv(screen_display_t disp,
 int pname,
 void **param)

Arguments:

disp

328 © 2014, QNX Software Systems Limited

Screen Library Reference

The handle of the display whose property is to be set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type void*.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a display property from a user-provided buffer.

You can use this function to set the value of the following properties:

• SCREEN_PROPERTY_KEYBOARD_FOCUS

• SCREEN_PROPERTY_MTOUCH_FOCUS

• SCREEN_PROPERTY_POINTER_FOCUS

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_share_display_buffers()

Cause a window to share its buffers with a display.

Synopsis:

#include <screen/screen.h>

int screen_share_display_buffers(screen_window_t win,
 screen_display_t share,
 int count)

Arguments:

win

© 2014, QNX Software Systems Limited 329

Displays (screen.h)

The handle of the window who will be sharing its buffer(s).

share

The handle of the display who is sharing buffer(s).

count

The number of buffer st that is shared by the window to the display. A value

of 0 will default to the Screen services to select the appropriate values for

properties such as SCREEN_PROPERTY_FORMAT, SCREEN_PROPERTY_US

AGE and SCREEN_PROPERTY_BUFFER_SIZE.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function creates a count number of buffers with the size defined by the

SCREEN_PROPERTY_BUFFER_SIZE window property of win. These buffers are

rendered by the windowing system. The display will be used to generate content for

the (window) buffers. Once there is a post for the window win, the content of the

buffers will be displayed on the display share. To share display buffers, you need to

be working within a privileged context. Therefore, a context that was created with the

type SCREEN_DISPLAY_MANAGER_CONTEXT must be used.

If the display has a framebuffer, then screen_share_display_buffers() is similar to

screen_share_window_buffers().

Returns:

0 if the window shared its buffers, or -1 of an error occurred (errno is set; refer to

/usr/include/errno.h for more details). Note that the error may also have been

caused by any delayed execution function that's just been flushed.

screen_wait_vsync()

Block the calling thread until the next vsync happens on the specified display.

Synopsis:

#include <screen/screen.h>

330 © 2014, QNX Software Systems Limited

Screen Library Reference

int screen_wait_vsync(screen_display_t display)

Arguments:

display

An instance of the display on which to perform the the vsync operation.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function blocks the calling thread and returns when the next vsync operation

occurs on the specified display.

Returns:

0 if a vsync operation occurred, or -1 of an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

© 2014, QNX Software Systems Limited 331

Displays (screen.h)

Events (screen.h)

Events are associated with a given context.

The windowing system manages an event queue per context. An event can be

transferred from the event queue to the application by using screen_get_event(). Once

transferred to the application, it can be used with screen_get_event_property() in an

event handling routine to handle the event accordingly.

Several variations of screen_get_event_property() and screen_set_event_property()

functions are available to query and set event properties respectively. It is important

to note that different types of events will permit a different selection of properties that

can be queried or set. The exception to this is the property which indicates the type

of event (SCREEN_PROPERTY_TYPE). Therefore if you have an event to handle, it is

common practice in your event handling routine to first query the type of the event

using screen_get_event_property_iv() with SCREEN_PROPERTY_TYPE as the name

of the property. Once you know which type of event you are handling, you can proceed

to call the appropriate query and set API functions for the other event properties. Refer

to the example below for the logic of a simple event handling routine.

...
screen_event_t screen_ev;
screen_create_event(&screen_ev);

 while (1){
 do {
 /* Call screen_get_event with a timeout of -1, or ~0, so that you block
 until an event is put into the event queue. */
 screen_get_event(screen_ctx, screen_ev, vis ? 0 : ~0);

 /* Get the type of the event */
 screen_get_event_property_iv(screen_ev, SCREEN_PROPERTY_TYPE, &type);

 /* Handle events of interest to your application */
 if (type == SCREEN_EVENT_POST) {
 /* Handle SCREEN_EVENT_POST event accordingly;
 query or set properties valid for POST events */
 }
 else if (type == SCREEN_EVENT_CLOSE) {
 /* Handle SCREEN_EVENT_CLOSE event accordingly;
 query or set properties valid for CLOSE events */
 }
 else if
 ...
 } while (type != SCREEN_EVENT_NONE);
 }
...

Screen event properties

Types of properties that are associated with Screen event API objects.

Full read/write access to Screen API object properties is system dependent.

These properties are described in full under Screen property types (p. 200)

Settable?Gettable?Event property

YesYesSCREEN_PROPERTY_BUTTONS

332 © 2014, QNX Software Systems Limited

Screen Library Reference

Settable?Gettable?Event property

YesYesSCREEN_PROPERTY_DEVICE

YesYesSCREEN_PROPERTY_DISPLAY

YesYesSCREEN_PROPERTY_GROUP

YesYesSCREEN_PROPERTY_INPUT_VALUE

YesYesSCREEN_PROPERTY_JOG_COUNT

YesYesSCREEN_PROPERTY_KEY_CAP

YesYesSCREEN_PROPERTY_KEY_MODIFIERS

YesYesSCREEN_PROPERTY_KEY_SCAN

YesYesSCREEN_PROPERTY_KEY_SYM

YesYesSCREEN_PROPERTY_NAME

YesYesSCREEN_PROPERTY_POSITION

YesYesSCREEN_PROPERTY_SIZE

YesYesSCREEN_PROPERTY_SOURCE_POSITION

YesYesSCREEN_PROPERTY_SOURCE_SIZE

NoYesSCREEN_PROPERTY_TYPE

YesYesSCREEN_PROPERTY_USER_DATA

YesYesSCREEN_PROPERTY_WINDOW

YesYesSCREEN_PROPERTY_MIRROR_MODE

YesYesSCREEN_PROPERTY_EFFECT

YesYesSCREEN_PROPERTY_ATTACHED

YesYesSCREEN_PROPERTY_PROTECTION_ENABLE

YesYesSCREEN_PROPERTY_TOUCH_ID

YesYesSCREEN_PROPERTY_TOUCH_ORIENTATION

YesYesSCREEN_PROPERTY_TOUCH_PRESSURE

YesYesSCREEN_PROPERTY_TIMESTAMP

YesYesSCREEN_PROPERTY_SEQUENCE_ID

YesYesSCREEN_PROPERTY_IDLE_STATE

YesYesSCREEN_PROPERTY_MODE

YesYesSCREEN_PROPERTY_MOUSE_WHEEL

© 2014, QNX Software Systems Limited 333

Events (screen.h)

Settable?Gettable?Event property

YesYesSCREEN_PROPERTY_CONTEXT

NoYesSCREEN_PROPERTY_OBJECT_TYPE

YesYesSCREEN_PROPERTY_MOUSE_HORIZONTAL_WHEEL

YesYesSCREEN_PROPERTY_TOUCH_TYPE

YesYesSCREEN_PROPERTY_SCALE_FACTOR

YesYesSCREEN_PROPERTY_ANALOG0

YesYesSCREEN_PROPERTY_ANALOG1

YesYesSCREEN_PROPERTY_KEY_ALTERNATE_SYM

Screen event types

Types of events.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_EVENT_NONE = 0
 SCREEN_EVENT_CREATE = 1
 SCREEN_EVENT_PROPERTY = 2
 SCREEN_EVENT_CLOSE = 3
 SCREEN_EVENT_INPUT = 4
 SCREEN_EVENT_JOG = 5
 SCREEN_EVENT_POINTER = 6
 SCREEN_EVENT_KEYBOARD = 7
 SCREEN_EVENT_USER = 8
 SCREEN_EVENT_POST = 9
 SCREEN_EVENT_EFFECT_COMPLETE = 10
 SCREEN_EVENT_DISPLAY = 11
 SCREEN_EVENT_IDLE = 12
 SCREEN_EVENT_UNREALIZE = 13
 SCREEN_EVENT_GAMEPAD = 14
 SCREEN_EVENT_JOYSTICK = 15
 SCREEN_EVENT_DEVICE = 16
 SCREEN_EVENT_MTOUCH_TOUCH = 100
 SCREEN_EVENT_MTOUCH_MOVE = 101
 SCREEN_EVENT_MTOUCH_RELEASE = 102
};

Data:

SCREEN_EVENT_NONE

A blocking event indicating that there are currently no events in the queue.

334 © 2014, QNX Software Systems Limited

Screen Library Reference

SCREEN_EVENT_CREATE

Dispatched when a child window is created.

SCREEN_EVENT_PROPERTY

Dispatched when a property is set.

SCREEN_EVENT_CLOSE

Dispatched when a child window is destroyed.

SCREEN_EVENT_INPUT

Dispatched when an unknown input event occurs.

SCREEN_EVENT_JOG

Dispatched when a jog dial input event occurs.

SCREEN_EVENT_POINTER

Used to describe either a device or event API object:

• Device: represents a valid input device type; used for a device object's

SCREEN_PROPERTY_TYPE

• Event: dispatched when a pointer input event occurs

SCREEN_EVENT_KEYBOARD

Used to describe either a device or event API object:

• Device: represents a valid input device type; used for a device object's

SCREEN_PROPERTY_TYPE

• Event: dispatched when a keyboard input event occurs

SCREEN_EVENT_USER

Dispatched when a user event is detected.

SCREEN_EVENT_POST

Dispatched when a child window has posted its first frame.

SCREEN_EVENT_EFFECT_COMPLETE

© 2014, QNX Software Systems Limited 335

Events (screen.h)

Dispatched to the window manager indicating that a rotation effect has

completed.

SCREEN_EVENT_DISPLAY

Dispatched when an external display is detected.

SCREEN_EVENT_IDLE

Dispatched when the window enters an idle state.

SCREEN_EVENT_UNREALIZE

Dispatched when a handle to a window is lost.

SCREEN_EVENT_GAMEPAD

Used to describe either a device or event API object:

• Device: represents a valid input device type; used for a device object's

SCREEN_PROPERTY_TYPE

• Event: dispatched when a gamepad input event occurs

SCREEN_EVENT_JOYSTICK

Used to describe either a device or event API object:

• Device: represents a valid input device type; used for a device object's

SCREEN_PROPERTY_TYPE

• Event: dispatched when a joystick input event occurs

SCREEN_EVENT_DEVICE

Dispatched when an input device is detected.

SCREEN_EVENT_MTOUCH_TOUCH

Used to describe either a device or event API object:

• Device: represents a valid input device type; used for a device object's

SCREEN_PROPERTY_TYPE

• Event: dispatched when a multi-touch event is detected

SCREEN_EVENT_MTOUCH_MOVE

336 © 2014, QNX Software Systems Limited

Screen Library Reference

Dispatched when a multi-touch move event is detected.

For example, when the user moves his or her fingers to make an input

gesture.

SCREEN_EVENT_MTOUCH_RELEASE

Dispatched when a multi-touch release event occurs, or when the user

completes the multi-touch gesture.

Library:

libscreen

Description:

screen_create_event()

Create an event that can later be filled with event data.

Synopsis:

#include <screen/screen.h>

int screen_create_event(screen_event_t *pev)

Arguments:

pev

An address where the function can store a handle to the native event.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function creates an event object. This event can be used to store events from the

process's event queue using screen_get_event(). Event data can also be filled in with

the screen_set_event_property() functions and sent to other applications

using screen_inject_event() or screen_send_event(). Events are opaque handles.

screen_get_event_property() functions must be used to get information from

the event. You must destroy event objects when you no longer need them by using

screen_destroy_event().

© 2014, QNX Software Systems Limited 337

Events (screen.h)

Returns:

0 if a new event was created, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

screen_destroy_event()

Destroy an event and free associated memory.

Synopsis:

#include <screen/screen.h>

int screen_destroy_event(screen_event_t ev)

Arguments:

ev

The handle of the event to destroy. This event must have been created with

screen_create_event().

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function frees the memory allocated to hold an event. The event can no longer

be used as an argument in subsequent screen calls.

Returns:

0 if the event was destroyed, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

screen_event_t

A handle for the screen event.

Synopsis:

#include <screen/screen.h>

typedef struct _screen_event* screen_event_t;

338 © 2014, QNX Software Systems Limited

Screen Library Reference

Library:

libscreen

Description:

screen_get_event()

Wait for a screen event.

Synopsis:

#include <screen/screen.h>

int screen_get_event(screen_context_t ctx,
 screen_event_t ev,
 uint64_t timeout)

Arguments:

ctx

The context to retrieve events from. This context must have been created

using screen_create_context().

ev

An event previously allocated with screen_create_event(). Any contents in

this event will be replaced with the next event.

timeout

The maximum time to wait for an event to occur if one has not been queued

up already. 0 indicates that the call must not wait at all if there are no events

associated with the specified context. -1 indicates that the call must not

return until an event is ready.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function gets the next event associated with the given context. If no events have

been queued, the function will wait up to the specified amount of time for an event

© 2014, QNX Software Systems Limited 339

Events (screen.h)

to occur. If the function times out before an event becomes available, an event with

a SCREEN_EVENT_NONE type will be returned.

Returns:

0 if the event was retrieved, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

screen_get_event_property_cv()

Retrieve the current value of the specified event property of type char.

Synopsis:

#include <screen/screen.h>

int screen_get_event_property_cv(screen_event_t ev,
 int pname,
 int len,
 char *param)

Arguments:

ev

The handle of the event whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

len

The maximum number of bytes that can be written to param.

param

The buffer where the retrieved value(s) will be stored. This buffer must be

an array of type char with a maximum length of len.

Library:

libscreen

340 © 2014, QNX Software Systems Limited

Screen Library Reference

Description:

Function Type: Immediate Execution (p. 183)

This function stores the current value of an event property in a user-provided buffer.

No more than len bytes of the specified type will be written. The list of properties

that can be queried per event type are listed as follows:

• SCREEN_EVENT_CREATE

• SCREEN_PROPERTY_GROUP

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details).

screen_get_event_property_iv()

Retrieve the current value of the specified event property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_get_event_property_iv(screen_event_t ev,
 int pname,
 int *param)

Arguments:

ev

The handle of the event whose property is being queried. The event must

have an event type of Screen event types (p. 334).

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type int. parammay be a single integer or an array of integers depending

on the property being set.

© 2014, QNX Software Systems Limited 341

Events (screen.h)

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function stores the current value of an event property in a user-provided buffer.

The list of properties that can be queried per event type are listed as follows:

Event Type: Any

• SCREEN_PROPERTY_TYPE

• SCREEN_PROPERTY_SCALE_FACTOR

Event Type: SCREEN_EVENT_DISPLAY

• SCREEN_PROPERTY_ATTACHED

• SCREEN_PROPERTY_MIRROR_MODE

• SCREEN_PROPERTY_MODE

• SCREEN_PROPERTY_PROTECTION_ENABLE

Event Type: SCREEN_EVENT_EFFECT_COMPLETE

• SCREEN_PROPERTY_EFFECT

Event Type: SCREEN_EVENT_GAMEPAD

• SCREEN_PROPERTY_BUTTONS

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_ANALOG0

• SCREEN_PROPERTY_ANALOG1

• SCREEN_PROPERTY_KEY_MODIFIERS

Event Type: SCREEN_EVENT_IDLE

• SCREEN_PROPERTY_IDLE_STATE

• SCREEN_PROPERTY_OBJECT_TYPE

Event Type: SCREEN_EVENT_INPUT

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_INPUT_VALUE

Event Type: SCREEN_EVENT_JOG

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_JOG_COUNT

Event Type: SCREEN_EVENT_JOYSTICK

• SCREEN_PROPERTY_BUTTONS

342 © 2014, QNX Software Systems Limited

Screen Library Reference

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_ANALOG0

• SCREEN_PROPERTY_KEY_MODIFIERS

Event Type: SCREEN_EVENT_KEYBOARD

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_KEY_CAP

• SCREEN_PROPERTY_KEY_FLAGS

• SCREEN_PROPERTY_KEY_MODIFIERS

• SCREEN_PROPERTY_KEY_SCAN

• SCREEN_PROPERTY_KEY_SYM

• SCREEN_PROPERTY_SEQUENCE_ID

Event Types: SCREEN_EVENT_MTOUCH_TOUCH, SCREEN_EVENT_MTOUCH_MOVE,

SCREEN_EVENT_MTOUCH_RELEASE

• SCREEN_PROPERTY_BUTTONS

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_KEY_MODIFIERS

• SCREEN_PROPERTY_POSITION

• SCREEN_PROPERTY_SEQUENCE_ID

• SCREEN_PROPERTY_SIZE

• SCREEN_PROPERTY_SOURCE_POSITION

• SCREEN_PROPERTY_SOURCE_SIZE

• SCREEN_PROPERTY_TOUCH_ID

• SCREEN_PROPERTY_TOUCH_ORIENTATION

• SCREEN_PROPERTY_TOUCH_PRESSURE

• SCREEN_PROPERTY_TOUCH_TYPE

Event Type: SCREEN_EVENT_POINTER

• SCREEN_PROPERTY_BUTTONS

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_KEY_MODIFIERS

• SCREEN_PROPERTY_MOUSE_HORIZONTAL_WHEEL

• SCREEN_PROPERTY_MOUSE_WHEEL

• SCREEN_PROPERTY_POSITION

• SCREEN_PROPERTY_SOURCE_POSITION

Event Type: SCREEN_EVENT_PROPERTY

• SCREEN_PROPERTY_NAME

• SCREEN_PROPERTY_OBJECT_TYPE

© 2014, QNX Software Systems Limited 343

Events (screen.h)

Event Type: SCREEN_EVENT_USER

• SCREEN_PROPERTY_USER_DATA

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details).

screen_get_event_property_llv()

Retrieve the current value of the specified event property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_get_event_property_llv(screen_event_t ev,
 int pname,
 long long *param)

Arguments:

ev

The handle of the event whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of long long integer.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function stores the current value of an event property in a user-provided buffer.

Event Type: Any

344 © 2014, QNX Software Systems Limited

Screen Library Reference

• SCREEN_PROPERTY_TIMESTAMP

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details).

screen_get_event_property_pv()

Retrieve the current value of the specified event property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_get_event_property_pv(screen_event_t ev,
 int pname,
 void **param)

Arguments:

ev

The handle of the event whose property is being queried. The event must

have an event type of Screen event types (p. 334).

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type void*.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function stores the current value of an event property in a user-provided buffer.

The list of properties that can be queried per event type are listed as follows:

© 2014, QNX Software Systems Limited 345

Events (screen.h)

Event Type: SCREEN_EVENT_CLOSE

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_CREATE

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_DISPLAY

• SCREEN_PROPERTY_DISPLAY

Event Type: SCREEN_EVENT_GAMEPAD

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_IDLE

• SCREEN_PROPERTY_DISPLAY

• SCREEN_PROPERTY_GROUP

Event Type: SCREEN_EVENT_INPUT

• SCREEN_PROPERTY_DEVICE

Event Type: SCREEN_EVENT_JOG

• SCREEN_PROPERTY_DEVICE

Event Type: SCREEN_EVENT_JOYSTICK

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_KEYBOARD

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_WINDOW

Event Types: SCREEN_EVENT_MTOUCH_TOUCH, SCREEN_EVENT_MTOUCH_MOVE,

SCREEN_EVENT_MTOUCH_RELEASE

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_POINTER

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_POST

• SCREEN_PROPERTY_WINDOW

346 © 2014, QNX Software Systems Limited

Screen Library Reference

Event Type: SCREEN_EVENT_PROPERTY

• SCREEN_PROPERTY_GROUP

• SCREEN_PROPERTY_DISPLAY

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_UNREALIZE

• SCREEN_PROPERTY_WINDOW

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details).

screen_inject_event()

Send an input event to the window that has input focus on a given display.

Synopsis:

#include <screen/screen.h>

int screen_inject_event(screen_display_t disp,
 screen_event_t ev)

Arguments:

disp

The display into which the event will be injected. You can obtain a handle

to the display by either screen_get_context_property() or

screen_get_window_property() functions.

ev

An event handle that was created with screen_create_event(). This event

must contain all the relevant event data pertaining to its type when injected

into the system.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

© 2014, QNX Software Systems Limited 347

Events (screen.h)

A window manager and an input provider can use this function when they need to

inject an event in the system. You need to be within a privileged context to be able to

inject input events. You can create a privileged context by calling the function

screen_create_context() with a context type of SCREEN_WINDOW_MANAGER_CONTEXT

or SCREEN_INPUT_PROVIDER_CONTEXT. Prior to calling screen_inject_event(), you

must have set all relevant event properties to valid values - especially the event type

property. When using screen_inject_event(), the event will be sent to the window that

has input focus on the specified display. If you want to send an event to a particular

window other than the one who has input focus, then use screen_send_event().

Returns:

0 if the event was sent to the window that has input focus on the display, or -1 if an

error occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_send_event()

Send an input event to a process.

Synopsis:

#include <screen/screen.h>

int screen_send_event(screen_context_t ctx,
 screen_event_t ev,
 pid_t pid)

Arguments:

ctx

A context within Screen that was created with screen_create_context().

ev

An event handle that was created with screen_create_event(). This event

must contain all the relevant event data pertaining to its type when injected

into the system.

pid

The process the event is to be sent to.

Library:

libscreen

348 © 2014, QNX Software Systems Limited

Screen Library Reference

Description:

Function Type: Immediate Execution (p. 183)

A window manager and an input provider can use this function when they need to

inject an event in the system. You need to be within a privileged context to be able to

inject input events. You can create a privileged context by calling the function

screen_create_context() with a context type of SCREEN_WINDOW_MANAGER_CONTEXT

or SCREEN_INPUT_PROVIDER_CONTEXT. Prior to calling screen_inject_event(), you

must have set all relevant event properties to valid values - especially the event type

property. When using screen_inject_event(), the event will be sent to the window that

has input focus on the specified display. If you want to send an event to a particular

window other than the one who has input focus, then use screen_send_event().

Returns:

0 if the event was sent to the specified process, or -1 if an error occurred (errno is

set; refer to /usr/include/errno.h for more details).

screen_set_event_property_cv()

Set the value of the specified event property of type char.

Synopsis:

#include <screen/screen.h>

int screen_set_event_property_cv(screen_event_t ev,
 int pname,
 int len,
 const char *param)

Arguments:

ev

The handle of the event whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

len

The maximum number of bytes that can be read from param.

© 2014, QNX Software Systems Limited 349

Events (screen.h)

param

A pointer to a buffer containing the new value(s). This buffer must be an

array of type char with a maximum length of len.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function sets the value of an event property from a user-provided buffer. No more

than len bytes of the specified type will be written. The list of properties that can be

set per event type are listed as follows:

Event Type: SCREEN_EVENT_CREATE

• SCREEN_PROPERTY_GROUP

Returns:

0 if the value(s) of the property was set to new value(s), or -1 if an error occurred

error occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_event_property_iv()

Set the value of the specified event property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_set_event_property_iv(screen_event_t ev,
 int pname,
 const int *param)

Arguments:

ev

The handle of the event whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

350 © 2014, QNX Software Systems Limited

Screen Library Reference

param

A pointer to a buffer containing the new value(s). This buffer must be of

type int. param may be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function sets the value of an event property from a user-provided buffer. The list

of properties that can be set per event type are listed as follows:

Event Type: Any

• SCREEN_PROPERTY_TYPE

• SCREEN_PROPERTY_SCALE_FACTOR

Event Type: SCREEN_EVENT_DISPLAY

• SCREEN_PROPERTY_ATTACHED

• SCREEN_PROPERTY_DISPLAY

• SCREEN_PROPERTY_MIRROR_MODE

• SCREEN_PROPERTY_MODE

• SCREEN_PROPERTY_PROTECTION_ENABLE

Event Type: SCREEN_EVENT_EFFECT_COMPLETE

• SCREEN_PROPERTY_EFFECT

Event Type: SCREEN_EVENT_GAMEPAD

• SCREEN_PROPERTY_BUTTONS

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_ANALOG0

• SCREEN_PROPERTY_ANALOG1

• SCREEN_PROPERTY_KEY_MODIFIERS

Event Type: SCREEN_EVENT_IDLE

• SCREEN_PROPERTY_IDLE_STATE

Event Type: SCREEN_EVENT_INPUT

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_INPUT_VALUE

© 2014, QNX Software Systems Limited 351

Events (screen.h)

Event Type: SCREEN_EVENT_JOG

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_JOG_COUNT

Event Type: SCREEN_EVENT_JOYSTICK

• SCREEN_PROPERTY_BUTTONS

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_ANALOG0

• SCREEN_PROPERTY_KEY_MODIFIERS

Event Type: SCREEN_EVENT_KEYBOARD

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_KEY_CAP

• SCREEN_PROPERTY_KEY_FLAGS

• SCREEN_PROPERTY_KEY_MODIFIERS

• SCREEN_PROPERTY_KEY_SCAN

• SCREEN_PROPERTY_KEY_SYM

• SCREEN_PROPERTY_SEQUENCE_ID

Event Types: SCREEN_EVENT_MTOUCH_TOUCH, SCREEN_EVENT_MTOUCH_MOVE,

SCREEN_EVENT_MTOUCH_RELEASE

• SCREEN_PROPERTY_BUTTONS

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_KEY_MODIFIERS

• SCREEN_PROPERTY_POSITION

• SCREEN_PROPERTY_SEQUENCE_ID

• SCREEN_PROPERTY_SIZE

• SCREEN_PROPERTY_SOURCE_POSITION

• SCREEN_PROPERTY_SOURCE_SIZE

• SCREEN_PROPERTY_TOUCH_ID

• SCREEN_PROPERTY_TOUCH_ORIENTATION

• SCREEN_PROPERTY_TOUCH_PRESSURE

• SCREEN_PROPERTY_TOUCH_TYPE

Event Type: SCREEN_EVENT_POINTER

• SCREEN_PROPERTY_BUTTONS

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_KEY_MODIFIERS

• SCREEN_PROPERTY_MOUSE_HORIZONTAL_WHEEL

• SCREEN_PROPERTY_MOUSE_WHEEL

352 © 2014, QNX Software Systems Limited

Screen Library Reference

• SCREEN_PROPERTY_POSITION

• SCREEN_PROPERTY_SOURCE_POSITION

Event Type: SCREEN_EVENT_PROPERTY

• SCREEN_PROPERTY_NAME

Event Type: SCREEN_EVENT_USER

• SCREEN_PROPERTY_USER_DATA

Returns:

0 if the value(s) of the property was set to new value(s), or -1 if an error occurred

error occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_event_property_llv()

Set the current value of the specified event property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_set_event_property_llv(screen_event_t ev,
 int pname,
 const long long *param)

Arguments:

ev

The handle of the event whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type long long.

Library:

libscreen

© 2014, QNX Software Systems Limited 353

Events (screen.h)

Description:

Function Type: Immediate Execution (p. 183)

This function sets the value of an event property from a user-provided array.

Currently, there are no event properties that can be set using this function.

Returns:

0 if the value(s) of the property was set to new value(s), or -1 if an error occurred

error occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_event_property_pv()

Set the value of the specified event property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_set_event_property_pv(screen_event_t ev,
 int pname,
 void **param)

Arguments:

ev

The handle of the event whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type void*.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

354 © 2014, QNX Software Systems Limited

Screen Library Reference

This function sets the value of an event property from a user-provided array. The list

of properties that can be set per event type are listed as follows:

Event Type: SCREEN_EVENT_CREATE

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_DISPLAY

• SCREEN_PROPERTY_DISPLAY

Event Type: SCREEN_EVENT_GAMEPAD

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_IDLE

• SCREEN_PROPERTY_DISPLAY

• SCREEN_PROPERTY_GROUP

Event Type: SCREEN_EVENT_INPUT

• SCREEN_PROPERTY_DEVICE

Event Type: SCREEN_EVENT_JOG

• SCREEN_PROPERTY_DEVICE

Event Type: SCREEN_EVENT_JOYSTICK

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_KEYBOARD

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_WINDOW

Event Types: SCREEN_EVENT_MTOUCH_TOUCH, SCREEN_EVENT_MTOUCH_MOVE,

SCREEN_EVENT_MTOUCH_RELEASE

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_POINTER

• SCREEN_PROPERTY_DEVICE

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_POST

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_PROPERTY

© 2014, QNX Software Systems Limited 355

Events (screen.h)

• SCREEN_PROPERTY_GROUP

• SCREEN_PROPERTY_DISPLAY

• SCREEN_PROPERTY_WINDOW

Event Type: SCREEN_EVENT_UNREALIZE

• SCREEN_PROPERTY_WINDOW

Returns:

0 if the value(s) of the property was set to new value(s), or -1 if an error occurred

(errno is set; refer to /usr/include/errno.h for more details).

356 © 2014, QNX Software Systems Limited

Screen Library Reference

Groups (screen.h)

A window group is used to organize windows who share properties and a context.

You can query and set properties based on the group type. These properties when set,

are then applied across each window in the group. Properties that windows can share

when in the same group include:

• idle time

• keyboard focus

• multi-touch focus

All windows in the same group also share the same context.

Screen group properties

Types of properties that are associated with Screen group API objects.

Full read/write access to Screen API object properties is system dependent.

These properties are described in full under Screen property types (p. 200).

Settable?Gettable?Group property

YesYesSCREEN_PROPERTY_NAME

YesYesSCREEN_PROPERTY_USER_HANDLE

YesYesSCREEN_PROPERTY_IDLE_STATE

YesYesSCREEN_PROPERTY_IDLE_TIMEOUT

YesYesSCREEN_PROPERTY_KEYBOARD_FOCUS

YesYesSCREEN_PROPERTY_MTOUCH_FOCUS

YesYesSCREEN_PROPERTY_POINTER_FOCUS

YesYesSCREEN_PROPERTY_CONTEXT

screen_create_group()

Create a window group.

Synopsis:

#include <screen/screen.h>

int screen_create_group(screen_group_t *pgrp,
 screen_context_t ctx)

© 2014, QNX Software Systems Limited 357

Groups (screen.h)

Arguments:

pgrp

The handle of the group.

ctx

The connection to the composition manager. This context must have been

created with screen_create_context().

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function creates a window group given a group object and a context. The context

is shared by all windows in this group. You can use groups in order to organize your

application windows.

Returns:

0 if a new window group was created, or -1 if an error occurred (errno is set; refer

to /usr/include/errno.h for more details).

screen_destroy_group()

Destroy a window group.

Synopsis:

#include <screen/screen.h>

int screen_destroy_group(screen_group_t grp)

Arguments:

grp

The window group to be destroyed. The group must have been created with

screen_create_group().

Library:

libscreen

358 © 2014, QNX Software Systems Limited

Screen Library Reference

Description:

Function Type: Flushing Execution (p. 183)

This function destroys a window group given a screen_group_t instance. When a window

group is destroyed, all windows that belonged to the group are no longer associated

with the group. You must destroy each screen_group_t after it is no longer needed.

Returns:

0 if the window group was destroyed, or -1 if an error occurred (errno is set; refer

to /usr/include/errno.h for more details). Note that the error may also have

been caused by any delayed execution function that's just been flushed.

screen_get_group_property_cv()

Retrieve the current value of the specified group property of type char.

Synopsis:

#include <screen/screen.h>

int screen_get_group_property_cv(screen_group_t grp,
 int pname,
 int len,
 char *param)

Arguments:

grp

The handle of the group whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

len

The maximum number of bytes that can be written to param.

param

The buffer where the retrieved value(s) will be stored. This buffer must be

an array of type char with a maximum length of len.

© 2014, QNX Software Systems Limited 359

Groups (screen.h)

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of group property in a user-provided buffer. No

more than len bytes of the specified type will be written.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_NAME

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_group_property_iv()

Retrieve the current value of the specified group property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_get_group_property_iv(screen_group_t grp,
 int pname,
 int *param)

Arguments:

grp

The handle of the group whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

param

360 © 2014, QNX Software Systems Limited

Screen Library Reference

The buffer where the retrieved value(s) will be stored. This buffer must be

of type int. parammay be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of group property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_BUFFER_POOL

• SCREEN_PROPERTY_IDLE_STATE

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_group_property_llv()

Retrieve the current value of the specified group property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_get_group_property_llv(screen_group_t grp,
 int pname,
 long long *param)

Arguments:

grp

The handle of the group whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

© 2014, QNX Software Systems Limited 361

Groups (screen.h)

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type long long.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of group property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_IDLE_TIMEOUT

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_group_property_pv()

Retrieve the current value of the specified group property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_get_group_property_pv(screen_group_t grp,
 int pname,
 void **param)

Arguments:

grp

The handle of the group whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for query are of type Screen property types (p. 200).

362 © 2014, QNX Software Systems Limited

Screen Library Reference

param

The buffer where the retrieved value(s) will be stored. This buffer must be

of type void*.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function stores the current value of group property in a user-provided buffer.

The values of the following properties can be retrieved using this function:

• SCREEN_PROPERTY_CONTEXT

• SCREEN_PROPERTY_KEYBOARD_FOCUS

• SCREEN_PROPERTY_MTOUCH_FOCUS

• SCREEN_PROPERTY_POINTER_FOCUS

• SCREEN_PROPERTY_USER_HANDLE

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_group_t

A handle for the screen group.

Synopsis:

#include <screen/screen.h>

typedef struct _screen_group* screen_group_t;

Library:

libscreen

© 2014, QNX Software Systems Limited 363

Groups (screen.h)

Description:

screen_set_group_property_cv()

Set the value of the specified group property of type char.

Synopsis:

#include <screen/screen.h>

int screen_set_group_property_cv(screen_group_t grp,
 int pname,
 int len,
 const char *param)

Arguments:

grp

The handle of the group whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

len

The maximum number of bytes that can be read from param.

param

A pointer to a buffer containing the new value(s). This buffer must be an

array of type char with a maximum length of len.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a group property from a user-provided buffer. You can

use this function to set the value of the following properties:

• SCREEN_PROPERTY_NAME

364 © 2014, QNX Software Systems Limited

Screen Library Reference

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_group_property_iv()

Set the value of the specified group property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_set_group_property_iv(screen_group_t grp,
 int pname,
 const int *param)

Arguments:

grp

The handle of the group whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type int. param may be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a group property from a user-provided buffer. You can

use this function to set the value of the following properties:

• SCREEN_PROPERTY_BUFFER_POOL

© 2014, QNX Software Systems Limited 365

Groups (screen.h)

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_group_property_llv()

Set the value of the specified group property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_set_group_property_llv(screen_group_t grp,
 int pname,
 const long long *param)

Arguments:

grp

The handle of the group whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type long long.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a group property from a user-provided buffer. You can

use this function to set the value of the following properties:

• SCREEN_PROPERTY_IDLE_TIMEOUT

366 © 2014, QNX Software Systems Limited

Screen Library Reference

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_group_property_pv()

Set the value of the specified group property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_set_group_property_pv(screen_group_t grp,
 int pname,
 void **param)

Arguments:

grp

The handle of the group whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type void*.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a group property from a user-provided buffer. You can

use this function to set the value of the following properties:

• SCREEN_PROPERTY_KEYBOARD_FOCUS

• SCREEN_PROPERTY_MTOUCH_FOCUS

• SCREEN_PROPERTY_POINTER_FOCUS

• SCREEN_PROPERTY_USER_HANDLE

© 2014, QNX Software Systems Limited 367

Groups (screen.h)

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

368 © 2014, QNX Software Systems Limited

Screen Library Reference

Pixmaps (screen.h)

A pixmap is an off-screen rendering target.

The information and state variables associated with each pixmap is stored in memory

allocated when the pixmap is created with screen_create_pixmap(). The composited

windowing system keeps track of pixmaps that are allocated to ensure resources are

released when the application terminates.

Before a pixmap can be used for rendering, a buffer must be created with

screen_create_pixmap_buffer() or attached with screen_attach_pixmap_buffer().

Provided that the usage flags are set appropriately before creating or attaching the

pixmap buffer, the contents of pixmaps can then be updated using various rendering

APIs. The rendering can be made visible by copying parts of the pixmap to a window

using screen_blit().

Pixmaps are restricted to a single buffer. If the pixmap's buffer size hasn't been set

explicitly, the buffer size will default to the size of the first display of the pixmap.

Trying to change the buffer size or the usage once a buffer has already been allocated

will result in an error. Additionally, trying to change the pixel format once the buffer

has been added will also result in an error - unless the depth is identical, e.g. changing

between RGBA8888 and RGBX8888 is acceptable. Note that buffers cannot be

detached from pixmaps.

Screen pixmap metric count types

Types of metric counts for pixmaps.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_PIXMAP_METRIC_BLIT_COUNT = 0
 SCREEN_PIXMAP_METRIC_BLIT_PIXELS = 1
 SCREEN_PIXMAP_METRIC_BLIT_READS = 2
 SCREEN_PIXMAP_METRIC_BLIT_WRITES = 3
};

Data:

SCREEN_PIXMAP_METRIC_BLIT_COUNT

The number of blit requests (when the pixmap was a target of a blit) since

the last time Screen pixmap metrics were queried.

SCREEN_PIXMAP_METRIC_BLIT_PIXELS

© 2014, QNX Software Systems Limited 369

Pixmaps (screen.h)

The number of pixels affected by the blit requests (when the pixmap was a

target of a blit) since the last time Screen pixmap metrics have been queried.

SCREEN_PIXMAP_METRIC_BLIT_READS

An estimate of the number of bytes that has been read from the pixmap

since the last time Screen pixmap metrics were queried.

The number of bytes read is an estimation calculated based on the number

of pixels affected by the blit requests.

SCREEN_PIXMAP_METRIC_BLIT_WRITES

An estimate of the number of bytes that has been written to the pixmap

since the last time Screen pixmap metrics were queried.

The number of bytes written is an estimation calculated based on the number

of pixels affected by the blit requests.

Library:

libscreen

Description:

The metrics are on a per pixmap basis and the counts are reset after being queried.

That is, the counts are reset to 0 after you call screen_get_pixmap_property_llv() to

retrieve SCREEN_PROPERTY_METRICS.

Screen pixmap properties

Types of properties that are associated with Screen pixmap API objects.

Full read/write access to Screen API object properties is system dependent.

These properties are described in full under Screen property types (p. 200).

Settable?Gettable?Pixmap property

YesYesSCREEN_PROPERTY_ALPHA_MODE

YesYesSCREEN_PROPERTY_BUFFER_SIZE

YesYesSCREEN_PROPERTY_GROUP

YesYesSCREEN_PROPERTY_ID_STRING

YesYesSCREEN_PROPERTY_RENDER_BUFFERS

NoYesSCREEN_PROPERTY_USAGE

370 © 2014, QNX Software Systems Limited

Screen Library Reference

Settable?Gettable?Pixmap property

YesYesSCREEN_PROPERTY_CONTEXT

NoYesSCREEN_PROPERTY_METRIC_COUNT

NoYesSCREEN_PROPERTY_METRICS

screen_attach_pixmap_buffer()

Associate an externally allocated buffer with a pixmap.

Synopsis:

#include <screen/screen.h>

int screen_attach_pixmap_buffer(screen_pixmap_t pix,
 screen_buffer_t buf)

Arguments:

pix

The handle of a pixmap that does not already have a buffer created or

associated to it.

buf

A buffer that was allocated by the application.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function can be used to force a pixmap to use a buffer that was allocated by the

application. Since pixmaps can have only one buffer, it is not possible to call this

function or screen_create_pixmap_buffer() more than once. Whoever allocates the

buffer is required to meet all alignment and granularity constraints required for the

usage flags. The buffer buf must have been created with the function

screen_create_buffer(), screen_create_pixmap_buffer(), or

screen_create_window_buffers().

© 2014, QNX Software Systems Limited 371

Pixmaps (screen.h)

Returns:

0 if the buffer was used by the specified pixmap, or -1 if an error occurred (errno

is set; refer to /usr/include/errno.h for more details). Note that the error may

also have been caused by any delayed execution function that's just been flushed.

screen_create_pixmap()

Create a pixmap that can be used to do off-screen rendering.

Synopsis:

#include <screen/screen.h>

int screen_create_pixmap(screen_pixmap_t *ppix,
 screen_context_t ctx)

Arguments:

ppix

An address where the function can store the handle to the newly created

native pixmap.

ctx

The connection to the composition manager. This context must have been

created with screen_create_context().

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function creates a pixmap object, which is an off-screen rendering target. The

results of this rendering can later be copied to a window object. Applications must

use screen_destroy_pixmap() when a pixmap is no longer used.

Returns:

0 if a new pixmap was created,or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

372 © 2014, QNX Software Systems Limited

Screen Library Reference

screen_create_pixmap_buffer()

Send a request to the composition manager to add a new buffer to a pixmap.

Synopsis:

#include <screen/screen.h>

int screen_create_pixmap_buffer(screen_pixmap_t pix)

Arguments:

pix

The handle of the pixmap for which a new buffer will be created.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function to adds a buffer to a pixmap. A buffer cannot be created if a buffer was

previously attached using screen_attach_pixmap_buffer().

Returns:

0 if a new pixmap buffer was created,or -1 if an error occurred (errno is set; refer

to /usr/include/errno.h for more details). Note that the error may also have

been caused by any delayed execution function that's just been flushed.

screen_destroy_pixmap()

Destroy a pixmap and frees associated resources.

Synopsis:

#include <screen/screen.h>

int screen_destroy_pixmap(screen_pixmap_t pix)

Arguments:

pix

© 2014, QNX Software Systems Limited 373

Pixmaps (screen.h)

The handle of the pixmap which is to be destroyed.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function destroys the pixmap associated with the specified pixmap. Any resources

and buffer created for this pixmap, whether locally or by the composition manager,

will be released. The pixmap handle can no longer be used as argument in subsequent

screen calls. Pixmap buffers that are not created by composition manager but are

registered with screen_attach_pixmap_buffer() are not freed by this operation. The

application is responsible for freeing its own external buffers.

Returns:

0 if the pixmap buffer was destroyed, or -1 if an error occurred (errno is set; refer

to /usr/include/errno.h for more details). Note that the error may also have

been caused by any delayed execution function that's just been flushed.

screen_destroy_pixmap_buffer()

Send a request to the composition manager to destory the buffer of the specified

pixmap.

Synopsis:

#include <screen/screen.h>

int screen_destroy_pixmap_buffer(screen_pixmap_t pix)

Arguments:

pix

The handle of the pixmap whose buffer is to be destroyed.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

374 © 2014, QNX Software Systems Limited

Screen Library Reference

This function releases the buffer that was allocated for a pixmap, without destroying

the pixmap. If the buffer was created with screen_create_pixmap_buffer(), the memory

is released and can be used for other window or pixmap buffers. If the buffer was

attached using screen_attach_pixmap_buffer(), the buffer is destroyed but no memory

is actually released. In this case the application is responsible for freeing the memory

after calling screen_destroy_pixmap_buffer(). Once a pixmap buffer has been destroyed,

you can change the format, usage and buffer size before creating a new buffer again.

The memory that is released by this call is not reserved and can be used for any

subsequent buffer allocation by the windowing system.

Returns:

0 if the memory used by the pixmap buffer was freed, or -1 if an error occurred (errno

is set; refer to /usr/include/errno.h for more details). Note that the error may

also have been caused by any delayed execution function that's just been flushed.

screen_get_pixmap_property_cv()

Retrieve the current value of the specified pixmap property of type char.

Synopsis:

#include <screen/screen.h>

int screen_get_pixmap_property_cv(screen_pixmap_t pix,
 int pname,
 int len,
 char *param)

Arguments:

pix

The handle of the pixmap whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for querying are of type Screen property types (p. 200).

len

The maximum number of bytes that can be written to param.

param

© 2014, QNX Software Systems Limited 375

Pixmaps (screen.h)

A pointer to a buffer containing the new value(s). This buffer must be an

array of type char with a maximum length of len.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function retrieves the value of pixmap property from a user-provided buffer. The

values of the following properties can be queried using this function:

• SCREEN_PROPERTY_GROUP

• SCREEN_PROPERTY_ID_STRING

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_pixmap_property_iv()

Retrieve the current value of the specified pixmap property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_get_pixmap_property_iv(screen_pixmap_t pix,
 int pname,
 int *param)

Arguments:

pix

The handle of the pixmap whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for querying are of type Screen property types (p. 200).

376 © 2014, QNX Software Systems Limited

Screen Library Reference

param

A pointer to a buffer containing the new value(s). This buffer must be of

type int. param may be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function retrieves the value of pixmap property from a user-provided buffer. The

values of the following properties can be queried using this function:

• SCREEN_PROPERTY_ALPHA_MODE

• SCREEN_PROPERTY_COLOR_SPACE

• SCREEN_PROPERTY_FORMAT

• SCREEN_PROPERTY_USAGE

• SCREEN_PROPERTY_BUFFER_SIZE

• SCREEN_PROPERTY_METRIC_COUNT

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_pixmap_property_llv()

Retrieve the current value of the specified pixmap property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_get_pixmap_property_llv(screen_pixmap_t pix,
 int pname,
 long long *param)

Arguments:

pix

© 2014, QNX Software Systems Limited 377

Pixmaps (screen.h)

The handle of the pixmap whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for querying are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type long long.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function retrieves the value of pixmap property from a user-provided array. The

values of the following properties can be queried using this function:

• SCREEN_PROPERTY_METRICS

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_pixmap_property_pv()

Retrieve the current value of the specified pixmap property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_get_pixmap_property_pv(screen_pixmap_t pix,
 int pname,
 void **param)

Arguments:

pix

378 © 2014, QNX Software Systems Limited

Screen Library Reference

The handle of the pixmap whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for querying are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type void*.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function retrieves the value of pixmap property from a user-provided buffer. The

values of the following properties can be queried using this function:

• SCREEN_PROPERTY_CONTEXT

• SCREEN_PROPERTY_GROUP

• SCREEN_PROPERTY_RENDER_BUFFERS

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_join_pixmap_group()

Cause a pixmap to join a group.

Synopsis:

#include <screen/screen.h>

int screen_join_pixmap_group(screen_pixmap_t pix,
 const char *name)

Arguments:

© 2014, QNX Software Systems Limited 379

Pixmaps (screen.h)

pix

The handle of the pixmap that is to be joining the group.

name

A unique string that identifies the group.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function is used to add a pixmap to a group.

Returns:

0 if the request for the pixmap to join the group was queued for processing, or -1 if

an error occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_leave_pixmap_group()

Cause a pixmap to leave a group.

Synopsis:

#include <screen/screen.h>

int screen_leave_pixmap_group(screen_pixmap_t pix)

Arguments:

pix

The handle of the pixmap that is to be leaving the group.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function is used to remove a pixmap from a group.

380 © 2014, QNX Software Systems Limited

Screen Library Reference

Returns:

0 if the request for the pixmap to leave the group was queued for processing, or -1

if an error occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_pixmap_t

A handle for the screen pixmap.

Synopsis:

#include <screen/screen.h>

typedef struct _screen_pixmap* screen_pixmap_t;

Library:

libscreen

Description:

screen_ref_pixmap()

Create a reference to a pixmap.

Synopsis:

#include <screen/screen.h>

int screen_ref_pixmap(screen_pixmap_t pix)

Arguments:

pix

The handle of the pixmap for which the reference is to be created.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function creates a reference to a pixmap. This function can be used by libraries

to prevent the pixmap or its buffer from disappearing while the library is making use

of it. The pixmap and its buffer will not be destroyed until all references have been

cleared with screen_unref_pixmap(). In the event that a pixmap is destroyed before

© 2014, QNX Software Systems Limited 381

Pixmaps (screen.h)

the reference is cleared, screen_unref_pixmap() will cause the pixmap buffer and/or

the pixmap to be destroyed.

Returns:

0 if the reference to the specified window was created, or -1 if an error occurred

(errno is set; refer to /usr/include/errno.h for more details).

screen_set_pixmap_property_cv()

Set the value of the specified pixmap property of type char.

Synopsis:

#include <screen/screen.h>

int screen_set_pixmap_property_cv(screen_pixmap_t pix,
 int pname,
 int len,
 const char *param)

Arguments:

pix

handle of the pixmap whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

len

The maximum number of bytes that can be read from param.

param

A pointer to a buffer containing the new value(s). This buffer must be an

array of type char with a maximum length of len.

Library:

libscreen

382 © 2014, QNX Software Systems Limited

Screen Library Reference

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a pixmap property from a user-provided buffer. You can

use this function to set the value of the following properties:

• SCREEN_PROPERTY_ID_STRING

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_pixmap_property_iv()

Set the value of the specified pixmap property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_set_pixmap_property_iv(screen_pixmap_t pix,
 int pname,
 const int *param)

Arguments:

pix

handle of the pixmap whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type int. param may be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

© 2014, QNX Software Systems Limited 383

Pixmaps (screen.h)

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a pixmap property from a user-provided buffer. You can

use this function to set the value of the following properties:

• SCREEN_PROPERTY_ALPHA_MODE

• SCREEN_PROPERTY_COLOR_SPACE

• SCREEN_PROPERTY_FORMAT

• SCREEN_PROPERTY_USAGE

• SCREEN_PROPERTY_BUFFER_SIZE

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_pixmap_property_llv()

Set the value of the specified pixmap property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_set_pixmap_property_llv(screen_pixmap_t pix,
 int pname,
 const long long *param)

Arguments:

pix

handle of the pixmap whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type long long.

384 © 2014, QNX Software Systems Limited

Screen Library Reference

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a pixmap property from a user-provided buffer. Currently,

there are no pixmap properties that can be set using this function.

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_pixmap_property_pv()

Set the value of the specified pixmap property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_set_pixmap_property_pv(screen_pixmap_t pix,
 int pname,
 void **param)

Arguments:

pix

handle of the pixmap whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type void*.

Library:

libscreen

© 2014, QNX Software Systems Limited 385

Pixmaps (screen.h)

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a pixmap property from a user-provided buffer. You can

use this function to set the value of the following properties:

• SCREEN_PROPERTY_CONTEXT

• SCREEN_PROPERTY_GROUP

• SCREEN_PROPERTY_RENDER_BUFFERS

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_unref_pixmap()

Remove a reference from a specified pixmap.

Synopsis:

#include <screen/screen.h>

int screen_unref_pixmap(screen_pixmap_t pix)

Arguments:

pix

The handle of the pixmap for which the reference is to be removed.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function removes a reference to a pixmap. If the pixmap and its buffer haven't

been destroyed yet, the effect of screen_unref_pixmap() is simply to decrease a

reference count. If the pixmap or the pixmap buffer was destroyed while still being

referenced, screen_unref_pixmap() will cause the pixmap and/or its buffer to be

destroyed when the reference count reaches zero.

386 © 2014, QNX Software Systems Limited

Screen Library Reference

Returns:

0 if the reference to the specified pixmap was removed, or -1 if an error occurred

(errno is set; refer to /usr/include/errno.h for more details).

© 2014, QNX Software Systems Limited 387

Pixmaps (screen.h)

Windows (screen.h)

A window is used to display different types of content.

The information and state variables associated with each window are stored in memory

allocated when the window is created with screen_create_window().

A window exists in the composited windowing system space. A window will not be

visible until it is associated with at least one buffer that has been created with

screen_create_window_buffers(), and one frame has been posted with

screen_post_window().

If a window's buffer size has not been set explicitly before the first buffer is created,

the source size is used as the default value. If the window's source size has not been

set explicitly, its destination size is used as the default value. If the destination size

has not been set either, the buffer size will default to the screen size. Trying to change

the usage once buffers have already been allocated will result in an error. Buffers must

be created before a frame can be posted with screen_post_window().

Screen window metric count types

Types of metric counts for windows.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_WINDOW_METRIC_OBJECT_COUNT = 0
 SCREEN_WINDOW_METRIC_API_COUNT = 1
 SCREEN_WINDOW_METRIC_DRAW_COUNT = 2
 SCREEN_WINDOW_METRIC_TRIANGLE_COUNT = 3
 SCREEN_WINDOW_METRIC_VERTEX_COUNT = 4
 SCREEN_WINDOW_METRIC_IMAGE_DATA_BYTES = 5
 SCREEN_WINDOW_METRIC_BUFFER_DATA_BYTES = 6
 SCREEN_WINDOW_METRIC_EVENT_COUNT = 7
 SCREEN_WINDOW_METRIC_BLIT_COUNT = 8
 SCREEN_WINDOW_METRIC_BLIT_PIXELS = 9
 SCREEN_WINDOW_METRIC_BLIT_READS = 10
 SCREEN_WINDOW_METRIC_BLIT_WRITES = 11
 SCREEN_WINDOW_METRIC_POST_COUNT = 12
 SCREEN_WINDOW_METRIC_POST_PIXELS = 13
 SCREEN_WINDOW_METRIC_UPDATE_COUNT = 14
 SCREEN_WINDOW_METRIC_UPDATE_PIXELS = 15
 SCREEN_WINDOW_METRIC_UPDATE_READS = 16
 SCREEN_WINDOW_METRIC_UPDATE_WRITES = 17
 SCREEN_WINDOW_METRIC_CPU_TIME = 18
 SCREEN_WINDOW_METRIC_GPU_TIME = 19
 SCREEN_WINDOW_METRIC_VISIBLE_TIME = 20
 SCREEN_WINDOW_METRIC_FULLY_VISIBLE_TIME = 21
};

388 © 2014, QNX Software Systems Limited

Screen Library Reference

Data:

SCREEN_WINDOW_METRIC_OBJECT_COUNT

A general purpose counter whose meaning is defined by Cascades, Screen

and other SDKs (e.g., WebKit, Adobe AIR, ...).

SCREEN_WINDOW_METRIC_API_COUNT

The number of OpenGL ES 1.X, OpenGL ES 2.X, and OpenVG API calls that

were made by the process owning the window since the last time Screen

window metrics were queried.

Note that if multiple processes, other than the one that owns the window,

made OpenGL ES 1.X, OpenGL ES 2.X, OpenVG API calls to the window,

these API calls would not be counted.

SCREEN_WINDOW_METRIC_DRAW_COUNT

The number of draw API calls (e.g., glDrawArrays(), glDrawElements(), ...)

that were made by in the window since the last time Screen window metrics

were queried.

This metric is not counted for OpenVG API calls.

SCREEN_WINDOW_METRIC_TRIANGLE_COUNT

An estimate of the number of triangles drawn in the window since the last

time Screen window metrics were queried.

This count is an estimate because two triangles are counted per line and

two triangles are also counted per point. This metric is not counted for

OpenVG API calls.

SCREEN_WINDOW_METRIC_VERTEX_COUNT

An estimate of the number of vertices passed to OpenGL in the window since

the last time Screen window metrics were queried.

This metric is not counted for OpenVG API calls.

SCREEN_WINDOW_METRIC_IMAGE_DATA_BYTES

An estimate of the number of bytes requested to upload the texture in the

window since the last time Screen window metrics were queried.

© 2014, QNX Software Systems Limited 389

Windows (screen.h)

This metric is not counted for OpenVG API calls.

SCREEN_WINDOW_METRIC_BUFFER_DATA_BYTES

An estimate of the number of bytes uploaded to vertex buffers in the window

(e.g., from calls such as glBufferData(), glBufferSubData(), ...) since the

last time Screen window metrics were queried.

This metric is not counted for OpenVG API calls.

SCREEN_WINDOW_METRIC_EVENT_COUNT

The number of events that are sent directly to the window since the last

time Screen window metrics were queried.

This metric doesn't include events for any children windows that the window

may have.

SCREEN_WINDOW_METRIC_BLIT_COUNT

The number of blit requests (when the window was a target of a blit) since

the last time Screen window metrics were queried.

SCREEN_WINDOW_METRIC_BLIT_PIXELS

The number of pixels affected by the blit requests (when the window was a

target of a blit) since the last time Screen window metrics have been queried.

SCREEN_WINDOW_METRIC_BLIT_READS

An estimate of the number of bytes that have been read from the window

since the last time Screen window metrics were queried.

The number of bytes read is an estimation calculated based on the number

of pixels affected by the blit requests.

SCREEN_WINDOW_METRIC_BLIT_WRITES

An estimate of the number of bytes that have been written to the window

since the last time Screen window metrics were queried.

The number of bytes written is an estimate based on the number of pixels

affected by the blit requests.

SCREEN_WINDOW_METRIC_POST_COUNT

390 © 2014, QNX Software Systems Limited

Screen Library Reference

The number times that the window has posted since the last time Screen

window metrics were queried.

SCREEN_WINDOW_METRIC_POST_PIXELS

The number of pixels that were marked as dirty in all of the window's posts

since the last time Screen window metrics were queried.

SCREEN_WINDOW_METRIC_UPDATE_COUNT

The number of times that the window was in an update since the last time

Screen window metrics were queried.

The window must be visible (its SCREEN_PROPERTY_VISIBLE is set) in

order for this count to be incremented. If the window is static (i.e., the

window property SCREEN_PROPERTY_STATIC is set), this count can still

increment if there is another window or layer on top so that there is blending

required for this window.

SCREEN_WINDOW_METRIC_UPDATE_PIXELS

The number of pixels that has been used in the updates of the window since

the last time Screen window metrics were queried.

SCREEN_WINDOW_METRIC_UPDATE_READS

An estimate of the number of bytes that have been read from the window

buffer (if there are multiple buffers, it's the front buffer) since the last time

Screen window metrics were queried.

The number of bytes read is an estimate based on the number of pixels

affected by the update.

SCREEN_WINDOW_METRIC_UPDATE_WRITES

An estimate of the number of bytes that has been written to the window

framebuffer since the last time Screen window metrics have been queried.

The number of bytes written is an estimate based on the number of pixels

affected by the update.

SCREEN_WINDOW_METRIC_CPU_TIME

An estimate of the total CPU time spent preparing updates.

© 2014, QNX Software Systems Limited 391

Windows (screen.h)

The quantity is estimated by measuring the time between the window

timestamp property and the time when screen_post_window() is called. The

SCREEN_PROPERTY_TIMESTAMPmust be set on the window for this metric

to be reliable.

SCREEN_WINDOW_METRIC_GPU_TIME

An estimate of the total GPU time spent rendering to back buffers.

The quantity is estimated by measuring the time between when eglSwap

Buffers() is called and when the post is actually flushed out to the server.

This metric is only reliable if the GPU does most of its rendering after

eglSwapBuffers() is called.

SCREEN_WINDOW_METRIC_VISIBLE_TIME

An estimate of the total number of nanoseconds for which the window was

visible.

The quantity is estimated by measuring the time spent between scene

rebuilds where the window is at least partially visible. If the window is covered

by another window with transparency, the counter will be incremented.

SCREEN_WINDOW_METRIC_FULLY_VISIBLE_TIME

An estimate of the total number of nanoseconds for which the window was

fully visible.

The quantity is estimated by measuring the time spent between scene

rebuilds where the window is completely visible. If the window is covered

by another window with transparency, the counter will not be incremented

even though the window may actually be visible.

Library:

libscreen

Description:

The metrics are on a per-window basis, and the counts are reset after being queried.

That is, the counts are reset to 0 after you call screen_get_window_property_llv() to

retrieve SCREEN_PROPERTY_METRICS.

392 © 2014, QNX Software Systems Limited

Screen Library Reference

Screen window properties

Types of properties that are associated with Screen window API objects.

Full read/write access to Screen API object properties is system dependent.

These properties are described in full under Screen property types (p. 200)

Settable?Gettable?Configurable?Window property

YesYesYesSCREEN_PROPERTY_ALPHA_MODE

YesYesYesSCREEN_PROPERTY_BRIGHTNESS

YesYesYesSCREEN_PROPERTY_BUFFER_COUNT

YesYesYesSCREEN_PROPERTY_BUFFER_SIZE

YesYesYesSCREEN_PROPERTY_CLASS

YesYesNoSCREEN_PROPERTY_COLOR_SPACE

YesYesYesSCREEN_PROPERTY_CONTRAST

YesYesYesSCREEN_PROPERTY_DISPLAY

YesYesNoSCREEN_PROPERTY_FLIP

YesYesYesSCREEN_PROPERTY_FORMAT

YesYesNoSCREEN_PROPERTY_FRONT_BUFFER

YesYesYesSCREEN_PROPERTY_GLOBAL_ALPHA

YesYesYesSCREEN_PROPERTY_PIPELINE

YesYesYesSCREEN_PROPERTY_GROUP

YesYesYesSCREEN_PROPERTY_HUE

YesYesYesSCREEN_PROPERTY_ID_STRING

YesYesNoSCREEN_PROPERTY_MIRROR

YesYesNoSCREEN_PROPERTY_OWNER_PID

YesYesYesSCREEN_PROPERTY_POSITION

YesYesNoSCREEN_PROPERTY_RENDER_BUFFERS

YesYesYesSCREEN_PROPERTY_ROTATION

YesYesYesSCREEN_PROPERTY_SATURATION

YesYesYesSCREEN_PROPERTY_SIZE

YesYesYesSCREEN_PROPERTY_SOURCE_POSITION

YesYesYesSCREEN_PROPERTY_SOURCE_SIZE

© 2014, QNX Software Systems Limited 393

Windows (screen.h)

Settable?Gettable?Configurable?Window property

YesYesYesSCREEN_PROPERTY_SWAP_INTERVAL

YesYesYesSCREEN_PROPERTY_SWAP_INTERVAL

YesYesYesSCREEN_PROPERTY_TRANSPARENCY

NoYesNoSCREEN_PROPERTY_TYPE

NoYesYesSCREEN_PROPERTY_USAGE

YesYesNoSCREEN_PROPERTY_USER_HANDLE

YesYesYesSCREEN_PROPERTY_VISIBLE

NoYesNoSCREEN_PROPERTY_RENDER_BUFFER_COUNT

YesYesYesSCREEN_PROPERTY_ZORDER

YesYesNoSCREEN_PROPERTY_SCALE_QUALITY

YesYesNoSCREEN_PROPERTY_SENSITIVITY

YesYesYesSCREEN_PROPERTY_CBABC_MODE

YesYesNoSCREEN_PROPERTY_CBABC_MODE

YesYesNoSCREEN_PROPERTY_FLOATING

YesYesNoSCREEN_PROPERTY_PROTECTION_ENABLE

YesYesNoSCREEN_PROPERTY_SOURCE_CLIP_POSITION

YesYesNoSCREEN_PROPERTY_SOURCE_CLIP_SIZE

YesYesNoSCREEN_PROPERTY_VIEWPORT_POSITION

YesYesNoSCREEN_PROPERTY_VIEWPORT_SIZE

YesYesNoSCREEN_PROPERTY_TIMESTAMP

YesYesNoSCREEN_PROPERTY_IDLE_MODE

NoYesNoSCREEN_PROPERTY_KEYBOARD_FOCUS

YesYesYesSCREEN_PROPERTY_CLIP_POSITION

YesYesYesSCREEN_PROPERTY_CLIP_SIZE

YesYesYesSCREEN_PROPERTY_COLOR

YesYesNoSCREEN_PROPERTY_CONTEXT

YesYesNoSCREEN_PROPERTY_DEBUG

YesYesNoSCREEN_PROPERTY_ALTERNATE_WINDOW

YesYesNoSCREEN_PROPERTY_SELF_LAYOUT

394 © 2014, QNX Software Systems Limited

Screen Library Reference

Settable?Gettable?Configurable?Window property

YesYesNoSCREEN_PROPERTY_SCALE_FACTOR

NoYesNoSCREEN_PROPERTY_METRIC_COUNT

NoYesNoSCREEN_PROPERTY_METRICS

YesYesNoSCREEN_PROPERTY_BRUSH_CLIP_POSITION

YesYesNoSCREEN_PROPERTY_BRUSH_CLIP_SIZE

YesYesNoSCREEN_PROPERTY_BRUSH

NoYesNoSCREEN_PROPERTY_TRANSFORM

Screen window types

Types of windows that can be created.

Synopsis:

#include <screen/screen.h>

 enum {
 SCREEN_APPLICATION_WINDOW = 0
 SCREEN_CHILD_WINDOW = 1
 SCREEN_EMBEDDED_WINDOW = 2
};

Data:

SCREEN_APPLICATION_WINDOW

A window type used to display the main application.

The X and Y coordinates are always relative to the dimensions of the display.

SCREEN_CHILD_WINDOW

A window type commonly used to display a dialog.

You must add a child window to an application's window group; otherwise

the child window is invisible. A child window's display properties are relative

to the application window to which it belongs. For example, the X and Y

coordinates of the child window are all relative to the top left corner of the

application window. This window type has its property, SCREEN_PROPER

TY_FLOATING, defaulted to indicate that the window is floating.

© 2014, QNX Software Systems Limited 395

Windows (screen.h)

SCREEN_EMBEDDED_WINDOW

A window type used to embed a window control within an object.

Like the child window, the X and Y coordinates of the embedded window

are all relative to the top left corner of the application window. You must

add an embedded window to an application's window group, otherwise the

embedded window is invisible. This window type has its property,

SCREEN_PROPERTY_FLOATING, defaulted to indicate that the window is

non-floating.

Library:

libscreen

Description:

screen_attach_window_buffers()

Associate an externally allocated buffer with a window.

Synopsis:

#include <screen/screen.h>

int screen_attach_window_buffers(screen_window_t win,
 int count,
 screen_buffer_t *buf)

Arguments:

win

The handle of a window that doesn't already share a buffer with another

window, and that doesn't have one or more buffers created or associated to

it.

count

The number of buffers to be attached.

buf

An array of count buffers to be attached that was allocated by the

application.

396 © 2014, QNX Software Systems Limited

Screen Library Reference

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function can be used by drivers and other middleware components that must

allocate their own buffers. The client must ensure that all usage constraints are met

when allocating the buffers. Failure to do so may prevent the buffers from being

successfully attached, or may result in artifacts and system instability. Calling both

screen_attach_window_buffers() and screen_create_window_buffers() is not permitted.

Returns:

0 if the buffers were successfully attached to the specified window, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details). Note

that the error may also have been caused by any delayed execution function that's just

been flushed.

screen_create_window()

Create a window that can be used to make graphical content visible on a display.

Synopsis:

#include <screen/screen.h>

int screen_create_window(screen_window_t *pwin,
 screen_context_t ctx)

Arguments:

pwin

An address where the function can store the handle to the newly created

native window.

ctx

The connection to the composition manager. This context must have been

created with screen_create_context().

Library:

libscreen

© 2014, QNX Software Systems Limited 397

Windows (screen.h)

Description:

Function Type: Immediate Execution (p. 183)

This function creates a window object. The window size defaults to full screen when

it is created. This is equivalent to calling screen_create_window_type() with a type of

SCREEN_APPLICATION_WINDOW.

Returns:

0 if a new window was created, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

screen_create_window_buffers()

Send a request to the composition manager to add new buffers to a window.

Synopsis:

#include <screen/screen.h>

int screen_create_window_buffers(screen_window_t win,
 int count)

Arguments:

win

The handle of the window for which the new buffers must be allocated.

count

The number of buffers to be created for this window.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function adds buffers to a window. Windows need at least one buffer in order to

be visible. Buffers cannot be created using screen_create_window_buffers() if at some

point prior, buffers were attached to this window using screen_attach_window_buffers().

Buffers will be created with the size of SCREEN_PROPERTY_BUFFER_SIZE as set

for the window.

398 © 2014, QNX Software Systems Limited

Screen Library Reference

Returns:

0 if new buffers were created for the specified window, or -1 if an error occurred

(errno is set; refer to /usr/include/errno.h for more details). Note that the

error may also have been caused by any delayed execution function that's just been

flushed.

screen_create_window_group()

Create a window group that other windows can join.

Synopsis:

#include <screen/screen.h>

int screen_create_window_group(screen_window_t win,
 const char *name)

Arguments:

win

The handle of the window for which the group is created. This window must

have been created with screen_create_window_type() with a type of

SCREEN_APPLICATION_WINDOW or SCREEN_CHILD_WINDOW.

name

A unique string that will be used to identify the window group. This name

must be communicated to any window wishing to join the group as a child

of win. Other than uniqueness, there are no other constraints on this name

(for example, lower case and special characters are permitted). If name is

a NULL pointer, then a a string is generated for you with this format:

auto-<pid>-<32 alpha-numeric characters> For example:

 auto-1564694-00007FFF000000370000138A00002567

It is recommended that, unless a static name is explicitly required, you

should call this function with name as NULL so that a unique group name

is automatically generated. You can use screen_get_window_property_cv()

with SCREEN_PROPERTY_GROUP as the property to retrieve the name of

the window group.

Library:

libscreen

© 2014, QNX Software Systems Limited 399

Windows (screen.h)

Description:

Function Type: Delayed Execution (p. 182)

This function creates a window group and assigns it to the specified window. The

group is identified by the name string, which must be unique. The request will fail if

another group was previously created with the same name.

Windows can parent only one group. Therefore, screen_create_window_group() can be

called successfully only once for any given window. Additionally, only windows of

certain types can parent a group of windows. Windows with a type of SCREEN_APPLI

CATION_WINDOW can parent windows of type SCREEN_CHILD_WINDOW and

SCREEN_EMBEDDED_WINDOW. Windows with a type of SCREEN_CHILD_WINDOW can

also create a group and parent windows of type SCREEN_EMBEDDED_WINDOW.

Once a group is created, it exists until the window that parents the group is destroyed.

When a parent window is destroyed, all children are orphaned and made invisible.

Destroying a child has no effect on the group other than removing the window from

the group.

Group owners have privileged access to the windows that they parent. When windows

join the group, the parent will receive a SCREEN_EVENT_CREATE that contains a

handle to the child window that can be used by the parent to set properties or send

events. Conversely, the parent gets notified when a child window gets destroyed. The

parent window is expected to destroy its local copy of the window handle when one

of its children is destroyed.

Returns:

0 if request for the new window group was queued, or -1 if an error occurred (errno

is set; refer to /usr/include/errno.h for more details).

screen_create_window_type()

Create a new window of a specified type.

Synopsis:

#include <screen/screen.h>

int screen_create_window_type(screen_window_t *pwin,
 screen_context_t ctx,
 int type)

Arguments:

pwin

400 © 2014, QNX Software Systems Limited

Screen Library Reference

An address where the function can store the handle to the newly created

native window.

ctx

The connection to the composition manager to be used to create the window.

This context must have been created with screen_create_context().

type

The type of window to be created. type must be of type

Screen_Window_Types.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function creates a window object of the specified type.

Returns:

0 if a new window type was created, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details).

screen_destroy_window()

Destroy a window and free associated resources.

Synopsis:

#include <screen/screen.h>

int screen_destroy_window(screen_window_t win)

Arguments:

win

The handle of the window to be destroyed. This must have been created

with screen_create_window().

© 2014, QNX Software Systems Limited 401

Windows (screen.h)

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function destroys the window associated with the given window handle. If the

window is visible, it is removed from the display. Any resources or buffers created for

this window, both locally and by the composition manager, are released.

The window handle can no longer be used as argument to subsequent screen calls.

Buffers that are not created by the composition manager and registered with

screen_attach_window_buffers() are not freed by this operation.

The application is responsible for releasing its own external buffers. Any window that

shares buffers with the window is also destroyed. screen_destroy_window() must be

used to free windows that were obtained by querying context or event properties. In

this case, the window is not removed from its display and destroyed. Only the local

state associated with the external window is released.

Returns:

0 if the specified window was destroyed, or -1 if an error occurred (errno is set; refer

to /usr/include/errno.h for more details). Note that the error may also have

been caused by any delayed execution function that's just been flushed.

screen_destroy_window_buffers()

Send a request to the composition manager to destroy buffers of the specified window.

Synopsis:

#include <screen/screen.h>

int screen_destroy_window_buffers(screen_window_t win)

Arguments:

win

The handle of the window whose buffer(s) you want to destroy.

Library:

libscreen

402 © 2014, QNX Software Systems Limited

Screen Library Reference

Description:

Function Type: Flushing Execution (p. 183)

This function releases one or more buffers allocated for the specified window, without

destroying the window. If buffers were created with screen_create_window_buffers(),

the memory is released and can be used for other window or pixmap buffers. If buffers

were attached using screen_attach_window_buffers(), these buffers are destroyed but

no memory is actually released. In this case, the application is responsible for freeing

the memory after calling screen_destroy_window_buffers(). Once a window's buffers

have been destroyed, you can change the format, the usage and the buffer size before

creating any new buffers again. The memory that is released by this call is not reserved

and can be used for any subsequent buffer allocation by the windowing system.

Returns:

0 if the memory used by the window buffer was freed, or -1 if an error occurred (errno

is set; refer to /usr/include/errno.h for more details). Note that the error may

also have been caused by any delayed execution function that's just been flushed.

screen_discard_window_regions()

Discard the specified window regions.

Synopsis:

#include <screen/screen.h>

int screen_discard_window_regions(screen_window_t win,
 int count,
 const int *rects)

Arguments:

win

The handle of the window in which you want to specify regions to discard.

count

The number of rectangles (retangular regions) you want to discard, specified

in the rects argument. The value of count can be 0.

rects

An array of integers containing the x, y, width, and height coordinates of

rectangles that bound areas in the window you want to discard. The rects

© 2014, QNX Software Systems Limited 403

Windows (screen.h)

argument must provide at least 4 times count integers(quadruples of x, y,

width and height).

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function is a hole-punching API. Use this function to specify window regions you

want to discard. The regions behave as if they were transparent, or as if there were no

transparency on the window. When you call this function, it invalidates any regions

you might have defined previously. You can call the function with count set to 0 to

remove discarded regions.

Returns:

0 if the request for discarding window regions have been queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_get_window_property_cv()

Retrieve the current value of the specified window property of type char.

Synopsis:

#include <screen/screen.h>

int screen_get_window_property_cv(screen_window_t win,
 int pname,
 int len,
 char *param)

Arguments:

win

The handle of the window whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for querying are of type Screen property types (p. 200).

len

404 © 2014, QNX Software Systems Limited

Screen Library Reference

The maximum number of bytes that can be written to param.

param

A pointer to a buffer containing the new value(s). This buffer must be an

array of type char with a maximum length of len.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function retrieves the value of window property from a user-provided array. The

values of the following properties can be queried using this function:

• SCREEN_PROPERTY_CLASS

• SCREEN_PROPERTY_ID_STRING

• SCREEN_PROPERTY_GROUP

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_window_property_iv()

Retrieve the current value of the specified window property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_get_window_property_iv(screen_window_t win,
 int pname,
 int *param)

Arguments:

win

The handle of the window whose property is being queried.

© 2014, QNX Software Systems Limited 405

Windows (screen.h)

pname

The name of the property whose value is being queried. The properties

available for querying are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type int. param may be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function retrieves the value of window property from a user-provided array. The

values of the following properties can be queried using this function:

• SCREEN_PROPERTY_ALPHA_MODE

• SCREEN_PROPERTY_BUFFER_COUNT

• SCREEN_PROPERTY_COLOR_SPACE

• SCREEN_PROPERTY_FORMAT

• SCREEN_PROPERTY_OWNER_PID

• SCREEN_PROPERTY_RENDER_BUFFER_COUNT

• SCREEN_PROPERTY_SCALE_FACTOR

• SCREEN_PROPERTY_SIZE

• SCREEN_PROPERTY_SWAP_INTERVAL

• SCREEN_PROPERTY_USAGE

• SCREEN_PROPERTY_BRIGHTNESS

• SCREEN_PROPERTY_CBABC_MODE

• SCREEN_PROPERTY_CONTRAST

• SCREEN_PROPERTY_DEBUG

• SCREEN_PROPERTY_FLIP

• SCREEN_PROPERTY_FLOATING

• SCREEN_PROPERTY_GLOBAL_ALPHA

• SCREEN_PROPERTY_HUE

• SCREEN_PROPERTY_IDLE_MODE

• SCREEN_PROPERTY_KEYBOARD_FOCUS

• SCREEN_PROPERTY_MIRROR

406 © 2014, QNX Software Systems Limited

Screen Library Reference

• SCREEN_PROPERTY_PIPELINE

• SCREEN_PROPERTY_PROTECTION_ENABLE

• SCREEN_PROPERTY_ROTATION

• SCREEN_PROPERTY_SATURATION

• SCREEN_PROPERTY_SCALE_QUALITY

• SCREEN_PROPERTY_SELF_LAYOUT

• SCREEN_PROPERTY_SENSITIVITY

• SCREEN_PROPERTY_STATIC

• SCREEN_PROPERTY_TRANSPARENCY

• SCREEN_PROPERTY_TYPE

• SCREEN_PROPERTY_VISIBLE

• SCREEN_PROPERTY_ZORDER

• SCREEN_PROPERTY_BUFFER_SIZE

• SCREEN_PROPERTY_CLIP_POSITION

• SCREEN_PROPERTY_CLIP_SIZE

• SCREEN_PROPERTY_POSITION

• SCREEN_PROPERTY_SOURCE_CLIP_POSITION

• SCREEN_PROPERTY_SOURCE_CLIP_SIZE

• SCREEN_PROPERTY_SOURCE_POSITION

• SCREEN_PROPERTY_SOURCE_SIZE

• SCREEN_PROPERTY_VIEWPORT_POSITION

• SCREEN_PROPERTY_VIEWPORT_SIZE

• SCREEN_PROPERTY_METRIC_COUNT

• SCREEN_PROPERTY_TRANSFORM

• SCREEN_PROPERTY_REFERENCE_COLOR

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_window_property_llv()

Retrieve the current value of the specified window property of type long long integer.

Synopsis:

#include <screen/screen.h>

© 2014, QNX Software Systems Limited 407

Windows (screen.h)

int screen_get_window_property_llv(screen_window_t win,
 int pname,
 long long *param)

Arguments:

win

handle of the window whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for querying are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type long long.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function retrieves the value of a window property from a user-provided array. The

values of the following properties can be queried using this function:

• SCREEN_PROPERTY_METRICS

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

screen_get_window_property_pv()

Retrieve the current value of the specified window property of type void*.

Synopsis:

#include <screen/screen.h>

408 © 2014, QNX Software Systems Limited

Screen Library Reference

int screen_get_window_property_pv(screen_window_t win,
 int pname,
 void **param)

Arguments:

win

handle of the window whose property is being queried.

pname

The name of the property whose value is being queried. The properties

available for querying are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type void*.

Library:

libscreen

Description:

Function Type: Flushing Execution (p. 183)

This function retrieves the value of a window property from a user-provided array. The

values of the following properties can be queried using this function:

• SCREEN_PROPERTY_ALTERNATE_WINDOW

• SCREEN_PROPERTY_CONTEXT

• SCREEN_PROPERTY_DISPLAY

• SCREEN_PROPERTY_FRONT_BUFFER

• SCREEN_PROPERTY_GROUP

• SCREEN_PROPERTY_RENDER_BUFFERS

• SCREEN_PROPERTY_USER_HANDLE

• SCREEN_PROPERTY_BRUSH

Returns:

0 if a query was successful and the value(s) of the property are stored in param, or

-1 if an error occurred (errno is set; refer to /usr/include/errno.h for more

details). Note that the error may also have been caused by any delayed execution

function that's just been flushed.

© 2014, QNX Software Systems Limited 409

Windows (screen.h)

screen_join_window_group()

Cause a window to join a window group.

Synopsis:

#include <screen/screen.h>

int screen_join_window_group(screen_window_t win,
 const char *name)

Arguments:

win

The handle for the window that is to join the group. This window must have

been created with screen_create_window_type() with a type of either

SCREEN_CHILD_WINDOW or SCREEN_EMBEDDED_WINDOW.

name

A unique string that identifies the group. This string must have been

communicated down from the parent window.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function is used to add a window to a group. Child and embedded windows will

remain invisible until they're properly parented.

Until the window joins a group, a window of any type behaves like an application

window. The window's positioning and visibility are not relative to any other window

on the display. In order to join a group parented by an application window, a window

must have a type of SCREEN_CHILD_WINDOW or SCREEN_EMBEDDED_WINDOW.

Windows with a type of SCREEN_EMBEDDED_WINDOW can join only groups parented

by windows of type SCREEN_CHILD_WINDOW.

Once a window successfully joins a group, its position on the screen will be relative

to the parent. The type of the window determines exactly how the window will be

positioned. Child windows are positioned relative to their parent (i.e., their window

position is added to the parent's window position. Embedded windows are positioned

relative to the source viewport of the parent.

410 © 2014, QNX Software Systems Limited

Screen Library Reference

Windows in a group inherit the visibility and the global transparency of their parent.

Returns:

0 if the request for the window joining the specified group was queued, or -1 if an

error occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_leave_window_group()

Cause a window to leave a window group.

Synopsis:

#include <screen/screen.h>

int screen_leave_window_group(screen_window_t win)

Arguments:

win

The handle for the window that is to leave the group. This window must have

been created with screen_create_window_type() with a type of either

SCREEN_CHILD_WINDOW or SCREEN_EMBEDDED_WINDOW.

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function removes a window from a window group.

Returns:

0 if the request for the window leaving its group was queued, or -1 if an error occurred

(errno is set; refer to /usr/include/errno.h for more details).

screen_post_window()

Make window content updates visible on the display.

Synopsis:

#include <screen/screen.h>

© 2014, QNX Software Systems Limited 411

Windows (screen.h)

int screen_post_window(screen_window_t win,
 screen_buffer_t buf,
 int count,
 const int *dirty_rects,
 int flags)

Arguments:

win

The handle for the window whose content has changed.

buf

The rendering buffer of the window that contains the changes needed to be

made visible. Most applications use only two buffers for rendering. Therefore,

the simplest way is to use the buffer in the first element of the

SCREEN_PROPERTY_RENDER_BUFFERS property of the window. Screen

rotates the buffer handles accordingly so that the first buffer handle of

SCREEN_PROPERTY_RENDER_BUFFERS is one that is available.

count

The number of rectangles provided in the dirty_rects argument.

dirty_rects

An array of integers containing the x1, y1, x2, and y2 coordinates of a

rectangle that bounds the area of the rendering buffer that has changed

since the last posting of the window. The dirty_rects argument must

provide at least count * 4 integers.

flags

A bitmask that can be used to alter the default posting behaviour. Valid flags

are of type Screen_Flushing_Types.

Library:

libscreen

Description:

Function Type: Apply Execution (p. 182)

This function makes some pixels in a rendering buffer visible. The pixels to be posted

are defined by the dirty rectangles contained in the dirty_rects argument. Note

412 © 2014, QNX Software Systems Limited

Screen Library Reference

that a window will not be made visible until screen_post_window() has been called at

least once.

In addition to the area(s) defined by dirty_rects, Screen may update the other

pixels in the buffer (i.e., Screen posts entire buffers, using dirty_rects as a guide).

Screen may also retrieve data from the buffer at times other than when

screen_post_window() is called (e.g., when the contents or properties of overlapping

windows are updated, or when the window's entire buffer is continuously read by the

display hardware until another buffer is posted to replace it). Therefore, your application

must ensure that the entire contents of a window buffer is suitable for display at all

times until a new buffer is posted to the window and the content of the display has

been updated from the new buffer.

screen_post_window() returns immediately if render buffers are available and if

SCREEN_WAIT_IDLE is not set. The use of multiple threads or application buffer

management schemes to render at the full display frame rate are not necessary because

unlike equivalent calls in other graphics systems, screen_post_window() does not

always block.

If SCREEN_WAIT_IDLE is set in the flags, the function will return only when the

contents of the display have been updated.

This function may cause the SCREEN_PROPERTY_RENDER_BUFFERS property of the

posting window to change. At any time, only one thread must operate on, or render,

into this window. If your application uses multiple threads, you must ensure that

access to this window's handle by these threads is guarded. If not, SCREEN_PROPER

TY_RENDER_BUFFERSmay reflect out-of-date information that can lead to animation

artifacts. The presentation of new content may result in a copy or a buffer flip,

depending on how the composited windowing system chooses to perform the operation.

Use the window property SCREEN_PROPERTY_RENDER_BUFFER_COUNT to determine

the number of buffers you have that are available for rendering.

If the window is currently locked, posting updates has the effect of flushing all pending

property changes and blocks until all other locked windows have released the lock or

posted updates of their own. In this case, the window remains locked when

screen_post_window() returns, and any subsequent property change is delayed until

the window lock is released or another frame is posted.

If count is 0, the buffer is discarded and a new set of rendering buffers is returned.

The current front buffer remains unchanged and the contents of the screen will not

be updated.

Returns:

0 if the area of the rendering buffer that is marked dirty has updated on the screen

and a new set of rendering buffers was returned (this new set of buffers can be used

for the next updates), or -1 if an error occurred (errno is set; refer to /usr/in

© 2014, QNX Software Systems Limited 413

Windows (screen.h)

clude/errno.h for more details). Note that the error may also have been caused

by any delayed execution function that's just been flushed.

screen_read_window()

Take a screenshot of the window and stores the resulting image in the specified buffer.

Synopsis:

#include <screen/screen.h>

int screen_read_window(screen_window_t win,
 screen_buffer_t buf,
 int count,
 const int *save_rects,
 int flags)

Arguments:

win

The handle of the window that is the target of the screenshot.

buf

The buffer where the pixel data will be copied to.

count

The number of rectables supplied in the read_rects argument.

save_rects

A pointer to (count * 4) integers that define the areas of the window that

need to be grabbed for the screenshot.

flags

The mutex flags; must be set to 0.

Library:

libscreen

Description:

Function Type: Apply Execution (p. 182)

414 © 2014, QNX Software Systems Limited

Screen Library Reference

This function takes a screenshot of a window and stores the result in a user-provided

buffer. The buffer can be a pixmap buffer or a window buffer. The buffer must have

been created with the usage flag SCREEN_USAGE_NATIVE in order for the operation

to succeed. The call blocks until the operation is completed. If count is 0 and

read_rects is NULL, the entire window is grabbed. Otherwise, read_rects must

point to count * 4 integers defining rectangles in screen coordinates that need to be

grabbed. Note that the buffer size does not have to match the window size. Scaling

will be applied to make the screenshot fit into the buffer provided.

Returns:

0 if the operation was successful and the pixels are written to buf, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details). Note

that the error may also have been caused by any delayed execution function that's just

been flushed.

screen_ref_window()

Create a reference to a window.

Synopsis:

#include <screen/screen.h>

int screen_ref_window(screen_window_t win)

Arguments:

win

The handle of the window for which the reference is to be created.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function creates a reference to a window. This function can be used by window

managers and group parents to prevent a window from disappearing, even when the

process that originally created the window terminates abnormally. If this happens,

ownership of the window is transferred to the window manager or group parent. The

restrictions imposed on buffers still exist. The contents of the buffers can't be changed.

The buffers cannot be destroyed until the window is unreferenced. When the original

© 2014, QNX Software Systems Limited 415

Windows (screen.h)

process owner is no longer a client of the windowing system, the window will be

destroyed when screen_destroy_window() is called by the reference owner.

Returns:

0 if a reference to the specified window was created, or -1 if an error occurred (errno

is set; refer to /usr/include/errno.h for more details).

screen_set_window_property_cv()

Set the value of the specified window property of type char.

Synopsis:

#include <screen/screen.h>

int screen_set_window_property_cv(screen_window_t win,
 int pname,
 int len,
 const char *param)

Arguments:

win

handle of the window whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

len

The maximum number of bytes that can be read from param.

param

A pointer to a buffer containing the new value(s). This buffer must be an

array of type char with a maximum length of len.

Library:

libscreen

416 © 2014, QNX Software Systems Limited

Screen Library Reference

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a window property from a user-provided buffer. You

can use this function to set the value of the following properties:

• SCREEN_PROPERTY_CLASS

• SCREEN_PROPERTY_ID_STRING

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_window_property_iv()

Set the value of the specified window property of type integer.

Synopsis:

#include <screen/screen.h>

int screen_set_window_property_iv(screen_window_t win,
 int pname,
 const int *param)

Arguments:

win

handle of the window whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type int. param may be a single integer or an array of integers depending

on the property being set.

Library:

libscreen

© 2014, QNX Software Systems Limited 417

Windows (screen.h)

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a window property from a user-provided buffer. You

can use this function to set the value of the following properties:

• SCREEN_PROPERTY_SCALE_FACTOR

• SCREEN_PROPERTY_ALPHA_MODE

• SCREEN_PROPERTY_BRIGHTNESS

• SCREEN_PROPERTY_CBABC_MODE

• SCREEN_PROPERTY_COLOR

• SCREEN_PROPERTY_COLOR_SPACE

• SCREEN_PROPERTY_CONTRAST

• SCREEN_PROPERTY_DEBUG

• SCREEN_PROPERTY_FLIP

• SCREEN_PROPERTY_FLOATING

• SCREEN_PROPERTY_GLOBAL_ALPHA

• SCREEN_PROPERTY_HUE

• SCREEN_PROPERTY_IDLE_MODE

• SCREEN_PROPERTY_MIRROR

• SCREEN_PROPERTY_PIPELINE

• SCREEN_PROPERTY_PROTECTION_ENABLE

• SCREEN_PROPERTY_ROTATION

• SCREEN_PROPERTY_SATURATION

• SCREEN_PROPERTY_SCALE_QUALITY

• SCREEN_PROPERTY_SELF_LAYOUT

• SCREEN_PROPERTY_SENSITIVITY

• SCREEN_PROPERTY_STATIC

• SCREEN_PROPERTY_SWAP_INTERVAL

• SCREEN_PROPERTY_TRANSPARENCY

• SCREEN_PROPERTY_VISIBLE

• SCREEN_PROPERTY_ZORDER

• SCREEN_PROPERTY_BUFFER_SIZE

• SCREEN_PROPERTY_FORMAT

• SCREEN_PROPERTY_USAGE

• SCREEN_PROPERTY_CLIP_POSITION

• SCREEN_PROPERTY_CLIP_SIZE

• SCREEN_PROPERTY_POSITION

• SCREEN_PROPERTY_SIZE

• SCREEN_PROPERTY_SOURCE_CLIP_POSITION

418 © 2014, QNX Software Systems Limited

Screen Library Reference

• SCREEN_PROPERTY_SOURCE_CLIP_SIZE

• SCREEN_PROPERTY_SOURCE_POSITION

• SCREEN_PROPERTY_SOURCE_SIZE

• SCREEN_PROPERTY_VIEWPORT_POSITION

• SCREEN_PROPERTY_VIEWPORT_SIZE

• SCREEN_PROPERTY_REFERENCE_COLOR

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_window_property_llv()

Set the value of the specified window property of type long long integer.

Synopsis:

#include <screen/screen.h>

int screen_set_window_property_llv(screen_window_t win,
 int pname,
 const long long *param)

Arguments:

win

handle of the window whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type long long.

Library:

libscreen

© 2014, QNX Software Systems Limited 419

Windows (screen.h)

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a window property from a user-provided buffer. You

can use this function to set the value of the following properties:

• SCREEN_PROPERTY_TIMESTAMP:

• Note that when the specified value for this property is NULL, screen

automatically calcuates and sets this property to the current time. Screen uses

the realtime clock and not the monotonic clock when calculating the timestamp.

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_set_window_property_pv()

Set the value of the specified window property of type void*.

Synopsis:

#include <screen/screen.h>

int screen_set_window_property_pv(screen_window_t win,
 int pname,
 void **param)

Arguments:

win

handle of the window whose property is being set.

pname

The name of the property whose value is being set. The properties that you

can set are of type Screen property types (p. 200).

param

A pointer to a buffer containing the new value(s). This buffer must be of

type void*.

420 © 2014, QNX Software Systems Limited

Screen Library Reference

Library:

libscreen

Description:

Function Type: Delayed Execution (p. 182)

This function sets the value of a window property from a user-provided buffer. You

can use this function to set the value of the following properties:

• SCREEN_PROPERTY_ALTERNATE_WINDOW

• SCREEN_PROPERTY_DISPLAY

• SCREEN_PROPERTY_USER_HANDLE

• SCREEN_PROPERTY_BRUSH

Returns:

0 if the command to set the new property value(s) was queued, or -1 if an error

occurred (errno is set; refer to /usr/include/errno.h for more details).

screen_share_window_buffers()

Cause a window to share buffers which have been created for or attached to another

window.

Synopsis:

#include <screen/screen.h>

int screen_share_window_buffers(screen_window_t win,
 screen_window_t share)

Arguments:

win

The handle of the window that will be sharing the buffer(s) owned by another

window.

share

The handle of the window whose buffer(s) is to be shared.

Library:

libscreen

© 2014, QNX Software Systems Limited 421

Windows (screen.h)

Description:

Function Type: Flushing Execution (p. 183)

This function is used when a window needs to share the same buffers created for, or

attached to, another window. For this operation to be successful, the window that is

the owner of the buffer(s) to be shared must have at least one buffer that was created

with screen_create_window_buffers() or attached with screen_attach_win

dow_buffer(). Buffers cannot be created or attached to any window that is sharing

the buffers owned by another window. Updates can only be posted using the window

that is the owner of the buffers (i.e. the window whose handle is identified as share).

Any window that is sharing buffers with another window is orphaned from the buffers

and made invisible when the window who owns the buffer(s) is destroyed. At this time,

that status of each orphaned window is such that a new buffer can be created for it,

or screen_share_window_buffers() can be called again. You can use the

screen_share_window_buffers() function to improve performance by reducing the

amount of blending on the screen. For example, a window might be entirely transparent

except for a watermark that needs to be blended in a corner. Blending the entire

window is costly and can be avoided by setting the transparency of this window to

SCREEN_TRANSPARENCY_DISCARD. To keep the watermark visible, another window

can be created and made to share buffers with the main window. This way, most of

the window is discarded and a much smaller area is actually blended. Any window

property, such as SCREEN_PROPERTY_FORMAT, SCREEN_PROPERTY_USAGE, and

SCREEN_PROPERTY_BUFFER_SIZE, which was set prior to calling

screen_share_window_buffers(), is ignored and reset to the values of the parent window.

Returns:

0 if the windows are sharing buffers, or -1 if an error occurred (errno is set; refer to

/usr/include/errno.h for more details). Note that the error may also have been

caused by any delayed execution function that's just been flushed.

screen_unref_window()

Remove a reference from a specified window.

Synopsis:

#include <screen/screen.h>

int screen_unref_window(screen_window_t win)

Arguments:

win

422 © 2014, QNX Software Systems Limited

Screen Library Reference

The handle of the window for which the reference is to be removed.

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

This function removes a reference to a window. When a window is being referenced,

its buffers cannot be destroyed until all references to that window have been removed.

Returns:

0 if a reference to the specified window was removed, or -1 if an error occurred (errno

is set; refer to /usr/include/errno.h for more details).

screen_wait_post()

Add a wait for a post on a window.

Synopsis:

#include <screen/screen.h>

int screen_wait_post(screen_window_t win,
 int flags)

Arguments:

win

The handle for the window whose post you are waiting on.

flags

A bitmask that can be used to alter the default posting behaviour. Valid flags

are of type Screen flushing types (p. 193).

Library:

libscreen

Description:

Function Type: Immediate Execution (p. 183)

© 2014, QNX Software Systems Limited 423

Windows (screen.h)

This call blocks until there is a post event for the window you are waiting on. This

function is typically used in conjunction with screen_share_display_buffers() and/or

screen_share_window_buffers().

Returns:

0 if a wait for a post on the specified window was added, or -1 if an error occurred

(errno is set; refer to /usr/include/errno.h for more details).

screen_window_t

A handle for the screen window.

Synopsis:

#include <screen/screen.h>

typedef struct _screen_window* screen_window_t;

Library:

libscreen

Description:

This handle is used to identify the window that you are performing actions on. Such

actions could include:

• querying or setting properties

• posting

• sharing buffers

424 © 2014, QNX Software Systems Limited

Screen Library Reference

	Table of Contents
	About Screen
	Typographical conventions
	Technical support

	Overview of Screen
	Understanding composition
	Screen API
	Contexts
	Create a context
	Context types
	Set a context property

	Windows
	Window types
	Window properties
	Window parenting and positioning
	Create a window
	Create a child window
	Pixel formats

	Displays
	Multiple displays
	Complete sample: Using multiple displays

	Event Types
	Screen Tutorials
	Tutorial: Draw and perform vsync operations using windows
	Create the background window
	Create the child windows
	Create the main() function
	Complete sample: A vsync application using windows

	Tutorial: Draw and perform vsync operations using blits, pixmaps, and buffers
	Create a context and initialize a window
	Create buffers and a pixmap
	Combine buffers with blit functions and properties
	Complete sample: A vsync application using blits, pixmaps, and buffers

	Tutorial: Write an application using OpenGL ES
	Use OpenGL ES in a windowed vsync application
	Complete sample: A windowed vsync application using OpenGL ES

	Tutorial: Screenshots
	Capture a window screenshot
	Complete sample: a window screenshot example
	Capture a display screenshot
	Complete sample: A display screenshot example

	Tutorial: Rendering text with FreeType and OpenGL ES
	Using FreeType library and OpenGL ES to render text
	Complete sample: Rendering text with FreeType and OpenGL ES

	Tutorial: Screen events
	Injecting a Screen event
	Complete sample: Injecting a Screen event
	Injecting a Screen mtouch event
	Complete sample: Injecting a screen event

	Screen Configuration
	Configure Screen
	Configure khronos section
	Configure egl display
	Configuration parameters for egl display
	Configure wfd device

	Configure winmgr section
	Configure globals
	Configuration parameters for globals
	Configure display display_id
	Configuration parameters for display
	Configure class
	Configuration parameters for class
	Configure mtouch
	Configuration parameters for mtouch
	Configuring mtouch filter
	Configuration parameters for filter

	Apply your Screen configuration
	Troubleshooting
	Sample /dev/screen/0/dpy-1 file
	Sample /dev/screen/0/win-0/win-0 file
	Sample /dev/screen/<pid>/win-1/win-1 file

	Screen Library Reference
	Function safety
	Function execution types
	Apply execution
	Delayed execution
	Flushing execution
	Immediate execution
	Function types

	General (screen.h)
	Definitions in screen.h
	_screen_mode
	Screen CBABC mode types
	Screen alpha mode types
	Screen color space types
	Screen flushing types
	Screen idle mode types
	Screen mirror types
	Screen mouse button types
	Screen object types
	Screen pixel format types
	Screen power mode types
	Screen property types
	Screen scaling quality types
	Screen sensitivity masks
	Screen sensitivity types
	Screen touch types
	Screen transparency types
	Screen usage flag types

	Blits (screen.h)
	Screen blit types
	screen_blit()
	screen_fill()
	screen_flush_blits()

	Buffers (screen.h)
	Screen buffer properties
	screen_buffer_t
	screen_create_buffer()
	screen_destroy_buffer()
	screen_get_buffer_property_cv()
	screen_get_buffer_property_iv()
	screen_get_buffer_property_llv()
	screen_get_buffer_property_pv()
	screen_set_buffer_property_cv()
	screen_set_buffer_property_iv()
	screen_set_buffer_property_llv()
	screen_set_buffer_property_pv()

	Contexts (screen.h)
	Screen context properties
	Screen notification types
	screen_context_t
	Screen context types
	screen_create_context()
	screen_destroy_context()
	screen_flush_context()
	screen_get_context_property_cv()
	screen_get_context_property_iv()
	screen_get_context_property_llv()
	screen_get_context_property_pv()
	screen_notify()
	screen_set_context_property_cv()
	screen_set_context_property_iv()
	screen_set_context_property_llv()
	screen_set_context_property_pv()

	Debugging (screen.h)
	Screen debug graph types
	Screen packet types
	screen_print_packet()

	Devices (screen.h)
	Screen device metric counts
	Screen device properties
	Screen game button types
	screen_device_t
	screen_create_device_type()
	screen_destroy_device()
	screen_get_device_property_cv()
	screen_get_device_property_iv()
	screen_get_device_property_llv()
	screen_get_device_property_pv()
	screen_set_device_property_cv()
	screen_set_device_property_iv()
	screen_set_device_property_llv()
	screen_set_device_property_pv()

	Displays (screen.h)
	Screen display metric count types
	Screen display mode types
	Screen display properties
	Screen display technology types
	Screen display types
	screen_display_mode_t
	screen_display_t
	screen_get_display_modes()
	screen_get_display_property_cv()
	screen_get_display_property_iv()
	screen_get_display_property_llv()
	screen_get_display_property_pv()
	screen_read_display()
	screen_set_display_property_cv()
	screen_set_display_property_iv()
	screen_set_display_property_llv()
	screen_set_display_property_pv()
	screen_share_display_buffers()
	screen_wait_vsync()

	Events (screen.h)
	Screen event properties
	Screen event types
	screen_create_event()
	screen_destroy_event()
	screen_event_t
	screen_get_event()
	screen_get_event_property_cv()
	screen_get_event_property_iv()
	screen_get_event_property_llv()
	screen_get_event_property_pv()
	screen_inject_event()
	screen_send_event()
	screen_set_event_property_cv()
	screen_set_event_property_iv()
	screen_set_event_property_llv()
	screen_set_event_property_pv()

	Groups (screen.h)
	Screen group properties
	screen_create_group()
	screen_destroy_group()
	screen_get_group_property_cv()
	screen_get_group_property_iv()
	screen_get_group_property_llv()
	screen_get_group_property_pv()
	screen_group_t
	screen_set_group_property_cv()
	screen_set_group_property_iv()
	screen_set_group_property_llv()
	screen_set_group_property_pv()

	Pixmaps (screen.h)
	Screen pixmap metric counts
	Screen pixmap properties
	screen_attach_pixmap_buffer()
	screen_create_pixmap()
	screen_create_pixmap_buffer()
	screen_destroy_pixmap()
	screen_destroy_pixmap_buffer()
	screen_get_pixmap_property_cv()
	screen_get_pixmap_property_iv()
	screen_get_pixmap_property_llv()
	screen_get_pixmap_property_pv()
	screen_join_pixmap_group()
	screen_leave_pixmap_group()
	screen_pixmap_t
	screen_ref_pixmap()
	screen_set_pixmap_property_cv()
	screen_set_pixmap_property_iv()
	screen_set_pixmap_property_llv()
	screen_set_pixmap_property_pv()
	screen_unref_pixmap()

	Windows (screen.h)
	Screen window metric counts
	Screen window properties
	Screen window types
	screen_attach_window_buffers()
	screen_create_window()
	screen_create_window_buffers()
	screen_create_window_group()
	screen_create_window_type()
	screen_destroy_window()
	screen_destroy_window_buffers()
	screen_discard_window_regions()
	screen_get_window_property_cv()
	screen_get_window_property_iv()
	screen_get_window_property_llv()
	screen_get_window_property_pv()
	screen_join_window_group()
	screen_leave_window_group()
	screen_post_window()
	screen_read_window()
	screen_ref_window()
	screen_set_window_property_cv()
	screen_set_window_property_iv()
	screen_set_window_property_llv()
	screen_set_window_property_pv()
	screen_share_window_buffers()
	screen_unref_window()
	screen_wait_post()
	screen_window_t

