
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

System Analysis Toolkit (SAT)
User's Guide

©2001–2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, February 20, 2014

Table of Contents

About This Guide ..7
Typographical conventions ...8

Technical support ...10

Chapter 1: Introduction ..11

What can the SAT do for you? ..12

Components of the SAT ...14

Instrumented kernel ..14

Kernel buffer management ...15

Data-capture program (tracelogger) ...15

Data interpretation (e.g. traceprinter) ..16

Integrated Development Environment ..16

Chapter 2: Events and the Kernel ..19

Generating events: a typical scenario ..20

Multithreaded example ..20

Thread context-switch time ..21

Restarting threads ...21

Simple and combine events ...22

Fast and wide modes ..23

Classes and events ..24

Communication class: _NTO_TRACE_COMM ..24

Control class: _NTO_TRACE_CONTROL ...25

Interrupt classes: _NTO_TRACE_INTENTER, _NTO_TRACE_INTEXIT,

_NTO_TRACE_INT_HANDLER_ENTER, and

_NTO_TRACE_INT_HANDLER_EXIT ...26

Kernel-call classes: _NTO_TRACE_KERCALLENTER, _NTO_TRACE_KERCALLEXIT,

and _NTO_TRACE_KERCALLINT ..26

Process class: _NTO_TRACE_PROCESS ..30

System class: _NTO_TRACE_SYSTEM ...30

Thread class: _NTO_TRACE_THREAD ...31

User class: _NTO_TRACE_USER ...33

Virtual thread class: _NTO_TRACE_VTHREAD ..34

Chapter 3: Kernel Buffer Management ...37

Linked list size ...38

Full buffers and the high-water mark ..39

Buffer overruns ...40

System Analysis Toolkit (SAT) User's Guide

Chapter 4: Capturing Trace Data ..41

Using tracelogger to control tracing ..43

Managing trace buffers ..43

tracelogger's modes of operation ...43

Choosing between wide and fast modes ...44

Filtering events ...45

Specifying where to send the output ..45

Using TraceEvent() to control tracing ..46

Managing trace buffers ..46

Modes of operation ..47

Filtering events ...48

Choosing between wide and fast modes ...48

Inserting trace events ..49

Chapter 5: Filtering ..51

The static rules filter ...53

The dynamic rules filter ...56

Setting up a dynamic rules filter ...56

Event handler ...57

Removing event handlers ...59

The post-processing facility ...60

Chapter 6: Interpreting Trace Data ...61

Using traceprinter and interpreting the output ...63

Building your own parser ...66

The traceparser library ...66

Simple and combine events ..67

The traceevent_t structure ..67

Event interlacing ...67

Timestamps ..68

Chapter 7: Tutorials ..69

The instrex.h header file ..70

Gathering all events from all classes ...71

Gathering all events from one class ..74

Gathering five events from four classes ...76

Gathering kernel calls ...79

Event handling - simple ...83

Inserting a user simple event ...87

Appendix A: Current Trace Events and Data ..89

Interpreting the table ..90

Table of Contents

Table of events ...93

System Analysis Toolkit (SAT) User's Guide

Table of Contents

About This Guide

The QNX Neutrino System Analysis Toolkit User's Guide describes how to use the

instrumented microkernel to obtain a detailed analysis of what's happening in an entire

QNX Neutrino system. This guide contains the following sections and chapters:

Go to:To find out about:

Introduction (p. 11)What the SAT is, what it can do for you,

and how it works

Events and the Kernel (p. 19)What generates events

Kernel Buffer Management (p. 37)How the kernel buffers data

Capturing Trace Data (p. 41)How to save data

Filtering (p. 51)Different ways to reduce the amount of

data

Interpreting Trace Data (p. 61)What the data tells you

Tutorials (p. 69)Examples of filtering the trace data

Current Trace Events and DataWhat specific events return

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 9

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

10 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Introduction

In many computing environments, developers need to monitor a dynamic execution

of realtime systems with emphasis on their key architectural components. Such

monitoring can reveal hidden hardware faults and design or implementation errors, as

well as help improve overall system performance.

In order to accommodate those needs, we provide sophisticated tracing and profiling

mechanisms, allowing execution monitoring in real time or offline. Because it works

at the operating system level, the SAT, unlike debuggers, can monitor applications

without having to modify them in any way.

The main goals for the SAT are:

• ease of use

• insight into system activity

• high performance and efficiency with low overhead

Copyright © 2014, QNX Software Systems Limited 11

What can the SAT do for you?

In a running system, many things occur behind the scenes:

• Kernel calls are being made.

• Messages are being passed.

• Interrupts are being handled.

• Threads are changing states— they're being created, blocking, running, restarting,

and dying.

The results of this activity are changes to the system state that are normally hidden

from developers. The SAT is capable of intercepting these changes and logging them.

Each event is logged with a timestamp and the ID of the CPU that handled it.

For a full understanding of how the kernel works, see the QNX Neutrino

Microkernel chapter in the System Architecture guide.

The SAT offers valuable information at all stages of a product's life cycle, from

prototyping to optimization to in-service monitoring and field diagnostics.

Process
2

Process
1

Process
5

Process
3

Process
4

Debugger viewSAT view

Figure 1: The SAT view and the debugger view.

In complicated systems, the information provided by standard debugging programs

may not be detailed enough to solve the problem. Or, the problem may not be a bug

as much as a process that's not behaving as expected. Unlike the SAT, debuggers lack

the execution history essential to solving the many complex problems involved in

“application tuning.” In a large system, often consisting of many interconnected

components or processes, traditional debugging, which lets you look at only a single

module, can't easily assist if the problem lies in how the modules interact with each

other. Where a debugger can view a single process, the SAT can view all processes at

the same time. Also, unlike debugging, the SAT doesn't need code augmentation and

can be used to track the impact of external, precompiled code.

12 Copyright © 2014, QNX Software Systems Limited

Introduction

Because it offers a system-level view of the internal workings of the kernel, the SAT

can be used for performance analysis and optimization of large interconnected systems

as well as single processes.

It allows realtime debugging to help pinpoint deadlock and race conditions by showing

what circumstances led up to the problem. Rather than just a “snapshot”, the SAT

offers a “movie” of what's happening in your system.

Because the instrumented version of the kernel runs with negligible performance

penalties, you can optionally leave it in the final embedded system. Should any

problems arise in the field, you can use the SAT for low-level diagnostics.

The SAT offers a nonintrusive method of instrumenting the code—programs can literally

monitor themselves. In addition to passive/non-intrusive event tracing, you can

proactively trace events by injecting your own “flag” events.

Copyright © 2014, QNX Software Systems Limited 13

What can the SAT do for you?

Components of the SAT

The QNX Neutrino System Analysis Toolkit (SAT) consists of the following main

components:

• Instrumented kernel (p. 14)

• Kernel buffer management (p. 15)

• Data-capture program (tracelogger) (p. 15)

• Data interpretation (e.g. traceprinter) (p. 16)

You can also trace and analyze events under control of the Integrated Development

Environment (p. 16).

Threads

Kernel
buffer

Data capture

Data interpretation

Instrumented
kernel

Figure 2: Overall view of the SAT.

Instrumented kernel

The instrumented kernel is actually the regular QNX Neutrino microkernel with a small,

highly efficient event-gathering module included. Except for the instrumentation, its

operation is virtually indistinguishable—the instrumented kernel runs at 98% of the

speed of our regular microkernel.

As threads run, the instrumented kernel continuously intercepts information about

what the kernel is doing, generating time-stamped and CPU-stamped events that are

stored in a circular linked list of buffers. Because the tracing occurs at the kernel

level, the SAT can track the performance of all processes, including the data-capturing

program.

To check to see if your system is running the instrumented kernel, type:

ls /proc/boot

and then look for a file whose name includes procnto. If the file name is

procnto-*instr, you're running the instrumented kernel; if the file name doesn't

include instr, you're running the noninstrumented kernel.

To switch to the instrumented kernel, do the following:

14 Copyright © 2014, QNX Software Systems Limited

Introduction

1. In your buildfile, replace the entry for procnto with the appropriate

procnto-*instr. For more information, see the entry for procnto in the Utilities

Reference.

2. Add tracelogger and traceprinter to your buildfile or target.

3. Run the mkifs utility to rebuild the image. For more information, see the entry

for mkifs in the Utilities Reference.

4. Replace your current boot image with the new one.

Kernel buffer management

The kernel buffer is composed of many small buffers. Although the number of buffers

is limited only by the amount of system memory, it's important to understand that this

space must be managed carefully. If all of the events are being traced on an active

system, the number of events can be quite large.

To allow the instrumented kernel to write to one part of the kernel buffer and store

another part of it simultaneously, the kernel buffer is organized as a circular linked

list. As the buffer data reaches a high-water mark (about 70% full), the instrumented

kernel module sends a signal to the data-capture program with the address of the

buffer. The data-capture program can then retrieve the buffer and save it in a storage

location for offline processing or pass it to a data interpreter for realtime manipulation.

In either case, once the buffer has been emptied, it's once again available for use by

the kernel.

Data-capture program (tracelogger)

The QNX Neutrino RTOS includes a tracelogger that you can use to capture data.

This daemon receives events from the instrumented kernel and saves them in a file

or sends them to a device for later analysis.

The data-capture utilities require root privileges to allocate buffer memory

or to use functions such as InterruptHookTrace() (see the QNX Neutrino C

Library Reference). Data-capture utilities won't work properly without these

privileges.

Because the tracelogger may write data at rates well in excess of 20 MB/minute,

running it for prolonged periods or running it repeatedly can use up a large amount

of space. If disk space is low, erase old log files regularly. (In its default mode,

tracelogger overwrites its previous default file.)

You can also control tracing from your application (e.g. to turn tracing on just for a

problematic area) with the TraceEvent() kernel call. This function has over 30 different

commands that let you:

• create internal trace buffers

Copyright © 2014, QNX Software Systems Limited 15

Components of the SAT

• set up filters

• control the tracing process

• insert user defined events

For more information, see the Capturing Trace Data (p. 41) chapter in this guide, the

entry for tracelogger in the Utilities Reference, and the entry for TraceEvent() in

the QNX Neutrino C Library Reference.

Data interpretation (e.g. traceprinter)

To aid in processing the binary trace event data, we provide the libtraceparser

library. The API functions let you set up a series of functions that are called when

complete buffer slots of event data have been received/read from the raw binary event

stream.

We also provide a linear trace event printer (traceprinter) that outputs all of the

trace events ordered linearly by their timestamp as they're emitted by the kernel. This

utility uses the libtraceparser library. You can also modify the traceprinter

source as a basis for your own custom parser or use the API to create an interface to

do the following offline or in real time:

• perform analysis

• display results

• debug applications

• create a self-monitoring system

• show events ordered by process or by thread

• show thread states and transitions

• show currently running threads

The traceparser library provides an API for parsing and interpreting the trace events

that are stored in the event file. The library simplifies the parsing and interpretation

process by letting you easily:

• set up callback functions and associations for each event

• retrieve header and system information from the trace event file

• debug and control the parsing process

For more information, see the Interpreting Trace Data (p. 61) chapter in this guide,

as well as the entry for traceprinter in the Utilities Reference.

Integrated Development Environment

The QNX Momentics Tool Suite's IDE provides a graphical interface that you can use

to capture and examine tracing events. The IDE lets you filter events, zoom in on

ranges of them, examine the associated data, save subsets of events, and more.

16 Copyright © 2014, QNX Software Systems Limited

Introduction

For more information, see the Analyzing Your System with Kernel Tracing chapter of

the IDE User's Guide.

Copyright © 2014, QNX Software Systems Limited 17

Components of the SAT

Chapter 2
Events and the Kernel

The QNX Neutrino microkernel generates events for more than just system calls. The

following are some of the activities that generate events:

• kernel calls

• scheduling activity

• interrupt handling

• thread/process creation, destruction, and state changes

In addition, the instrumented kernel also inserts “artificial” events for:

• time events

• user events that may be used as “marker flags”

Also, single kernel calls or system activities may actually generate more than one

event.

Copyright © 2014, QNX Software Systems Limited 19

Generating events: a typical scenario

Processes that are running on QNX Neutrino can run multiple threads. Having more

than one thread increases the level of complexity—the OS must handle threads of

differing priorities competing with each other.

Multithreaded example

In our example we'll use two threads:

PriorityThread

HighA

LowB

Now we'll watch them run, assuming both start at the same time:

When logging starts, the instrumented kernel sends information about each

thread. Existing processes will appear to be created during this procedure.

ExplanationActionThreadTime

Thread is created.CreateAt1

The thread is

waiting for, say, I/O;

BlockAt2

it can't continue

without it.

Rather than sit idle,

the kernel runs next

CreateBt3

highest priority

thread.

Thread B is working.Kernel CallBt4

I/O completed;

Thread A is ready to

run.

N/AN/At4.5

Thread A is now

ready to run—it

preempts thread B.

BlockBt5

Thread A resumes.RunAt6

20 Copyright © 2014, QNX Software Systems Limited

Events and the Kernel

ExplanationActionThreadTime

Its task complete,

the thread

terminates.

DiesAt7

Thread B continues

from where it left

off.

RunsBt8

.........t9

Thread context-switch time

Threads don't switch instantaneously—after one thread blocks or yields to another,

the kernel must save the settings before running another thread. The time to save this

state and restore another is known as thread context-switch time. This context-switch

time between threads is small, but important.

Thread

Thread
context-switch

time

Time

B

A

Thread
run time

Figure 3: Thread context switching.

In some cases, two or more threads may switch back and forth without actually

accomplishing much. This is akin to two overly polite people each offering to let the

other pass through a narrow door first— neither of them gets to where they're going

on time (two aggressive people encounter a similar problem). This type of problem is

exactly what the SAT can quickly and easily highlight. By showing the context-switch

operations in conjunction with thread state transitions, you can quickly see why

otherwise fast systems seem to “crawl.”

Restarting threads

In order to achieve maximum responsiveness, much of the QNX Neutrino microkernel

is fully preemptible. In some cases, this means that when a thread is interrupted in

a kernel call, it won't be able to restart exactly where it began. Instead, the kernel call

will be restarted—it “rewinds” itself. The SAT tries to hide the spurious calls but may

not succeed in suppressing them all. As a result, it's possible to see several events

generated from a specific thread that has been preempted. If this occurs, the last

event is the actual one.

Copyright © 2014, QNX Software Systems Limited 21

Generating events: a typical scenario

Simple and combine events

Most events can be described in a single event buffer slot; we call these simple events.

When there's too much information to describe the event in a single buffer slot, the

event is described in multiple event buffer slots; we call this a combine event. The

event buffer slots all look the same, so there's no need for the data-capture program

to distinguish between them.

For more information about simple events and combine events, see the Interpreting

Trace Data (p. 61) chapter.

22 Copyright © 2014, QNX Software Systems Limited

Events and the Kernel

Fast and wide modes

You can gather data for events in the following modes:

Wide mode

The instrumented kernel uses as many buffer slots as are necessary to fully

log the event. The amount of space is theoretically unlimited and can span

several kilobytes for a single event. Most of the time, it doesn't exceed four

16-byte spaces.

Fast mode

The instrumented kernel uses only one buffer slot per event.

In general, wide mode generates several times more data than fast mode.

Fast mode doesn't simply clip the tail end of the event data that you'd get in

wide mode; fast mode summarizes the most important aspects of the event in

a single buffer slot. Thus, the first element of an event in wide mode might

not be the same as the same event in fast mode.

You can set fast and wide mode for all classes, specific classes, and even specific

events in a class; some can be fast while others are wide. We'll describe how to set

this in the Capturing Trace Data (p. 41) chapter.

For the specific output differences between fast and wide mode, see the Current Trace

Events and Data appendix.

Copyright © 2014, QNX Software Systems Limited 23

Fast and wide modes

Classes and events

There can be a lot of events in even a small trace, so they're organized into classes to

make them easier for you to manage:

• Communication class: _NTO_TRACE_COMM (p. 24)

• Control class: _NTO_TRACE_CONTROL (p. 25)

• Interrupt classes: _NTO_TRACE_INTENTER, _NTO_TRACE_INTEXIT,

_NTO_TRACE_INT_HANDLER_ENTER, and _NTO_TRACE_INT_HANDLER_EXIT

(p. 26)

• Kernel-call classes: _NTO_TRACE_KERCALLENTER, _NTO_TRACE_KERCALLEXIT,

and _NTO_TRACE_KERCALLINT (p. 26)

• Process class: _NTO_TRACE_PROCESS (p. 30)

• QNX Unified Intrumentation Platform class: _NTO_TRACE_QUIP

• System class: _NTO_TRACE_SYSTEM (p. 30)

• Thread class: _NTO_TRACE_THREAD (p. 31)

• User class: _NTO_TRACE_USER (p. 33)

• Virtual thread class: _NTO_TRACE_VTHREAD (p. 34)

(The <sys/trace.h> header file also defines an _NTO_TRACE_EMPTY class, but

it's a placeholder and isn't currently used.)

The sections that follow list the events for each class, along with a description of when

the events are emitted, as well as the labels that traceprinter and the IDE use to

identify the events.

For information about the data for each event, see the Current Trace Events and Data

appendix.

Communication class: _NTO_TRACE_COMM

The _NTO_TRACE_COMM class includes events related to communication via messages

and pulses.

Emitted when:IDE labeltraceprinter

label

Event

A client is unblocked because of

a call to MsgError()

ErrorMSG_ERROR_NTO_TRACE_COMM_ERROR

A reply is sentReplyREPLY_MESSAGE_NTO_TRACE_COMM_REPLY

A message is receivedReceive MessageREC_MESSAGE_NTO_TRACE_COMM_RMSG

A pulse is receivedReceive PulseREC_PULSE_NTO_TRACE_COMM_RPULSE

24 Copyright © 2014, QNX Software Systems Limited

Events and the Kernel

Emitted when:IDE labeltraceprinter

label

Event

A signal is receivedSignalSIGNAL_NTO_TRACE_COMM_SIGNAL

A message is sentSend MessageSND_MESSAGE_NTO_TRACE_COMM_SMSG

A pulse is sentSend PulseSND_PULSE_NTO_TRACE_COMM_SPULSE

A _PULSE_CODE_COIDDEATH

pulse is sent

Death PulseSND_PULSE_DEA_NTO_TRACE_COMM_SPULSE_DEA

A _PULSE_CODE_DISCONNECT

pulse is sent

Disconnect PulseSND_PULSE_DIS_NTO_TRACE_COMM_SPULSE_DIS

A SIGEV_PULSE is sentSigevent PulseSND_PULSE_EXE_NTO_TRACE_COMM_SPULSE_EXE

A

_PULSE_CODE_NET_UNBLOCK

pulse is sent

QNet Unblock

Pulse

SND_PULSE_QUN_NTO_TRACE_COMM_SPULSE_QUN

A _PULSE_CODE_UNBLOCK

pulse is sent

Unblock PulseSND_PULSE_UN_NTO_TRACE_COMM_SPULSE_UN

Control class: _NTO_TRACE_CONTROL

The _NTO_TRACE_CONTROL class includes events related to the control of tracing

itself.

Emitted when:IDE

label

traceprinter

label

Event

The instrumented kernel starts filling a new bufferBufferBUFFER_NTO_TRACE_CONTROLBUFFER

The 32 Least Significant Bits (LSB) part of the

64-bit clock rolls over, or the kernel emits an

_NTO_TRACE_CONTROLBUFFER event

TimeTIME_NTO_TRACE_CONTROLTIME

The purpose of emitting _NTO_TRACE_CONTROLBUFFER events is to help

tracelogger and the IDE track the buffers and determine if any buffers have been

dropped. The instrumented kernel emits an _NTO_TRACE_CONTROLTIME event at

the same time to keep the IDE in sync (in case a dropped buffer contained an

_NTO_TRACE_CONTROLTIME event for a rollover of the clock).

Copyright © 2014, QNX Software Systems Limited 25

Classes and events

Interrupt classes: _NTO_TRACE_INTENTER, _NTO_TRACE_INTEXIT,
_NTO_TRACE_INT_HANDLER_ENTER, and _NTO_TRACE_INT_HANDLER_EXIT

These classes track interrupts.

Emitted when:IDE labeltraceprinter

label

Class

Overall processing of an interrupt

begins

EntryINT_ENTR_NTO_TRACE_INTENTER

Overall processing of an interrupt

ends

ExitINT_EXIT_NTO_TRACE_INTEXIT

Entering an interrupt handlerHandler En

try

INT_HANDLER_EN

TR

_NTO_TRACE_INT_HANDLER_ENTER

Exiting an interrupt handlerHandler ExitINT_HANDLER_EX

IT

_NTO_TRACE_INT_HANDLER_EXIT

The expected sequence is:

INTR_ENTER
 INTR_HANDLER_ENTER
 INTR_HANDLER_EXIT
 INTR_HANDLER_ENTER
 INTR_HANDLER_EXIT
INT_EXIT

_NTO_TRACE_INT is a pseudo-class that comprises all of the interrupt classes.

The “event” is an interrupt vector number, in the range from _NTO_TRACE_INTFIRST

through _NTO_TRACE_INTLAST.

Kernel-call classes: _NTO_TRACE_KERCALLENTER, _NTO_TRACE_KERCALLEXIT, and
_NTO_TRACE_KERCALLINT

These classes track kernel calls.

• _NTO_TRACE_KERCALLENTER and _NTO_TRACE_KERCALLEXIT track the

entrances to and exits from kernel calls.

• _NTO_TRACE_KERCALLINT tracks interrupted kernel calls. When we exit the

kernel, we check to see if the kernel call arguments are valid. If so, then we log

an _NTO_TRACE_KERCALLEXIT event with the parameters. If not, then we log

an _NTO_TRACE_KERCALLINT event with no parameters. If you get an EINTR

return code from your kernel call, you'll also see an _NTO_TRACE_KERCALLINT

event in the trace log.

_NTO_TRACE_KERCALL is a pseudo-class that comprises all these classes.

26 Copyright © 2014, QNX Software Systems Limited

Events and the Kernel

The traceprinter labels for these classes are KER_CALL, KER_EXIT, and

INT_CALL, followed by an uppercase version of the kernel call; the IDE labels consist

of the kernel call, followed by Enter, Exit, or INT.

Most of the events in these classes correspond in a fairly obvious way to the kernel

calls; some correspond to internal functions:

Kernel callEvent

N/A__KER_BAD

ChannelConnectAttr()__KER_CHANCON_ATTR

ChannelCreate()__KER_CHANNEL_CREATE

ChannelDestroy()__KER_CHANNEL_DESTROY

ClockAdjust()__KER_CLOCK_ADJUST

ClockId()__KER_CLOCK_ID

ClockPeriod()__KER_CLOCK_PERIOD

ClockTime()__KER_CLOCK_TIME

ConnectAttach()__KER_CONNECT_ATTACH

ConnectClientInfo()__KER_CONNECT_CLIENT_INFO

ConnectDetach()__KER_CONNECT_DETACH

ConnectFlags()__KER_CONNECT_FLAGS

ConnectServerInfo()__KER_CONNECT_SERVER_INFO

InterruptAttach()__KER_INTERRUPT_ATTACH

InterruptDetach()__KER_INTERRUPT_DETACH

N/A__KER_INTERRUPT_DETACH_FUNC

InterruptMask()__KER_INTERRUPT_MASK

InterruptUnmask()__KER_INTERRUPT_UNMASK

InterruptWait()__KER_INTERRUPT_WAIT

MsgCurrent()__KER_MSG_CURRENT

MsgDeliverEvent()__KER_MSG_DELIVER_EVENT

MsgError()__KER_MSG_ERROR

MsgInfo()__KER_MSG_INFO

MsgKeyData()__KER_MSG_KEYDATA

Copyright © 2014, QNX Software Systems Limited 27

Classes and events

Kernel callEvent

MsgReadIov()__KER_MSG_READIOV

MsgRead(), MsgReadv()__KER_MSG_READV

N/A__KER_MSG_READWRITEV

MsgReceivePulse(), MsgReceivePulsev()__KER_MSG_RECEIVEPULSEV

MsgReceive(), MsgReceivev()__KER_MSG_RECEIVEV

MsgReply(), MsgReplyv()__KER_MSG_REPLYV

MsgSend(), MsgSendv(), and MsgSendvs()__KER_MSG_SENDV

MsgSendnc(), MsgSendvnc(), and MsgSendvsnc()__KER_MSG_SENDVNC

MsgSendPulse()__KER_MSG_SEND_PULSE

MsgVerifyEvent()__KER_MSG_VERIFY_EVENT

MsgWrite(), MsgWritev()__KER_MSG_WRITEV

NetCred()__KER_NET_CRED

NetInfoScoid()__KER_NET_INFOSCOID

NetSignalKill()__KER_NET_SIGNAL_KILL

NetUnblock()__KER_NET_UNBLOCK

NetVtid()__KER_NET_VTID

N/A__KER_NOP

__Ring0()__KER_RING0 (not generated in QNX Neutrino 6.3.0 or later)

SchedGet()__KER_SCHED_GET

SchedInfo()__KER_SCHED_INFO

SchedSet()__KER_SCHED_SET

SchedYield()__KER_SCHED_YIELD

SignalAction()__KER_SIGNAL_ACTION

N/A__KER_SIGNAL_FAULT

SignalKill()__KER_SIGNAL_KILL

SignalProcmask()__KER_SIGNAL_PROCMASK

SignalReturn()__KER_SIGNAL_RETURN

SignalSuspend()__KER_SIGNAL_SUSPEND

28 Copyright © 2014, QNX Software Systems Limited

Events and the Kernel

Kernel callEvent

SignalWaitInfo()__KER_SIGNAL_WAITINFO

SyncCondvarSignal()__KER_SYNC_CONDVAR_SIGNAL

SyncCondvarWait()__KER_SYNC_CONDVAR_WAIT

SyncCreate(), SyncTypeCreate()__KER_SYNC_CREATE

SyncCtl()__KER_SYNC_CTL

SyncDestroy()__KER_SYNC_DESTROY

SyncMutexLock()__KER_SYNC_MUTEX_LOCK

SyncMutexRevive()__KER_SYNC_MUTEX_REVIVE

SyncMutexUnlock()__KER_SYNC_MUTEX_UNLOCK

SyncSemPost()__KER_SYNC_SEM_POST

SyncSemWait()__KER_SYNC_SEM_WAIT

N/A__KER_SYS_CPUPAGE_GET

ThreadCancel()__KER_THREAD_CANCEL

ThreadCreate()__KER_THREAD_CREATE

ThreadCtl()__KER_THREAD_CTL

ThreadDestroy()__KER_THREAD_DESTROY

N/A__KER_THREAD_DESTROYALL

ThreadDetach()__KER_THREAD_DETACH

ThreadJoin()__KER_THREAD_JOIN

TimerAlarm()__KER_TIMER_ALARM

TimerCreate()__KER_TIMER_CREATE

TimerDestroy()__KER_TIMER_DESTROY

TimerInfo()__KER_TIMER_INFO

TimerSettime()__KER_TIMER_SETTIME

TimerTimeout()__KER_TIMER_TIMEOUT

TraceEvent()__KER_TRACE_EVENT

Copyright © 2014, QNX Software Systems Limited 29

Classes and events

Process class: _NTO_TRACE_PROCESS

The _NTO_TRACE_PROCESS class includes events related to the creation and

destruction of processes.

Emitted when:IDE labeltraceprinter

label

Event

A process is createdCreate ProcessPROCCREATE_NTO_TRACE_PROCCREATE

A newly created process is

given a name.

Create Process

Name

PROCCREATE_NAME_NTO_TRACE_PROCCREATE_NAME

A process is destroyedDestroy ProcessPROCDESTROY_NTO_TRACE_PROCDESTROY

(Not currently used)——_NTO_TRACE_PROCDESTROY_NAME

A name is assigned to a threadThread NamePROCTHREAD_NAME_NTO_TRACE_PROCTHREAD_NAME

System class: _NTO_TRACE_SYSTEM

The _NTO_TRACE_SYSTEM class includes events related to the system as a whole.

Emitted when:IDE labeltraceprinter

label

Event

A breakpoint is hitAddressADDRESS_NTO_TRACE_SYS_ADDRESS

An adaptive partition exceeded its critical

budget

APS

Bankruptcy

APS_BANKRUPT

CY

_NTO_TRACE_SYS_APS_BNKR

SchedCtl() is called with a command of

SCHED_APS_CREATE_PARTITION or

APS BudgetsAPS_NEW_BUD

GET

_NTO_TRACE_SYS_APS_BUDGETS

SCHED_APS_MODIFY_PARTITION. Also

emitted automatically when the adaptive

partitioning scheduler clears a critical budget

as part of handling a bankruptcy.

SchedCtl() is called with a command of

SCHED_APS_CREATE_PARTITION

APS NameAPS_NAME_NTO_TRACE_SYS_APS_NAME

The memory defragmentation com

paction_minimal algorithm is triggered

CompactionCOMPACTION_NTO_TRACE_SYS_COMPACTION

(see “Defragmenting physical memory” in

the Process Manager chapter of the System

Architecture guide)

A function that's instrumented for profiling

is entered

Function En

ter

FUNC_ENTER_NTO_TRACE_SYS_FUNC_ENTER

30 Copyright © 2014, QNX Software Systems Limited

Events and the Kernel

Emitted when:IDE labeltraceprinter

label

Event

A function that's instrumented for profiling

is exited

Function Ex

it

FUNC_EXIT_NTO_TRACE_SYS_FUNC_EXIT

dlopen() is calledMMap NameMAPNAME_NTO_TRACE_SYS_MAPNAME

mmap() or mmap64() is calledMMapMMAP_NTO_TRACE_SYS_MMAP

munmap() is calledMMUnmapMUNMAP_NTO_TRACE_SYS_MUNMAP

An operation involving a path name — such

as open() — that's routed via the libc

Path Manag

er

PATHM

GR_OPEN

_NTO_TRACE_SYS_PATHMGR

connect function occurs. The connect

function sends a message to procnto to

resolve the path and find the set of resource

managers that could potentially match the

path. It's upon receiving this message that

procnto emits this event.

A message is written to the system logSystem LogSLOG_NTO_TRACE_SYS_SLOG

You can use the following convenience functions to insert certain System events into

the trace data:

trace_func_enter()

Insert an _NTO_TRACE_SYS_FUNC_ENTER event for a function

trace_func_exit()

Insert an _NTO_TRACE_SYS_FUNC_EXIT event for a function

trace_here()

Insert an _NTO_TRACE_SYS_ADDRESS event for the current address

Thread class: _NTO_TRACE_THREAD

The _NTO_TRACE_THREAD class includes events related to state changes for threads.

Emitted when a thread:IDE labeltraceprinter

label

Event

Enters the CONDVAR stateCondvarTHCONDVAR_NTO_TRACE_THCONDVAR

Is createdCreate ThreadTHCREATE_NTO_TRACE_THCREATE

Enters the DEAD stateDeadTHDEAD_NTO_TRACE_THDEAD

Copyright © 2014, QNX Software Systems Limited 31

Classes and events

Emitted when a thread:IDE labeltraceprinter

label

Event

Is destroyedDestroy

Thread

THDESTROY_NTO_TRACE_THDESTROY

Enters the INTERRUPT stateInterruptTHINTR_NTO_TRACE_THINTR

Enters the JOIN stateJoinTHJOIN_NTO_TRACE_THJOIN

Enters the MUTEX stateMutexTHMUTEX_NTO_TRACE_THMUTEX

Enters the NANOSLEEP stateNanoSleepTHNANOSLEEP_NTO_TRACE_THNANOSLEEP

Enters the NET_REPLY stateNetReplyTHNET_REPLY_NTO_TRACE_THNET_REPLY

Enters the NET_SEND stateNetSendTHNET_SEND_NTO_TRACE_THNET_SEND

Enters the READY stateReadyTHREADY_NTO_TRACE_THREADY

Enters the RECEIVE stateReceiveTHRECEIVE_NTO_TRACE_THRECEIVE

Enters the REPLY stateReplyTHREPLY_NTO_TRACE_THREPLY

Enters the RUNNING stateRunningTHRUNNING_NTO_TRACE_THRUNNING

Enters the SEM stateSemaphoreTHSEM_NTO_TRACE_THSEM

Enters the SEND stateSendTHSEND_NTO_TRACE_THSEND

Enters the SIGSUSPEND stateSigSuspendTHSIGSUSPEND_NTO_TRACE_THSIGSUSPEND

Enters the SIGWAITINFO stateSigWaitInfoTHSIGWAITINFO_NTO_TRACE_THSIGWAITINFO

Enters the STACK stateStackTHSTACK_NTO_TRACE_THSTACK

Enters the STOPPED stateStoppedTHSTOPPED_NTO_TRACE_THSTOPPED

Enters the WAITCTX stateWaitCtxTHWAITCTX_NTO_TRACE_THWAITCTX

Enters the WAITPAGE stateWaitPageTHWAITPAGE_NTO_TRACE_THWAITPAGE

Enters the WAITTHREAD stateWaitThreadTHWAITTHREAD_NTO_TRACE_THWAITTHREAD

If your system includes the adaptive partitioning scheduler module, the data for these

events includes the partition ID and scheduling flags (e.g.,

AP_SCHED_BILL_AS_CRIT). For more information, see the Adaptive Partitioning

User's Guide.

For more information about thread states, see “Thread life cycle” in the QNX Neutrino

Microkernel chapter of the System Architecture guide.

32 Copyright © 2014, QNX Software Systems Limited

Events and the Kernel

User class: _NTO_TRACE_USER

The _NTO_TRACE_USER class includes custom events that your program creates.

You can create these events by calling one of the following convenience functions:

trace_logb()

Insert a user combine trace event

trace_logf()

Insert a user string trace event

trace_logi()

Insert a user simple trace event

trace_nlogf()

Insert a user string trace event, specifying a maximum string length

trace_vnlogf()

Insert a user string trace event, using a variable argument list

or by calling TraceEvent() directly, with one of the following commands:

• _NTO_TRACE_INSERTSUSEREVENT to create a simple event containing a small

amount of data

• _NTO_TRACE_INSERTCUSEREVENT to create a combine event containing an

arbitrary amount of data

The len argument for the _NTO_TRACE_INSERTCUSEREVENT command

is the number of integers (not bytes) in the passed buffer.

• _NTO_TRACE_INSERTUSRSTREVENT to create an event containing a

null-terminated string

The event must be in the range from _NTO_TRACE_USERFIRST through

_NTO_TRACE_USERLAST, but you can decide what each event means.

The traceprinter label for these events is USREVENT; the IDE label is User

Event. In both cases, this label is followed by the event type, expressed as an integer.

Copyright © 2014, QNX Software Systems Limited 33

Classes and events

Virtual thread class: _NTO_TRACE_VTHREAD

The _NTO_TRACE_VTHREAD class includes events related to state changes for virtual

threads, special objects related to Transparent Distributed Processing (TDP) over Qnet.

The kernel often keeps pointers from different data structures to relevant threads.

When those threads are off-node via Qnet, there isn't a local thread object to represent

them, so the kernel creates a virtual thread object.

The events for virtual threads are similar to those for normal threads, but virtual threads

don't go through the same set of state transitions that normal threads do:

Emitted when a virtual thread:IDE labeltraceprinter

label

Event

Enters the CONDVAR stateVCondvarVTHCONDVAR_NTO_TRACE_VTHCONDVAR

Is createdCreate VThreadVTHCREATE_NTO_TRACE_VTHCREATE

Enters the DEAD stateVDeadVTHDEAD_NTO_TRACE_VTHDEAD

Is destroyedDestroy

VThread

VTHDESTROY_NTO_TRACE_VTHDESTROY

Enters the INTERRUPT stateVInterruptVTHINTR_NTO_TRACE_VTHINTR

Enters the JOIN stateVJoinVTHJOIN_NTO_TRACE_VTHJOIN

Enters the MUTEX stateVMutexVTHMUTEX_NTO_TRACE_VTHMUTEX

Enters the NANOSLEEP stateVNanosleepVTHNANOSLEEP_NTO_TRACE_VTHNANOSLEEP

Enters the NET_REPLY stateVNetReplyVTHNET_REPLY_NTO_TRACE_VTHNET_REPLY

Enters the NET_SEND stateVNetSendVTHNET_SEND_NTO_TRACE_VTHNET_SEND

Enters the READY stateVReadyVTHREADY_NTO_TRACE_VTHREADY

Enters the RECEIVE stateVReceiveVTHRECEIVE_NTO_TRACE_VTHRECEIVE

Enters the REPLY stateVReplyVTHREPLY_NTO_TRACE_VTHREPLY

Enters the RUNNING stateVRunningVTHRUNNING_NTO_TRACE_VTHRUNNING

Enters the SEM stateVSemaphoreVTHSEM_NTO_TRACE_VTHSEM

Enters the SEND stateVSendVTHSEND_NTO_TRACE_VTHSEND

Enters the SIGSUSPEND stateVSigSuspendVTHSIGSUSPEND_NTO_TRACE_VTHSIGSUSPEND

Enters the SIGWAITINFO stateVSigWaitInfoVTHSIGWAITINFO_NTO_TRACE_VTHSIGWAITINFO

Enters the STACK stateVStackVTHSTACK_NTO_TRACE_VTHSTACK

Enters the STOPPED stateVStoppedVTHSTOPPED_NTO_TRACE_VTHSTOPPED

34 Copyright © 2014, QNX Software Systems Limited

Events and the Kernel

Emitted when a virtual thread:IDE labeltraceprinter

label

Event

Enters the WAITCTX stateVWaitCtxVTHWAITCTX_NTO_TRACE_VTHWAITCTX

Enters the WAITPAGE stateVWaitPageVTHWAITPAGE_NTO_TRACE_VTHWAITPAGE

Enters the WAITTHREAD stateVWaitThreadVTHWAITTHREAD_NTO_TRACE_VTHWAITTHREAD

Copyright © 2014, QNX Software Systems Limited 35

Classes and events

Chapter 3
Kernel Buffer Management

As the instrumented kernel intercepts events, it stores them in a circular linked list

of buffers.

Kernel
buffers

Instrumented
kernel

1 2 3 ... 1024

Figure 4: The kernel buffers.

As each buffer fills, the instrumented kernel sends a signal to the data-capturing

program that the buffer is ready to be read.

Each buffer is of a fixed size and is divided into a fixed number of slots:

• Event buffer slots per buffer: 1024

• Event buffer slot size: 16 bytes

• Buffer size: 16 KB

Some events are single buffer slot events (“simple events”) while others are multiple

buffer slot events (“combine events”). In either case there is only one event, but the

number of event buffer slots required to describe it may vary.

For details, see the Interpreting Trace Data (p. 61) chapter.

Copyright © 2014, QNX Software Systems Limited 37

Linked list size

Although the size of the buffers is fixed, the maximum number of buffers used by a

system is limited only by the amount of memory.

(The tracelogger utility uses a default setting of 32 buffers, or about 500 KB of

memory.)

The buffers share kernel memory with the application(s), and the kernel automatically

allocates memory at the request of the data-capture utility. The kernel allocates the

buffers in contiguous physical memory space. If the data-capture program requests a

larger block than is available contiguously, the instrumented kernel returns an error

message.

For all intents and purposes, the number of events the instrumented kernel generates

is infinite. Except for severe filtering or logging for only a few seconds, the instrumented

kernel will probably exhaust the circular linked list of buffers, no matter how large it

is. To allow the instrumented kernel to continue logging indefinitely, the data-capture

program must continuously pipe (empty) the buffers.

38 Copyright © 2014, QNX Software Systems Limited

Kernel Buffer Management

Full buffers and the high-water mark

As each buffer becomes full, the instrumented kernel sends a signal to the

data-capturing program to save the buffer. Because the buffer size is fixed, the kernel

sends only the buffer address; the length is constant.

The instrumented kernel can't flush a buffer or change buffers within an interrupt. If

the interrupt wasn't handled before the buffer became 100% full, some of the events

may be lost. To ensure this never happens, the instrumented kernel requests a buffer

flush at the high-water mark.

The high-water mark is set at an efficient, yet conservative, level of about 70%. Most

interrupt routines require fewer than 300 event buffer slots (approximately 30% of

1024 event buffer slots), so there's virtually no chance that any events will be lost.

(The few routines that use extremely long interrupts should include a manual

buffer-flush request in their code.)

Therefore, in a normal system, the kernel logs about 715 events of the fixed maximum

of 1024 events before notifying the capture program.

Copyright © 2014, QNX Software Systems Limited 39

Full buffers and the high-water mark

Buffer overruns

The instrumented kernel is both the very core of the system and the controller of the

event buffers.

When the instrumented kernel is busy, it logs more events. The buffers fill more

quickly, and the instrumented kernel requests that the buffers be flushed more often.

The data-capture program handles each flush request; the instrumented kernel switches

to the next buffer and continues logging events. In an extremely busy system, the

data-capture program may not be able to flush the buffers as quickly as the

instrumented kernel fills them.

In a three-buffer scenario, the instrumented kernel fills buffer 1 and signals the

data-capture program that the buffer is full. The data-capture program takes

“ownership” of buffer 1 and the instrumented kernel marks the buffer as “busy/in

use.” If, say, the file is being saved to a hard drive that happens to be busy, then the

instrumented kernel may fill buffer 2 and buffer 3 before the data-capture program

can release buffer 1. In this case, the instrumented kernel skips buffer 1 and writes

to buffer 2. The previous contents of buffer 2 are overwritten and the timestamps on

the event buffer slots will show a discontinuity.

For more on buffer overruns, see the Tutorials (p. 69) chapter.

40 Copyright © 2014, QNX Software Systems Limited

Kernel Buffer Management

Chapter 4
Capturing Trace Data

The program that captures data is the “messenger” between the instrumented kernel

and the filesystem.

Custom
data-capture
program

tracelogger

User-defined
output

Data stream
from kernel

buffer

.kev file
(or stream)

Figure 5: Possible data capture configurations.

The main function of the data-capture program is to send the buffers given to it by

the instrumented kernel to an output device (which may be a file or something else).

In order to accomplish this function, the program must also:

• interface with the instrumented kernel

• specify data-filtering requirements the instrumented kernel will use

You must configure the instrumented kernel before logging. The instrumented kernel

configuration settings include:

• buffer allocations (size)

• which events and classes of events to log (filtering)

• whether to log the events in wide mode or fast mode

The instrumented kernel retains the settings, and multiple programs access a

single instrumented kernel configuration. Changing the settings in one process

supersedes the settings made in another.

We've provided tracelogger as the default data-capture utility. Although you can

write your own utility, there's little need to; if you do, the quickest approach is to tailor

the tracelogger code to suit your own needs.

You can control the capture of data via qconn (under the control of the IDE),

tracelogger (from the command line), or directly from your application. All three

approaches use the TraceEvent() function to control the instrumented kernel:

Copyright © 2014, QNX Software Systems Limited 41

Integrated
Development
Environment

tracelogger Your
application

qconn

TraceEvent()

Instrumented
kernel

Figure 6: Controlling the capture of trace data.

For information about controlling the trace from the IDE, see the Analyzing Your System

with Kernel Tracing chapter of the IDE User's Guide.

Let's look first at using tracelogger, and then we'll describe how you can use

TraceEvent() to control tracing from your application.

• Don't run more than one instance of tracelogger at a time. Similarly,

don't run tracelogger and trace events under control of the IDE at

the same time.

• On a multicore system, if the clocks on all processors aren't synchronized,

then tracelogger will produce data with inconsistent timestamps,

and the IDE won't be able to load the trace file. The IDE attempts to

properly order the events in the trace file, and this can go awry if the

timestamp data is incorrect.

The traceprinter utility doesn't have any issues with such traces

because it doesn't attempt to reorder the data and interpret it; it simply

dumps the contents of each event.

42 Copyright © 2014, QNX Software Systems Limited

Capturing Trace Data

Using tracelogger to control tracing

The options that you use when you start tracelogger affect the way that the

instrumented kernel logs events and how tracelogger captures them.

Managing trace buffers

You can use tracelogger's command-line options to manage the instrumented

kernel's buffers.

You can specify:

• the number of buffers

• whether or not to preserve the buffers in shared memory, to reuse later

You can also specify the number of buffers that tracelogger itself uses.

For more information, see the entry for tracelogger in the Utilities Reference.

tracelogger's modes of operation

You can run tracelogger in several modes — depending on how and what you want

to trace — by specifying the following command-line options:

-n iterations

In this mode, the kernel logs events, and tracelogger captures iterations

buffers worth of data, and then terminates. This is the default mode, and

default number of iterations is 32.

-r

Ring mode: the kernel stores all events in its circularly linked list of buffers

without flushing them. The maximum time for which you can capture events

(without overwriting earlier ones) is determined by the number of allocated

buffers, as well as by the number of generated trace events.

In ring mode, tracelogger doesn't capture the events until it gets a

SIGINT signal (e.g. you press Ctrl–C), or an application calls TraceEvent()

with a command of _NTO_TRACE_STOP.

If you don't specify the -r option, tracelogger runs in linear mode; every

filled-up buffer is captured and flushed immediately.

-d1

Daemon mode: the kernel doesn't log events, and tracelogger doesn't

capture them until an application calls TraceEvent() with a command of

Copyright © 2014, QNX Software Systems Limited 43

Using tracelogger to control tracing

_NTO_TRACE_START. Logging continues until an application calls

TraceEvent() with a command of _NTO_TRACE_STOP, or you terminate

tracelogger.

In daemon mode, tracelogger ignores any other options, unless

you also specify the -E option to use extended daemon mode.

-s seconds

The kernel logs events; tracelogger captures them over the specified

time.

-c

The kernel logs events; tracelogger captures then, and continues to do

so until you terminate it.

All of the above, except for daemon mode, constitute normal mode. In normal mode,

you configure, start, and stop the tracing from the command line; in daemon (-d1)

mode, your application must do everything from code. However, if you also use the -E

option, you get the best of both modes: the command-line configuration of normal

mode, and the full control of daemon mode.

Here's an outline of the strengths, weaknesses, and features of these modes:

Extended daemon modeDaemon modeNormal modeFeature

FullLimitedFulltracelogger support

FullFullLimitedControllability

AllNoneAllEvents recorded by default

EasyHarderEasyConfiguration difficulty

Command line and user programUser program, using calls to

TraceEvent()

Command line onlyConfiguration method

Through a user program; also

calls to TraceEvent()

Through a user program; also

calls to TraceEvent()

InstantaneouslyLogging starts

For a full description of the tracelogger utility and its options, see its entry in the

Utilities Reference.

Choosing between wide and fast modes

By default, the instrumented kernel and tracelogger collect data in fast mode; to

switch to wide mode, specify the -w option when you start tracelogger.

44 Copyright © 2014, QNX Software Systems Limited

Capturing Trace Data

Filtering events

The tracelogger utility gives you some basic control over filtering by way of its -F

option. This filtering is limited to excluding entire classes of events at a time; if you

need a finer granularity, you'll need to use TraceEvent(), as described in the Filtering

(p. 51) chapter in this guide.

By default, tracelogger captures all events from all classes, but you can disable

the tracing of events from the classes as follows:

Specify:To disable this class:

-F1Kernel calls

-F2Interrupt

-F3Process

-F4Thread

-F5Virtual thread

-F6Communication

-F7System

You can specify more than one filter by using multiple -F options. Note that you can't

disable the Control or User classes with this option. For more information about classes,

see the Events and the Kernel (p. 19) chapter of this guide.

Specifying where to send the output

Because the circular linked list of buffers can't hope to store a complete log of event

activity for any significant amount of time, the tracebuffer must be handed off to a

data-capture program. Normally the data-capture program pipes the information to

either an output device or a file.

By default, the tracelogger utility saves the output in the binary file

/dev/shmem/tracebuffer.kev, but you can use the -f option to specify a different

path. The .kev extension is short for “kernel events”; you can use a different extension,

but the IDE recognizes .kev and automatically uses the System Profiler to open such

files.

You can also map the file in shared memory (-M), but you must then also specify the

maximum size for the file (-S).

Copyright © 2014, QNX Software Systems Limited 45

Using tracelogger to control tracing

Using TraceEvent() to control tracing

You don't have to use tracelogger to control all aspects of tracing; you can call

TraceEvent() directly—which (after all) is what tracelogger does. Using TraceEvent()

to control tracing means a bit more work for you, but you have much more control over

specific details.

You could decide not to use tracelogger at all, and use TraceEvent() exclusively,

but you'd then have to manage the buffers, collect the trace data, and save it in the

appropriate form—a significant amount of work, although you can take advantage of

the source code for tracelogger to help.

In practical terms you'll likely use tracelogger and TraceEvent() together. For

example, you might run tracelogger in daemon mode, to take advantage of its

management of the trace data, but call TraceEvent() to control exactly which events

to trace.

The TraceEvent() kernel call takes a variable number of arguments. The first is always

a command and determines what (if any) additional arguments are required.

For reference information about TraceEvent(), see the QNX Neutrino C Library

Reference. The source code for tracelogger might also help you.

Managing trace buffers

As mentioned above, you can use TraceEvent() to manage the instrumented kernel's

buffers, but it's probably easier to run tracelogger in daemon mode and let it look

after the buffers. Nevertheless, here's a summary of how to do it with TraceEvent():

In order to allocate or free the trace buffers, your application must have the

PROCMGR_AID_TRACE ability enabled. For more information, see the entry

procmgr_ability() in the QNX Neutrino C Library Reference.

• To allocate the buffers, use the _NTO_TRACE_ALLOCBUFFER command, specifying

the number of buffers and a pointer to a location where TraceEvent() can store the

physical address of the beginning of the circular linked list of allocated trace

buffers:

TraceEvent(_NTO_TRACE_ALLOCBUFFER, uint bufnum, void** linkliststart);

Allocated trace buffers can store 1024 simple trace events.

• To free the buffers, use the _NTO_TRACE_DEALLOCBUFFER command. It doesn't

take any additional arguments:

TraceEvent(_NTO_TRACE_DEALLOCBUFFER);

46 Copyright © 2014, QNX Software Systems Limited

Capturing Trace Data

All events stored in the trace buffers are lost.

• To flush the buffer, regardless of the number of trace events it contains, use the

_NTO_TRACE_FLUSHBUFFER command:

TraceEvent(_NTO_TRACE_FLUSHBUFFER);

• To get the number of simple trace events that are currently stored in the trace

buffer, use the _NTO_TRACE_QUERYEVENTS command:

num_events = TraceEvent(_NTO_TRACE_QUERYEVENTS);

Modes of operation

TraceEvent() doesn't support the different modes of operation that tracelogger

does; your application has to indicate when to start tracing, how long to trace for, and

so on:

• To start tracing, use the _NTO_TRACE_START or _NTO_TRACE_STARTNOSTATE

command:

TraceEvent(_NTO_TRACE_START);
TraceEvent(_NTO_TRACE_STARTNOSTATE);

These commands are similar, except that _NTO_TRACE_STARTNOSTATE suppresses

the initial system state information (which includes thread IDs and the names of

processes).

• To stop tracing, use the _NTO_TRACE_STOP command:

TraceEvent(_NTO_TRACE_STOP);

You can decide whether to trace until you've gathered a certain quantity of data,

trace for a certain length of time, or trace only during an operation that's of

particular interest to you. After stopping the trace, you should flush the buffer by

calling:

TraceEvent(_NTO_TRACE_FLUSHBUFFER);

• To use ring mode, use the _NTO_TRACE_SETRINGMODE command:

TraceEvent(_NTO_TRACE_SETRINGMODE);

As described earlier in this chapter, in ring mode the kernel stores all events in a

circular fashion inside the linked list without flushing them.

• To use linear mode (the default), use the _NTO_TRACE_SETLINEARMODE

command:

TraceEvent(_NTO_TRACE_SETLINEARMODE);

Copyright © 2014, QNX Software Systems Limited 47

Using TraceEvent() to control tracing

When you use this mode, every filled-up buffer is captured and flushed immediately.

Filtering events

You can select events in an additive or subtractive manner; you can start with no

events, and then add specific classes or events, or you can start with all events, and

then exclude specific ones. We'll discuss using TraceEvent() to filter events in the

Filtering (p. 51) chapter.

Choosing between wide and fast modes

TraceEvent() gives you much finer control over wide and fast mode than you can get

with tracelogger, which can simply set the mode for all events in all traced classes.

Using TraceEvent(), you can set fast and wide mode for all classes, a specific class,

or a specific event in a class:

• To set the mode for all classes, use the _NTO_TRACE_SETALLCLASSESWIDE or

_NTO_TRACE_SETALLCLASSESFAST command. These commands don't require

any additional arguments:

TraceEvent(_NTO_TRACE_SETALLCLASSESWIDE);
TraceEvent(_NTO_TRACE_SETALLCLASSESFAST);

• To set the mode for all events in a class, use the _NTO_TRACE_SETCLASSFAST

or _NTO_TRACE_SETCLASSWIDE command. These commands require a class as

an additional argument:

TraceEvent(_NTO_TRACE_SETCLASSFAST, int class);
TraceEvent(_NTO_TRACE_SETCLASSWIDE, int class);

For example:

TraceEvent(_NTO_TRACE_SETCLASSWIDE, _NTO_TRACE_KERCALLENTER);

• To set the mode for a specific event in a class, use the

_NTO_TRACE_SETEVENTFAST or _NTO_TRACE_SETEVENTWIDE command,

specifying the class, followed by the event:

TraceEvent(_NTO_TRACE_SETEVENTFAST, int class, int event)
TraceEvent(_NTO_TRACE_SETEVENTWIDE, int class, int event)

For example:

TraceEvent(_NTO_TRACE_SETEVENTFAST, _NTO_TRACE_KERCALLENTER,
 __KER_INTERRUPT_ATTACH);

48 Copyright © 2014, QNX Software Systems Limited

Capturing Trace Data

Inserting trace events

You can even use TraceEvent() to insert your own events into the trace data. You can

call TraceEvent() directly (see below), but it's much easier to use the following

convenience functions:

trace_func_enter()

Insert a trace event for the entry to a function

trace_func_exit()

Insert a trace event for the exit from a function

trace_here()

Insert a trace event for the current address

trace_logb()

Insert a user combine trace event

trace_logbc()

Insert a trace event of an arbitrary class and type with arbitrary data

trace_logf()

Insert a user string trace event

trace_logi()

Insert a user simple trace event

trace_nlogf()

Insert a user string trace event, specifying a maximum string length

trace_vnlogf()

Insert a user string trace event, using a variable argument list

If you want to call TraceEvent() directly, use one of the following commands:

• _NTO_TRACE_INSERTCUSEREVENT

• _NTO_TRACE_INSERTEVENT

• _NTO_TRACE_INSERTSUSEREVENT

• _NTO_TRACE_INSERTUSRSTREVENT

For more information, see the entry for TraceEvent() in the QNX Neutrino C Library

Reference.

Copyright © 2014, QNX Software Systems Limited 49

Using TraceEvent() to control tracing

Chapter 5
Filtering

Gathering many events generates a lot of data, which requires memory and processor

time. It also makes the task of interpreting the data more difficult.

Because the amount of data that the instrumented kernel generates can be

overwhelming, the SAT supports several types of filters that you can use to reduce the

amount of data to be processed:

Static rules filter

A simple filter that chooses events based on their type, class, or other simple

criteria.

Dynamic rules filter

A more complex filter that lets you register a callback function that can

decide — based on the state of your application or system, or on whatever

criteria you choose — whether or not to log a given event.

Post-processing filter

A filter that you run after capturing event data. Like the dynamic rules filter,

this can be as complex and sophisticated as you wish.

The static and dynamic rules filters affect the amount of data being logged into the

kernel buffers; filtered data is discarded — you save processing time and memory,

but there's a chance that some of the filtered data could have been useful.

In contrast, the post-processing facility doesn't discard data; it simply doesn't use it

— if you've saved the data, you can use it later.

Threads

Kernel buffers

Data capture

Data interpretation

Instrumented
kernel

Static
rules
filter

Dynamic
rules
filter

Post-processing filter

Figure 7: Overall view of the SAT and its filters.

Copyright © 2014, QNX Software Systems Limited 51

Most of the events don't indicate what caused the event to occur. For example, an

event for entering MsgSendv() doesn't indicate which thread in which process called

it; you have to infer it during interpretation from a previous thread-running event. You

have carefully choose what you filter to avoid losing this context.

52 Copyright © 2014, QNX Software Systems Limited

Filtering

The static rules filter

You can use the static rules filter to track or filter events for all classes, certain events

in a class, or even events related to specific process and thread IDs. You can select

events in an additive or subtractive manner; you can start with no events, and then

add specific classes or events, or you can start with all events, and then exclude

specific ones.

The static rules filter is the best, most efficient method of data reduction. It generally

frees up the processor while significantly reducing the data rate. This filter is also

useful for gathering large amounts of data periodically, or after many hours of logging

without generating gigabytes of data in the interim.

You set up this filter using the following TraceEvent() commands:

_NTO_TRACE_ADDALLCLASSES, _NTO_TRACE_DELALLCLASSES

Emit or suppress tracing for all classes and events:

TraceEvent(_NTO_TRACE_ADDALLCLASSES);
TraceEvent(_NTO_TRACE_DELALLCLASSES);

The _NTO_TRACE_DELALLCLASSES command doesn't suppress

the process- and thread-specific tracing that the

_NTO_TRACE_SETCLASSPID, _NTO_TRACE_SETCLASSTID,

_NTO_TRACE_SETEVENTPID, and _NTO_TRACE_SETEVENTTID

commands set up. You need to clear their tracing separately, as

shown below.

_NTO_TRACE_ADDCLASS, _NTO_TRACE_DELCLASS

Emit or suppress all trace events from a specific class:

TraceEvent(_NTO_TRACE_ADDCLASS, class):
TraceEvent(_NTO_TRACE_DELCLASS, class):

For information about the different classes, see “Classes and events (p. 24)”

in the Events and the Kernel chapter of this guide.

_NTO_TRACE_ADDEVENT, _NTO_TRACE_DELEVENT

Emit or suppress a specific event in a specific class:

TraceEvent(_NTO_TRACE_ADDEVENT, class, event);
TraceEvent(_NTO_TRACE_DELEVENT, class, event);

_NTO_TRACE_SETCLASSPID, _NTO_TRACE_CLRCLASSPID

Copyright © 2014, QNX Software Systems Limited 53

The static rules filter

Emit or suppress all events from a specified process ID:

TraceEvent(_NTO_TRACE_SETCLASSPID, int class, pid_t pid);
TraceEvent(_NTO_TRACE_CLRCLASSPID, int class);

_NTO_TRACE_SETCLASSTID, _NTO_TRACE_CLRCLASSTID

Emit or suppress all events from the specified process and thread IDs:

TraceEvent(_NTO_TRACE_SETCLASSTID, int class, pid_t pid, tid_t tid);
TraceEvent(_NTO_TRACE_CLRCLASSTID, int class);

_NTO_TRACE_SETEVENTPID, _NTO_TRACE_CLREVENTPID

Emit or suppress a specific event for a specified process ID:

TraceEvent(_NTO_TRACE_SETEVENTPID, int class, int event, pid_t pid);
TraceEvent(_NTO_TRACE_CLREVENTPID, int class, int event);

_NTO_TRACE_SETEVENTTID, _NTO_TRACE_CLREVENTTID

Emit or suppress a specific event for the specified process and thread IDs:

TraceEvent(_NTO_TRACE_SETEVENTTID, int class, int event,
 pid_t pid, tid_t tid);
TraceEvent(_NTO_TRACE_CLREVENTTID, int class, int event);

The _NTO_TRACE_SETCLASSPID, _NTO_TRACE_SETCLASSTID,

_NTO_TRACE_SETEVENTPID, and _NTO_TRACE_SETEVENTTID commands

apply only to these classes:

• _NTO_TRACE_COMM

• _NTO_TRACE_KERCALL, _NTO_TRACE_KERCALLENTER,

_NTO_TRACE_KERCALLEXIT

• _NTO_TRACE_SYSTEM

• _NTO_TRACE_THREAD

• _NTO_TRACE_VTHREAD

The instrumented kernel retains these settings, so you should be careful not to make

any assumptions about the settings that are in effect when you set up your filters. For

example, you might want to start by turning off all filtering:

TraceEvent(_NTO_TRACE_DELALLCLASSES);
TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_KERCALL);
TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_KERCALL);
TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_THREAD);
TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_THREAD);
TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_VTHREAD);
TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_VTHREAD);
TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_SYSTEM);
TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_SYSTEM);

54 Copyright © 2014, QNX Software Systems Limited

Filtering

TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_COMM);
TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_COMM);

You can select events in an additive or subtractive manner; you can start with no

events, and then add specific classes or events, or you can start with all events, and

then exclude specific ones.

For an example using the static filter, see the five_events.c (p. 76) example in

the Tutorials (p. 69) chapter.

Copyright © 2014, QNX Software Systems Limited 55

The static rules filter

The dynamic rules filter

The dynamic rules filter can do all the filtering that the static filter does—and

more—but it isn't as quick. This filter lets you register functions (event handlers) that

decide whether or not to log a given event.

If you want to use a dynamic rules filter, be sure that you've also set up a static

rules filter that logs the events you want to examine. For example, if you want

to dynamically examine events in the _NTO_TRACE_THREAD class, also call:

TraceEvent(_NTO_TRACE_ADDCLASS, _NTO_TRACE_THREAD):

For an example of using the dynamic rules filter, see the eh_simple.c (p. 83)

example in the Tutorials (p. 69) chapter.

Setting up a dynamic rules filter

Before you set up dynamic filtering, you must:

• have the PROCMGR_AID_TRACE and PROCMGR_AID_IO abilities enabled. For

more information, see the entry for procmgr_ability() in the QNX Neutrino C Library

Reference.

• request I/O privileges by calling ThreadCtl() with the _NTO_TCTL_IO flag:

if (ThreadCtl(_NTO_TCTL_IO, 0)!=EOK) {
 fprintf(stderr, "argv[0]: Failed to obtain I/O privileges\n");
 return (-1);
}

Then call TraceEvent() with one of these commands:

_NTO_TRACE_ADDCLASSEVHANDLER

Register a function to call whenever an event for the given class is emitted:

TraceEvent(_NTO_TRACE_ADDCLASSEVHANDLER, class,
 int (*event_hdlr)(event_data_t*),
 event_data_t* data_struct);

_NTO_TRACE_ADDEVENTHANDLER

Register a function to call whenever an event for the given class and event

type is emitted:

TraceEvent(_NTO_TRACE_ADDEVENTHANDLER, class, event,
 int (*event_hdlr)(event_data_t*),
 event_data_t* data_struct);

56 Copyright © 2014, QNX Software Systems Limited

Filtering

The additional arguments are:

event_hdlr

A pointer to the function that you want to register. The prototype for the

function is:

int event_hdlr (event_data_t *event_data);

data_struct

A pointer to a locally defined data structure, of type event_data_t, where

the kernel can store event data to pass to the event handler (see below).

Event handler

The dynamic filter is an event handler that works like an interrupt handler. When this

filter is used, a section of your custom code is executed. The code can test for a set

of conditions before determining whether the event should be stored.

The only library functions that you can call in your event handler are those

that are safe to call from an interrupt handler. For a list of these functions,

see the Full Safety Information appendix in the QNX Neutrino C Library

Reference. if you call an unsafe function — such as printf() — in your event

handler, you'll crash your entire system.

If you want to log the current event, return a non-zero value; to discard the event,

return 0. Here's a very simple event handler that says to log all of the given events:

int event_handler(event_data_t* dummy_pt)
{
 return(1);
}

If you use both types of dynamic filters (event handler and class event handler),

and they both apply to a particular event, the event is logged if both event

handlers return a non-zero value.

In addition to deciding whether or not the event should be logged, you can use the

dynamic rules filter to output events to external hardware or to perform other tasks—

it's up to you because it's your code. Naturally, you should write the code as efficiently

as possible in order to minimize the overhead.

You can access the information about the intercepted event within the event handler

by examining the event_data_t structure passed as an argument to the event

Copyright © 2014, QNX Software Systems Limited 57

The dynamic rules filter

handler. The layout of the event_data_t structure (declared in <sys/trace.h>)

is as follows:

/* event data filled by an event handler */
typedef struct
{
 __traceentry header; /* same as traceevent header */
 uint32_t* data_array; /* initialized by the user */
 uint32_t el_num; /* number of elements returned */
 void* area; /* user data */
 uint32_t feature_mask;/* bits indicate valid features */
 uint32_t feature[_NTO_TRACE_FI_NUM]; /* feature array
 - additional data */
} event_data_t;

The event_data_t structure includes a pointer to an array for the

data arguments of the event. You must provide an array, and it must

be large enough to hold the data for the event or events that you're

handling (see the Current Trace Events and Data appendix). For example:

event_data_t e_d_1;
uint32_t data_array_1[20]; /* 20 elements for potential args. */

e_d_1.data_array = data_array_1;

If you don't provide the data array, or it isn't big enough, your data

segment could become corrupted.

You can use the following macros, defined in <sys/trace.h>, to work with the

header of an event:

_NTO_TRACE_GETEVENT_C(c)

Get the class.

_NTO_TRACE_GETEVENT(c)

Get the type of event.

_NTO_TRACE_GETCPU(h)

Get the number of the CPU that the event occurred on.

_NTO_TRACE_SETEVENT_C(c,cl)

Set the class in the header c to be cl.

_NTO_TRACE_SETEVENT(c, e)

Set the event type in the header c to be e.

The bits of the feature_mask member are related to any additional features (arguments)

that you can access inside the event handler. All standard data arguments — the ones

that correspond to the data arguments of the trace event — are delivered without

changes within the data_array.

58 Copyright © 2014, QNX Software Systems Limited

Filtering

There are two constants associated with each additional feature:

• _NTO_TRACE_FM*** — feature parameter masks

• _NTO_TRACE_FI*** — feature index parameters

The currently defined features are:

IndexParameter maskFeature

_NTO_TRACE_FIPID_NTO_TRACE_FMPIDProcess ID

_NTO_TRACE_FITID_NTO_TRACE_FMTIDThread ID

If any particular bit of the feature_mask is set to 1, then you can access the feature

corresponding to this bit within the feature array. Otherwise, you must not access the

feature. For example, if the expression:

feature_mask & _NTO_TRACE_FMPID

is TRUE, then you can access the additional feature corresponding to identifier

_NTO_TRACE_FMPID as:

my_pid = feature[_NTO_TRACE_FIPID];

Removing event handlers

To remove event handlers, call TraceEvent() with these commands:

_NTO_TRACE_DELCLASSEVHANDLER

Remove the function for the given class and event type:

TraceEvent(_NTO_TRACE_DELCLASSEVHANDLER, class);

_NTO_TRACE_DELEVENTHANDLER

Remove the function for the given class and event type:

TraceEvent(_NTO_TRACE_DELEVENTHANDLER, class, event);

Copyright © 2014, QNX Software Systems Limited 59

The dynamic rules filter

The post-processing facility

The post-processing facility is different from the other filters in that it reacts to the

events without permanently discarding them (or having to choose not to). Because the

processing is done on the captured data, often saved as a file, you could make multiple

passes on the same data without changing it—one pass could count the number of

thread state changes, another pass could display all the kernel events.

The post-processing facility is really a collection of callback functions that decide

what to do for each event. One example of post-processing is the traceprinter

utility itself. It prints all the events instead of filtering them, but the principles are

the same.

We'll look at traceprinter in more detail in the Interpreting Trace Data (p. 61)

chapter.

60 Copyright © 2014, QNX Software Systems Limited

Filtering

Chapter 6
Interpreting Trace Data

Once the data has been captured, you may process it, either in real time or offline.
Data stream

from data capture

User-defined
output

traceprinter

traceparser*() API

Custom
data-interpretation

program
Integrated

Development
Environment

Figure 8: Possible data interpretation configurations.

The best tool (by far) for interpreting the copious amounts of trace data is the Integrated

Development Environment. It provides a sophisticated and versatile user interface that

lets you filter and examine the data.

Figure 9: Examining trace data in the IDE's System Profiler perspective.

For more information, see the Analyzing Your System with Kernel Tracing chapter of

the IDE User's Guide.

We also provide a traceprinter utility that simply prints a plain-text version of the

trace data, sending its output to stdout or to a file.

Copyright © 2014, QNX Software Systems Limited 61

You can also build your own, custom interpreter, using the traceparser library.

62 Copyright © 2014, QNX Software Systems Limited

Interpreting Trace Data

Using traceprinter and interpreting the output

The simplest way to turn the tracing data into a form that you can analyze is to pass

the .kev file through traceprinter. For details, see its entry in the Utilities

Reference.

Let's take a look at an example of the output from traceprinter. This is the output

from “Gathering all events from all classes (p. 71)” in the Tutorials chapter.

The output starts with some information about how you ran the trace:

TRACEPRINTER version 1.02
TRACEPARSER LIBRARY version 1.02
 -- HEADER FILE INFORMATION --
 TRACE_FILE_NAME:: all_classes.kev
 TRACE_DATE:: Wed Jun 24 10:52:58 2009
 TRACE_VER_MAJOR:: 1
 TRACE_VER_MINOR:: 01
 TRACE_LITTLE_ENDIAN:: TRUE
 TRACE_ENCODING:: 16 byte events
 TRACE_BOOT_DATE:: Tue Jun 23 11:47:46 2009
 TRACE_CYCLES_PER_SEC:: 736629000
 TRACE_CPU_NUM:: 1
 TRACE_SYSNAME:: QNX
 TRACE_NODENAME:: localhost
 TRACE_SYS_RELEASE:: 6.4.1
 TRACE_SYS_VERSION:: 2009/05/20-17:35:56EDT
 TRACE_MACHINE:: x86pc
 TRACE_SYSPAGE_LEN:: 2264
TRACE_TRACELOGGER_ARGS:: tracelogger -d1 -n 3 -f all_classes.kev

The next section includes information about all the processes in existence when the

trace started:

 -- KERNEL EVENTS --
t:0x4f81e320 CPU:00 CONTROL: BUFFER sequence = 33, num_events = 714
t:0x4f81e320 CPU:00 CONTROL :TIME msb:0x000037b0 lsb(offset):0x4f81e014
t:0x4f82017a CPU:00 PROCESS :PROCCREATE_NAME
 ppid:0
 pid:1
 name:proc/boot/procnto-smp-instr
t:0x4f820f9a CPU:00 THREAD :THCREATE pid:1 tid:1
t:0x4f821358 CPU:00 THREAD :THREADY pid:1 tid:1
t:0x4f821698 CPU:00 THREAD :THCREATE pid:1 tid:2
t:0x4f821787 CPU:00 THREAD :THRECEIVE pid:1 tid:2
t:0x4f8219ca CPU:00 THREAD :THCREATE pid:1 tid:3
t:0x4f821ac6 CPU:00 THREAD :THRECEIVE pid:1 tid:3
t:0x4f821c94 CPU:00 THREAD :THCREATE pid:1 tid:4
t:0x4f821d90 CPU:00 THREAD :THRECEIVE pid:1 tid:4
t:0x4f821f6c CPU:00 THREAD :THCREATE pid:1 tid:5
t:0x4f82205b CPU:00 THREAD :THRECEIVE pid:1 tid:5
t:0x4f8222aa CPU:00 THREAD :THCREATE pid:1 tid:7
t:0x4f822399 CPU:00 THREAD :THRECEIVE pid:1 tid:7
t:0x4f8225bd CPU:00 THREAD :THCREATE pid:1 tid:8
t:0x4f8226ac CPU:00 THREAD :THRECEIVE pid:1 tid:8
t:0x4f8228ca CPU:00 THREAD :THCREATE pid:1 tid:10
t:0x4f8229b9 CPU:00 THREAD :THRECEIVE pid:1 tid:10
t:0x4f822b7d CPU:00 THREAD :THCREATE pid:1 tid:11
t:0x4f822c6c CPU:00 THREAD :THRECEIVE pid:1 tid:11
t:0x4f822dd7 CPU:00 THREAD :THCREATE pid:1 tid:12
t:0x4f822ec6 CPU:00 THREAD :THRECEIVE pid:1 tid:12
t:0x4f8230ac CPU:00 THREAD :THCREATE pid:1 tid:15
t:0x4f82319b CPU:00 THREAD :THRECEIVE pid:1 tid:15
t:0x4f8233ca CPU:00 THREAD :THCREATE pid:1 tid:20
t:0x4f8234b9 CPU:00 THREAD :THRECEIVE pid:1 tid:20
t:0x4f823ad0 CPU:00 PROCESS :PROCCREATE_NAME
 ppid:1
 pid:2
 name:sbin/tinit
t:0x4f823f38 CPU:00 THREAD :THCREATE pid:2 tid:1
t:0x4f82402e CPU:00 THREAD :THREPLY pid:2 tid:1
t:0x4f82447d CPU:00 PROCESS :PROCCREATE_NAME
 ppid:2
 pid:4099
 name:proc/boot/pci-bios
t:0x4f824957 CPU:00 THREAD :THCREATE pid:4099 tid:1
t:0x4f824a4d CPU:00 THREAD :THRECEIVE pid:4099 tid:1
t:0x4f824ff8 CPU:00 PROCESS :PROCCREATE_NAME
 ppid:2
 pid:4100
 name:proc/boot/slogger

Copyright © 2014, QNX Software Systems Limited 63

Using traceprinter and interpreting the output

You can suppress this initial information by passing the _NTO_TRACE_STARTNOSTATE

command to TraceEvent(), but you'll likely need the information (including process

IDs and thread IDs) to make sense out of the actual trace data.

The sample above shows the creation and naming of the instrumented kernel

procnto-smp-instr (process ID 1) and its threads (thread ID 1 is the idle thread),

followed by tinit (process ID 2), pci-bios, and slogger. Some of these are the

processes that were launched when you booted your system.

This continues for a while, culminating in the creation of the tracelogger process

and our own program, all_classes (process ID 1511472):

t:0x4f852aa8 CPU:00 PROCESS :PROCCREATE_NAME
 ppid:426015
 pid:1507375
 name:usr/sbin/tracelogger
t:0x4f853360 CPU:00 THREAD :THCREATE pid:1507375 tid:1
t:0x4f853579 CPU:00 THREAD :THRECEIVE pid:1507375 tid:1
t:0x4f85392a CPU:00 THREAD :THCREATE pid:1507375 tid:2
t:0x4f853a19 CPU:00 THREAD :THSIGWAITINFO pid:1507375 tid:2
t:0x4f853d96 CPU:00 PROCESS :PROCCREATE_NAME
 ppid:426022
 pid:1511472
 name:./all_classes
t:0x4f854048 CPU:00 THREAD :THCREATE pid:1511472 tid:1
t:0x4f854140 CPU:00 THREAD :THRUNNING pid:1511472 tid:1

Next is the exit from our program's call to TraceEvent():

t:0x4f854910 CPU:00 KER_EXIT:TRACE_EVENT/01 ret_val:0x00000000 empty:0x00000000

Why doesn't the trace doesn't include the entry to TraceEvent()? Well, tracelogger

didn't log anything until our program told it to — by calling TraceEvent()!

So far, so good, but now things get more complicated:

t:0x4f856aac CPU:00 KER_CALL:THREAD_DESTROY/47 tid:-1 status_p:0
t:0x4f857dca CPU:00 KER_EXIT:THREAD_DESTROY/47 ret_val:0x00000030 empty:0x00000000
t:0x4f8588d3 CPU:00 KER_CALL:THREAD_DESTROYALL/48 empty:0x00000000 empty:0x00000000
t:0x4f858ed7 CPU:00 THREAD :THDESTROY pid:1511472 tid:1
t:0x4f8598b9 CPU:00 THREAD :THDEAD pid:1511472 tid:1
t:0x4f859c4c CPU:00 THREAD :THRUNNING pid:1 tid:1

You can see that a thread is being destroyed, but which one? The tid of -1 refers to

the current thread, but which process does it belong to? As mentioned earlier, most

of the events don't indicate what caused the event to occur; you have to infer from a

previous thread-running event. In this case, it's our own program (process ID 1511472)

that's ending; it starts the tracing, and then exits. Thread 1 of procnto-smp-instr

(the idle thread) runs.

The trace continues like this:

t:0x4f85c6e3 CPU:00 COMM :SND_PULSE_EXE scoid:0x40000002 pid:1
t:0x4f85cecd CPU:00 THREAD :THRUNNING pid:1 tid:12
t:0x4f85d5ad CPU:00 THREAD :THREADY pid:1 tid:1
t:0x4f85e5b3 CPU:00 COMM :REC_PULSE scoid:0x40000002 pid:1
t:0x4f860ee2 CPU:00 KER_CALL:THREAD_CREATE/46 func_p:f0023170 arg_p:eff6e000
t:0x4f8624c7 CPU:00 THREAD :THCREATE pid:1511472 tid:1
t:0x4f8625ff CPU:00 THREAD :THWAITTHREAD pid:1 tid:12
t:0x4f8627b4 CPU:00 THREAD :THRUNNING pid:1511472 tid:1
t:0x4f8636fd CPU:00 THREAD :THREADY pid:1 tid:12
t:0x4f865c34 CPU:00 KER_CALL:CONNECT_SERVER_INFO/41 pid:0 coid:0x00000000
t:0x4f866836 CPU:00 KER_EXIT:CONNECT_SERVER_INFO/41 coid:0x00000000 info->nd:0
t:0x4f86735e CPU:00 KER_CALL:TIMER_TIMEOUT/75 timeout_flags:0x00000050 ntime(sec):30
t:0x4f868445 CPU:00 KER_EXIT:TIMER_TIMEOUT/75 prev_timeout_flags:0x00000000 otime(sec):0
t:0x4f8697d3 CPU:00 INT_ENTR:0x00000000 (0) IP:0xf008433e
t:0x4f86a276 CPU:00 INT_HANDLER_ENTR:0x00000000 (0) PID:126997 IP:0x080b7334 AREA:0x0812a060
t:0x4f86afa7 CPU:00 INT_HANDLER_EXIT:0x00000000 (0) SIGEVENT:NONE
t:0x4f86b304 CPU:00 INT_HANDLER_ENTR:0x00000000 (0) PID:1 IP:0xf0056570 AREA:0x00000000
t:0x4f86ca12 CPU:00 INT_HANDLER_EXIT:0x00000000 (0) SIGEVENT:NONE
t:0x4f86cff6 CPU:00 INT_EXIT:0x00000000 (0) inkernel:0x00000f01
t:0x4f86e276 CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000000 msg:"" (0x00040116)
t:0x4f86e756 CPU:00 COMM :SND_MESSAGE rcvid:0x0000004f pid:159762
t:0x4f86f84a CPU:00 THREAD :THREPLY pid:1511472 tid:1
t:0x4f8705dd CPU:00 THREAD :THREADY pid:159762 tid:1
t:0x4f8707d4 CPU:00 THREAD :THRUNNING pid:159762 tid:1

64 Copyright © 2014, QNX Software Systems Limited

Interpreting Trace Data

t:0x4f870bff CPU:00 COMM :REC_MESSAGE rcvid:0x0000004f pid:159762
t:0x4f878b6c CPU:00 KER_CALL:MSG_REPLYV/15 rcvid:0x0000004f status:0x00000000
t:0x4f878f4b CPU:00 COMM :REPLY_MESSAGE tid:1 pid:1511472
t:0x4f8798d2 CPU:00 THREAD :THREADY pid:1511472 tid:1

The SND_PULSE_EXE event indicates that a SIGEV_PULSE was sent to the server

connection ID 0x40000002 of procnto-smp-instr, but what is it, and who sent

it? Thread 12 of the kernel receives it, and then surprisingly creates a new thread 1

in our process (ID 1511472), and starts chatting with it. What we're seeing here is

the teardown of our process. It delivers a death pulse to the kernel, and then one of

the kernel's threads receives the pulse and creates a thread in the process to clean

up.

In the midst of this teardown, an interrupt occurs, its handler runs, and a message is

sent to the process with ID 159762. By looking at the initial system information, we

can determine that process ID 159762 is devc-pty.

Farther down in the trace is the actual death of our all_classes process:

t:0x4f8faa68 CPU:00 THREAD :THRUNNING pid:1 tid:20
t:0x4f8fb09f CPU:00 COMM :REC_PULSE scoid:0x40000002 pid:1
t:0x4f8ff1a5 CPU:00 PROCESS :PROCDESTROY ppid:426022 pid:1511472

As you can tell from a very short look at this trace, wading through a trace can be

time-consuming, but can give you a great understanding of what exactly is happening

in your system.

You can simplify your task by terminating any processes that you don't want to include

in the trace, or by filtering the trace data.

Copyright © 2014, QNX Software Systems Limited 65

Using traceprinter and interpreting the output

Building your own parser

If you want to create your own parser, consider the structure of traceprinter as a

starting point. This utility consists of a long list of callback definitions, followed by a

fairly simple parsing procedure. Each of the callback definitions is for printing.

The following sections give a brief introduction to the building blocks to the parser,

and some of the issues you'll need to handle.

The traceparser library

The traceparser library provides a front end to facilitate the handling and parsing

of events received from the instrumented kernel and the data-capture utility.

The library serves as a thin middle layer to:

• assemble multiple buffer slots into a single event

• perform data parsing to execute user-defined callbacks triggered by certain events

You typically use the traceparser functions as follows:

1. Initialize the traceparser library by calling traceparser_init(). You can also use this

function to get the state of your parser.

2. Set the traceparser debug mode and specify a FILE stream for the debugging

output by calling traceparser_debug().

3. Set up callbacks for processing the trace events that you're interested in:

traceparser_cs()

Attach a callback to an event

traceparser_cs_range()

Attach a callback to a range of events

When you set up a callback with either of these functions, you can provide a pointer

to arbitrary user data to be passed to the callback.

4. Start parsing your trace data by calling traceparser()

5. Destroy your parser by calling traceparser_destroy()

You can get information about your parser at any time by calling traceparser_get_info().

For more information about these functions, see their entries in the QNX Neutrino C

Library Reference.

66 Copyright © 2014, QNX Software Systems Limited

Interpreting Trace Data

Simple and combine events

A simple event is an event that can be described in a single event buffer slot; a combine

event is an event that is larger and can be fully described only in multiple event buffer

slots. Both simple and combine events consist of only one kernel event.

Each event buffer slot is an opaque traceevent_t structure.

The traceevent_t structure

The traceevent_t structure is opaque—although some details are provided,

the structure shouldn't be accessed without the libtraceparser API.

The traceevent_t structure is only 16 bytes long, and only half of that describes

the event. This small size reduces instrumentation overhead and improves granularity.

Where the information required to represent the event won't fit into a single

traceevent_t structure, it spans as many traceevent_t structures as required,

resulting in a combine event. A combine event isn't actually several events combined,

but rather a single, long event requiring a combination of traceevent_t elements

to represent it.

In order to distinguish regular events from combine events, the traceevent_t

structure includes a 2-bit flag that indicates whether the event is a single event or

whether it's the first, middle, or last traceevent_t structure of the event. The flag

is also used as a rudimentary integrity check. The timestamp element of the combine

event is identical in each buffer slot; no other event will have the same timestamp.

Adding this “thin” protocol doesn't burden the instrumented kernel and keeps the

traceevent_t structure small. The trade-off is that it may take many traceevent_t

structures to represent a single kernel event.

Event interlacing

Although events are timestamped immediately, they may not be written to the buffer

in one single operation (atomically). When multiple buffer slot events (“combine

events”) are being written to the buffer, the process is frequently interrupted in order

to allow other threads and processes to run. Events triggered by higher-priority threads

are often written to the buffer first. Thus, events may be interlaced. Although events

may not be contiguous, they are not scrambled (unless there's a buffer overrun.) The

sequential order of the combine event is always correct, even if it's interrupted with

a different event.

In order to maintain speed during runtime, the instrumented kernel writes events

unsorted as quickly as possible; reassembling the combine events must be done in

post-processing. The libtraceparser API transparently reassembles the events.

Copyright © 2014, QNX Software Systems Limited 67

Building your own parser

Timestamps

The timestamp is the 32 Least Significant Bits (LSB) part of the 64-bit clock. Whenever

the 32-bit portion of the clock rolls over, a _NTO_TRACE_CONTROLTIME control event

is issued. Although adjacent events will never have the same exact timestamp, there

may be some timestamp duplication due to the clock's rolling over.

The rollover control event includes the 32 Most Significant Bits (MSB), so you can

reassemble the full clock time, if required. The timestamp includes only the LSB in

order to reduce the amount of data being generated. (A 1-GHz clock rolls over every

4.29 seconds—an eternity compared to the number of events generated.)

Although the majority of events are stored chronologically, you shouldn't write

code that depends on events being retrieved chronologically. Some multiple

buffer slot events (combine events) may be interlaced with others with leading

timestamps. In the case of buffer overruns, the timestamps will definitely be

scrambled, with entire blocks of events out of chronological order. Spurious

gaps, while theoretically possible, are very unlikely.

68 Copyright © 2014, QNX Software Systems Limited

Interpreting Trace Data

Chapter 7
Tutorials

This chapter leads you through some tutorials to help you learn how to use TraceEvent()

to control event tracing.

These tutorials all follow the same general procedure:

1. Compile the specified C program into a file of the same name, without the .c

extension.

2. Run the specified tracelogger command. Because we're running tracelogger

in daemon mode, it doesn't start logging events until our program tells it to. This

means that you don't have to rush to start your C program; the tracing waits for

you.

The default number of buffers is 32, which produces a rather large file, so we'll

use the -n option to limit the number of buffers to a reasonable number. Feel free

to use the default, but expect a large file.

3. In a separate terminal window, run the compiled C program. Some examples use

options.

4. Watch the first terminal window; a few seconds after you start your C program,

tracelogger will finish running.

5. If you run the program, it generates its own sample result file. The “tracebuffer”

files are binary files that can be interpreted only with the libtraceparser library,

which the traceprinter utility uses.

If you don't want to run the program, take a look at our traceprinter output.

(Note that different versions and systems will create slightly different results.)

You may include these samples in your code as long as you comply with the

license agreement.

Copyright © 2014, QNX Software Systems Limited 69

The instrex.h header file

To reduce repetition and keep the programs simple, we've put some functionality into

a header file, instrex.h:

/*
 * $QNXLicenseC:
 * Copyright 2007, QNX Software Systems. All Rights Reserved.
 *
 * You must obtain a written license from and pay applicable license fees to QNX
 * Software Systems before you may reproduce, modify or distribute this software,
 * or any work that includes all or part of this software. Free development
 * licenses are available for evaluation and non-commercial purposes. For more
 * information visit http://licensing.qnx.com or email licensing@qnx.com.
 *
 * This file may contain contributions from others. Please review this entire
 * file for other proprietary rights or license notices, as well as the QNX
 * Development Suite License Guide at http://licensing.qnx.com/license-guide/
 * for other information.
 * $
 */

/*
 * instrex.h instrumentation examples - public definitions
 *
 */

#ifndef __INSTREX_H_INCLUDED

#include <errno.h>
#include <stdio.h>
#include <string.h>

/*
 * Supporting macro that intercepts and prints a possible
 * error state during calling TraceEvent(...)
 *
 * Call TRACE_EVENT(TraceEvent(...)) <=> TraceEvent(...)
 *
 */
#define TRACE_EVENT(prog_name, trace_event) \
if((int)((trace_event))==(-1)) \
{ \
 (void) fprintf \
 (\
 stderr, \
 "%s: line:%d function call TraceEvent() failed, errno(%d): %s\n", \
 prog_name, \
 __LINE__, \
 errno, \
 strerror(errno) \
); \
 \
 return (-1); \
}

/*
 * Prints error message
 */
#define TRACE_ERROR_MSG(prog_name, msg) \
 (void) fprintf(stderr,"%s: %s\n", prog_name, msg)

#define __INSTREX_H_INCLUDED
#endif

You'll have to save instrex.h in the same directory as the C code in order to compile

the programs.

70 Copyright © 2014, QNX Software Systems Limited

Tutorials

Gathering all events from all classes

In our first example, we'll set up daemon mode to gather all events from all classes.

Here's the source, all_classes.c:

/*
 * $QNXLicenseC:
 * Copyright 2007, QNX Software Systems. All Rights Reserved.
 *
 * You must obtain a written license from and pay applicable license fees to QNX
 * Software Systems before you may reproduce, modify or distribute this software,
 * or any work that includes all or part of this software. Free development
 * licenses are available for evaluation and non-commercial purposes. For more
 * information visit http://licensing.qnx.com or email licensing@qnx.com.
 *
 * This file may contain contributions from others. Please review this entire
 * file for other proprietary rights or license notices, as well as the QNX
 * Development Suite License Guide at http://licensing.qnx.com/license-guide/
 * for other information.
 * $
 */

#ifdef __USAGE
%C - instrumentation example

%C - example that illustrates the very basic use of
 the TraceEvent() kernel call and the instrumentation
 module with tracelogger in a daemon mode.

 All classes and their events are included and monitored.

 In order to use this example, start the tracelogger
 in the daemon mode as:

 tracelogger -n iter_number -d1

 with iter_number = your choice of 1 through 10

 After you start the example, the tracelogger (daemon)
 will log the specified number of iterations and then
 terminate. There are no messages printed upon successful
 completion of the example. You can view the intercepted
 events with the traceprinter utility.

 See accompanied documentation and comments within
 the sample source code for more explanations.
#endif

#include <sys/trace.h>

#include "instrex.h"

int main(int argc, char **argv)
{
 /*
 * Just in case, turn off all filters, since we
 * don't know their present state - go to the
 * known state of the filters.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_DELALLCLASSES));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_KERCALL));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_KERCALL));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_THREAD));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_THREAD));

 /*
 * Set fast emitting mode for all classes and
 * their events.
 * Wide emitting mode could have been
 * set instead, using:
 *
 * TraceEvent(_NTO_TRACE_SETALLCLASSESWIDE)
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_SETALLCLASSESFAST));

 /*
 * Intercept all event classes
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_ADDALLCLASSES));

 /*
 * Start tracing process
 *
 * During the tracing process, the tracelogger (which
 * is being executed in a daemon mode) will log all events.
 * You can specify the number of iterations (i.e. the
 * number of kernel buffers logged) when you start tracelogger.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_START));

 /*
 * The main() of this execution flow returns.

Copyright © 2014, QNX Software Systems Limited 71

Gathering all events from all classes

 * However, the main() function of the tracelogger
 * will return after registering the specified number
 * of events.
 */
 return (0);
}

Compile it, and then run tracelogger in one window:

tracelogger -d1 -n 3 -f all_classes.kev

and run the compiled program in another:

./all_classes

Despite how quickly the program ran, the amount of data it generated is rather

overwhelming.

The trace data is in all_classes.kev; to examine it, type:

traceprinter -f all_classes.kev | less

The output from traceprinter will look something like this:

TRACEPRINTER version 1.02
TRACEPARSER LIBRARY version 1.02
 -- HEADER FILE INFORMATION --
 TRACE_FILE_NAME:: all_classes.kev
 TRACE_DATE:: Wed Jun 24 10:52:58 2009
 TRACE_VER_MAJOR:: 1
 TRACE_VER_MINOR:: 01
 TRACE_LITTLE_ENDIAN:: TRUE
 TRACE_ENCODING:: 16 byte events
 TRACE_BOOT_DATE:: Tue Jun 23 11:47:46 2009
 TRACE_CYCLES_PER_SEC:: 736629000
 TRACE_CPU_NUM:: 1
 TRACE_SYSNAME:: QNX
 TRACE_NODENAME:: localhost
 TRACE_SYS_RELEASE:: 6.4.1
 TRACE_SYS_VERSION:: 2009/05/20-17:35:56EDT
 TRACE_MACHINE:: x86pc
 TRACE_SYSPAGE_LEN:: 2264
TRACE_TRACELOGGER_ARGS:: tracelogger -d1 -n 3 -f all_classes.kev
 -- KERNEL EVENTS --
t:0x4f81e320 CPU:00 CONTROL: BUFFER sequence = 33, num_events = 714
t:0x4f81e320 CPU:00 CONTROL :TIME msb:0x000037b0 lsb(offset):0x4f81e014
t:0x4f82017a CPU:00 PROCESS :PROCCREATE_NAME
 ppid:0
 pid:1
 name:proc/boot/procnto-smp-instr

...

t:0x4f854048 CPU:00 THREAD :THCREATE pid:1511472 tid:1
t:0x4f854140 CPU:00 THREAD :THRUNNING pid:1511472 tid:1
t:0x4f854910 CPU:00 KER_EXIT:TRACE_EVENT/01 ret_val:0x00000000 empty:0x00000000
t:0x4f856aac CPU:00 KER_CALL:THREAD_DESTROY/47 tid:-1 status_p:0
t:0x4f857dca CPU:00 KER_EXIT:THREAD_DESTROY/47 ret_val:0x00000030 empty:0x00000000
t:0x4f8588d3 CPU:00 KER_CALL:THREAD_DESTROYALL/48 empty:0x00000000 empty:0x00000000
t:0x4f858ed7 CPU:00 THREAD :THDESTROY pid:1511472 tid:1
t:0x4f8598b9 CPU:00 THREAD :THDEAD pid:1511472 tid:1
t:0x4f859c4c CPU:00 THREAD :THRUNNING pid:1 tid:1
t:0x4f85c6e3 CPU:00 COMM :SND_PULSE_EXE scoid:0x40000002 pid:1
t:0x4f85cecd CPU:00 THREAD :THRUNNING pid:1 tid:12
t:0x4f85d5ad CPU:00 THREAD :THREADY pid:1 tid:1
t:0x4f85e5b3 CPU:00 COMM :REC_PULSE scoid:0x40000002 pid:1
t:0x4f860ee2 CPU:00 KER_CALL:THREAD_CREATE/46 func_p:f0023170 arg_p:eff6e000
t:0x4f8624c7 CPU:00 THREAD :THCREATE pid:1511472 tid:1
t:0x4f8625ff CPU:00 THREAD :THWAITTHREAD pid:1 tid:12
t:0x4f8627b4 CPU:00 THREAD :THRUNNING pid:1511472 tid:1
t:0x4f8636fd CPU:00 THREAD :THREADY pid:1 tid:12
t:0x4f865c34 CPU:00 KER_CALL:CONNECT_SERVER_INFO/41 pid:0 coid:0x00000000
t:0x4f866836 CPU:00 KER_EXIT:CONNECT_SERVER_INFO/41 coid:0x00000000 info->nd:0
t:0x4f86735e CPU:00 KER_CALL:TIMER_TIMEOUT/75 timeout_flags:0x00000050 ntime(sec):30
t:0x4f868445 CPU:00 KER_EXIT:TIMER_TIMEOUT/75 prev_timeout_flags:0x00000000 otime(sec):0
t:0x4f8697d3 CPU:00 INT_ENTR:0x00000000 (0) IP:0xf008433e
t:0x4f86a276 CPU:00 INT_HANDLER_ENTR:0x00000000 (0) PID:126997 IP:0x080b7334 AREA:0x0812a060
t:0x4f86afa7 CPU:00 INT_HANDLER_EXIT:0x00000000 (0) SIGEVENT:NONE
t:0x4f86b304 CPU:00 INT_HANDLER_ENTR:0x00000000 (0) PID:1 IP:0xf0056570 AREA:0x00000000
t:0x4f86ca12 CPU:00 INT_HANDLER_EXIT:0x00000000 (0) SIGEVENT:NONE
t:0x4f86cff6 CPU:00 INT_EXIT:0x00000000 (0) inkernel:0x00000f01
t:0x4f86e276 CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000000 msg:"" (0x00040116)
t:0x4f86e756 CPU:00 COMM :SND_MESSAGE rcvid:0x0000004f pid:159762
t:0x4f86f84a CPU:00 THREAD :THREPLY pid:1511472 tid:1
t:0x4f8705dd CPU:00 THREAD :THREADY pid:159762 tid:1
t:0x4f8707d4 CPU:00 THREAD :THRUNNING pid:159762 tid:1
t:0x4f870bff CPU:00 COMM :REC_MESSAGE rcvid:0x0000004f pid:159762
t:0x4f878b6c CPU:00 KER_CALL:MSG_REPLYV/15 rcvid:0x0000004f status:0x00000000
t:0x4f878f4b CPU:00 COMM :REPLY_MESSAGE tid:1 pid:1511472
t:0x4f8798d2 CPU:00 THREAD :THREADY pid:1511472 tid:1
t:0x4f879db8 CPU:00 KER_EXIT:MSG_REPLYV/15 ret_val:0 empty:0x00000000
t:0x4f87a84f CPU:00 KER_CALL:MSG_RECEIVEV/14 chid:0x00000001 rparts:1

...

72 Copyright © 2014, QNX Software Systems Limited

Tutorials

This example demonstrates the capability of the trace module to capture huge amounts

of data about the events. The first part of the trace data is the initial state information

about all the running processes; to suppress it, start the tracing with

_NTO_TRACE_STARTNOSTATE instead of _NTO_TRACE_START.

While it's good to know how to gather everything, we'll clearly need to be able to refine

our search.

Copyright © 2014, QNX Software Systems Limited 73

Gathering all events from all classes

Gathering all events from one class

Now we'll gather all events from only one class, _NTO_TRACE_THREAD. This class is

arbitrarily chosen to demonstrate filtering by classes; there's nothing particularly

special about this class versus any other. For a full list of the possible classes, see

“Classes and events (p. 24)” in the Events and the Kernel chapter in this guide.

Here's the source, one_class.c:

/*
 * $QNXLicenseC:
 * Copyright 2007, QNX Software Systems. All Rights Reserved.
 *
 * You must obtain a written license from and pay applicable license fees to QNX
 * Software Systems before you may reproduce, modify or distribute this software,
 * or any work that includes all or part of this software. Free development
 * licenses are available for evaluation and non-commercial purposes. For more
 * information visit http://licensing.qnx.com or email licensing@qnx.com.
 *
 * This file may contain contributions from others. Please review this entire
 * file for other proprietary rights or license notices, as well as the QNX
 * Development Suite License Guide at http://licensing.qnx.com/license-guide/
 * for other information.
 * $
 */

#ifdef __USAGE
%C - instrumentation example

%C - example that illustrates the very basic use of
 the TraceEvent() kernel call and the instrumentation
 module with tracelogger in a daemon mode.

 Only events from the thread class (_NTO_TRACE_THREAD)
 are monitored (intercepted).

 In order to use this example, start the tracelogger
 in the daemon mode as:

 tracelogger -n iter_number -d1

 with iter_number = your choice of 1 through 10

 After you start the example, the tracelogger (daemon)
 will log the specified number of iterations and then
 terminate. There are no messages printed upon successful
 completion of the example. You can view the intercepted
 events with the traceprinter utility.

 See accompanied documentation and comments within
 the sample source code for more explanations.
#endif

#include <sys/trace.h>

#include "instrex.h"

int main(int argc, char **argv)
{
 /*
 * Just in case, turn off all filters, since we
 * don't know their present state - go to the
 * known state of the filters.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_DELALLCLASSES));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_KERCALL));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_KERCALL));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_THREAD));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_THREAD));

 /*
 * Intercept only thread events
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_ADDCLASS, _NTO_TRACE_THREAD));

 /*
 * Start tracing process
 *
 * During the tracing process, the tracelogger (which
 * is being executed in daemon mode) will log all events.
 * You can specify the number of iterations (i.e. the
 * number of kernel buffers logged) when you start tracelogger.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_START));

 /*
 * The main() of this execution flow returns.

74 Copyright © 2014, QNX Software Systems Limited

Tutorials

 * However, the main() function of the tracelogger
 * will return after registering the specified number
 * of events.
 */
 return (0);
}

Compile it, and then run tracelogger in one window:

tracelogger -d1 -n 3 -f one_class.kev

and run the compiled program in another:

./one_class

The trace data is in one_class.kev; to examine it, type:

traceprinter -f one_class.kev | less

The output from traceprinter will look something like this:

TRACEPRINTER version 1.02
TRACEPARSER LIBRARY version 1.02
 -- HEADER FILE INFORMATION --
 TRACE_FILE_NAME:: one_class.kev
 TRACE_DATE:: Wed Jun 24 10:55:05 2009
 TRACE_VER_MAJOR:: 1
 TRACE_VER_MINOR:: 01
 TRACE_LITTLE_ENDIAN:: TRUE
 TRACE_ENCODING:: 16 byte events
 TRACE_BOOT_DATE:: Tue Jun 23 11:47:46 2009
 TRACE_CYCLES_PER_SEC:: 736629000
 TRACE_CPU_NUM:: 1
 TRACE_SYSNAME:: QNX
 TRACE_NODENAME:: localhost
 TRACE_SYS_RELEASE:: 6.4.1
 TRACE_SYS_VERSION:: 2009/05/20-17:35:56EDT
 TRACE_MACHINE:: x86pc
 TRACE_SYSPAGE_LEN:: 2264
TRACE_TRACELOGGER_ARGS:: tracelogger -d1 -n 3 -f one_class.kev
 -- KERNEL EVENTS --
t:0x002c4d55 CPU:00 CONTROL: BUFFER sequence = 37, num_events = 714
t:0x002c4d55 CPU:00 THREAD :THCREATE pid:1 tid:1
t:0x002c5531 CPU:00 THREAD :THREADY pid:1 tid:1 priority:0 policy:1
t:0x002c5bbe CPU:00 THREAD :THCREATE pid:1 tid:2
t:0x002c5cd2 CPU:00 THREAD :THRECEIVE pid:1 tid:2 priority:255 policy:2
t:0x002c6185 CPU:00 THREAD :THCREATE pid:1 tid:3
t:0x002c6272 CPU:00 THREAD :THRECEIVE pid:1 tid:3 priority:255 policy:2
t:0x002c64eb CPU:00 THREAD :THCREATE pid:1 tid:4
t:0x002c65d8 CPU:00 THREAD :THRECEIVE pid:1 tid:4 priority:10 policy:2
t:0x002c67fc CPU:00 THREAD :THCREATE pid:1 tid:5
t:0x002c68ea CPU:00 THREAD :THRECEIVE pid:1 tid:5 priority:255 policy:2
t:0x002c6bae CPU:00 THREAD :THCREATE pid:1 tid:7
t:0x002c6c9b CPU:00 THREAD :THRECEIVE pid:1 tid:7 priority:10 policy:2
t:0x002c6f03 CPU:00 THREAD :THCREATE pid:1 tid:8
t:0x002c6ff0 CPU:00 THREAD :THRECEIVE pid:1 tid:8 priority:10 policy:2
t:0x002c72ec CPU:00 THREAD :THCREATE pid:1 tid:10
t:0x002c73d9 CPU:00 THREAD :THRECEIVE pid:1 tid:10 priority:10 policy:2
t:0x002c7665 CPU:00 THREAD :THCREATE pid:1 tid:11
t:0x002c7752 CPU:00 THREAD :THRECEIVE pid:1 tid:11 priority:10 policy:2
t:0x002c7a9d CPU:00 THREAD :THCREATE pid:1 tid:12
t:0x002c7b8a CPU:00 THREAD :THRECEIVE pid:1 tid:12 priority:10 policy:2
t:0x002c7e44 CPU:00 THREAD :THCREATE pid:1 tid:15
t:0x002c7f31 CPU:00 THREAD :THRECEIVE pid:1 tid:15 priority:10 policy:2
t:0x002c81a2 CPU:00 THREAD :THCREATE pid:1 tid:20
t:0x002c828f CPU:00 THREAD :THRECEIVE pid:1 tid:20 priority:10 policy:2
t:0x002c88e3 CPU:00 THREAD :THCREATE pid:2 tid:1
t:0x002c89d3 CPU:00 THREAD :THREPLY pid:2 tid:1 priority:10 policy:3
t:0x002c8fad CPU:00 THREAD :THCREATE pid:4099 tid:1
t:0x002c909a CPU:00 THREAD :THRECEIVE pid:4099 tid:1 priority:10 policy:3
t:0x002c95b7 CPU:00 THREAD :THCREATE pid:4100 tid:1
t:0x002c96a4 CPU:00 THREAD :THRECEIVE pid:4100 tid:1 priority:10 policy:3
t:0x002c9b6e CPU:00 THREAD :THCREATE pid:4101 tid:1
t:0x002c9ccd CPU:00 THREAD :THSIGWAITINFO pid:4101 tid:1 priority:10 policy:3

...

Notice that we've significantly reduced the amount of output.

Copyright © 2014, QNX Software Systems Limited 75

Gathering all events from one class

Gathering five events from four classes

Now that we can gather specific classes of events, we'll refine our search even further

and gather only five specific types of events from four classes.

Here's the source, five_events.c:

/*
 * $QNXLicenseC:
 * Copyright 2007, QNX Software Systems. All Rights Reserved.
 *
 * You must obtain a written license from and pay applicable license fees to QNX
 * Software Systems before you may reproduce, modify or distribute this software,
 * or any work that includes all or part of this software. Free development
 * licenses are available for evaluation and non-commercial purposes. For more
 * information visit http://licensing.qnx.com or email licensing@qnx.com.
 *
 * This file may contain contributions from others. Please review this entire
 * file for other proprietary rights or license notices, as well as the QNX
 * Development Suite License Guide at http://licensing.qnx.com/license-guide/
 * for other information.
 * $
 */

#ifdef __USAGE
%C - instrumentation example

%C - example that illustrates the very basic use of
 the TraceEvent() kernel call and the instrumentation
 module with tracelogger in a daemon mode.

 Only five events from four classes are included and
 monitored. Class _NTO_TRACE_KERCALL is intercepted
 in a wide emitting mode.

 In order to use this example, start the tracelogger
 in the daemon mode as:

 tracelogger -n iter_number -d1

 with iter_number = your choice of 1 through 10

 After you start the example, the tracelogger (daemon)
 will log the specified number of iterations and then
 terminate. There are no messages printed upon successful
 completion of the example. You can view the intercepted
 events with the traceprinter utility.

 See accompanied documentation and comments within
 the example source code for more explanations.
#endif

#include <sys/trace.h>
#include <sys/kercalls.h>

#include "instrex.h"

int main(int argc, char **argv)
{
 /*
 * Just in case, turn off all filters, since we
 * don't know their present state - go to the
 * known state of the filters.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_DELALLCLASSES));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_KERCALL));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_KERCALL));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_THREAD));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_THREAD));

 /*
 * Set wide emitting mode
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_SETALLCLASSESWIDE));

 /*
 * Intercept two events from class _NTO_TRACE_THREAD
 */
 TRACE_EVENT
 (
 argv[0],
 TraceEvent(_NTO_TRACE_ADDEVENT, _NTO_TRACE_THREAD, _NTO_TRACE_THRUNNING)
);
 TRACE_EVENT
 (
 argv[0],
 TraceEvent(_NTO_TRACE_ADDEVENT, _NTO_TRACE_THREAD, _NTO_TRACE_THCREATE)
);

 /*

76 Copyright © 2014, QNX Software Systems Limited

Tutorials

 * Intercept one event from class _NTO_TRACE_PROCESS
 */
 TRACE_EVENT
 (
 argv[0],
 TraceEvent(_NTO_TRACE_ADDEVENT, _NTO_TRACE_PROCESS, _NTO_TRACE_PROCCREATE_NAME)
);

 /*
 * Intercept one event from class _NTO_TRACE_INTENTER
 */
 TRACE_EVENT
 (
 argv[0],
 TraceEvent(_NTO_TRACE_ADDEVENT, _NTO_TRACE_INTENTER, _NTO_TRACE_INTFIRST)
);

 /*
 * Intercept one event from class _NTO_TRACE_KERCALLEXIT,
 * event __KER_MSG_READV.
 */
 TRACE_EVENT
 (
 argv[0],
 TraceEvent(_NTO_TRACE_ADDEVENT, _NTO_TRACE_KERCALLEXIT, __KER_MSG_READV)
);

 /*
 * Start tracing process
 *
 * During the tracing process, the tracelogger (which
 * is being executed in a daemon mode) will log all events.
 * You can specify the number of iterations (i.e. the
 * number of kernel buffers logged) when you start tracelogger.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_START));

 /*
 * The main() of this execution flow returns.
 * However, the main() function of the tracelogger
 * will return after registering the specified number
 * of events.
 */
 return (0);
}

Compile it, and then run tracelogger in one window:

tracelogger -d1 -n 3 -f five_events.kev

and run the compiled program in another:

./five_events

The trace data is in five_events.kev; to examine it, type:

traceprinter -f five_events.kev | less

The output from traceprinter will look something like this:

TRACEPRINTER version 1.02
TRACEPARSER LIBRARY version 1.02
 -- HEADER FILE INFORMATION --
 TRACE_FILE_NAME:: five_events.kev
 TRACE_DATE:: Wed Jun 24 10:56:04 2009
 TRACE_VER_MAJOR:: 1
 TRACE_VER_MINOR:: 01
 TRACE_LITTLE_ENDIAN:: TRUE
 TRACE_ENCODING:: 16 byte events
 TRACE_BOOT_DATE:: Tue Jun 23 11:47:46 2009
 TRACE_CYCLES_PER_SEC:: 736629000
 TRACE_CPU_NUM:: 1
 TRACE_SYSNAME:: QNX
 TRACE_NODENAME:: localhost
 TRACE_SYS_RELEASE:: 6.4.1
 TRACE_SYS_VERSION:: 2009/05/20-17:35:56EDT
 TRACE_MACHINE:: x86pc
 TRACE_SYSPAGE_LEN:: 2264
TRACE_TRACELOGGER_ARGS:: tracelogger -d1 -n 3 -f five_events.kev
 -- KERNEL EVENTS --
t:0x1a14da34 CPU:00 CONTROL: BUFFER sequence = 41, num_events = 714
t:0x1a14da34 CPU:00 PROCESS :PROCCREATE_NAME
 ppid:0
 pid:1
 name:proc/boot/procnto-smp-instr
t:0x1a14ea7d CPU:00 THREAD :THCREATE pid:1 tid:1
t:0x1a14ed04 CPU:00 THREAD :THCREATE pid:1 tid:2

...

t:0x1a1cc345 CPU:00 THREAD :THRUNNING pid:1 tid:15 priority:10 policy:2
t:0x1a1d01b9 CPU:00 THREAD :THRUNNING pid:8200 tid:5 priority:10 policy:3
t:0x1a1d6424 CPU:00 INT_ENTR:0x00000000 (0) IP:0xb8229890
t:0x1a1ed261 CPU:00 THREAD :THRUNNING pid:1 tid:4 priority:10 policy:2
t:0x1a1f0016 CPU:00 THREAD :THRUNNING pid:426022 tid:1 priority:10 policy:2

Copyright © 2014, QNX Software Systems Limited 77

Gathering five events from four classes

...

t:0x2e77ebc5 CPU:00 THREAD :THRUNNING pid:1613871 tid:1 priority:10 policy:2
t:0x2e78598d CPU:00 THREAD :THRUNNING pid:8200 tid:5 priority:10 policy:3
t:0x2e7ac4fc CPU:00 INT_ENTR:0x00000000 (0) IP:0xb8229f61
t:0x2e7cec3b CPU:00 KER_EXIT:MSG_READV/16
 rbytes:22540
 rmsg:"" (0x1a15080f 0x6e696273 0x6e69742f)
t:0x2e7da478 CPU:00 THREAD :THRUNNING pid:1003562 tid:1 priority:10 policy:2
t:0x2e7dc288 CPU:00 THREAD :THRUNNING pid:1 tid:15 priority:10 policy:2

...

We've now begun to selectively pick and choose events—the massive amount of data

is now much more manageable.

78 Copyright © 2014, QNX Software Systems Limited

Tutorials

Gathering kernel calls

The kernel calls are arguably the most important class of calls. This example shows

not only filtering, but also the arguments intercepted by the instrumented kernel. In

its base form, this program is similar to the one_class.c example that gathered

only one class.

Here's the source, ker_calls.c:

/*
 * $QNXLicenseC:
 * Copyright 2007, QNX Software Systems. All Rights Reserved.
 *
 * You must obtain a written license from and pay applicable license fees to QNX
 * Software Systems before you may reproduce, modify or distribute this software,
 * or any work that includes all or part of this software. Free development
 * licenses are available for evaluation and non-commercial purposes. For more
 * information visit http://licensing.qnx.com or email licensing@qnx.com.
 *
 * This file may contain contributions from others. Please review this entire
 * file for other proprietary rights or license notices, as well as the QNX
 * Development Suite License Guide at http://licensing.qnx.com/license-guide/
 * for other information.
 * $
 */

#ifdef __USAGE
%C - instrumentation example

%C - [-n num]

%C - example that illustrates the very basic use of
 the TraceEvent() kernel call and the instrumentation
 module with tracelogger in a daemon mode.

 All thread states and all/one (specified) kernel
 call number are intercepted. The kernel call(s)
 is(are) intercepted in wide emitting mode.

Options:
 -n <num> kernel call number to be intercepted
 (default is all)

 In order to use this example, start the tracelogger
 in the daemon mode as:

 tracelogger -n iter_number -d1

 with iter_number = your choice of 1 through 10

 After you start the example, the tracelogger (daemon)
 will log the specified number of iterations and then
 terminate. There are no messages printed upon successful
 completion of the example. You can view the intercepted
 events with the traceprinter utility.

 See accompanied documentation and comments within
 the sample source code for more explanations.
#endif

#include <sys/trace.h>
#include <unistd.h>
#include <stdlib.h>

#include "instrex.h"

int main(int argc, char **argv)
{
 int arg_var; /* input arguments parsing support */
 int call_num=(-1); /* kernel call number to be intercepted */

 /* Parse command line arguments
 *
 * - get optional kernel call number
 */
 while((arg_var=getopt(argc, argv,"n:"))!=(-1)) {
 switch(arg_var)
 {
 case 'n': /* get kernel call number */
 call_num = strtoul(optarg, NULL, 10);
 break;
 default: /* unknown */
 TRACE_ERROR_MSG
 (
 argv[0],
 "error parsing command-line arguments - exiting\n"
);

Copyright © 2014, QNX Software Systems Limited 79

Gathering kernel calls

 return (-1);
 }
 }

 /*
 * Just in case, turn off all filters, since we
 * don't know their present state - go to the
 * known state of the filters.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_DELALLCLASSES));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_KERCALL));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_KERCALL));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_THREAD));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_THREAD));

 /*
 * Set wide emitting mode for all classes and
 * their events.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_SETALLCLASSESWIDE));

 /*
 * Intercept _NTO_TRACE_THREAD class
 * We need it to know the state of the active thread.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_ADDCLASS, _NTO_TRACE_THREAD));

 /*
 * Add all/one kernel call
 */
 if(call_num != (-1)) {
 TRACE_EVENT
 (
 argv[0],
 TraceEvent(_NTO_TRACE_ADDEVENT, _NTO_TRACE_KERCALL, call_num)
);
 } else {
 TRACE_EVENT
 (
 argv[0],
 TraceEvent(_NTO_TRACE_ADDCLASS, _NTO_TRACE_KERCALL)
);
 }

 /*
 * Start tracing process
 *
 * During the tracing process, the tracelogger (which
 * is being executed in a daemon mode) will log all events.
 * You can specify the number of iterations (i.e. the
 * number of kernel buffers logged) when you start tracelogger.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_START));

 /*
 * The main() of this execution flow returns.
 * However, the main() function of the tracelogger
 * will return after registering the specified number
 * of events.
 */
 return (0);
}

Compile it, and then run tracelogger in one window:

tracelogger -d1 -n 3 -f ker_calls.all.kev

and run the compiled program in another:

./ker_calls

The trace data is in ker_calls.all.kev; to examine it, type:

traceprinter -f ker_calls.all.kev | less

The output from traceprinter will look something like this:

TRACEPRINTER version 1.02
TRACEPARSER LIBRARY version 1.02
 -- HEADER FILE INFORMATION --
 TRACE_FILE_NAME:: ker_calls.all.kev
 TRACE_DATE:: Wed Jun 24 10:57:01 2009
 TRACE_VER_MAJOR:: 1
 TRACE_VER_MINOR:: 01
 TRACE_LITTLE_ENDIAN:: TRUE
 TRACE_ENCODING:: 16 byte events
 TRACE_BOOT_DATE:: Tue Jun 23 11:47:46 2009
 TRACE_CYCLES_PER_SEC:: 736629000
 TRACE_CPU_NUM:: 1
 TRACE_SYSNAME:: QNX
 TRACE_NODENAME:: localhost
 TRACE_SYS_RELEASE:: 6.4.1
 TRACE_SYS_VERSION:: 2009/05/20-17:35:56EDT
 TRACE_MACHINE:: x86pc
 TRACE_SYSPAGE_LEN:: 2264

80 Copyright © 2014, QNX Software Systems Limited

Tutorials

TRACE_TRACELOGGER_ARGS:: tracelogger -d1 -n 3 -f ker_calls.all.kev
 -- KERNEL EVENTS --
t:0x463ad541 CPU:00 CONTROL: BUFFER sequence = 45, num_events = 714
t:0x463ad541 CPU:00 THREAD :THCREATE pid:1 tid:1
t:0x463adbe1 CPU:00 THREAD :THREADY pid:1 tid:1 priority:0 policy:1
t:0x463adfa8 CPU:00 THREAD :THCREATE pid:1 tid:2
t:0x463ae098 CPU:00 THREAD :THRECEIVE pid:1 tid:2 priority:255 policy:2
t:0x463ae375 CPU:00 THREAD :THCREATE pid:1 tid:3

...

t:0x463d59b6 CPU:00 THREAD :THSIGWAITINFO pid:1658927 tid:2 priority:10 policy:2
t:0x463d5cb2 CPU:00 THREAD :THCREATE pid:1663024 tid:1
t:0x463d5da7 CPU:00 THREAD :THRUNNING pid:1663024 tid:1 priority:10 policy:2
t:0x463d666e CPU:00 KER_EXIT:TRACE_EVENT/01 ret_val:0x00000000 empty:0x00000000
t:0x463d8e65 CPU:00 KER_CALL:THREAD_DESTROY/47
 tid:-1
 priority:-1
 status_p:0
t:0x463da615 CPU:00 KER_EXIT:THREAD_DESTROY/47 ret_val:0x00000030 empty:0x00000000
t:0x463daf0a CPU:00 KER_CALL:THREAD_DESTROYALL/48 empty:0x00000000 empty:0x00000000
t:0x463db531 CPU:00 THREAD :THDESTROY pid:1663024 tid:1
t:0x463dc114 CPU:00 THREAD :THDEAD pid:1663024 tid:1 priority:10 policy:2
t:0x463dc546 CPU:00 THREAD :THRUNNING pid:1 tid:1 priority:0 policy:1
t:0x463df45d CPU:00 THREAD :THRUNNING pid:1 tid:4 priority:10 policy:2
t:0x463dfa7f CPU:00 THREAD :THREADY pid:1 tid:1 priority:0 policy:1
t:0x463e36b4 CPU:00 KER_CALL:THREAD_CREATE/46
 pid:1663024
 func_p:f0023170
 arg_p:eff4e000
 flags:0x00000000
 stacksize:10116
 stackaddr_p:eff4e264
 exitfunc_p:0
 policy:0
 sched_priority:0
 sched_curpriority:0
 param.__ss_low_priority:0
 param.__ss_max_repl:0
param.__ss_repl_period.tv_sec:0
param.__ss_repl_period.tv_nsec:0
param.__ss_init_budget.tv_sec:0
param.__ss_init_budget.tv_nsec:0
 param.empty:0
 param.empty:0
 guardsize:0
 empty:0
 empty:0
 empty:0
t:0x463e50b0 CPU:00 THREAD :THCREATE pid:1663024 tid:1
t:0x463e51d0 CPU:00 THREAD :THWAITTHREAD pid:1 tid:4 priority:10 policy:2
t:0x463e5488 CPU:00 THREAD :THRUNNING pid:1663024 tid:1 priority:10 policy:2
t:0x463e6408 CPU:00 THREAD :THREADY pid:1 tid:4 priority:10 policy:2

...

The ker_calls.c program takes a -n option that lets us view only one type of kernel

call. Let's run this program again, specifying the number 14, which signifies

__KER_MSG_RECEIVE. For a full list of the values associated with the -n option, see

/usr/include/sys/kercalls.h.

Run tracelogger in one window:

tracelogger -d1 -n 3 -f ker_calls.14.kev

and run the program in another:

./ker_calls -n 14

The trace data is in ker_calls.14.kev; to examine it, type:

traceprinter -f ker_calls.14.kev | less

The output from traceprinter will look something like this:

TRACEPRINTER version 1.02
TRACEPARSER LIBRARY version 1.02
 -- HEADER FILE INFORMATION --
 TRACE_FILE_NAME:: ker_calls.14.kev
 TRACE_DATE:: Wed Jun 24 13:39:20 2009
 TRACE_VER_MAJOR:: 1
 TRACE_VER_MINOR:: 01
 TRACE_LITTLE_ENDIAN:: TRUE
 TRACE_ENCODING:: 16 byte events
 TRACE_BOOT_DATE:: Tue Jun 23 11:47:46 2009
 TRACE_CYCLES_PER_SEC:: 736629000
 TRACE_CPU_NUM:: 1
 TRACE_SYSNAME:: QNX
 TRACE_NODENAME:: localhost
 TRACE_SYS_RELEASE:: 6.4.1
 TRACE_SYS_VERSION:: 2009/05/20-17:35:56EDT

Copyright © 2014, QNX Software Systems Limited 81

Gathering kernel calls

 TRACE_MACHINE:: x86pc
 TRACE_SYSPAGE_LEN:: 2264
TRACE_TRACELOGGER_ARGS:: tracelogger -d1 -n 3 -f ker_calls.14.kev
 -- KERNEL EVENTS --
t:0x73bf28d0 CPU:00 CONTROL: BUFFER sequence = 62, num_events = 714
t:0x73bf28d0 CPU:00 THREAD :THCREATE pid:1 tid:1
t:0x73bf2e16 CPU:00 THREAD :THREADY pid:1 tid:1 priority:0 policy:1
t:0x73bf3203 CPU:00 THREAD :THCREATE pid:1 tid:2

...

t:0x73c21746 CPU:00 THREAD :THRUNNING pid:1 tid:1 priority:0 policy:1
t:0x73c24352 CPU:00 THREAD :THRUNNING pid:1 tid:15 priority:10 policy:2
t:0x73c247e0 CPU:00 THREAD :THREADY pid:1 tid:1 priority:0 policy:1
t:0x73c2547b CPU:00 KER_EXIT:MSG_RECEIVEV/14
 rcvid:0x00000000
 rmsg:"" (0x00000000 0x00000081 0x001dd030)
 info->nd:0
 info->srcnd:0
 info->pid:1953840
 info->tid:1
 info->chid:1
 info->scoid:1073741874
 info->coid:1073741824
 info->msglen:0
 info->srcmsglen:56
 info->dstmsglen:24
 info->priority:10
 info->flags:0
 info->reserved:0
t:0x73c29270 CPU:00 THREAD :THCREATE pid:1953840 tid:1
t:0x73c293ca CPU:00 THREAD :THWAITTHREAD pid:1 tid:15 priority:10 policy:2
t:0x73c2964a CPU:00 THREAD :THRUNNING pid:1953840 tid:1 priority:10 policy:2
t:0x73c2a36c CPU:00 THREAD :THREADY pid:1 tid:15 priority:10 policy:2
t:0x73c2fccc CPU:00 THREAD :THREPLY pid:1953840 tid:1 priority:10 policy:2
t:0x73c30f6b CPU:00 THREAD :THREADY pid:159762 tid:1 priority:10 policy:3
t:0x73c311b0 CPU:00 THREAD :THRUNNING pid:159762 tid:1 priority:10 policy:3
t:0x73c31835 CPU:00 KER_EXIT:MSG_RECEIVEV/14
 rcvid:0x0000004f
 rmsg:"" (0x00040116 0x00000000 0x00000004)
 info->nd:0
 info->srcnd:0
 info->pid:1953840
 info->tid:1
 info->chid:1
 info->scoid:1073741903
 info->coid:0
 info->msglen:4
 info->srcmsglen:4
 info->dstmsglen:0
 info->priority:10
 info->flags:0
 info->reserved:0
t:0x73c3a359 CPU:00 THREAD :THREADY pid:1953840 tid:1 priority:10 policy:2
t:0x73c3af50 CPU:00 KER_CALL:MSG_RECEIVEV/14 chid:0x00000001 rparts:1
t:0x73c3b25e CPU:00 THREAD :THRECEIVE pid:159762 tid:1 priority:10 policy:3

...

82 Copyright © 2014, QNX Software Systems Limited

Tutorials

Event handling - simple

In this example, we intercept two events from two different classes. Each event has

an event handler attached to it; the event handlers are closing and opening the stream.

Here's the source, eh_simple.c:

/*
 * $QNXLicenseC:
 * Copyright 2007, QNX Software Systems. All Rights Reserved.
 *
 * You must obtain a written license from and pay applicable license fees to QNX
 * Software Systems before you may reproduce, modify or distribute this software,
 * or any work that includes all or part of this software. Free development
 * licenses are available for evaluation and non-commercial purposes. For more
 * information visit http://licensing.qnx.com or email licensing@qnx.com.
 *
 * This file may contain contributions from others. Please review this entire
 * file for other proprietary rights or license notices, as well as the QNX
 * Development Suite License Guide at http://licensing.qnx.com/license-guide/
 * for other information.
 * $
 */

#ifdef __USAGE
%C - instrumentation example

%C - example that illustrates the very basic use of
 the TraceEvent() kernel call and the instrumentation
 module with tracelogger in a daemon mode.

 Two events from two classes are included and monitored
 interchangeably. The flow control of monitoring the
 specified events is controlled with attached event
 handlers.

 In order to use this example, start the tracelogger
 in the daemon mode as:

 tracelogger -n 1 -d1

 After you start the example, the tracelogger (daemon)
 will log the specified number of iterations and then
 terminate. There are no messages printed upon successful
 completion of the example. You can view the intercepted
 events with the traceprinter utility.

 See accompanied documentation and comments within
 the sample source code for more explanations.
#endif

#include <unistd.h>
#include <sys/trace.h>
#include <sys/kercalls.h>

#include "instrex.h"

/*
 * Prepare event structure where the event data will be
 * stored and passed to an event handler.
 */
event_data_t e_d_1;
uint32_t data_array_1[20]; /* 20 elements for potential args. */

event_data_t e_d_2;
uint32_t data_array_2[20]; /* 20 elements for potential args. */

/*
 * Global state variable that controls the
 * event flow between two events
 */
int g_state;

/*
 * Event handler attached to the event __KER_MSG_SENDV
 * from the _NTO_TRACE_KERCALL class.
 */
int call_msg_send_eh(event_data_t* e_d)
{
 if(g_state) {
 g_state = !g_state;
 return (1);
 }

 return (0);
}

/*
 * Event handler attached to the event _NTO_TRACE_THRUNNING
 * from the _NTO_TRACE_THREAD (thread) class.
 */

Copyright © 2014, QNX Software Systems Limited 83

Event handling - simple

int thread_run_eh(event_data_t* e_d)
{
 if(!g_state) {
 g_state = !g_state;
 return (1);
 }

 return (0);
}

int main(int argc, char **argv)
{
 /*
 * First fill arrays inside event data structures
 */
 e_d_1.data_array = data_array_1;
 e_d_2.data_array = data_array_2;

 /*
 * Just in case, turn off all filters, since we
 * don't know their present state - go to the
 * known state of the filters.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_DELALLCLASSES));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_KERCALL));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_KERCALL));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_THREAD));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_THREAD));

 /*
 * Set fast emitting mode
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_SETALLCLASSESFAST));

 /*
 * Obtain I/O privileges before adding event handlers
 */
 if (ThreadCtl(_NTO_TCTL_IO, 0)!=EOK) { /* obtain I/O privileges */
 (void) fprintf(stderr, "argv[0]: Failed to obtain I/O privileges\n");

 return (-1);
 }

 /*
 * Intercept one event from class _NTO_TRACE_KERCALL,
 * event __KER_MSG_SENDV.
 */
 TRACE_EVENT
 (
 argv[0],
 TraceEvent(_NTO_TRACE_ADDEVENT, _NTO_TRACE_KERCALLENTER, __KER_MSG_SENDV)
);

 /*
 * Add event handler to the event __KER_MSG_SENDV
 * from _NTO_TRACE_KERCALL class.
 */
 TRACE_EVENT
 (
 argv[0],
 TraceEvent(_NTO_TRACE_ADDEVENTHANDLER, _NTO_TRACE_KERCALLENTER,
 __KER_MSG_SENDV, call_msg_send_eh, &e_d_1)
);

 /*
 * Intercept one event from class _NTO_TRACE_THREAD
 */
 TRACE_EVENT
 (
 argv[0],
 TraceEvent(_NTO_TRACE_ADDEVENT, _NTO_TRACE_THREAD, _NTO_TRACE_THRUNNING)
);

 /*
 * Add event event handler to the _NTO_TRACE_THRUNNING event
 * from the _NTO_TRACE_THREAD (thread) class.
 */
 TRACE_EVENT
 (
 argv[0],
 TraceEvent(_NTO_TRACE_ADDEVENTHANDLER, _NTO_TRACE_THREAD,
 _NTO_TRACE_THRUNNING, thread_run_eh, &e_d_2)
);

 /*
 * Start tracing process
 *
 * During the tracing process, the tracelogger (which
 * is being executed in a daemon mode) will log all events.
 * The number of iterations has been specified as 1.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_START));

 /*
 * During one second collect all events
 */
 (void) sleep(1);

 /*
 * Stop tracing process by closing the event stream.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_STOP));

 /*

84 Copyright © 2014, QNX Software Systems Limited

Tutorials

 * Flush the internal buffer since the number
 * of stored events could be less than
 * "high water mark" of one buffer (715 events).
 *
 * The tracelogger will probably terminate at
 * this point, since it has been executed with
 * one iteration (-n 1 option).
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_FLUSHBUFFER));

 /*
 * Delete event handlers before exiting to avoid execution
 * in the missing address space.
 */
 TRACE_EVENT
 (
 argv[0],
 TraceEvent(_NTO_TRACE_DELEVENTHANDLER, _NTO_TRACE_KERCALLENTER, __KER_MSG_SENDV)
);
 TRACE_EVENT
 (
 argv[0],
 TraceEvent(_NTO_TRACE_DELEVENTHANDLER, _NTO_TRACE_THREAD, _NTO_TRACE_THRUNNING)
);

 /*
 * Wait one second before terminating to hold the address space
 * of the event handlers.
 */
 (void) sleep(1);

 return (0);
}

Compile it, and then run tracelogger in one window:

tracelogger -d1 -n 1 -f eh_simple.kev

For this example, we've specified the number of iterations to

be 1.

Run the compiled program in another window:

./eh_simple

The trace data is in eh_simple.kev; to examine it, type:

traceprinter -f eh_simple.kev | less

The output from traceprinter will look something like this:

TRACEPRINTER version 1.02
TRACEPARSER LIBRARY version 1.02
 -- HEADER FILE INFORMATION --
 TRACE_FILE_NAME:: eh_simple.kev
 TRACE_DATE:: Wed Jun 24 10:58:41 2009
 TRACE_VER_MAJOR:: 1
 TRACE_VER_MINOR:: 01
 TRACE_LITTLE_ENDIAN:: TRUE
 TRACE_ENCODING:: 16 byte events
 TRACE_BOOT_DATE:: Tue Jun 23 11:47:46 2009
 TRACE_CYCLES_PER_SEC:: 736629000
 TRACE_CPU_NUM:: 1
 TRACE_SYSNAME:: QNX
 TRACE_NODENAME:: localhost
 TRACE_SYS_RELEASE:: 6.4.1
 TRACE_SYS_VERSION:: 2009/05/20-17:35:56EDT
 TRACE_MACHINE:: x86pc
 TRACE_SYSPAGE_LEN:: 2264
TRACE_TRACELOGGER_ARGS:: tracelogger -d1 -n 1 -f eh_simple.kev
 -- KERNEL EVENTS --
t:0x33139a74 CPU:00 CONTROL: BUFFER sequence = 53, num_events = 482
t:0x33139a74 CPU:00 THREAD :THRUNNING pid:1749040 tid:1
t:0x362d0710 CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000003 msg:"" (0x00100102)
t:0x362d1d04 CPU:00 THREAD :THRUNNING pid:217117 tid:1
t:0x362e8e3e CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000000 msg:"" (0x00200113)
t:0x362ea264 CPU:00 THREAD :THRUNNING pid:4102 tid:8
t:0x362f1248 CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000003 msg:"" (0x00000106)
t:0x362f1c67 CPU:00 THREAD :THRUNNING pid:217117 tid:1
t:0x362fd08b CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000003 msg:"" (0x00100102)
t:0x362fd949 CPU:00 THREAD :THRUNNING pid:217117 tid:1
t:0x36305424 CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000003 msg:"" (0x00000106)
t:0x36305e35 CPU:00 THREAD :THRUNNING pid:217117 tid:1
t:0x3630a572 CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000003 msg:"" (0x00000106)
t:0x3630aeb7 CPU:00 THREAD :THRUNNING pid:217117 tid:1
t:0x3631bd5b CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000003 msg:"" (0x00100102)
t:0x3631c6aa CPU:00 THREAD :THRUNNING pid:217117 tid:1
t:0x363253bb CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000003 msg:"" (0x00000106)
t:0x36325d95 CPU:00 THREAD :THRUNNING pid:217117 tid:1
t:0x369b2349 CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000003 msg:"" (0x00000106)
t:0x369b2bbe CPU:00 THREAD :THRUNNING pid:217117 tid:1

Copyright © 2014, QNX Software Systems Limited 85

Event handling - simple

t:0x369b88d8 CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000007 msg:"" (0x00100106)
t:0x369b974a CPU:00 THREAD :THRUNNING pid:1 tid:15
t:0x369c48ab CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000008 msg:"" (0x00100106)
t:0x369c53db CPU:00 THREAD :THRUNNING pid:126997 tid:2
t:0x369cee17 CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000008 msg:"" (0x00100106)
t:0x369cf533 CPU:00 THREAD :THRUNNING pid:126997 tid:2
t:0x369d82b6 CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000009 msg:"" (0x00100106)
t:0x369d9178 CPU:00 THREAD :THRUNNING pid:8200 tid:10
t:0x369eae84 CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000006 msg:"" (0x00020100)
t:0x369eb687 CPU:00 THREAD :THRUNNING pid:1 tid:15
t:0x369f56b1 CPU:00 KER_CALL:MSG_SENDV/11 coid:0x00000006 msg:"" (0x00020100)

...

This is an important example because it demonstrates the use of the dynamic rules

filter to perform tasks beyond basic filtering.

86 Copyright © 2014, QNX Software Systems Limited

Tutorials

Inserting a user simple event

This example demonstrates the insertion of a user event into the event stream. Here's

the source, usr_event_simple.c:

/*
 * $QNXLicenseC:
 * Copyright 2007, QNX Software Systems. All Rights Reserved.
 *
 * You must obtain a written license from and pay applicable license fees to QNX
 * Software Systems before you may reproduce, modify or distribute this software,
 * or any work that includes all or part of this software. Free development
 * licenses are available for evaluation and non-commercial purposes. For more
 * information visit http://licensing.qnx.com or email licensing@qnx.com.
 *
 * This file may contain contributions from others. Please review this entire
 * file for other proprietary rights or license notices, as well as the QNX
 * Development Suite License Guide at http://licensing.qnx.com/license-guide/
 * for other information.
 * $
 */

#ifdef __USAGE
%C - instrumentation example

%C - example that illustrates the very basic use of
 the TraceEvent() kernel call and the instrumentation
 module with tracelogger in a daemon mode.

 All classes and their events are included and monitored.
 Additionally, four user-generated simple events and
 one string event are intercepted.

 In order to use this example, start the tracelogger
 in the daemon mode as:

 tracelogger -n iter_number -d1

 with iter_number = your choice of 1 through 10

 After you start the example, the tracelogger (daemon)
 will log the specified number of iterations and then
 terminate. There are no messages printed upon successful
 completion of the example. You can view the intercepted
 events with the traceprinter utility. The intercepted
 user events (class USREVENT) have event IDs
 (EVENT) equal to: 111, 222, 333, 444 and 555.

 See accompanied documentation and comments within
 the sample source code for more explanations.
#endif

#include <sys/trace.h>
#include <unistd.h>

#include "instrex.h"

int main(int argc, char **argv)
{
 /*
 * Just in case, turn off all filters, since we
 * don't know their present state - go to the
 * known state of the filters.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_DELALLCLASSES));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_KERCALL));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_KERCALL));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSPID, _NTO_TRACE_THREAD));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_CLRCLASSTID, _NTO_TRACE_THREAD));

 /*
 * Set fast emitting mode for all classes and
 * their events.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_SETALLCLASSESFAST));

 /*
 * Intercept all event classes
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_ADDALLCLASSES));

 /*
 * Start tracing process
 *
 * During the tracing process, the tracelogger (which
 * is being executed in a daemon mode) will log all events.
 * You can specify the number of iterations (i.e. the
 * number of kernel buffers logged) when you start tracelogger.
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_START));

 /*

Copyright © 2014, QNX Software Systems Limited 87

Inserting a user simple event

 * Insert four user-defined simple events and one string
 * event into the event stream. The user events have
 * arbitrary event IDs: 111, 222, 333, 444, and 555
 * (possible values are in the range 0...1023).
 * The user events with ID=(111, ..., 444) are simple events
 * that have two numbers attached: ({1,11}, ..., {4,44}).
 * The user string event (ID 555) includes the string,
 * "Hello world".
 */
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_INSERTSUSEREVENT, 111, 1, 11));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_INSERTSUSEREVENT, 222, 2, 22));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_INSERTSUSEREVENT, 333, 3, 33));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_INSERTSUSEREVENT, 444, 4, 44));
 TRACE_EVENT(argv[0], TraceEvent(_NTO_TRACE_INSERTUSRSTREVENT,555, "Hello world"));

 /*
 * The main() of this execution flow returns.
 * However, the main() function of the tracelogger
 * will return after registering the specified number
 * of events.
 */
 return (0);
}

Compile it, and then run tracelogger in one window:

tracelogger -d1 -n 3 -f usr_event_simple.kev

and run the compiled program in another:

./usr_event_simple

The trace data is in usr_event_simple.kev; to examine it, type:

traceprinter -f usr_event_simple.kev | less

The output from traceprinter will look something like this:

TRACEPRINTER version 1.02
TRACEPARSER LIBRARY version 1.02
 -- HEADER FILE INFORMATION --
 TRACE_FILE_NAME:: usr_event_simple.kev
 TRACE_DATE:: Wed Jun 24 10:59:34 2009
 TRACE_VER_MAJOR:: 1
 TRACE_VER_MINOR:: 01
 TRACE_LITTLE_ENDIAN:: TRUE
 TRACE_ENCODING:: 16 byte events
 TRACE_BOOT_DATE:: Tue Jun 23 11:47:46 2009
 TRACE_CYCLES_PER_SEC:: 736629000
 TRACE_CPU_NUM:: 1
 TRACE_SYSNAME:: QNX
 TRACE_NODENAME:: localhost
 TRACE_SYS_RELEASE:: 6.4.1
 TRACE_SYS_VERSION:: 2009/05/20-17:35:56EDT
 TRACE_MACHINE:: x86pc
 TRACE_SYSPAGE_LEN:: 2264
TRACE_TRACELOGGER_ARGS:: tracelogger -d1 -n 3 -f usr_event_simple.kev
 -- KERNEL EVENTS --
t:0x254620e4 CPU:00 CONTROL: BUFFER sequence = 54, num_events = 714

...

t:0x25496c81 CPU:00 PROCESS :PROCCREATE_NAME
 ppid:426022
 pid:1810480
 name:./usr_event_simple
t:0x2549701a CPU:00 THREAD :THCREATE pid:1810480 tid:1
t:0x25497112 CPU:00 THREAD :THRUNNING pid:1810480 tid:1
t:0x2549793a CPU:00 KER_EXIT:TRACE_EVENT/01 ret_val:0x00000000 empty:0x00000000
t:0x25497f48 CPU:00 USREVENT:EVENT:111, d0:0x00000001 d1:0x0000000b
t:0x254982c5 CPU:00 USREVENT:EVENT:222, d0:0x00000002 d1:0x00000016
t:0x25498638 CPU:00 USREVENT:EVENT:333, d0:0x00000003 d1:0x00000021
t:0x25498996 CPU:00 USREVENT:EVENT:444, d0:0x00000004 d1:0x0000002c
t:0x25499451 CPU:00 USREVENT:EVENT:555 STR:"Hello world"
t:0x2549bde5 CPU:00 KER_CALL:THREAD_DESTROY/47 tid:-1 status_p:0
t:0x2549d0d6 CPU:00 KER_EXIT:THREAD_DESTROY/47 ret_val:0x00000030 empty:0x00000000
t:0x2549d8ae CPU:00 KER_CALL:THREAD_DESTROYALL/48 empty:0x00000000 empty:0x00000000

...

Inserting your own events lets you flag events or bracket groups of events to isolate

them for study. It's also useful for inserting internal, customized information into the

event stream.

88 Copyright © 2014, QNX Software Systems Limited

Tutorials

Appendix A
Current Trace Events and Data

This appendix provides a table that lists all the trace events and summarizes the data

included for each in both wide and fast modes.

Copyright © 2014, QNX Software Systems Limited 89

Interpreting the table

As you examine the table, note the following:

• Some of the functions listed below (e.g. InterruptDetachFunc(), SignalFault()) are

internal ones that you won't find documented in the QNX Neutrino C Library

Reference.

• If a function has a restartable version (with a _r in its name), the events for both

versions are as listed for the function without the _r.

• If a kernel call fails, the exit trace event includes the return code and the error

code (e.g. an errno value), instead of the data listed below.

As an example, let's look at the events for MsgSend(), MsgSendv(), and MsgSendvs().

As mentioned above, the information is the same for the restartable versions of these

functions too.

Here's what the table gives for the entry (_NTO_TRACE_KERCALLENTER) to these

functions:

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_SENDV
Fast: coid, msg
Wide: coid, sparts, rparts, msg[0], msg[1], msg[2]
Call: MsgSend,MsgSendv,MsgSendvs
#Args: MSG_SENDV, fHcoid, Dsparts, Drparts, fSmsg, s, s

This part describes the __KER_MSG_SENDV trace event that's emitted on entry to the

function. In fast mode, the event includes the following data:

Number of bytes for the eventFast mode data

4 bytesConnection ID

4 bytes (the first 4 bytes usually comprise

the header)

Message data

Total emitted: 8 bytes

In wide mode, the event includes the following data:

Number of bytes for the eventWide mode data

4 bytesConnection ID

4 bytes# of parts to send

4 bytes# of parts to receive

4 bytes (the first 4 bytes usually comprise

the header)

Message data

4 bytesMessage data

90 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

Number of bytes for the eventWide mode data

4 bytesMessage data

Total emitted: 24 bytes

The second (_NTO_TRACE_KERCALLEXIT) part describes the __KER_MSG_SENDV

event that's emitted on exit from the function:

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_SENDV
Fast: status, rmsg[0]
Wide: status, rmsg[0], rmsg[1], rmsg[2]
Call: MsgSend,MsgSendv,MsgSendvs
#Args: MSG_SENDV, fDstatus, fSrmsg, s, s

In fast mode, the event includes the following data if the kernel call was successful:

Number of bytes for the eventFast mode data

4 bytesExit status

4 bytes (the first 4 bytes usually comprise

the header)

Message data

Total emitted: 8 bytes

In wide mode, the event includes the following data if the kernel call was successful:

Number of bytes for the eventWide mode data

4 bytesExit status

4 bytes (the first 4 bytes usually comprise

the header)

Message data

4 bytesMessage data

4 bytesMessage data

Total emitted: 16 bytes

In both fast and wide mode, the event includes the following data if the kernel call

failed:

Number of bytes for the eventFast and wide mode data

4 bytesExit status

4 bytesError code

Total emitted: 8 bytes

For many of the events, you'll see a comment like this:

#Args: MSG_SENDV, fHcoid, Dsparts, Drparts, fSmsg, s, s

Copyright © 2014, QNX Software Systems Limited 91

Interpreting the table

This line indicates how traceprinter displays the data associated with the event.

The format codes are as follows:

FormatCode

Hexadecimal (32 bit)H

Decimal (32 bit)D

Hexadecimal (64 bit)X

Decimal (64 bit)E

Begin a character stringS

Continue with a character strings

PointerP

Named stringN

Fast mode prefixf

For example, fHcoid indicates that the connection ID (coid) is displayed as a 32-bit

hexadecimal number, and it's included in fast mode (and wide mode).

92 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

Table of events

The format of this file is as follows
#'s are comments
Event blocks are delimited by a blank line
Class -> The external class description
Event -> The external event description
Fast -> Comma delimited list of wide argument subset
Wide -> Full arguments emitted
Call -> If the event is associated with a kernel call, put them here

Note - all _NTO_TRACE_KERCALLEXIT calls now have errno as the second
parameter if the kercall failed (i.e. the retval is -1)

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_BAD
Fast: empty, empty
Wide: empty, empty
Call: N/A
#Args: BAD, fHempty, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_BAD
Fast: ret_val, empty
Wide: ret_val, empty
Call: N/A
#Args: BAD, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_CACHE_FLUSH
Fast: addr, nlines
Wide: addr, nlines, flags, index
Call: CacheFlush
#Args: CACHE_FLUSH, fHaddr, fHnlines, Hflags, Dindex

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_CACHE_FLUSH
Fast: ret_val, empty
Wide: ret_val, empty
Call: CacheFlush
#Args: CACHE_FLUSH, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_CHANNEL_CREATE
Fast: flags, empty
Wide: flags, empty
Call: ChannelCreate
#Args: CHANNEL_CREATE, fHflags, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_CHANNEL_CREATE
Fast: chid, empty
Wide: chid, empty
Call: ChannelCreate
#Args: CHANNEL_CREATE, fHchid, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_CHANNEL_DESTROY
Fast: chid, empty
Wide: chid, empty
Call: ChannelDestroy
#Args: CHANNEL_DESTROY, fHchid, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_CHANNEL_DESTROY
Fast: ret_val, empty
Wide: ret_val, empty
Call: ChannelDestroy
#Args: CHANNEL_DESTROY, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_CHANCON_ATTR
Fast: chid, flags
Wide: chid, flags, new_attr

Copyright © 2014, QNX Software Systems Limited 93

Table of events

Call: ChannelConnectAttr

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_CHANCON_ATTR
Fast: chid, flags
Wide: chid, flags, old_attr
Call: ChannelConnectAttr

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_CLOCK_ADJUST
Fast: id, new->tick_count
Wide: id, new->tick_count, new->tick_nsec_inc
Call: ClockAdjust
#Args: CLOCK_ADJUST, fDid, fDnew->tick_count, Dnew->tick_nsec_inc

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_CLOCK_ADJUST
Fast: ret_val, old->tick_count
Wide: ret_val, old->tick_count, old->tick_nsec_inc
Call: ClockAdjust
#Args: CLOCK_ADJUST, fDret_val, fDold->tick_count, Dold->tick_nsec_inc

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_CLOCK_ID
Fast: pid, tid
Wide: pid, tid
Call: ClockId
#Args: CLOCK_ID, fDpid, fDtid

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_CLOCK_ID
Fast: ret_val, empty
Wide: ret_val, empty
Call: ClockId
#Args: CLOCK_ID, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_CLOCK_PERIOD
Fast: id, new->nsec
Wide: id, new->nsec, new->fract
Call: ClockPeriod
#Args: CLOCK_PERIOD, fDid, fDnew->nsec, Dnew->fract

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_CLOCK_PERIOD
Fast: ret_val, old->nsec
Wide: ret_val, old->nsec, old->fract
Call: ClockPeriod
#Args: CLOCK_PERIOD, fDret_val, fDold->nsec, Dold->fract

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_CLOCK_TIME
Fast: id, new(sec)
Wide: id, new(sec), new(nsec)
Call: ClockTime
#Args: CLOCK_TIME, fDid, fDnew(sec), Dnew(nsec)

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_CLOCK_TIME
Fast: ret_val, old(sec)
Wide: ret_val, old(sec), old(nsec)
Call: ClockTime
#Args: CLOCK_TIME, fDret_val, fDold(sec), Dold(nsec)

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_CONNECT_ATTACH
Fast: nd, pid
Wide: nd, pid, chid, index, flags
Call: ConnectAttach
#Args: CONNECT_ATTACH, fHnd, fDpid, Hchid, Dindex, Hflags

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_CONNECT_ATTACH
Fast: coid, empty
Wide: coid, empty
Call: ConnectAttach
#Args: CONNECT_ATTACH, fHcoid, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_CONNECT_CLIENT_INFO

94 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

Fast: scoid, ngroups
Wide: scoid, ngroups
Call: ConnectClientInfo
#Args: CONNECT_CLIENT_INFO, fHscoid, fDngroups

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_CONNECT_CLIENT_INFO
Fast: ret_val, info->nd
Wide: ret_val, info->nd, info->pid, info->sid, flags, info->ruid, info->euid,
 info->suid, info->rgid, info->egid, info->sgid, info->ngroups,
 info->grouplist[0], info->grouplist[1], info->grouplist[2],
 info->grouplist[3], info->grouplist[4], info->grouplist[5],
 info->grouplist[6], info->grouplist[7]
Call: ConnectClientInfo
#Args: CONNECT_CLIENT_INFO, fHscoid, fDngroups

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_CONNECT_DETACH
Fast: coid, empty
Wide: coid, empty
Call: ConnectDetach
#Args: CONNECT_DETACH, fHcoid, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_CONNECT_DETACH
Fast: ret_val, empty
Wide: ret_val, empty
Call: ConnectDetach
#Args: CONNECT_DETACH, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_CONNECT_FLAGS
Fast: coid, bits
Wide: pid, coid, masks, bits
Call: ConnectFlags
#Args: CONNECT_FLAGS, Dpid, fHcoid, Hmasks, fHbits

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_CONNECT_FLAGS
Fast: old_flags, empty
Wide: old_flags, empty
Call: ConnectFlags
#Args: CONNECT_FLAGS, fHold_flags, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_CONNECT_SERVER_INFO
Fast: pid, coid
Wide: pid, coid
Call: ConnectServerInfo
#Args: CONNECT_SERVER_INFO, fDpid, fHcoid

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_CONNECT_SERVER_INFO
Fast: coid, info->nd
Wide: coid, info->nd, info->srcnd, info->pid, info->tid, info->chid,
 info->scoid, info->coid, info->msglen, info->srcmsglen, info->dstmsglen,
 info->priority, info->flags, info->reserved
Call: ConnectServerInfo
#Args: CONNECT_SERVER_INFO, fDpid, fHcoid

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_INTERRUPT_ATTACH
Fast: intr, flags
Wide: intr, handler_p, area_p, areasize, flags
Call: InterruptAttach
#Args: INTERRUPT_ATTACH, fDintr, Phandler_p, Parea_p, Dareasize, fHflags

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_INTERRUPT_ATTACH
Fast: int_fun_id, empty
Wide: int_fun_id, empty
Call: InterruptAttach
#Args: INTERRUPT_ATTACH, fHint_fun_id, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_INTERRUPT_DETACH
Fast: id, empty
Wide: id, empty
Call: InterruptDetach
#Args: INTERRUPT_DETACH, fDid, fHempty

Copyright © 2014, QNX Software Systems Limited 95

Table of events

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_INTERRUPT_DETACH
Fast: ret_val, empty
Wide: ret_val, empty
Call: InterruptDetach
#Args: INTERRUPT_DETACH, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_INTERRUPT_DETACH_FUNC
Fast: intr, handler_p
Wide: intr, handler_p
Call: N/A
#Args: INTERRUPT_DETACH_FUNC, fDintr, fPhandler_p

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_INTERRUPT_DETACH_FUNC
Fast: ret_val, empty
Wide: ret_val, empty
Call: N/A
#Args: INTERRUPT_DETACH_FUNC, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_INTERRUPT_MASK
Fast: intr, id
Wide: intr, id
Call: InterruptMask
#Args: INTERRUPT_MASK, fDintr, fDid

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_INTERRUPT_MASK
Fast: mask_level, empty
Wide: mask_level, empty
Call: InterruptMask
#Args: INTERRUPT_MASK, fHmask_level, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_INTERRUPT_UNMASK
Fast: intr, id
Wide: intr, id
Call: InterruptUnmask
#Args: INTERRUPT_UNMASK, fDintr, fDid

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_INTERRUPT_UNMASK
Fast: mask_level, empty
Wide: mask_level, empty
Call: InterruptUnmask
#Args: INTERRUPT_UNMASK, fHmask_level, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_INTERRUPT_WAIT
Fast: flags, timeout_tv_sec
Wide: flags, timeout_tv_sec, timeout_tv_nsec
Call: InterruptWait
#Args: INTERRUPT_WAIT, fHflags, fDtimeout_tv_sec, Dtimeout_tv_nsec

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_INTERRUPT_WAIT
Fast: ret_val, empty
Wide: ret_val, empty
Call: InterruptWait
#Args: INTERRUPT_WAIT, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_INTERRUPT_CHARACTERISTIC
Fast: id, type, new
Wide: id, type, new
Call: InterruptCharacteristic
#Args: INTERRUPT_CHARACTERISTIC, fDid, fHtype, fDnew

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_INTERRUPT_CHARACTERISTIC
Fast: id, old
Wide: id, old
Call: InterruptCharacteristic
#Args: INTERRUPT_CHARACTERISTIC, fDid, fDold

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_CURRENT

96 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

Fast: rcvid, empty
Wide: rcvid, empty
Call: MsgCurrent
#Args: MSG_CURRENT, fHrcvid, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_CURRENT
Fast: empty, empty
Wide: empty, empty
Call: MsgCurrent
#Args: MSG_CURRENT, fHempty, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_PAUSE
Fast: rcvid, cookie
Wide: rcvid, cookie
Call: MsgPause
#Args: MSG_CURRENT, fHrcvid, fHcookie

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_PAUSE
Fast: empty, empty
Wide: empty, empty
Call: MsgPause
#Args: MSG_CURRENT, fHempty, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_DELIVER_EVENT
Fast: rcvid, event->sigev_notify
Wide: rcvid, event->sigev_notify, event->sigev_notify_function_p,
 event->sigev_value, event->sigev_notify_attributes_p
Call: MsgDeliverEvent

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_DELIVER_EVENT
Fast: ret_val, empty
Wide: ret_val, empty
Call: MsgDeliverEvent
#Args: MSG_DELIVER_EVENT, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_ERROR
Fast: rcvid, err
Wide: rcvid, err
Call: MsgError
#Args: MSG_ERROR, fHrcvid, fDerr

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_ERROR
Fast: ret_val, empty
Wide: ret_val, empty
Call: MsgError
#Args: MSG_ERROR, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_INFO
Fast: rcvid, info_p
Wide: rcvid, info_p
Call: MsgInfo
#Args: MSG_INFO, fHrcvid, fPinfo_p

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_INFO
Fast: ret_val, info->nd
Wide: ret_val, info->nd, info->srcnd, info->pid, info->tid, info->chid,
 info->scoid, info->coid, info->msglen, info->srcmsglen, info->dstmsglen,
 info->priority, info->flags, info->reserved
Call: MsgInfo

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_KEYDATA
Fast: rcvid, op
Wide: rcvid, op
Call: MsgKeyData
#Args: MSG_KEYDATA, fHrcvid, fHop

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_KEYDATA
Fast: ret_val, newkey
Wide: ret_val, newkey

Copyright © 2014, QNX Software Systems Limited 97

Table of events

Call: MsgKeyData
#Args: MSG_KEYDATA, fHret_val, fDnewkey

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_READIOV
Fast: rcvid, offset
Wide: rcvid, parts, offset, flags
Call: MsgReadiov
#Args: MSG_READIOV, fHrcvid, Dparts, fHoffset, Hflags

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_READIOV
Fast: rbytes, rmsg[0]
Wide: rbytes, rmsg[0], rmsg[1], rmsg[2]
Call: MsgReadiov
#Args: MSG_READIOV, fDrbytes, fSrmsg, s, s

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_READV
Fast: rcvid, offset
Wide: rcvid, rmsg_p, rparts, offset
Call: MsgRead,MsgReadv
#Args: MSG_READV, fHrcvid, Prmsg_p, Drparts, fHoffset

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_READV
Fast: rbytes, rmsg[0]
Wide: rbytes, rmsg[0], rmsg[1], rmsg[2]
Call: MsgRead,MsgReadv
#Args: MSG_READV, fDrbytes, fSrmsg, s, s

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_READWRITEV
Fast: src_rcvid, dst_rcvid
Wide: src_rcvid, dst_rcvid
Call: N/A
#Args: MSG_READWRITEV, fHsrc_rcvid, fHdst_rcvid

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_READWRITEV
Fast: msglen, empty
Wide: msglen, empty
Call: N/A
#Args: MSG_READWRITEV, fDmsglen, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_RECEIVEPULSEV
Fast: chid, rparts
Wide: chid, rparts
Call: MsgReceivePulse,MsgReceivePulsev
#Args: MSG_RECEIVEPULSEV, fHchid, fDrparts

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_RECEIVEPULSEV
Fast: rcvid, rmsg[0]
Wide: rcvid, rmsg[0], rmsg[1], rmsg[2], info->nd, info->srcnd, info->pid,
 info->tid, info->chid, info->scoid, info->coid, info->msglen,
 info->srcmsglen, info->dstmsglen, info->priority, info->flags,
 info->reserved
Call: MsgReceivePulse,MsgReceivePulsev

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_RECEIVEV
Fast: chid, rparts
Wide: chid, rparts
Call: MsgReceive,MsgReceivev
#Args: MSG_RECEIVEV, fHchid, fDrparts

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_RECEIVEV
Fast: rcvid, rmsg[0]
Wide: rcvid, rmsg[0], rmsg[1], rmsg[2], info->nd, info->srcnd, info->pid,
 info->tid, info->chid, info->scoid, info->coid, info->msglen,
 info->srcmsglen, info->dstmsglen, info->priority, info->flags,
 info->reserved
Call: MsgReceive,MsgReceivev

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_REPLYV
Fast: rcvid, status

98 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

Wide: rcvid, sparts, status, smsg[0], smsg[1], smsg[2]
Call: MsgReply,MsgReplyv
#Args: MSG_REPLYV, fHrcvid, Dsparts, fHstatus, Ssmsg, s, s

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_REPLYV
Fast: ret_val, empty
Wide: ret_val, empty
Call: MsgReply,MsgReplyv
#Args: MSG_REPLYV, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_SEND_PULSE
Fast: coid, code
Wide: coid, priority, code, value
Call: MsgSendPulse
#Args: MSG_SEND_PULSE, fHcoid, Dpriority, fHcode, Hvalue

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_SEND_PULSE
Fast: status, empty
Wide: status, empty
Call: MsgSendPulse
#Args: MSG_SEND_PULSE, fDstatus, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_SENDV
Fast: coid, msg
Wide: coid, sparts, rparts, msg[0], msg[1], msg[2]
Call: MsgSend,MsgSendv,MsgSendvs
#Args: MSG_SENDV, fHcoid, Dsparts, Drparts, fSmsg, s, s

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_SENDV
Fast: status, rmsg[0]
Wide: status, rmsg[0], rmsg[1], rmsg[2]
Call: MsgSend,MsgSendv,MsgSendvs
#Args: MSG_SENDV, fDstatus, fSrmsg, s, s

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_SENDVNC
Fast: coid, msg
Wide: coid, sparts, rparts, msg[0], msg[1], msg[2]
Call: MsgSendnc,MsgSendvnc,MsgSendvsnc
#Args: MSG_SENDVNC, fHcoid, Dsparts, Drparts, fSmsg, s, s

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_SENDVNC
Fast: ret_val, rmsg[0]
Wide: ret_val, rmsg[0], rmsg[1], rmsg[2]
Call: MsgSendnc,MsgSendvnc,MsgSendvsnc
#Args: MSG_SENDVNC, fHret_val, fSrmsg, s, s

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_VERIFY_EVENT
Fast: rcvid, event->sigev_notify
Wide: rcvid, event->sigev_notify, event->sigev_notify_function_p,
 event->sigev_value, event->sigev_notify_attribute_p
Call: MsgVerifyEvent

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_VERIFY_EVENT
Fast: status, empty
Wide: status, empty
Call: MsgVerifyEvent
#Args: MSG_VERIFY_EVENT, fDstatus, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_MSG_WRITEV
Fast: rcvid, offset
Wide: rcvid, sparts, offset, msg[0], msg[1], msg[2]
Call: MsgWrite,MsgWritev
#Args: MSG_WRITEV, fHrcvid, Dsparts, fHoffset, Smsg, s, s

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_MSG_WRITEV
Fast: wbytes, empty
Wide: wbytes, empty
Call: MsgWrite,MsgWritev
#Args: MSG_WRITEV, fDwbytes, fHempty

Copyright © 2014, QNX Software Systems Limited 99

Table of events

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_NET_CRED
Fast: coid, info_p
Wide: coid, info_p
Call: NetCred
#Args: NET_CRED, fHcoid, fPinfo_p

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_NET_CRED
Fast: ret_val, info->nd
Wide: ret_val, info->nd, info->pid, info->sid, info->flags, info->ruid,
 info->euid, info->suid, info->rgid, info->egid, info->sgid, info->ngroups,
 info->grouplist[0], info->grouplist[1], info->grouplist[2],
 info->grouplist[3], info->grouplist[4], info->grouplist[5],
 info->grouplist[6], info->grouplist[7]
Call: NetCred

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_NET_INFOSCOID
Fast: scoid, infoscoid
Wide: scoid, infoscoid
Call: NetInfoScoid
#Args: NET_INFOSCOID, fHscoid, fHinfoscoid

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_NET_INFOSCOID
Fast: ret_val, empty
Wide: ret_val, empty
Call: NetInfoScoid
#Args: NET_INFOSCOID, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_NET_SIGNAL_KILL
Fast: pid, signo
Wide: cred->ruid, cred->euid, nd, pid, tid, signo, code, value
Call: NetSignalKill
#Args: NET_SIGNAL_KILL, fDstatus, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_NET_SIGNAL_KILL
Fast: status, empty
Wide: status, empty
Call: NetSignalKill
#Args: NET_SIGNAL_KILL, fDstatus, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_NET_UNBLOCK
Fast: vtid, empty
Wide: vtid, empty
Call: NetUnblock
#Args: NET_UNBLOCK, fHvtid, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_NET_UNBLOCK
Fast: ret_val, empty
Wide: ret_val, empty
Call: NetUnblock
#Args: NET_UNBLOCK, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_NET_VTID
Fast: vtid, info_p
Wide: vtid, info_p, tid, coid, priority, srcmsglen, keydata, srcnd, dstmsglen
Call: NetVtid

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_NET_VTID
Fast: ret_val, empty
Wide: ret_val, empty
Call: NetVtid
#Args: NET_VTID, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_NOP
Fast: dummy, empty
Wide: dummy, empty
Call: N/A
#Args: NOP, fHdummy, fHempty

100 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_NOP
Fast: empty, empty
Wide: empty, empty
Call: N/A
#Args: NOP, fHempty, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_RING0
Fast: func_p, arg_p
Wide: func_p, arg_p
Call: __Ring0
#Args: RING0, fPfunc_p, fParg_p

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_RING0
Fast: ret_val, empty
Wide: ret_val, empty
Call: __Ring0
#Args: RING0, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SCHED_GET
Fast: pid, tid
Wide: pid, tid
Call: SchedGet
#Args: SCHED_GET, fDpid, fDtid

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SCHED_GET
Fast: ret_val, sched_priority
Wide: ret_val, sched_priority, param.ss_low_priority, param.ss_max_repl,
 param.ss_repl_period.tv_sec, param.ss_repl_period.tv_nsec,
 param.ss_init_budget.tv_sec, param.ss_init_budget.tv_nsec
Call: SchedGet
#Args: SCHED_GET, fDpid, fDtid

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SCHED_INFO
Fast: pid, policy
Wide: pid, policy
Call: SchedInfo
#Args: SCHED_INFO, fDpid, fDpolicy

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SCHED_INFO
Fast: ret_val, priority_max
Wide: ret_val, priority_min, priority_max, interval_sec, interval_nsec, priority_priv
Call: SchedInfo
#Args: SCHED_INFO, fDpid, fDpolicy

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SCHED_SET
Fast: pid, sched_priority
Wide: pid, tid, policy, sched_priority, sched_curpriority,
 param.ss_low_priority, param.ss_max_repl, param.ss_repl_period.tv_sec,
 param.ss_repl_period.tv_nsec, param.ss_init_budget.tv_sec,
 param.ss_init_budget.tv_nsec
Call: SchedSet
#Args: SCHED_SET, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SCHED_SET
Fast: ret_val, empty
Wide: ret_val, empty
Call: SchedSet
#Args: SCHED_SET, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SCHED_YIELD
Fast: empty, empty
Wide: empty, empty
Call: SchedYield
#Args: SCHED_YIELD, fHempty, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SCHED_YIELD
Fast: ret_val, empty
Wide: ret_val, empty
Call: SchedYield

Copyright © 2014, QNX Software Systems Limited 101

Table of events

#Args: SCHED_YIELD, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SIGNAL_FAULT
Fast: sigcode, addr
Wide: sigcode, addr
Call: N/A
#Args: SIGNAL_FAULT, fDsigcode, fPaddr

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SIGNAL_FAULT
Fast: ret_val, reg_1
Wide: ret_val, reg_1, reg_2, reg_3, reg_4, reg_5
Call: N/A
#Args: SIGNAL_FAULT, fHret_val, fHreg_1, Hreg_2, Hreg_3, Hreg_4, Hreg_5

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SIGNAL_KILL
Fast: pid, signo
Wide: nd, pid, tid, signo, code, value
Call: SignalKill
#Args: SIGNAL_KILL, Hnd, fDpid, Dtid, fDsigno, Hcode, Hvalue

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SIGNAL_KILL
Fast: ret_val, empty
Wide: ret_val, empty
Call: SignalKill
#Args: SIGNAL_KILL, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SIGNAL_RETURN
Fast: s_p, empty
Wide: s_p, empty
Call: SignalReturn
#Args: SIGNAL_RETURN, fPs_p, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SIGNAL_RETURN
Fast: ret_val, empty
Wide: ret_val, empty
Call: SignalReturn
#Args: SIGNAL_RETURN, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SIGNAL_SUSPEND
Fast: sig_blocked->bits[0], sig_blocked->bits[1]
Wide: sig_blocked->bits[0], sig_blocked->bits[1]
Call: SignalSuspend
#Args: SIGNAL_SUSPEND, fHsig_blocked->bits[0], fHsig_blocked->bits[1]

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SIGNAL_SUSPEND
Fast: ret_val, sig_blocked_p
Wide: ret_val, sig_blocked_p
Call: SignalSuspend
#Args: SIGNAL_SUSPEND, fHret_val, fPsig_blocked_p

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SIGNAL_WAITINFO
Fast: sig_wait->bits[0], sig_wait->bits[1]
Wide: sig_wait->bits[0], sig_wait->bits[1]
Call: SignalWaitinfo
#Args: SIGNAL_WAITINFO, fHsig_wait->bits[0], fHsig_wait->bits[1]

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SIGNAL_WAITINFO
Fast: sig_num, si_code
Wide: sig_num, si_signo, si_code, si_errno, p[0], p[1], p[2], p[3], p[4], p[5], p[6]
Call: SignalWaitinfo
#Args: SIGNAL_WAITINFO, fHsig_wait->bits[0], fHsig_wait->bits[1]

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SYNC_CONDVAR_SIGNAL
Fast: sync_p, all
Wide: sync_p, all, sync->count, sync->owner
Call: SyncCondvarSignal
#Args: SYNC_CONDVAR_SIGNAL, fPsync_p, fDall, Dsync->count, Dsync->owner

Class: _NTO_TRACE_KERCALLEXIT

102 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

Event: __KER_SYNC_CONDVAR_SIGNAL
Fast: ret_val, empty
Wide: ret_val, empty
Call: SyncCondvarSignal
#Args: SYNC_CONDVAR_SIG, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SYNC_CONDVAR_WAIT
Fast: sync_p, mutex_p
Wide: sync_p, mutex_p, sync->count, sync->owner, mutex->count, mutex->owner
Call: SyncCondvarWait
#Args: SYNC_CONDVAR_WAIT, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SYNC_CONDVAR_WAIT
Fast: ret_val, empty
Wide: ret_val, empty
Call: SyncCondvarWait
#Args: SYNC_CONDVAR_WAIT, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SYNC_CREATE
Fast: type, sync_p
Wide: type, sync_p, count, owner, protocol, flags, prioceiling, clockid
Call: SyncCreate
#Args: SYNC_CREATE, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SYNC_CREATE
Fast: ret_val, empty
Wide: ret_val, empty
Call: SyncCreate
#Args: SYNC_CREATE, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SYNC_CTL
Fast: cmd, sync_p
Wide: cmd, sync_p, data_p, count, owner
Call: SyncCtl
#Args: SYNC_CTL, fDcmd, fPsync_p, Pdata_p, Dcount, Downer

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SYNC_CTL
Fast: ret_val, empty
Wide: ret_val, empty
Call: SyncCtl
#Args: SYNC_CTL, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SYNC_DESTROY
Fast: sync_p, owner
Wide: sync_p, count, owner
Call: SyncDestroy
#Args: SYNC_DESTROY, fPsync_p, Dcount, fDowner

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SYNC_DESTROY
Fast: ret_val, empty
Wide: ret_val, empty
Call: SyncDestroy
#Args: SYNC_DESTROY, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SYNC_MUTEX_LOCK
Fast: sync_p, owner
Wide: sync_p, count, owner
Call: SyncMutexLock
#Args: SYNC_MUTEX_LOCK, fPsync_p, Dcount, fDowner

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SYNC_MUTEX_LOCK
Fast: ret_val, empty
Wide: ret_val, empty
Call: SyncMutexLock
#Args: SYNC_MUTEX_LOCK, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SYNC_MUTEX_REVIVE
Fast: sync_p, owner
Wide: sync_p, count, owner

Copyright © 2014, QNX Software Systems Limited 103

Table of events

Call: SyncMutexRevive
#Args: SYNC_MUTEX_REVIVE, fPsync_p, Dcount, fDowner

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SYNC_MUTEX_REVIVE
Fast: ret_val, empty
Wide: ret_val, empty
Call: SyncMutexRevive
#Args: SYNC_MUTEX_REVIVE, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SYNC_MUTEX_UNLOCK
Fast: sync_p, owner
Wide: sync_p, count, owner
Call: SyncMutexUnlock
#Args: SYNC_MUTEX_UNLOCK, fPsync_p, Dcount, fDowner

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SYNC_MUTEX_UNLOCK
Fast: ret_val, empty
Wide: ret_val, empty
Call: SyncMutexUnlock
#Args: SYNC_MUTEX_UNLOCK, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SYNC_SEM_POST
Fast: sync_p, count
Wide: sync_p, count, owner
Call: SyncSemPost
#Args: SYNC_SEM_POST, fPsync_p, fDcount, Downer

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SYNC_SEM_POST
Fast: ret_val, empty
Wide: ret_val, empty
Call: SyncSemPost
#Args: SYNC_SEM_POST, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SYNC_SEM_WAIT
Fast: sync_p, count
Wide: sync_p, try, count, owner
Call: SyncSemWait
#Args: SYNC_SEM_WAIT, fPsync_p, Dtry, fDcount, Downer

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SYNC_SEM_WAIT
Fast: ret_val, empty
Wide: ret_val, empty
Call: SyncSemWait
#Args: SYNC_SEM_WAIT, fDret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SYS_CPUPAGE_GET
Fast: index, empty
Wide: index, empty
Call: N/A
#Args: SYS_CPUPAGE_GET, fDindex, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SYS_CPUPAGE_GET
Fast: ret_val, empty
Wide: ret_val, empty
Call: N/A
#Args: SYS_CPUPAGE_GET, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_THREAD_CANCEL
Fast: tid, canstub_p
Wide: tid, canstub_p
Call: ThreadCancel
#Args: THREAD_CANCEL, fDtid, fPcanstub_p

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_THREAD_CANCEL
Fast: ret_val, empty
Wide: ret_val, empty
Call: ThreadCancel
#Args: THREAD_CANCEL, fHret_val, fHempty

104 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_THREAD_CREATE
Fast: func_p, arg_p
Wide: pid, func_p, arg_p, flags, stacksize, stackaddr_p, exitfunc_p, policy,
 sched_priority, sched_curpriority, param.ss_low_priority, param.ss_max_repl,
 param.ss_repl_period.tv_sec, param.ss_repl_period.tv_nsec,
 param.ss_init_budget.tv_sec, param.ss_init_budget.tv_nsec
Call: ThreadCreate
#Args: THREAD_CREATE, fHthread_id, fHowner

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_THREAD_CREATE
Fast: thread_id, owner
Wide: thread_id, owner
Call: ThreadCreate
#Args: THREAD_CREATE, fHthread_id, fHowner

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_THREAD_CTL
Fast: cmd, data_p
Wide: cmd, data_p
Call: ThreadCtl
#Args: THREAD_CTL, fHcmd, fPdata_p

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_THREAD_CTL
Fast: ret_val, empty
Wide: ret_val, empty
Call: ThreadCtl
#Args: THREAD_CTL, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_THREAD_DESTROY
Fast: tid, status_p
Wide: tid, priority, status_p
Call: ThreadDestroy
#Args: THREAD_DESTROY, fDtid, Dpriority, fPstatus_p

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_THREAD_DESTROY
Fast: ret_val, empty
Wide: ret_val, empty
Call: ThreadDestroy
#Args: THREAD_DESTROY, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_THREAD_DESTROYALL
Fast: empty, empty
Wide: empty, empty
Call: N/A
#Args: THREAD_DESTROYALL, fHempty, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_THREAD_DESTROYALL
Fast: ret_val, empty
Wide: ret_val, empty
Call: N/A
#Args: THREAD_DESTROYALL, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_THREAD_DETACH
Fast: tid, empty
Wide: tid, empty
Call: ThreadDetach
#Args: THREAD_DETACH, fDtid, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_THREAD_DETACH
Fast: ret_val, empty
Wide: ret_val, empty
Call: ThreadDetach
#Args: THREAD_DETACH, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_THREAD_JOIN
Fast: tid, status_p
Wide: tid, status_p
Call: ThreadJoin
#Args: THREAD_JOIN, fDtid, fPstatus_p

Copyright © 2014, QNX Software Systems Limited 105

Table of events

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_THREAD_JOIN
Fast: ret_val, status_p
Wide: ret_val, status_p
Call: ThreadJoin
#Args: THREAD_JOIN, fHret_val, fPstatus_p

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_TIMER_CREATE
Fast: timer_id, event->sigev_notify
Wide: timer_id, event->sigev_notify, event->sigev_notify_function_p,
 event->sigev_value, event->sigev_notify_attributes_p
Call: TimerCreate
#Args: TIMER_CREATE, fHtimer_id, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_TIMER_CREATE
Fast: timer_id, empty
Wide: timer_id, empty
Call: TimerCreate
#Args: TIMER_CREATE, fHtimer_id, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_TIMER_DESTROY
Fast: id, empty
Wide: id, empty
Call: TimerDestroy
#Args: TIMER_DESTROY, fHid, fHempty

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_TIMER_DESTROY
Fast: ret_val, empty
Wide: ret_val, empty
Call: TimerDestroy
#Args: TIMER_DESTROY, fHret_val, fHempty

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_TIMER_INFO
Fast: pid, id
Wide: pid, id, flags, info_p
Call: TimerInfo
#Args: TIMER_INFO, fDpid, fHid, Hflags, Pinfo_p

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_TIMER_INFO
Fast: prev_id, info->itime.nsec
Wide: prev_id, info->itime.nsec, info->itime.interval_nsec, info->otime.nsec,
 info->otime.interval_nsec, info->flags, info->tid, info->notify,
 info->clockid, info->overruns, info->event.sigev_notify,
 info->event.sigev_notify_function_p, info->event.sigev_value,
 info->event.sigev_notify_attributes_p
Call: TimerInfo
#Args: TIMER_INFO, fDpid, fHid, Hflags, Pinfo_p

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_TRACE_EVENT
Fast: mode, class
Wide: mode, class, event, data_1, data_2
Call: TraceEvent
#Args: TRACE_EVENT, fHmode, fHclass[header], Hevent[time_off], Hdata_1, Hdata_2

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_TRACE_EVENT
Fast: ret_val, empty
Wide: ret_val, empty
Call: TraceEvent
#Args: TRACE_EVENT, fHret_val, fHempty

Class: _NTO_TRACE_INTENTER
Event: _NTO_TRACE_INTFIRST - _NTO_TRACE_INTLAST
Fast: IP, kernel_flag
Wide: interrupt_number, kernel_flag
Call: N/A

Class: _NTO_TRACE_INTEXIT
Event: _NTO_TRACE_INTFIRST - _NTO_TRACE_INTLAST
Fast: interrupt_number, kernel_flag
Wide: interrupt_number, kernel_flag
Call: N/A

106 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

Class: _NTO_TRACE_INT_HANDLER_ENTER
Event: _NTO_TRACE_INTFIRST - _NTO_TRACE_INTLAST
Fast: pid, interrupt_number, ip, area
Wide: pid, interrupt_number, ip, area
Call: N/A

Class: _NTO_TRACE_INT_HANDLER_EXIT
Event: _NTO_TRACE_INTFIRST - _NTO_TRACE_INTLAST
Fast: interrupt_number, sigevent
Wide: interrupt_number, sigevent
Call: N/A

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SIGNAL_ACTION
Fast: signo, act->sa_handler_p
Wide: pid, sigstub_p, signo, act->sa_handler_p, act->sa_flags,
 act->sa_mask.bits[0], act->sa_mask.bits[1]
Call: SignalAction

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SIGNAL_ACTION
Fast: ret_val, act->sa_handler_p
Wide: ret_val, act->sa_handler_p, act->sa_flags, act->sa_mask.bits[0],
 act->sa_mask.bits[1]
Call: SignalAction

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_SIGNAL_PROCMASK
Fast: pid, tid
Wide: pid, tid, how, sig_blocked->bits[0], sig_blocked->bits[1]
Call: SignalProcmask

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_SIGNAL_PROCMASK
Fast: ret_val, sig_blocked->bits[0]
Wide: ret_val, sig_blocked->bits[0], sig_blocked->bits[1]
Call: SignalProcmask

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_TIMER_SETTIME
Fast: clock_id, itime->nsec
Wide: clock_id, flags, itime->nsec, itime->interval_nsec
Call: TimerSettime

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_TIMER_SETTIME
Fast: ret_val, itime->nsec
Wide: ret_val, itime->nsec, itime->interval_nsec
Call: TimerSettime

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_TIMER_ALARM
Fast: clock_id, itime->nsec
Wide: clock_id, itime->nsec, itime->interval_nsec
Call: TimerAlarm

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_TIMER_ALARM
Fast: ret_val, itime->nsec
Wide: ret_val, itime->nsec, itime->interval_nsec
Call: TimerAlarm

Class: _NTO_TRACE_KERCALLENTER
Event: __KER_TIMER_TIMEOUT
Fast: clock_id, timeout_flags, ntime
Wide: clock_id, timeout_flags, ntime, event->sigev_notify,
 event->sigev_notify_function_p, event->sigev_value,
 event->sigev_notify_attributes_p
Call: TimerTimeout

Class: _NTO_TRACE_KERCALLEXIT
Event: __KER_TIMER_TIMEOUT
Fast: prev_timeout_flags, otime
Wide: prev_timeout_flags, otime
Call: TimerTimeout

Control Events

Class: _NTO_TRACE_CONTROL
Event: _NTO_TRACE_CONTROLTIME

Copyright © 2014, QNX Software Systems Limited 107

Table of events

Fast: msbtime, lsbtime
Wide: msbtime, lsbtime
Call: N/A

Class: _NTO_TRACE_CONTROL
Event: _NTO_TRACE_CONTROLBUFFER
Fast: buffer sequence number, num events
Wide: buffer sequence number, num events
Call: N/A

Process Events

Class: _NTO_TRACE_PROCESS
Event: _NTO_TRACE_PROCCREATE
Fast: ppid, pid
Wide: ppid, pid
Call: N/A

Class: _NTO_TRACE_PROCESS
Event: _NTO_TRACE_PROCCREATE_NAME
Fast: ppid, pid, name
Wide: ppid, pid, name
Call: N/A

Class: _NTO_TRACE_PROCESS
Event: _NTO_TRACE_PROCDESTROY
Fast: ppid, pid
Wide: ppid, pid
Call: N/A

Class: _NTO_TRACE_PROCESS
Event: _NTO_TRACE_PROCDESTROY_NAME
Fast: ppid, pid, name
Wide: ppid, pid, name
Call: N/A

Class: _NTO_TRACE_PROCESS
Event: _NTO_TRACE_PROCTHREAD_NAME
Fast: pid, tid, name
Wide: pid, tid, name
Call: N/A

#Thread state changes

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THDEAD
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THRUNNING
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THREADY
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THSTOPPED
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.

108 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THSEND
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THRECEIVE
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THREPLY
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THSTACK
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THWAITTHREAD
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THWAITPAGE
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THSIGSUSPEND
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD

Copyright © 2014, QNX Software Systems Limited 109

Table of events

Event: _NTO_TRACE_THSIGWAITINFO
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THNANOSLEEP
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THMUTEX
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THCONDVAR
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THJOIN
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THINTR
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THSEM
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THWAITCTX
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags

110 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THNET_SEND
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THNET_REPLY
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THCREATE
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THDESTROY
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

Class: _NTO_TRACE_THREAD
Event: _NTO_TRACE_THNET_REPLY
Fast: pid, tid
Wide: pid, tid, priority, policy, partition id, sched_flags
 (incl APS_SCHED_* critical bit def'd in kermacros.h)
 note: partition id and sched_flags only present if APS scheduler module
 is loaded.
 ** note: partition id and sched_flags only present if APS scheduler module
 is loaded.
Call: N/A

#VThread state changes

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHDEAD
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHRUNNING
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHREADY
Fast: pid, tid
Wide: pid, tid

Copyright © 2014, QNX Software Systems Limited 111

Table of events

Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHSTOPPED
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHSEND
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHRECEIVE
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHREPLY
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHSTACK
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHWAITTHREAD
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHWAITPAGE
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHSIGSUSPEND
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHSIGWAITINFO
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHNANOSLEEP
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHMUTEX
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHCONDVAR
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHJOIN
Fast: pid, tid
Wide: pid, tid
Call: N/A

112 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHINTR
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHSEM
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHWAITCTX
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHNET_SEND
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHNET_REPLY
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHCREATE
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHDESTROY
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_VTHREAD
Event: _NTO_TRACE_VTHNET_REPLY
Fast: pid, tid
Wide: pid, tid
Call: N/A

Class: _NTO_TRACE_COMM
Event: _NTO_TRACE_COMM_SMSG
Fast: rcvid, pid
Wide: rcvid, pid
Call: N/A

Class: _NTO_TRACE_COMM
Event: _NTO_TRACE_COMM_RMSG
Fast: rcvid, pid
Wide: rcvid, pid
Call: N/A

Class: _NTO_TRACE_COMM
Event: _NTO_TRACE_COMM_REPLY
Fast: tid, pid
Wide: tid, pid
Call: N/A

Class: _NTO_TRACE_COMM
Event: _NTO_TRACE_COMM_ERROR
Fast: tid, pid
Wide: tid, pid
Call: N/A

Class: _NTO_TRACE_COMM
Event: _NTO_TRACE_COMM_SPULSE
Fast: scoid, pid
Wide: scoid, pid
Call: N/A

Class: _NTO_TRACE_COMM
Event: _NTO_TRACE_COMM_RPULSE

Copyright © 2014, QNX Software Systems Limited 113

Table of events

Fast: scoid, pid
Wide: scoid, pid
Call: N/A

SIGEV_PULSE delivered
Class: _NTO_TRACE_COMM
Event: _NTO_TRACE_COMM_SPULSE_EXE
Fast: scoid, pid
Wide: scoid, pid
Call: N/A

_PULSE_CODE_DISCONNECT pulse delivered
Class: _NTO_TRACE_COMM
Event: _NTO_TRACE_COMM_SPULSE_DIS
Fast: scoid, pid
Wide: scoid, pid
Call: N/A

_PULSE_CODE_COIDDEATH pulse delivered
Class: _NTO_TRACE_COMM
Event: _NTO_TRACE_COMM_SPULSE_DEA
Fast: scoid, pid
Wide: scoid, pid
Call: N/A

_PULSE_CODE_UNBLOCK delivered
Class: _NTO_TRACE_COMM
Event: _NTO_TRACE_COMM_SPULSE_UN
Fast: scoid, pid
Wide: scoid, pid
Call: N/A

_PULSE_CODE_NET_UNBLOCK delivered
Class: _NTO_TRACE_COMM
Event: _NTO_TRACE_COMM_SPULSE_QUN
Fast: scoid, pid
Wide: scoid, pid
Call: N/A

Class: _NTO_TRACE_COMM
Event: _NTO_TRACE_COMM_SIGNAL
Fast: si_signo, si_code
Wide: si_signo, si_code, si_errno, __data.__pad[0-6]
Call: N/A

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_PATHMGR
Fast: pid, tid, pathname
Wide: pid, tid, pathname
Call: Any pathname operation (routed via libc connect)

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_APS_NAME
Fast: partition id, partition name
Wide: partition id, partition name
Call: SchedCtl with sched_aps.h:: SCHED_APS_CREATE_PARTITION

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_APS_BUDGETS
Fast: partition id, new percentage cpu budget, new critical budget ms
Wide: partition id, new percentage cpu budget, new critical budget ms
Call: SchedCtl with sched_aps.h SCHED_APS_CREATE_PARTITION or
 SCHED_APS_MODIFY_PARTITION. Also emitted automatically when APS scheduler
 clears a crtical budget as part of handling a bankruptcy.

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_APS_BNKR
Fast: suspect pid, suspect tid, partition id
Wide: suspect pid, suspect tid, parition id
Call: automatically when a partition exceeds its critical budget.

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_MMAP
Fast: pid, addr (64), len (64), flags
Wide: pid, addr (64), len (64), flags, prot, fd, align (64), offset (64), name
Call: mmap/mmap64

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_MUNMAP
Fast: pid, addr (64), len (64)

114 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

Wide: pid, addr (64), len (64)
Call: munmap

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_MAPNAME
Fast: pid, addr (32), len (32), name
Wide: pid, addr (32), len (32), name
Call: dlopen

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_ADDRESS
Fast: addr(32), <null>
Wide: addr(32), <null>
Call: whenever a breakpoint is hit

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_FUNC_ENTER
Fast: thisfn(32), call_site(32)
Wide: thisfn(32), call_site(32)
Call: whenever a function is entered (and it is instrumented)

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_FUNC_EXIT
Fast: thisfn(32), call_site(32)
Wide: thisfn(32), call_site(32)
Call: whenever a function is exited (and it is instrumented)

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_SLOG
Fast: opcode(32), severity(32), message
Wide: opcode(32), severity(32), message
Call: when the kernel wants to note an unusual occurrance

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_DEFRAG_START
Fast: block_size(32)
Wide: block_size(32)
Call: when the memory defragmentation compaction_minimal algorithm is triggered

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_RUNSTATE
Fast: bitset(32) 0x1 - CPU is on/offline, 0x2 - CPU manually requested
 on/offline, 0x4 CPU is dynamically offline-able or not, 0x8 system is
 in runstate burst mode
Wide: same as above
Call: when the runstate for a CPU changes

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_POWER
Fast: bitset(32), mode(32)
Wide: same as above
Call: idle mode entry/exit, CPU frequency change

 The bitset field holds the following:

 /* Power event flags */
 #define _NTO_TRACE_POWER_CPUMASK 0x0000ffffu
 #define _NTO_TRACE_POWER_IDLE 0x00010000u
 #define _NTO_TRACE_POWER_START 0x00020000u
 #define _NTO_TRACE_POWER_IDLE_REACHED 0x00040000u /* for _NTO_TRACE_POWER_IDLE */
 #define _NTO_TRACE_POWER_VFS_OVERDRIVE 0x00040000u /* for !_NTO_TRACE_POWER_IDLE */
 #define _NTO_TRACE_POWER_VFS_DYNAMIC 0x00080000u /* for !_NTO_TRACE_POWER_IDLE */
 #define _NTO_TRACE_POWER_VFS_STEP_UP 0x00100000u /* for !_NTO_TRACE_POWER_IDLE */

 The bottom 16 bits is the CPU that the mode change applies to. For
 idle events, this will always be the same as the CPU in the event header.
 For frequency changes, they may be different (e.g. CPU 0 changes CPU 1's
 frequency).

 If the POWER_IDLE bit is on, this an idle event, if off the event is a
 frequency change.

 If the POWER_START bit is on, it means that we're
 starting a power event: idle is being entered, we're kicking off a
 frequency change request. If the bit is off: we're coming out of
 idle, the frequency change has been completed.

 On the idle exit event, the IDLE_REACHED bit indicates that the CPU
 achieved the requested sleep mode.

Copyright © 2014, QNX Software Systems Limited 115

Table of events

 For frequency entry events, the VFS_OVERDRIVE bit indicates that the
 change was being requested by the reception of an overdrive
 sigevent. The VFS_DYNAMIC bit indicates that the DVFS algorithm is
 requesting a change due to CPU loading. If neither is on, it's a change
 due to powerman's list of allowed modes no longer including the
 frequency that we were previously running at.

 The second word of the event is the mode of the power event. For idle
 events, this is the number given by the "sleep=?" characteristic in the
 powerman configuration file. For frequency events, this is the
 value given by the "throughput=?" characteristic (usually the CPU
 frequency).

 Note that for frequency events, the second word for the entry
 event and exit event may be different. E.g. powerman might request
 CPU 0 to be run at 300MHz, but CPU 0 & CPU 1 frequencies are tied
 together and CPU 1 wants to run at 800MHz. In that case the CPU
 specific code may decide to run CPU 0 at 800MHz instead of the
 requested 300 and will report the fact in the exit event. Treat the
 frequency entry as the requested mode and the exit as the actual
 mode.

 Due to interrupt preemptions, you can not be guaranteed that for each
 entry event there will be a matching exit event and vis versa. E.g.
 there might be multiple idle entries before an idle exit or vis versa.

 Relatively shortly after the start of tracing, powerman will dump a
 series of frequency exit events giving the current frequencies of
 each of the CPU's. You should make the assumption that CPU was
 running in that mode at the start of the trace.

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_IPI
Fast: ipicmd(32), interrupted ip(32)
Wide: same as above
Call: when an inter-processor-interrupt is received

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_PAGEWAIT
Fast: pid(32), tid(32), ip(32), vaddr(32)
Wide: pid(32), tid(32), ip(32), vaddr(32), fault type(32), mmap_flags(32),
 object_offset(64), object_name(string)
Call: during page fault handling

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_SYS_TIMER
Fast: pid(32), tid(32), timer_id(32), flags(32)
Wide: same as above
Call: on timer expiry
Note - the timer_id will be -1 for timer_timeout expiry

Class: _NTO_TRACE_SYSTEM
Event: _NTO_TRACE_DEFRAG_END
Fast: rc(32), freemem(32), maxblock(32)
Wide: rc(32), freemem(32), maxblock(32)
Call: on completion of the defragmentation process (whether successful or not)

116 Copyright © 2014, QNX Software Systems Limited

Current Trace Events and Data

Index

__KER_* events 26
__KER_MSG_SENDV 90, 91
__Ring0() 27
_NTO_TCTL_IO 56
_NTO_TRACE_ALLOCBUFFER 46
_NTO_TRACE_COMM 24
_NTO_TRACE_COMM_* events 24
_NTO_TRACE_CONTROL 25
_NTO_TRACE_CONTROL* events 25
_NTO_TRACE_CONTROLTIME 68
_NTO_TRACE_DEALLOCBUFFER 46
_NTO_TRACE_EMPTY (not currently used) 24
_NTO_TRACE_FIPID 59
_NTO_TRACE_FITID 59
_NTO_TRACE_FLUSHBUFFER 47
_NTO_TRACE_FMPID 59
_NTO_TRACE_FMTID 59
_NTO_TRACE_GETCPU() 58
_NTO_TRACE_GETEVENT_C() 58
_NTO_TRACE_GETEVENT() 58
_NTO_TRACE_INSERTCUSEREVENT 33, 49
_NTO_TRACE_INSERTEVENT 49
_NTO_TRACE_INSERTSUSEREVENT 33, 49
_NTO_TRACE_INSERTUSRSTREVENT 33, 49
_NTO_TRACE_INT 26
_NTO_TRACE_INT_HANDLER_ENTER 26
_NTO_TRACE_INT_HANDLER_EXIT 26
_NTO_TRACE_INT* events 26
_NTO_TRACE_INTENTER 26
_NTO_TRACE_INTEXIT 26
_NTO_TRACE_INTFIRST 26
_NTO_TRACE_INTLAST 26
_NTO_TRACE_KERCALL 26
_NTO_TRACE_KERCALLENTER 26, 90
_NTO_TRACE_KERCALLEXIT 26, 91
_NTO_TRACE_KERCALLINT 26
_NTO_TRACE_PROC* events 30
_NTO_TRACE_PROCESS 30
_NTO_TRACE_QUERYEVENTS 47
_NTO_TRACE_SETALLCLASSESFAST 48
_NTO_TRACE_SETALLCLASSESWIDE 48
_NTO_TRACE_SETCLASSFAST 48
_NTO_TRACE_SETCLASSWIDE 48
_NTO_TRACE_SETEVENT_C() 58
_NTO_TRACE_SETEVENT() 58
_NTO_TRACE_SETEVENTFAST 48
_NTO_TRACE_SETEVENTWIDE 48
_NTO_TRACE_SETLINEARMODE 47
_NTO_TRACE_SETRINGMODE 47
_NTO_TRACE_START 44, 47, 73
_NTO_TRACE_STARTNOSTATE 47, 73
_NTO_TRACE_STOP 43, 44, 47
_NTO_TRACE_SYS_* events 30
_NTO_TRACE_SYSTEM 30
_NTO_TRACE_TH* events 31
_NTO_TRACE_THREAD 31

_NTO_TRACE_USER 33
_NTO_TRACE_USERFIRST 33
_NTO_TRACE_USERLAST 33
_NTO_TRACE_VTH* events 34
_NTO_TRACE_VTHREAD 34
_PULSE_CODE_COIDDEATH 24
_PULSE_CODE_DISCONNECT 24
_PULSE_CODE_NET_UNBLOCK 24
_PULSE_CODE_UNBLOCK 24
.kev extension 45

A

adaptive partitioning 30, 32
event data for 32

Address (IDE event label) 30
ADDRESS (traceprinter event label) 30
APS Bankruptcy (IDE event label) 30
APS Budgets (IDE event label) 30
APS Name (IDE event label) 30
APS_BANKRUPTCY (traceprinter event label) 30
APS_NAME (traceprinter event label) 30
APS_NEW_BUDGET (traceprinter event label) 30

B

bankruptcy (adaptive partitions) 30
Buffer (IDE event label) 25
BUFFER (traceprinter event label) 25
buffers, kernel 14, 25, 37, 43, 46, 47, 67

circular linked list 37
events concerning 25
flushing 47
managing 43, 46
specifications 37

C

ChannelConnectAttr() 27
ChannelCreate() 27
ChannelDestroy() 27
circular linked list 37
classes 24, 25, 26, 30, 31, 33, 34, 48, 58

_NTO_TRACE_EMPTY (not currently used) 24
Communication 24
Control 25
Interrupt 26
Kernel-call 26
Process 30
pseudo 26

_NTO_TRACE_INT 26
_NTO_TRACE_KERCALL 26

setting fast or wide mode for 48
System 30
Thread 31

Copyright © 2014, QNX Software Systems Limited 117

System Analysis Toolkit (SAT) User's Guide

classes (continued)
type, extracting from the header 58
User 33
Virtual thread 34

ClockAdjust() 27
ClockId() 27
ClockPeriod() 27
clocks, importance of synchronizing on multicore systems 42
ClockTime() 27
combine events 22, 33, 67

user-defined 33
communication, events concerning 24
Compaction (IDE event label) 30
COMPACTION (traceprinter event label) 30
Condvar (IDE event label) 31
configuring 41

data capture 41
instrumented kernel 41

ConnectAttach() 27
ConnectClientInfo() 27
ConnectDetach() 27
ConnectFlags() 27
ConnectServerInfo() 27
control of tracing, events concerning 25
CPU index, extracting from an event 58
Create Process (IDE event label) 30
Create Process Name (IDE event label) 30
Create Thread (IDE event label) 31
Create VThread (IDE event label) 34
critical budgets, exceeding (adaptive partitions) 30
custom events 33

D

daemon mode 44
data capture 14, 41
data interpretation 14, 63, 66, 67, 68
data reduction 51
Dead (IDE event label) 31
Death Pulse (IDE event label) 24
defragmentation of memory 30
Destroy Process (IDE event label) 30
Destroy Thread (IDE event label) 31
Destroy VThread (IDE event label) 34
Disconnect Pulse (IDE event label) 24
dlopen() 30
dynamic rules filter 51, 56

E

Enter (IDE event label) 27
Entry (IDE event label) 26
Error (IDE event label) 24
error codes, included in trace event data for kernel calls 90
event_data_t 57
events 19, 22, 24, 25, 26, 30, 31, 33, 34, 47, 48, 49, 56,

57, 58, 59, 67, 89
classes 24, 25, 26, 30, 31, 33, 34

Communication 24
Control 25
Interrupt 26
Kernel calls 26

events (continued)
classes (continued)

Process 30
System 30
Thread 31
User 33
Virtual thread 34

combine 22
data for 89
getting the number of in a trace buffer 47
handlers 56, 57, 59

adding 56
functions safe to use within 57
removing 59

inserting 49
interpreting 67
setting fast or wide mode for 48
simple 22
type, extracting from the header 58

examples of tracing 69
Exit (IDE event label) 26, 27
extended daemon mode 44

F

fast mode 23, 44, 48
setting with TraceEvent() 48
setting with tracelogger 44

filters 45, 51
FUNC_ENTER (traceprinter event label) 30
FUNC_EXIT (traceprinter event label) 30
Function Enter (IDE event label) 30
Function Exit (IDE event label) 30
functions 30, 57

instrumented for profiling 30
safe to use in an event handler 57

H

Handler Entry (IDE event label) 26
Handler Exit (IDE event label) 26

I

I/O 56
privileges, requesting 56

I/O privileges 56
initial state information, suppressing 73
instrumented (for profiling) functions 30
instrumented kernel 14, 37, 41, 68

configuring 41
Int (IDE event label) 27
INT_CALL (traceprinter event label) 27
INT_ENTR (traceprinter event label) 26
INT_EXIT (traceprinter event label) 26
INT_HANDLER_ENTR (traceprinter event label) 26
INT_HANDLER_EXIT (traceprinter event label) 26
Integrated Development Environment (IDE) 16, 24, 25, 26,

27, 30, 31, 33, 34, 41, 45, 61
event labels 24, 25, 26, 27, 30, 31, 33, 34

Address 30

118 Copyright © 2014, QNX Software Systems Limited

Index

Integrated Development Environment (IDE) (continued)
event labels (continued)

APS Bankruptcy 30
APS Budgets 30
APS Name 30
Buffer 25
Compaction 30
Condvar 31
Create Process 30
Create Process Name 30
Create Thread 31
Create VThread 34
Dead 31
Death Pulse 24
Destroy Process 30
Destroy Thread 31
Destroy VThread 34
Disconnect Pulse 24
Enter 27
Entry 26
Error 24
Exit 26, 27
Function Enter 30
Function Exit 30
Handler Entry 26
Handler Exit 26
Int 27
Interrupt 31
Join 31
MMap 30
MMap Name 30
MMUnmap 30
Mutex 31
NanoSleep 31
NetReply 31
NetSend 31
Path Manager 30
QNet Unblock Pulse 24
Ready 31
Receive 31
Receive Message 24
Receive Pulse 24
Reply 24, 31
Running 31
Semaphore 31
Send 31
Send Message 24
Send Pulse 24
Sigevent Pulse 24
Signal 24
SigSuspend 31
SigWaitInfo 31
Stack 31
Stopped 31
System Log 30
Thread Name 30
Time 25
Unblock Pulse 24
User Event 33
VCondvar 34
VDead 34
VInterrupt 34

Integrated Development Environment (IDE) (continued)
event labels (continued)

VJoin 34
VMutex 34
VNanosleep 34
VNetReply 34
VNetSend 34
VReady 34
VReceive 34
VReply 34
VRunning 34
VSemaphore 34
VSend 34
VSigSuspend 34
VSigWaitInfo 34
VStack 34
VStopped 34
VWaitCtx 34
VWaitPage 34
VWaitThread 34
WaitCtx 31
WaitPage 31
WaitThread 31

recognizes the .kev extension 45
interlacing 67
Interrupt (IDE event label) 31
InterruptAttach() 27
InterruptDetach() 27
InterruptMask() 27
interrupts, events concerning 26
InterruptUnmask() 27
InterruptWait() 27

J

Join (IDE event label) 31

K

KER_CALL (traceprinter event label) 27
KER_EXIT (traceprinter event label) 27
kernel 56

calls 56
ThreadCtl(), ThreadCtl_r() 56

kernel buffers 14, 25, 37, 67
circular linked list 37
events concerning 25
specifications 37

kernel calls 26, 90
events concerning 26
trace event data on failure 90

L

library 66
linear mode 43
log 45

M

MAPNAME (traceprinter event label) 30

Copyright © 2014, QNX Software Systems Limited 119

System Analysis Toolkit (SAT) User's Guide

memory defragmentation 30
memory, tracelogger output in shared 45
messages 24
MMap (IDE event label) 30
MMAP (traceprinter event label) 30
MMap Name (IDE event label) 30
mmap(), mmap64() 30
MMUnmap (IDE event label) 30
MSG_ERROR (traceprinter event label) 24
MsgCurrent() 27
MsgDeliverEvent() 27
MsgError() 24, 27
MsgInfo() 27
MsgKeyData() 27
MsgRead() 27
MsgReadIov() 27
MsgReadv() 27
MsgReceive() 27
MsgReceivePulse() 27
MsgReceivePulsev() 27
MsgReceivev() 27
MsgReply() 27
MsgReplyv() 27
MsgSend() 27, 90
MsgSendnc() 27
MsgSendPulse() 27
MsgSendv() 27, 90
MsgSendvnc() 27
MsgSendvs() 27, 90
MsgSendvsnc() 27
MsgVerifyEvent() 27
MsgWrite() 27
MsgWritev() 27
multicore systems 42, 58

extracting the CPU index from an event 58
importance of synchronizing clocks 42

MUNMAP (traceprinter event label) 30
munmap() 30
Mutex (IDE event label) 31

N

NanoSleep (IDE event label) 31
NetCred() 27
NetInfoScoid() 27
NetReply (IDE event label) 31
NetSend (IDE event label) 31
NetSignalKill() 27
NetUnblock() 27
NetVtid() 27
normal mode 44

O

open() 30

P

partitions, adaptive 30
path manager 30
Path Manager (IDE event label) 30

PATHMGR_OPEN (traceprinter event label) 30
post-processing filter 51, 60
PROCCREATE (traceprinter event label) 30
PROCCREATE_NAME (traceprinter event label) 30
PROCDESTROY (traceprinter event label) 30
processes 56

I/O privileges, requesting 56
processes, events concerning 30
PROCMGR_AID_IO 56
PROCMGR_AID_TRACE 46, 56
PROCTHREAD_NAME (traceprinter event label) 30
profiling, functions instrumented for 30
pseudo-classes 26

_NTO_TRACE_INT 26
_NTO_TRACE_KERCALL 26

pulses 24

Q

qconn 41
Qnet 34
QNet Unblock Pulse (IDE event label) 24

R

Ready (IDE event label) 31
REC_MESSAGE (traceprinter event label) 24
REC_PULSE (traceprinter event label) 24
Receive (IDE event label) 31
Receive Message (IDE event label) 24
Receive Pulse (IDE event label) 24
Reply (IDE event label) 24, 31
REPLY_MESSAGE (traceprinter event label) 24
ring mode 43
Running (IDE event label) 31

S

SAT 11, 12, 14
SCHED_APS_CREATE_PARTITION 30
SCHED_APS_MODIFY_PARTITION 30
SchedGet() 27
SchedInfo() 27
SchedSet() 27
SchedYield() 27
Semaphore (IDE event label) 31
Send (IDE event label) 31
Send Message (IDE event label) 24
Send Pulse (IDE event label) 24
shared memory, tracelogger output in 45
SIGEV_PULSE 24
Sigevent Pulse (IDE event label) 24
SIGINT 43
Signal (IDE event label) 24
SIGNAL (traceprinter event label) 24
SignalAction() 27
SignalKill() 27
SignalProcmask() 27
SignalReturn() 27
SignalSuspend() 27
SignalWaitInfo() 27

120 Copyright © 2014, QNX Software Systems Limited

Index

SigSuspend (IDE event label) 31
SigWaitInfo (IDE event label) 31
simple events 22, 33, 67

user-defined 33
SLOG (traceprinter event label) 30
SND_MESSAGE (traceprinter event label) 24
SND_PULSE (traceprinter event label) 24
SND_PULSE_DEA (traceprinter event label) 24
SND_PULSE_DIS (traceprinter event label) 24
SND_PULSE_EXE (traceprinter event label) 24
SND_PULSE_QUN (traceprinter event label) 24
SND_PULSE_UN (traceprinter event label) 24
Stack (IDE event label) 31
state information, suppressing initial 73
states 31, 34

threads 31
virtual threads 34

static rules filter 51, 53
Stopped (IDE event label) 31
string events, user-defined 33
structures 67
SyncCondvarSignal() 27
SyncCondvarWait() 27
SyncCtl() 27
SyncDestroy() 27
SyncMutexLock() 27
SyncMutexRevive() 27
SyncMutexUnlock() 27
SyncSemPost() 27
SyncSemWait() 27
SyncTypeCreate() 27
system information, suppressing initial 73
system log 30
System Log (IDE event label) 30
system, events concerning 30

T

TDP (Transparent Distributed Processing) 34
Technical support 10
THCONDVAR (traceprinter event label) 31
THCREATE (traceprinter event label) 31
THDEAD (traceprinter event label) 31
THDESTROY (traceprinter event label) 31
THINTR (traceprinter event label) 31
THJOIN (traceprinter event label) 31
THMUTEX (traceprinter event label) 31
THNANOSLEEP (traceprinter event label) 31
THNET_REPLY (traceprinter event label) 31
THNET_SEND (traceprinter event label) 31
Thread Name (IDE event label) 30
ThreadCancel() 27
ThreadCreate() 27
ThreadCtl() 27, 56
ThreadCtl(), ThreadCtl_r() 56
ThreadDestroy() 27
ThreadDetach() 27
ThreadJoin() 27
threads, events concerning 20, 31, 34
THREADY (traceprinter event label) 31
THRECEIVE (traceprinter event label) 31
THREPLY (traceprinter event label) 31

THRUNNING (traceprinter event label) 31
THSEM (traceprinter event label) 31
THSEND (traceprinter event label) 31
THSIGSUSPEND (traceprinter event label) 31
THSIGWAITINFO (traceprinter event label) 31
THSTACK (traceprinter event label) 31
THSTOPPED (traceprinter event label) 31
THWAITCTX (traceprinter event label) 31
THWAITPAGE (traceprinter event label) 31
THWAITTHREAD (traceprinter event label) 31
Time (IDE event label) 25
TIME (traceprinter event label) 25
TimerAlarm() 27
TimerCreate() 27
TimerDestroy() 27
TimerInfo() 27
TimerSettime() 27
TimerTimeout() 27
timestamps 25, 42, 68

importance of synchronizing on multicore systems 42
trace_func_enter() 31, 49
trace_func_exit() 31, 49
trace_here() 31, 49
trace_logb() 33, 49
trace_logbc() 49
trace_logf() 33, 49
trace_logi() 33, 49
trace_nlogf() 33, 49
trace_vnlogf() 33, 49
traceevent_t 67
TraceEvent() 27, 33, 41, 43, 44, 46, 47, 48, 49, 69

controlling tracing with 41, 44, 46
creating user events 33
examples of use 69
inserting events with 49
managing trace buffers 46
modes of operation 47
ring mode 43
wide and fast modes 48

tracelog 45
tracelogger 41, 43, 44, 45, 69

.kev extension 45
controlling tracing with 41
directing the output from 45
examples of use 69
filtering 45
managing trace buffers 43
modes 43
running 43
wide and fast modes 44

traceparser_cs_range() 66
traceparser_cs() 66
traceparser_debug() 66
traceparser_destroy() 66
traceparser_get_info() 66
traceparser_init() 66
traceparser() 66
traceprinter 16, 24, 25, 26, 27, 30, 31, 33, 34, 60, 63, 66

as the basis for your own parser 66
event labels 24, 25, 26, 27, 30, 31, 33, 34

ADDRESS 30
APS_BANKRUPTCY 30

Copyright © 2014, QNX Software Systems Limited 121

System Analysis Toolkit (SAT) User's Guide

traceprinter (continued)
event labels (continued)

APS_NAME 30
APS_NEW_BUDGET 30
BUFFER 25
COMPACTION 30
FUNC_ENTER 30
FUNC_EXIT 30
INT_CALL 27
INT_ENTR 26
INT_EXIT 26
INT_HANDLER_ENTR 26
INT_HANDLER_EXIT 26
KER_CALL 27
KER_EXIT 27
MAPNAME 30
MMAP 30
MSG_ERROR 24
MUNMAP 30
PATHMGR_OPEN 30
PROCCREATE 30
PROCCREATE_NAME 30
PROCDESTROY 30
PROCTHREAD_NAME 30
REC_MESSAGE 24
REC_PULSE 24
REPLY_MESSAGE 24
SIGNAL 24
SLOG 30
SND_MESSAGE 24
SND_PULSE 24
SND_PULSE_DEA 24
SND_PULSE_DIS 24
SND_PULSE_EXE 24
SND_PULSE_QUN 24
SND_PULSE_UN 24
THCONDVAR 31
THCREATE 31
THDEAD 31
THDESTROY 31
THINTR 31
THJOIN 31
THMUTEX 31
THNANOSLEEP 31
THNET_REPLY 31
THNET_SEND 31
THREADY 31
THRECEIVE 31
THREPLY 31
THRUNNING 31
THSEM 31
THSEND 31
THSIGSUSPEND 31
THSIGWAITINFO 31
THSTACK 31
THSTOPPED 31
THWAITCTX 31
THWAITPAGE 31
THWAITTHREAD 31
TIME 25
USREVENT 33
VTHCONDVAR 34

traceprinter (continued)
event labels (continued)

VTHCREATE 34
VTHDEAD 34
VTHDESTROY 34
VTHINTR 34
VTHJOIN 34
VTHMUTEX 34
VTHNANOSLEEP 34
VTHNET_REPLY 34
VTHNET_SEND 34
VTHREADY 34
VTHRECEIVE 34
VTHREPLY 34
VTHRUNNING 34
VTHSEM 34
VTHSEND 34
VTHSIGSUSPEND 34
VTHSIGWAITINFO 34
VTHSTACK 34
VTHSTOPPED 34
VTHWAITCTX 34
VTHWAITPAGE 34
VTHWAITTHREAD 34

interpreting the output 63
post-processing filter 60

tracing 25, 41
control of, events concerning 25
controlling 41

Transparent Distributed Processing (TDP) 34
tutorials 69
Typographical conventions 8

U

Unblock Pulse (IDE event label) 24
User Event (IDE event label) 33
user-defined events 33
USREVENT (traceprinter event label) 33

V

VCondvar (IDE event label) 34
VDead (IDE event label) 34
VInterrupt (IDE event label) 34
virtual threads, events concerning 34
VJoin (IDE event label) 34
VMutex (IDE event label) 34
VNanosleep (IDE event label) 34
VNetReply (IDE event label) 34
VNetSend (IDE event label) 34
VReady (IDE event label) 34
VReceive (IDE event label) 34
VReply (IDE event label) 34
VRunning (IDE event label) 34
VSemaphore (IDE event label) 34
VSend (IDE event label) 34
VSigSuspend (IDE event label) 34
VSigWaitInfo (IDE event label) 34
VStack (IDE event label) 34
VStopped (IDE event label) 34
VTHCONDVAR (traceprinter event label) 34

122 Copyright © 2014, QNX Software Systems Limited

Index

VTHCREATE (traceprinter event label) 34
VTHDEAD (traceprinter event label) 34
VTHDESTROY (traceprinter event label) 34
VTHINTR (traceprinter event label) 34
VTHJOIN (traceprinter event label) 34
VTHMUTEX (traceprinter event label) 34
VTHNANOSLEEP (traceprinter event label) 34
VTHNET_REPLY (traceprinter event label) 34
VTHNET_SEND (traceprinter event label) 34
VTHREADY (traceprinter event label) 34
VTHRECEIVE (traceprinter event label) 34
VTHREPLY (traceprinter event label) 34
VTHRUNNING (traceprinter event label) 34
VTHSEM (traceprinter event label) 34
VTHSEND (traceprinter event label) 34
VTHSIGSUSPEND (traceprinter event label) 34
VTHSIGWAITINFO (traceprinter event label) 34

VTHSTACK (traceprinter event label) 34
VTHSTOPPED (traceprinter event label) 34
VTHWAITCTX (traceprinter event label) 34
VTHWAITPAGE (traceprinter event label) 34
VTHWAITTHREAD (traceprinter event label) 34
VWaitCtx (IDE event label) 34
VWaitPage (IDE event label) 34
VWaitThread (IDE event label) 34

W

WaitCtx (IDE event label) 31
WaitPage (IDE event label) 31
WaitThread (IDE event label) 31
wide mode 23, 44, 48

setting with TraceEvent() 48
setting with tracelogger 44

Copyright © 2014, QNX Software Systems Limited 123

System Analysis Toolkit (SAT) User's Guide

124 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Introduction
	What can the SAT do for you?
	Components of the SAT
	Instrumented kernel
	Kernel buffer management
	Data-capture program (tracelogger)
	Data interpretation (e.g. traceprinter)
	Integrated Development Environment

	Events and the Kernel
	Generating events: a typical scenario
	Multithreaded example
	Thread context-switch time
	Restarting threads

	Simple and combine events
	Fast and wide modes
	Classes and events
	Communication class: _NTO_TRACE_COMM
	Control class: _NTO_TRACE_CONTROL
	Interrupt classes: _NTO_TRACE_INTENTER, _NTO_TRACE_INTEXIT, _NTO_TRACE_INT_HANDLER_ENTER, and _NTO_TRACE_INT_HANDLER_EXIT
	Kernel-call classes: _NTO_TRACE_KERCALLENTER, _NTO_TRACE_KERCALLEXIT, and _NTO_TRACE_KERCALLINT
	Process class: _NTO_TRACE_PROCESS
	System class: _NTO_TRACE_SYSTEM
	Thread class: _NTO_TRACE_THREAD
	User class: _NTO_TRACE_USER
	Virtual thread class: _NTO_TRACE_VTHREAD

	Kernel Buffer Management
	Linked list size
	Full buffers and the high-water mark
	Buffer overruns

	Capturing Trace Data
	Using tracelogger to control tracing
	Managing trace buffers
	tracelogger's modes of operation
	Choosing between wide and fast modes
	Filtering events
	Specifying where to send the output

	Using TraceEvent() to control tracing
	Managing trace buffers
	Modes of operation
	Filtering events
	Choosing between wide and fast modes
	Inserting trace events

	Filtering
	The static rules filter
	The dynamic rules filter
	Setting up a dynamic rules filter
	Event handler
	Removing event handlers

	The post-processing facility

	Interpreting Trace Data
	Using traceprinter and interpreting the output
	Building your own parser
	The traceparser library
	Simple and combine events
	The traceevent_t structure
	Event interlacing
	Timestamps

	Tutorials
	The instrex.h header file
	Gathering all events from all classes
	Gathering all events from one class
	Gathering five events from four classes
	Gathering kernel calls
	Event handling - simple
	Inserting a user simple event

	Current Trace Events and Data
	Interpreting the table
	Table of events

	Index

