
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

The QNX® Neutrino® Cookbook
Recipes for Programmers

©2003–2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, February 20, 2014

Table of Contents

About This Guide ...7
Typographical conventions ...8

Technical support ...10

Foreword to the First Edition by Brian Stecher ..11
Preface to the First Edition by Rob Krten ..13

What's in this book? ..15

Philosophy ...16

The Basics ..16

High Availability ..16

Design Philosophy ...16

Recipes ...17

Web-Counter Resource Manager ..17

ADIOS — Analog / Digital I/O Server ..17

RAM-disk Filesystem Manager ..17

The tar Filesystem Manager ..18

References ...19

What's not in this book? ..20

Other references ...21

Thanks! ...22

Century Aluminum ...22

Chapter 1: The Basics ..23

In the beginning... ..24

The main() function ...24

Command-line processing — optproc() ..25

Common globals ..25

Usage messages ..26

Threaded resource managers ..27

Chapter 2: High Availability ..29

Terminology ..30

Lies, damn lies, and statistics ..31

Increasing availability ..32

Increasing the MTBF ...32

Decreasing the MTTR ..32

Parallel versus serial ..33

Failure modes and recovery models ..36

Cascade failures ..36

Overlords, or Big Brother is watching you ...37

Cold, warm, and hot standby ..38

The QNX® Neutrino® Cookbook

Detecting failure ...41

Graceful fail-over ...42

Using shadows ..44

In-service upgrades ...44

Policies ..46

Implementing HA ...47

RK drones on about his home systems again ...48

Other HA systems ...49

Chapter 3: Design Philosophy ..51

Decoupling design in a message-passing environment ..52

Door-lock actuators ..55

At this point... ...57

Managing message flow ...58

Swipe-card readers ..58

Scalability ..63

Distributed processing ...64

Summary ...65

Chapter 4: Web Counter Resource Manager ..67

Requirements ...68

Using the web counter resource manager ...68

Design ...69

Generating the graphical image ...69

The code — phase 1 ...70

Operation ...70

Step-by-step code walkthrough ...71

The code — phase 2 ...79

Persistent count file ..80

Font selection ...80

Plain text rendering ...81

Writing to the resource ...83

The code — phase 3 ...87

Filename processing tricks ...87

Changes ...88

Enhancements ...96

References ...97

Chapter 5: ADIOS — Analog/Digital I/O Server ..99

Requirements ...100

Design ...102

Driver Design ..102

Shared Memory Design ..104

Tags database design ...104

Table of Contents

The Driver Code ..107

Theory of operation ..107

Code walkthrough ..107

The ADIOS server code ..117

The usual stuff ..117

The shared memory region ...117

Acquiring data ..124

The showsamp and tag utilities ..129

The showsamp utility ...129

The tag utility ...131

References ...134

Chapter 6: RAM-disk Filesystem ..135

Requirements ...136

Connect functions ...136

I/O functions ...136

Missing functions ..137

Design ...138

The code ..139

The extended attributes structure ..139

The io_read() function ..141

The io_write() function ...147

The c_open() function ..151

The c_readlink() function ...161

The c_link() function ...162

The c_rename() function ..164

The c_mknod() function ...166

The c_unlink() function ..166

The io_close_ocb() function ..168

The io_devctl() function ...170

The c_mount() function ..173

References ...175

Chapter 7: TAR Filesystem ..177

Requirements ...178

Design ...179

Creating a .tar file ...179

The code ..184

The structures ...184

The functions ..184

The mount helper program ...191

Variations on a theme ..192

Virtual filesystem for USENET news (VFNews) ..192

Strange and unusual filesystems ...195

The QNX® Neutrino® Cookbook

Secure filesystem ..197

Line-based filesystem ..197

References ...198

Appendix A: Filesystems ...201

What is a filesystem? ..202

Hierarchical arrangement ...202

Data elements ...202

The mount point and the root ...203

What does a filesystem do? ..204

Filesystems and QNX Neutrino ...205

How does a filesystem work? ..207

Mount point management ..207

Pathname resolution ..209

Directory management ...210

Data element content management ...211

References ...213

Appendix B: The /proc Filesystem ..215

The /proc/boot directory ...216

The /proc/mount directory ..217

The /proc by-process-ID directories ...219

Operations on the as entry ..220

Finding a particular process ...221

Finding out information about the process ...223

DCMD_PROC_INFO ...224

DCMD_PROC_MAPINFO and DCMD_PROC_PAGEDATA ...228

DCMD_PROC_TIMERS ...231

DCMD_PROC_IRQS ...233

Finding out information about the threads ...235

References ...242

Appendix C: Sample Programs ...243

Web-Counter resource manager ..244

ADIOS — Analog / Digital I/O Server ...245

RAM-disk and tar filesystem managers ..247

The /proc filesystem ..249

Glossary ..251

Table of Contents

About This Guide

The QNX Neutrino Cookbook: Recipes for Programmers provides “recipes” that will

help you understand how to design and write programs that run on the QNX Neutrino

RTOS. There's a separate archive of the source code for the programs that the book

describes.

This book was originally written by Rob Krten in 2003. In 2011, QNX Software

Systems bought the rights to the book; this edition has been updated by the

staff at QNX Software Systems.

The following table may help you find information quickly:

Go to:To find out about:

Foreword to the First Edition (p. 11)Brian Stecher's foreword

Preface to the First Edition (p. 13)Rob Krten's preface

The Basics (p. 23)Code that's common to all the recipes

High Availability (p. 29)How to make your system highly available

Design Philosophy (p. 51)Designing a system that's based on message passing

Web Counter Resource Manager (p. 67)Using a resource manager to implement a web counter

ADIOS— Analog/Digital I/O Server (p. 99)Writing a data-acquisition server

RAM-disk Filesystem (p. 135)Writing a basic filesystem

TAR Filesystem (p. 177)Writing a filesystem that manages .tar files

FilesystemsAdditional information about the basics of filesystems

The /proc FilesystemUseful information that QNX Neutrino stores in /proc

Sample ProgramsGetting the source code discussed in this book

GlossaryTerms used in QNX docs

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 9

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

10 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Foreword to the First Edition by Brian Stecher

For those of you who haven't yet read Rob's earlier book, Getting Started with QNX

Neutrino — A Guide for Realtime Programmers [now called Get Programming with the

QNX Neutrino RTOS], let me reiterate some of the comments made by my foreword

predecessor, Peter van der Veen. Not only does Rob explain the how and why of the

QNX philosophy, he also makes excellent points that all programmers should take note

of, no matter what they're doing.

This book differs from the previous one by being — for the lack of a better word —

more “concrete.” Not to say that there weren't plenty of examples in Rob's previous

tome, but in this one they're presented as complete, fully functional programs, a

number of which are currently whirring away at actual customer sites. Most unusual

for examples in this kind of book, you're not just presented with the finished product

— you also get to see the steps that were taken to get there in the design process.

If you want, you can treat QNX Neutrino as JAPOS (Just Another POSIX Operating

System) and write your programs that way, but that misses the point (and fun!) of

QNX. Rob's code shows you the other way — the QNX way. QNX extends the UNIX

philosophy of “each program should do only one thing, and do it well” from user

programs to the operating system itself and the examples in these pages take that to

heart.

What programmer in the deep recesses of his or her heart hasn't wanted to write their

own OS once or twice? QNX lets you have that fun without the pain, and Rob shows

you how here with the code for two complete file systems and overviews of several

more — some of which would send programmers working with other operating systems

howling to a madhouse! :-)

The QNX OS source code has gone through a lot of changes since Dan Dodge and Gord

Bell started working on it over twenty years ago — with several complete

re-implementations — but the QNX design philosophy has never wavered. Start turning

pages and let Rob take you on a tour through our house. It's a comfy place and there's

room for everybody.

Brian Stecher, Architect, QNX Software Systems, September 2003

Copyright © 2014, QNX Software Systems Limited 11

Preface to the First Edition by Rob Krten

I've been using QNX operating systems since 1982 when I was in my late teens, and

started developing commercial applications under QNX a few years later. During those

years, I've seen QNX's user base grow from just dozens of individuals to the large

following it has today.

In the early days, people used QNX because they had a keen appreciation for the

simplicity and elegance that the QNX operating system offered. It was, I believe, this

simplicity and elegance that allowed those individuals to excel in their work. In those

days you'd hear stories about how a team of programmers working with a competing

OS were unable to complete projects after months of struggling, where a much smaller

team of programmers who knew QNX finished the project in a much shorter time. And

the end result was smaller and faster.

For clarity, there are several QNX operating system versions. The original

operating system, known simply as “QUNIX” was followed by “QUNIX 2”. Both

of these ran on the early x86 processors. The next version was QNX 4 (note

the name change from “QUNIX”). Finally, the latest version is known as the

QNX Neutrino RTOS or (incorrectly) as QNX 6. In this book, we refer to this

latest version, and call it simply “QNX Neutrino”.

Over the years, as I've worked with QNX, I've tried to adhere to the “simpler is better”

philosophy. This is summed up most elegantly by J. Gall in his 1986 book,

Systemantics:

A complex system that works is invariably found to have evolved from a

simple system that worked.... A complex system designed from scratch

never works and cannot be patched up to make it work. You have to start

over, beginning with a working simple system.

This is the same idea behind object-oriented design, and the fundamental “design

philosophy” of UNIX — lots of small tools with well-defined tasks, joined together to

make a complex system.

Confirming the points made in all kinds of software design books, it's been my

experience that trying to design a complex working system from scratch just doesn't

work. As Gall says, you have to start with a simple system. And, as Frederick P. Brooks,

Jr. says in the original version of The Mythical Man-Month, you should build a prototype,

and be prepared to throw it away. Unfortunately, even some of today's management

doesn't quite understand this basic philosophy. I personally think that The Mythical

Man-Month should be required reading — by managers and software developers alike.

In this book I want to share my experience with the QNX Neutrino operating system,

and show you lots of simple systems that work. These examples were developed over

Copyright © 2014, QNX Software Systems Limited 13

the years; some of them are even in commercial use today. The companies that I wrote

them for on contract have graciously let me publish the source code (please see the

“Thanks!” section, below). A few of the utilities were developed especially for this

book — they were projects that I ported from QNX 4 to QNX Neutrino, or were written

from scratch to illustrate interesting features of the OS.

What you'll find here are, for all intents and purposes, recipes — small, well-defined

pieces of code, or utilities that do something on their own, and can be used as part

of a larger system. I will explain step-by-step what the code does, why it was written

the way it was (for example, what were the constraints? what was I thinking? :-)),

how the code can be expanded, and so on.

14 Copyright © 2014, QNX Software Systems Limited

Preface to the First Edition by Rob Krten

What's in this book?

This book is divided into these sections:

• Philosophy

• Recipes

• References

Copyright © 2014, QNX Software Systems Limited 15

What's in this book?

Philosophy

In this first section of the book, I discuss the various “big picture” and architectural

issues that you need to keep in mind. This is a condensation (some would say “brain

dump”) of the work I've done with QNX operating systems over the years — I've seen

what works, and what doesn't. I'll share both, because I think it's important to know

what doesn't work too, so you can understand why it didn't work out.

The Basics

In this chapter, the main() function and its friend, the option processing function

optproc(), are discussed. It's in its own chapter so we don't have to talk about the

things I use in almost every project.

High Availability

High availability is a very interesting topic. In this chapter, I discuss the concept of

high availability (what it is, how it's measured, and how to achieve it). We'll discuss

such things as Mean Time Between Failures (MTBF), Mean Time To Repair (MTTR),

and the formula used to calculate availability.

I'll also talk about how you can design your systems to be “highly-available” and some

of the problems that you'll run into. Unfortunately, in a lot of today's designs, high

availability is done as an afterthought — this almost always leads to disaster.

By thinking about high availability up front, you'll be able to benefit from having the

architectural insight necessary to design highly-available systems.

Design Philosophy

Next, I present an article about the basic philosophy that's useful when building a

system based on message passing — the fundamental Inter Process Communications

(IPC) model used by all QNX operating systems. We'll take a hypothetical security

system example, and examine how the design is derived to meet various goals. We'll

look at the design of the individual pieces (things like swipe card readers and door

lock actuators) and see how they fit into a larger system. We'll also discuss things like

scalability — how to make your software design scale from a small security system to

a large, multi-site security system.

16 Copyright © 2014, QNX Software Systems Limited

Preface to the First Edition by Rob Krten

Recipes

The second section of the book contains the “meat” — a smattering of small, useful,

and well-documented utilities. Each has been tested on a live QNX Neutrino system.

Where there are deficiencies, they're noted — software is an ever-evolving creation.

I've also tried to pick utilities that demonstrate something interesting that's “special”

about QNX Neutrino, and perhaps not well-understood.

You won't find a graphics ray-trace utility here, because that's not QNX Neutrino-specific

(even though it may be poorly understood by the general population of programmers).

What you will find are examples of resource managers, high-availability, IPC, and other

topics.

Each of the headings below is one chapter in the “recipes” section.

Web-Counter Resource Manager

This chapter describes a utility that illustrates how to generate graphical images

on-the-fly within a resource manager. You've seen web counters on various web pages;

the count goes up every time someone accesses the web page. In this chapter, I'll

show you how this can be done with a neat twist — the web counter looks and acts

just like a plain, ordinary file. The “magic” is all done via a resource manager. You'll

see how to maintain context on a per-open and per-device basis, how to handle the

file content generation, and so on. The chapter presents the project in three phases

— a kind of “building-block” approach.

ADIOS — Analog / Digital I/O Server

This project is a data acquisition server, written for Century Aluminum in Kentucky.

There are two major parts to this project: card drivers (for the PCL-711, ISO-813, and

DIO-144 analog/digital I/O cards), and a master server that collects data from the

cards and puts it into shared memory.

Several other utilities are discussed as well, such as showsamp, which gets the data

from shared memory. This chapter is a good insight on how to handle I/O, as well as

shared-memory management.

RAM-disk Filesystem Manager

Many people want to write filesystems, or things that look like filesystems, for QNX

Neutrino. The easiest filesystem to understand is a RAM-disk, because we don't need

to deal with the “on-media” format — all of our data is stored in RAM, and the data

itself is simply allocated from the pool of available memory. Reading, writing, seeking,

block management, pathname parsing, directory management, etc. are discussed.

This is an extensive chapter that serves as a foundation for the tar Filesystem Manager

Copyright © 2014, QNX Software Systems Limited 17

Recipes

chapter (immediately following) and also serves as a good basis for any projects you

may wish to pursue that need a filesystem (or a filesystem-like) interface.

The tar Filesystem Manager

This chapter presents another filesystem, one that manages .tar files. It builds on

the ideas and content of the RAM-disk chapter (above) and shows how to manage an

indexed file — a virtual file that is hosted as a portion of a real, disk-based file.

Additional topics at the end give you some ideas of other types of filesystems that can

be constructed.

18 Copyright © 2014, QNX Software Systems Limited

Preface to the First Edition by Rob Krten

References

Finally, the last section of the book contains appendixes with useful reference material,

as well as some additional general topics:

Filesystems

This appendix provides additional information about the basics of filesystems,

not only how files, directories, and symlinks are organized, but also how they

map to the resource manager OCB and attributes structures. Fundamentally,

all filesystems are a mapping between some physical (or abstract) hierarchical

data representation onto the native resource manager structures.

The /proc Filesystem

The /proc filesystem is where QNX Neutrino stores all of the information

about processes and threads — how much CPU time they've used, how much

memory they have allocated, how many threads are running, what state they

are in, etc. This appendix serves as a handy reference for the /proc

filesystem, and shows you what information is available, where it is, and

how to get it.

Sample Programs

This appendix tells you where to get an archive of the programs discussed

in this book, and describes the contents and structure of the archive.

Glossary

Finally, you'll find a glossary that defines the terms used in this book.

Copyright © 2014, QNX Software Systems Limited 19

References

What's not in this book?

The general rule when writing is, “Write what you know about.” As a result of this rule,

you won't find anything in this book about TCP/IP, the Integrated Development

Environment (I use make and vi), the Graphical User Interface (GUI), and so on.

20 Copyright © 2014, QNX Software Systems Limited

Preface to the First Edition by Rob Krten

Other references

As I've programmed over the years, I've found the following books and references to

be quite useful and enlightening:

Get Programming with the QNX Neutrino RTOS (formerly Getting Started with QNX Neutrino) by

Robert Krten

This is a pre-requisite for the book you are reading now — it covers the

fundamental concepts of QNX Neutrino, such as message passing, and gives

you the foundation for understanding things like Resource Managers.

The Mythical Man-Month by Frederick P. Brooks, Jr.

(Addison-Wesley, 1995, ISBN 0-201-83595-9) The intriguing thing about

this book is that while it is ancient (as far as “computer science” wants us

to think), I'd say about 95% of it still applies (in a frighteningly accurate

way) to software development today. The 5% that doesn't apply has to do

with things like scheduling batch system usage and some antique computer

system related issues. An excellent read, and should be read by both

management and developers alike.

Compilers — Principles, Techniques, and Tools by Alfred V. Aho, Revi Sethi, and Jeffrey D.

Ullman.

(Addison-Wesley, 1986, ISBN 0-201-10088-6) This book is the “de facto

standard” from which I learned how to write parsers.

Copyright © 2014, QNX Software Systems Limited 21

Other references

Thanks!

I'd like to extend a gracious “Thank You” to many people who helped out with this

book.

First, the QNX Software Systems folks. John Garvey's support when I was writing the

RAM-disk section was invaluable. A lot of the behavior of the functions is obscure,

and John patiently answered all my questions in the conferences, especially about

symlinks. Brian Stecher reviewed copies of the book, provided the foreword, and

supplied many details of the /proc filesystem that I wouldn't have been able to fathom

on my own. Peter van der Veen also reviewed the book, and supplied insightful

comments on the /proc filesystem and resource managers. Dan Dodge, David Gibbs,

Adam Mallory, Peter Martin, Kirk Russell, and Xiaodan Tang reviewed the book and

pointed out key omissions and clarified many of the issues involved. Kirk also helped

out with the “horror” of mkisofs :-)

Other reviewers included David Alessio, Kirk A. Bailey, Bill Caroselli, Mario Charest,

Rick Duff, and Alexander Koppel (who took me to task on several topics, thank you!).

Thanks for taking the time to read through the book and for your comments; this book

is better because of your efforts!

Once again, (for the third time now), Chris Herborth was tricked into editing this book.

Thanks for putting up with my writing style and my demands on your time, Chris!

Finally, John Ostrander reviewed the final cut of the book, and once again provided

his outstanding and patient copy-editing finesse.

My wife put up with my crawling off to the basement (again) but at least this time she

was busy with school :-) Thanks Christine!

Century Aluminum

I worked for Century Aluminum on contract during the spring/summer of 2003. They

were converting their aluminum smelter lines to use QNX Neutrino, and needed a few

device drivers written to manage data acquisition. Out of this was born the ADIOS

chapter — my sincere thanks to the people involved with the project for letting me

use the source code I developed.

22 Copyright © 2014, QNX Software Systems Limited

Preface to the First Edition by Rob Krten

Chapter 1
The Basics

In this chapter, just like with any good cookbook, we'll look at the basic techniques

that are used in the recipes. I use a certain programming style, with conventions that

I've found comfortable, and more importantly, useful and time-saving over the years.

I want to share these conventions with you here so I don't have to describe them in

each chapter.

If you're an experienced UNIX and C programmer, you can just skip this chapter, or

come back to it if you find something confusing later.

Copyright © 2014, QNX Software Systems Limited 23

In the beginning...

In the beginning, I'd begin each project by creating a new directory, typing e main.c,

and entering the code (e is a custom version of vi that I use). Then it hit me that a

lot of the stuff that occurs at the beginning of a new project is always the same. You

need:

• a Makefile to hold the project together

• a main.c that contains main(), and the command-line processing,

• a usage message (explained below), and

• some way of tracking versions.

For projects dealing with a resource manager (introduced in the previous book), other

common parts are required:

• main.c should set up the resource manager attributes structure(s), register the

mount point, determine if it's going to be single-threaded or multi-threaded, and

contain the main processing loop, and

• various I/O and connect functions.

This resulted in two simple scripts (and associated data files) that create the project

for me: mkmain and mkresmgr (see Threaded Resource Managers (p. 27), below).

You invoke them in an empty directory, and they un-tar template files that you can

edit to add your own specific functionality.

You'll see this template approach throughout the examples in this book.

The main() function

The first thing that runs is, of course, main(). You'll notice that my main() functions

tend to be very short — handle command-line processing (always with optproc()), call

a few initialization functions (if required), and then start processing.

In general, I try to deallocate any memory that I've allocated throughout the course of

the program. This might seem like overkill because the operating system cleans up

your resources when you drop off the end of main() (or call exit()). Why bother to clean

up after yourself? Some of the subsystems might find their way into other projects —

and they might need to start up and shut down many times during the life of the

process. Not being sloppy about the cleanup phase makes my life just that much

easier when I reuse code. It also helps when using tools like the debug malloc() library.

24 Copyright © 2014, QNX Software Systems Limited

The Basics

Command-line processing — optproc()

The command-line processing function is a bit more interesting. The majority of

variables derived from the command line are called opt*, where * is the option letter.

You'll often see code like this:

if (optv) {
 // do something when -v is present
}

By convention, the -v option controls verbosity; each -v increments optv. Some code

looks at the value of optv to determine how much “stuff” to print; other code just

treats optv as a Boolean. The -d option is often used to control debug output.

Command-line processing generally follows the POSIX convention: some options are

just flags (like -v) and some have values. Flags are usually declared as int. Valued

options are handled in the command-line handler's switch statement, including

range checking.

One of the last things in most optproc() handlers is a final sanity check on the

command-line options:

• do we have all of the required options?

• are the values valid?

• are there any conflicting options?

The last thing in optproc() is the command-line argument handling. POSIX says that

all command-line options come first, followed by the argument list. An initial pass of

command-line validation is done right in the switch statement after the getopt() call.

Final validation is done after all of the parameters have been scanned from the

command-line.

Common globals

There are a few common global variables that I use in most of my projects:

version

This pointer to a character string contains the version string. By convention,

the version is always five characters — A.BCDE, with A being the major

version number, and BCDE being the build number. The version is the only

thing that's stored in the version.c file.

progname

A pointer to a character string containing the name of the program. (This is

an old convention of mine; QNX Neutrino now has the __progname variable

as well.)

Copyright © 2014, QNX Software Systems Limited 25

In the beginning...

blankname

A pointer to a character string the same length as progname, filled with

blank characters (it gets used in multi-line messages).

I strive to have all messages printed from every utility include the progname variable.

This is useful if you're running a bunch of utilities and redirecting their output to a

common log file or the console.

You'll often see code like this in my programs:

fprintf (stderr, "%s: error message...\n", progname, ...);

Usage messages

Both QNX 4 and QNX Neutrino let an executable have a built-in usage message —

just a short reminder of the command-line options and some notes on what the

executable does.

You can try this out right now at a command-line — type use cat to get information

about the cat command. You'll see the following:

cat - concatenate and print files (POSIX)

cat [-cu] [file...]
Options:
 -c Compress, do not display empty lines.
 -u Unbuffered, for interactive use.
 -n Print line numbers without restarting.
 -r Print line numbers restarting count for each file.

You can add these messages into your own executables. My standard mkmain script

generates the Makefile and main.use files required for this.

With QNX 4 it was possible to have the usage message embedded within a C

source file, typically main.c.

This doesn't work the same way under QNX Neutrino. For example, if the usage

message has a line containing an odd number of single-quote characters ('),

the compiler gives you grief, even though the offending line is walled-off in an

#ifdef section. The solution was to move the usage message out of main.c

and into a separate file (usually main.use). To maintain the usage message

within the C code, you can get around this by putting the usage message in

comments first, and then using the #ifdef for the usage message:

/*
#ifdef __USAGE
%C A utility that's using a single quote
#endif
*/

It's an ANSI C compiler thing. :-)

26 Copyright © 2014, QNX Software Systems Limited

The Basics

Threaded resource managers

The resource managers presented in this book are single-threaded. The resource

manager part of the code runs with one thread — other threads, not directly related

to the resource manager framework, may also be present.

This was done for simplicity, and because the examples presented here don't need

multiple resource manager threads because:

1. the QNX Neutrino resource manager library enforces singled-threaded access to

any resource that shares an attributes structure,

2. all of the I/O and Connect function outcalls are run to completion and do not block,

and

3. simplicity.

Single-threaded access to resources that share an attributes structure means that if

two or more client threads attempt to access a resource, only one of the threads can

make an outcall at a time. There's a lock in the attributes structure that the QNX

Neutrino library acquires before making an outcall, and releases when the call returns.

The outcalls “running to completion” means that every outcall is done “as fast as

possible,” without any delay or blocking calls. Even if the resource manager was

multi-threaded, and different attributes structures were being accessed, things would

not be any faster on a single-processor box (though they might be faster on an SMP

box).

A multi-threaded resource manager may be a lot more complex than a single-threaded

resource manager. It's worthwhile to consider if you really need a multi-threaded

resource manager. The complexity comes from:

1. handling unblock pulses (see Get Programming with the QNX Neutrino RTOS),

2. terminating the resource manager, and

3. general multi-threaded complexity.

Handling unblock pulses was covered extensively in my previous book — the short

story is that the thread that's actively working on the client's request probably won't

be the thread that receives the unblock pulse, and the two threads may need to interact

in order to abort the in-progress operation. Not impossible to handle, just complicated.

When it comes time to terminate the resource manager, all of the threads need to be

synchronized, no new requests are allowed to come in, and there needs to be a graceful

shutdown. In a high-availability environment, this can be further complicated by the

need to maintain state with a hot standby (see the High Availability (p. 29) chapter).

Finally, multi-threaded designs are generally more complex than single-threaded

designs. Don't get me wrong, I love to use threads when appropriate. For performing

Copyright © 2014, QNX Software Systems Limited 27

Threaded resource managers

multiple, concurrent, and independent operations, threads are wonderful. For speeding

up performance on an SMP box, threads are great. But having threads for the sake of

having threads, and the accompanying synchronization headaches, should be avoided.

28 Copyright © 2014, QNX Software Systems Limited

The Basics

Chapter 2
High Availability

In this chapter, we'll take a look at the concept of high availability (HA). We'll discuss

the definition of availability, examine the terms and concepts, and take a look at how

we can make our software more highly available.

All software has bugs, and bugs manifest themselves in a variety of ways. For example,

a module could run out of memory and not handle it properly, or leak memory, or get

hit with a SIGSEGV, and so on. This leads to two questions:

• How do you recover from those bugs?

• How do you upgrade the software once you've found and fixed bugs?

Obviously, it's not a satisfactory solution to simply say to the customer, “What? Your

system crashed? Oh, no problem, just reboot your computer!”

For the second point, it's also not a reasonable thing to suggest to the customer that

they shut everything down, and simply “upgrade” everything to the latest version, and

then restart it.

Some customers simply cannot afford the downtime presented by either of those

“solutions.”

Let's define some terms, and then we'll talk about how we can address these (very

important) concerns.

Copyright © 2014, QNX Software Systems Limited 29

Terminology

You can measure the amount of time that a system is up and running, before it fails.

You can also measure the amount of time that it takes you to repair a failed system.

The first number is called MTBF, and stands for Mean Time Between Failures. The

second number is called MTTR, and stands for Mean Time To Repair.

Let's look at an example. If your system can, on average, run for 1000 hours (roughly

41 days), and then fails, and then if it takes you one hour to recover, then you have

a system with an MTBF of 1000 hours, and an MTTR of one hour. These numbers are

useful on their own, but they are also used to derive a ratio called the availability —

what percentage of the time your system is available.

This is calculated by the formula:

Figure 1: Calculating MTBF.

If we do the math, with an MTBF of 1000 hours and an MTTR of one hour, your system

will have an availability of:

Figure 2: MTBF of 1000 hours, MTTR of one hour.

or 0.999 (which is usually expressed as a percentage, so 99.9%). Since ideally the

number of leading nines will be large, availability numbers are generally stated as the

number of nines — 99.9% is often called “three nines.”

Is three nines good enough? Can we achieve 100% reliability (also known as

“continuous availability”)?

Both answers are “no” — the first one is subjective, and depends on what level of

service your customers expect, and the second is based on simple statistics — all

software (and hardware) has bugs and reliability issues. No matter how much

redundancy you put in, there is always a non-zero probability that you will have a

catastrophic failure.

30 Copyright © 2014, QNX Software Systems Limited

High Availability

Lies, damn lies, and statistics

It's an interesting phenomenon to see how the human mind perceives reliability. A

survey done in the mid 1970s sheds some light. In this survey, the average person on

the street was asked, “Would you be satisfied with your telephone service working

90% of the time?” You'd be surprised how many people looked at the number 90,

and thought to themselves, “Wow, that's a pretty high number! So, yes, I'd be happy

with that!” But when the question was reversed, “Would you be satisfied if your

telephone service didn't work 10% of the time?” they were inclined to change their

answer even though it's the exact same question!

To understand three, four, or more nines, you need to put the availability percentage

into concrete terms — for example, a “down times per year” scale. With a three nines

system, your unavailability is 1 - 0.999, or 0.001%. A year has 24 × 365 = 8760

hours. A three nines system would be unavailable for 0.001 × 8760 = 8.76 hours per

year.

Some ISPs boast that their end-user availability is an “astounding” 99% — but that's

87.6 hours per year of downtime, over 14 minutes of downtime per day!

This confirms the point that you need to pay careful attention to the numbers; your

gut reaction to 99% availability might be that it's pretty good (similar to the telephone

example above), but when you do the math, 14 minutes of downtime per day may be

unacceptable.

The following table summarizes the downtime for various availability percentages:

Downtime per YearAvailability %

3.65 days99

8.76 hours99.9

52.56 minutes99.99

5.256 minutes99.999

31.5 seconds99.9999

This leads to the question of how many nines are required. Looking at the other end

of the reliability spectrum, a typical telephone central office is expected to have six

nines availability — roughly 20 minutes of downtime every 40 years. Of course, each

nine that you add means that the system is ten times more available.

Copyright © 2014, QNX Software Systems Limited 31

Lies, damn lies, and statistics

Increasing availability

There are two ways to increase the availability:

• increase the MTBF

• decrease the MTTR

If we took the three nines example above and made the MTTR only six minutes (0.1

hours for easy calculations) our availability would now be:

Figure 3: MTBF of 1000 hours, MTTR of six minutes.

which is 0.9999, or four nines — ten times better!

Increasing the MTBF

Increasing the MTBF, or the overall reliability of the system, is an expensive operation.

That doesn't mean that you shouldn't do it, just that it involves a lot of testing,

defensive programming, and hardware considerations.

Effectively, the goal here is to eliminate all bugs and failures. Since this is generally

unfeasible (i.e. will take a near-infinite amount of time and money) in any reasonably

sized system, the best you can do is approach that goal.

When my father worked at Bell-Northern Research (later part of Nortel Networks), he

was responsible for coming up with a model to predict bug discovery rates, and a

model for estimating the number of bugs remaining. As luck would have it, a

high-profile prediction of when the next bug would be discovered turned out to be

bang on and astonished everyone, especially management who had claimed “There

are no more bugs left in the software!”

Once you've established a predicted bug discovery rate, you can then get a feeling for

how much it is going to cost you in terms of test effort to discover some percentage

of the bugs. Armed with this knowledge, you can then make an informed decision

based on a cost model of when it's feasible to declare the product shippable. Note

that this will also be a trade-off between when your initial public offering (IPO) is, the

status of your competition, and so on. An important trade-off is the cost to fix the

problem once the system is in the field. Using the models, you can trade off between

testing cost and repair cost.

Decreasing the MTTR

A much simpler and less expensive alternative, though, is to decrease the MTTR.

Recall that the MTTR is in the denominator of the availability formula and is what is

really driving the availability away from 100% (i.e. if the MTTR was zero, then the

32 Copyright © 2014, QNX Software Systems Limited

High Availability

availability would be MTBF / MTBF, or 100%, regardless of the actual value of the

MTBF.) So anything you can do to make the system recover faster goes a long way

towards increasing your availability number.

Sometimes, speed of recovery is not generally thought about until later. This is usually

due to the philosophy of “Who cares how long it takes to boot up? Once it's up and

running it'll be fast!” Once again, it's a trade off — sometimes taking a long time to

boot up is a factor of doing some work “up front” so that the application or system

runs faster — perhaps precalculating tables, doing extensive hardware testing up front,

etc.

Another important factor is that decreasing MTTR generally needs to be designed into

the system right up front. This statement applies to HA in general — it's a lot more

work to patch a system that doesn't take HA into account, than it is to design one with

HA in mind.

Parallel versus serial

The availability numbers that we discussed are for individual components in a system.

For example, you may do extensive testing and analysis of your software, and find that

a particular component has a certain availability number. But that's not the whole

story — your component is part of a larger system, and will affect the availability of

the system as a whole. Consider a system that has several modules. If module A relies

on the services of module B, and both modules have a five nines availability (99.999%),

what happens when you combine them? What's the availability of the system?

Series calculations

When one module depends on another module, we say that the modules are connected

in series — the failure of one module results in a failure of the system:

Figure 4: Aggregate module formed by two modules in series.

If module A has an availability of Xa, and module B has an availability of Xb, the

combined availability of a subsystem constructed of modules A and B connected in

series is:

availability = Xa × Xb

Practically speaking, if both modules have a five nines availability, the system

constructed from connecting the two modules in series will be 99.998%:

Figure 5: Five nines availability in serial.

Copyright © 2014, QNX Software Systems Limited 33

Increasing availability

You need to be careful here, because the numbers don't look too bad, after all, the

difference between 0.99999 and 0.99998 is only 0.00001 — hardly worth talking

about, right? Well, that's not the case — the system now has double the amount of

downtime! Let's do the math.

Suppose we wish to see how much downtime we'll have during a year. One year has

365 × 24 × 60 × 60 seconds (31 and a half million seconds). If we have an availability

of five nines, it means that we have an unavailability factor of 0.00001 (1 minus

0.99999)

Therefore, taking the 31 and a half million seconds times 0.00001 gives us 315

seconds, or just over five minutes of downtime per year. If we use our new serial

availability, 0.99998, and multiply the unavailability (1 minus 0.99998, or 0.00002),

we come up with 630 seconds, or 10.5 minutes of downtime — double the amount

of downtime!

The reason the math is counter-intuitive is because in order to calculate downtime,

we're using the unavailability number (that is, one minus the availability number).

Parallel calculations

What if your systems are in parallel? How does that look?

In a parallel system, the picture is as follows:

Figure 6: Aggregate module formed by two modules in parallel.

If module A has an availability of Xa, and module B has an availability of Xb, the

combined availability of a subsystem constructed of modules A and B connected in

parallel is:

availability = 1 - (1 - Xa) × (1 - Xb)

Practically speaking, if both modules have a five nines availability, the system

constructed from connecting the two modules in parallel will be:

Figure 7: Ten nines!

That number is ten nines!

34 Copyright © 2014, QNX Software Systems Limited

High Availability

The thing to remember here is that you're not extensively penalized for serial

dependencies, but the rewards for parallel dependencies are very worthwhile! Therefore,

you'll want to construct your systems to have as much parallel flow as possible and

minimize the amount of serial flow.

In terms of software, just what is a parallel flow? A parallel flow is one in which either

module A or module B (in our example) can handle the work. This is accomplished

by having a redundant server, and the ability to seamlessly use either server —

whichever one happens to be available. The reason a parallel flow is more reliable is

that a single fault is more likely to occur than a double fault.

A double fault isn't impossible, just much less likely. Since the two (or more) modules

are operating in parallel, meaning that they are independent of each other, and either

will satisfy the request, it would take a double fault to impact both modules.

A hardware example of this is powering your machine from two independent power

grids. The chance that both power grids will fail simultaneously is far less than the

chance of either power grid failing. Since we're assuming that the hardware can take

power from either grid, and that the power grids are truly independent of each other,

you can use the availability numbers of both power grids and plug them into the formula

above to calculate the likelihood that your system will be without power. (And then

there was the North American blackout of August 14, 2003 to reassure everyone of

the power grid's stability! :-))

For another example, take a cluster of web servers connected to the same filesystem

(running on a RAID box) which can handle requests in parallel. If one of the servers

fails, the users will still be able to access the data, even if performance suffers a little.

They might not even notice a performance hit.

You can, of course, extend the formula for sub-systems that have more than two

components in series or parallel. This is left as an exercise for the reader.

Aggregate calculations

Real, complex systems will have a variety of parallel and serial flows within them. The

way to calculate the availability of the entire system is to work with subcomponents.

Take the availability numbers of each component, and draw a large diagram with these

numbers, making sure that your diagram indicates parallel and serial flows. Then take

the serial flows, and collapse them into an aggregate sub-system using the formula.

Do the same for parallel flows. Keep doing this until your system has just one flow —

that flow will now have the availability number of the entire system.

Copyright © 2014, QNX Software Systems Limited 35

Increasing availability

Failure modes and recovery models

To create a highly available system, we need to consider the system's failure modes

and how we'll maximize the MTBF and minimize the MTTR. One thing that won't be

immediately obvious in these discussions is the implementation, but I've included an

HA example in this book.

Cascade failures

In a typical system, the software fits into several natural layers. The GUI is at the

topmost level in the hierarchy, and might interact with a database or a control program

layer. These layers then interact with other layers, until finally, the lowest layer controls

the hardware.

What happens when a process in the lowest layer fails? When this happens, the next

layer often fails as well — it sees that its driver is no longer available and faults. The

layer above that notices a similar condition — the resource that it depends on has

gone away, so it faults. This can propagate right up to the highest layer, which may

report some kind of diagnostic, such as “database not present.” One of the problems

is that this diagnostic masks the true cause of the problem — it wasn't really a problem

with the database, but rather it was a problem with the lowest-level driver.

We call this a cascade failure — lower levels causing higher levels to fail, with the

failure propagating higher and higher until the highest level fails.

In this case, maximizing the MTBF would mean making not only the lower-level drivers

more stable, but also preventing the cascade failure in the first place. This also

decreases the MTTR because there are fewer things to repair. When we talk about

in-service upgrades, below, we'll see that preventing cascade failures also has some

unexpected benefits.

To prevent a cascade failure, you can:

• provide a backup mechanism for failing drivers, so that when a driver fails, it almost

immediately cuts over to a standby, and

• provide a fault-tolerance mechanism in each layer that can deal with a momentary

outage of a lower-level layer.

What might not be immediately obvious is that these two points are interrelated. It

does little good to have a higher-level layer prepared to deal with an outage of a

lower-level layer, if the lower-level layer takes a long time to recover. It also doesn't

help much if the low-level driver fails and its standby takes over, but the higher-level

layer isn't prepared to gracefully handle that momentary outage.

36 Copyright © 2014, QNX Software Systems Limited

High Availability

System startup and HA

A point that arises directly out of our cascade failure discussion has to do with system

startup. Often, even an HA system is designed such that starting up the system and

the normal running operation are two distinct things.

When you stop to think about this, they really don't need to be — what's the difference

between a system that's starting up, and a system where every component has crashed?

If the system is designed properly, there might not be any difference. Each component

restarts (and we'll see how that's done below). When it starts up, it treats the lack of

a lower-layer component as if the lower-layer component had just failed. Soon, the

lower-layer component will start up as well, and operation can resume as if the layer

below it suffered a brief outage.

Overlords, or Big Brother is watching you

An important component in an HA system is an overlord or Big Brother process (as in

Orwell, not the TV show). This process is responsible for ensuring that all of the other

processes in the system are running. When a process faults, we need to be able to

restart it or make a standby process active.

That's the job of the overlord process. It monitors the processes for basic sanity (the

definition of which is fairly broad — we'll come back to this), and performs an orderly

shutdown, restart, fail-over, or whatever else is required for the failed (or failing)

component.

One remaining question is “who watches the watcher?” What happens when the

overlord process faults? How do we recover from that? There are a number of steps

that you should take with the overlord process regardless of anything I'll tell you later

on:

• since it's a critical part of the system, it warrants extensive testing (this maximizes

MTBF).

• in order to minimize the amount of testing required, the overlord should be as

simple as possible.

However, since the overlord is a piece of software that's more complex than “Hello,

world” it will have bugs and it will fail.

It would be a chicken-and-egg problem to simply say that we need an overlord to watch

the overlord — this would result in a never-ending chain of overlords.

What we really need is a standby overlord that is waiting for the primary overlord to

die or become unresponsive, etc. When the primary fails, the standby takes over

(possibly killing the faulty primary), becomes primary, and starts up its own standby

version. We'll discuss this mechanism next.

Copyright © 2014, QNX Software Systems Limited 37

Failure modes and recovery models

Cold, warm, and hot standby

So far, we've said that to make an HA system, we need to have some way of restarting

failed components. But we haven't discussed how, or what impact it has.

Recall that when a failure happens, we've just blown the MTBF number — regardless

of what the MTBF number is, we now need to focus on minimizing the MTTR. Repairing

a component, in this case, simply means replacing the service that the failed

component had been providing. There are number of ways of doing this, called cold

standby, warm standby, and hot standby.

In this standby mode:Mode

Repairing the service means noticing that

the service has failed and bringing up a

cold

new module (i.e., starting an executable

by loading it from media), initializing it,

and bringing it into service.

Repairing the service is the same as in

cold standby mode, except the new the

warm

service is already loaded in memory, and

may have some idea of the state of the

service that just failed.

The standby service is already running. It

notices immediately when the primary

hot

service fails, and takes over. The primary

and the standby service are in constant

communication; the standby receives

updates from the primary every time a

significant event occurs. In hot standby

mode, the standby is available almost

immediately to take over — the ultimate

reduction in MTTR.

Cold, warm, and hot standby are points on a spectrum:

Figure 8: The MTTR spectrum.

38 Copyright © 2014, QNX Software Systems Limited

High Availability

The times given above are for discussion purposes only — in your particular system,

you may be able to achieve hot standby only after a few hundred microseconds or

milliseconds; or you may be able to achieve cold standby after only a few milliseconds.

These broad ranges are based on the following assumptions:

cold standby — seconds

I've selected “seconds” for cold standby because you may need to load a

process from some kind of slow media, and the process may need to perform

lengthy initializations to get to an operational state. In extreme cases, this

scale could go to minutes if you need to power-up equipment.

warm standby — milliseconds

Milliseconds were selected for warm standby because the process is already

resident in memory; we're assuming that it just needs to bring itself up to

date with the current system status, and then it's operational.

hot standby — microseconds

Ideally, the hot standby scenario can result in an operational process within

the time it takes the kernel to make a context switch and for the process to

make a few administrative operations. We're assuming that the executable

is running on the system, and has a complete picture of the state — it's

immediately ready to take over.

Achieving cold standby

For some systems, a cold standby approach may be sufficient. While the cold standby

approach does have a higher MTTR than the other two, it is significantly easier to

implement. All the overlord needs to do is notice that the process has failed, and

then start a new version of the process.

Usually this means that the newly started process initializes itself in the same way

that it would if it was just starting up for the first time — it may read a configuration

file, test its dependent subsystems, bind to whatever services it needs, and then

advertise itself to higher level processes as being ready to service their requests.

A cold standby process might be something like a serial port driver. If it faults, the

overlord simply starts a new version of the serial port driver. The driver initializes the

serial ports, and then advertises itself (for example, by putting /dev/ser1 and

/dev/ser2 into the pathname space) as being available. Higher-level processes may

notice that the serial port seemed to go away for a little while, but that it's back in

operation, and the system can proceed.

Copyright © 2014, QNX Software Systems Limited 39

Failure modes and recovery models

Achieving warm standby

In warm standby, another instance of the process is already resident in memory, and

may be partially initialized. When the primary process fails, the overlord or the

standby notices that the primary process has failed, and informs the standby process

that it should now assume the duties of the primary process. For this system to work,

the newly started process should arrange to create another warm standby copy of itself,

in case it meets with an untimely end.

Generally, a warm standby process would be something that might take a long time

to initialize (perhaps precalculating some tables), but once called into action can

switch over to active mode quickly.

The MTTR of a warm standby process is in between the MTTR of cold standby and

hot standby. The implementation of a warm standby process is still relatively

straightforward; it works just like a newly started process, except that after it reaches

a certain point in its processing, it lies dormant, waiting for the primary process to

fail. Then it wakes up, performs whatever further initialization it needs to, and runs.

The reason a warm standby process may need to perform further initialization only

after it's been activated is that it may depend on being able to determine the current

state of the system before it can service requests, but such determination cannot be

made a priori; it can only be made when the standby is about to service requests.

Achieving hot standby

With hot standby, we see a process that minimizes the MTTR, but is also (in the

majority of cases) a lot more complicated than either the cold or warm standby.

The reason for the additional complexity is due to a number of factors. The standby

process may need to actively:

• monitor the health of its primary process — this could be anything from establishing

a connection to the primary process and blocking until it dies, or it may involve

more complex heuristics.

• receive current transaction-by-transaction updates, so that it always stays in sync

with the primary. This is the basis for the hot standby process's ability to “instantly”

take over the functionality — it's already up to date and running.

Of course, as with the warm standby process, the hot standby process needs to create

another copy of itself to feed updates to when it becomes primary, in case it fails.

An excellent example of a hot standby process is a database. As transactions to the

primary version of the database are occurring, these same transactions are fed to the

hot standby process, ensuring that it is synchronized with the primary.

40 Copyright © 2014, QNX Software Systems Limited

High Availability

Problems

The major problem with any standby software that gets data from an active primary is

that, because it's the exact same version of software, any bad data that kills the primary

may also kill the secondary, because it will tickle the same software bug.

If you have near-infinite money, the proper way to architect this is to have the primary

and the standby developed by two independent teams, so that there will at least be

different bugs in the software. This also implies that you have near-infinite money

and time to test all possible fail-over scenarios. Of course, there is still a common

point of failure, and that's the specification itself that's given to the two independent

teams...

Detecting failure

There are a number of ways to detect process failure. The overlord process can do

this, or, in the case of hot or warm standby, the standby process can do this.

If you don't have the source code for the process, you must resort to either polling

periodically (to see if the process is still alive), or arranging for death notification via

an obituary.

If you do have the source code for the process, and are willing to modify it, you can

arrange for the process to send you obituaries automatically.

Obituaries

Obituaries are quite simple. Recall that a client creates a connection to a server. The

client then asks the server to perform various tasks, and the client blocks until the

server receives the message and replies. When the server replies, the client unblocks.

One way of receiving an obituary is to have the client send the server a message,

stating “please do not reply to this message, ever.” While the server is running, the

client thread is blocked, and when the server faults, the kernel will automatically

unblock the client with an error. When the client thread unblocks, it has implicitly

received an obituary message.

A similar mechanism works in the opposite direction to notify the server of the client's

death. In this case, the client calls open() to open the server, and never closes the

file descriptor. If the client dies, the kernel will synthesize a close() message, which

the server can interpret as an obituary. The kernel's synthetic close() looks just like

the client's close() — except that the client and server have agreed that the close()

message is an obituary message, and not just a normal close(). The client would never

issue a normal close() call, so if the server gets one, it must mean the death of the

client.

Putting this into perspective, in the warm and hot standby cases, we can arrange to

have the two processes (the primary and the standby) work in a client/server

Copyright © 2014, QNX Software Systems Limited 41

Failure modes and recovery models

relationship. Since the primary will always create the standby (so the standby can take

over in the event of the primary's death), the standby can be a client of, or a server

for, the primary. Using the methods outlined above, the standby can receive an instant

obituary message when the primary dies.

Should the standby be a client or a server? That depends on the design of your system.

In most cases, the primary process will be a server for some other, higher-level

processes. This means that the standby process had better be a server as well, because

it will need to take over the server functionality of the primary. Since the primary is a

server, then we need to look at the warm and hot standby cases separately.

In the warm standby case, we want the secondary to start up, initialize, and then go

to sleep, waiting for the primary to fail. The easiest way to arrange this is for the

secondary to send a message to the primary telling it to never reply to the message.

When the primary dies, the kernel unblocks the secondary, and the secondary can

then proceed with becoming a primary.

In the hot standby case, we want the secondary to start up, initialize, and then actively

receive updates from the primary, so that it stays synchronized. Either method will

work (the secondary can be a client of the primary, as in the warm standby case, or

the secondary can be a server for the primary).

Implementing the secondary as a client of the primary is done by having the secondary

make requests like “give me the next update,” and block, until the primary hands over

the next request. Then, the secondary digests the update, and sends a message asking

for the next update.

Implementing the secondary as a server for the primary means that the secondary will

be doing almost the exact same work as it would as primary — it will receive requests

(in this case, only updates) from the primary, digest them, and then reply with the

result. The result could be used by the primary to check the secondary, or it could

simply be ignored. The secondary does need to reply in order to unblock the primary.

If the secondary is a client, it won't block the primary, but it does mean that the

primary needs to keep track of transactions in a queue somewhere in case the secondary

lags behind. If the secondary is a server, it blocks the primary (potentially causing the

primary's clients to block as well), but it means that the code path that the secondary

uses is the same as that used when it becomes primary.

Whether the secondary is a client or a server is your choice; this is one aspect of HA

system design you will need to think about carefully.

Graceful fail-over

To avoid a cascade failure, the clients of a process must be coded so they can tolerate

a momentary outage of a lower-level process.

42 Copyright © 2014, QNX Software Systems Limited

High Availability

It would almost completely defeat the purpose of having hot standby processes if the

processes that used their services couldn't gracefully handle the failure of a lower-level

process. We discussed the impacts of cascade failures, but not their solution.

In general, the higher-level processes need to be aware that the lower-level process

they rely on may fault. The higher-level processes need to maintain the state of their

interactions with the lower-level process — they need to know what they were doing

in order to be able to recover.

Let's look at a simple example first. Suppose that a process were using the serial

port. It issues commands to the serial port when it starts up:

• set the baud rate to 38400 baud

• set the parity to 8,1,none

• set the port to raw mode

Suppose that the serial port is supervised by the overlord process, and that it follows

the cold standby model.

When the serial port driver fails, the overlord restarts it. Unfortunately, the overlord

has no idea of what settings the individual ports should have; the serial port driver

will set them to whatever defaults it has, which may not match what the higher-level

process expects.

The higher-level process may notice that the serial port has disappeared when it gets

an error from a write(), for example. When that happens, the higher-level process needs

to determine what happened and recover. This would case a cascade failure in non-HA

software — the higher-level process would get the error from the write(), and would

call exit() because it didn't handle the error in an HA-compatible manner.

Let's assume that our higher-level process is smarter than that. It notices the error,

and because this is an HA system, assumes that someone else (the overlord) will notice

the error as well and restart the serial port driver. The main trick is that the higher-level

process needs to restore its operating context — in our example, it needs to reset the

serial port to 38400 baud, eight data bits, one stop bit, and no parity, and it needs

to reset the port to operate in raw mode.

Only after it has completed those tasks can the higher-level process continue where

it left off in its operation. Even then, it may need to perform some higher-level

reinitialization — not only does the serial port need to be set for a certain speed, but

the peripheral that the high-level process was communicating with may need to be

reset as well (for example, a modem may need to be hung up and the phone number

redialed).

This is the concept of fault tolerance: being able to handle a fault and to recover

gracefully.

If the serial port were implemented using the hot standby model, some of the

initialization work may not be required. Since the state carried by the serial port is

Copyright © 2014, QNX Software Systems Limited 43

Failure modes and recovery models

minimal (i.e. the only state that's generally important is the baud rate and

configuration), and the serial port driver is generally very small, a cold standby solution

may be sufficient for most applications.

Using shadows

QNX Neutrino's pathname space gives us some interesting choices when the time

comes to design our warm or hot standby servers. Recall that the pathname space is

maintained by the process manager, which is also the entity responsible for creation

and cleanup of processes. One thing that's not immediately apparent is that you can

have multiple processes registered for the same pathname, and that you can have a

specific order assigned to pathname resolution.

Figure 9: Primary and secondary servers registered for the same pathname.

A common trick for designing warm and hot standby servers is for the secondary to

register the same pathname as the primary, but to tell the process manager to register

it behind the existing pathname. Any requests to the pathname will be satisfied by

the primary (because its pathname is “in front” of the secondary's pathname). When

the primary fails, the process manager cleans up the process and also cleans up the

pathname registered by the primary — this uncovers the pathname registered by the

secondary.

Figure 10: The secondary server is exposed when the primary fails.

When we say that a client reconnects to the server, we mean that literally. The client

may notice that its connection to /dev/ser1 has encountered a problem, and as

part of its recovery it tries to open /dev/ser1 again — it can assume that the standby

module's registered pathname will be exposed by the failure of the primary.

In-service upgrades

The most interesting thing that happens when you combine the concepts of fault

tolerance and the various standby models is that you get in-service upgrades almost

for free.

An in-service upgrade means that you need to be able to modify the version of software

running in your system without affecting the system's ability to do whatever it's doing.

As an interesting implementation, and for a bit of contrast, some six nines systems,

like central office telephone switches, accomplish this in a unique manner. In the

switch, there are two processors running the main software. This is for reliability —

44 Copyright © 2014, QNX Software Systems Limited

High Availability

the two processors are operating in lock-step synchronization, meaning that they

execute the exact same instruction, from the exact same address, at the exact same

time. If there is ever any discrepancy between the two CPUs, service is briefly

interrupted as both CPUs go into an independent diagnostic mode, and the failing

CPU is taken offline (alarm bells ring, logs are generated, the building is evacuated,

etc.).

This dual-CPU mechanism is also used for upgrading the software. One CPU is manually

placed offline, and the switch runs with only the other CPU (granted, this is a small

“asking for trouble” kind of window, but these things are generally done at 3:00 AM

on a Sunday morning). The offline CPU is given a new software load, and then the two

CPUs switch roles — the currently running CPU goes offline, and the offline CPU with

the new software becomes the controlling CPU. If the upgrade passes sanity testing,

the offline processor is placed online, and full dual-redundant mode is reestablished.

Even scarier things can happen, such as live software patches!

We can do something very similar with software, using the HA concepts that we've

discussed so far (and good design — see the Design Philosophy (p. 51) chapter).

What's the real difference between killing a driver and restarting it with the same

version, versus killing a driver and restarting a newer version (or, in certain special

cases, an older version)? If you've made the versions of the driver compatible, there

is no difference. That's what I meant when I said that you get in-service upgrades for

free! To upgrade a driver, you kill the current version. The higher level software notices

the outage, and expects something like the overlord process to come in and fix things.

However, the overlord process not only fixes things, but upgrades the version that it

loads. The higher-level software doesn't really notice; it retries its connection to the

driver, and eventually discovers that a driver exists and continues running.

Figure 11: Preparation for in-service upgrade; the secondary server has a higher version

number.

Of course, I've deliberately oversimplified things to give you the big picture. A botched

in-service upgrade is an excellent way to get yourself fired. Here are just some of the

kinds of things that can go wrong:

• new version is susceptible to the same problem as the old version,

• new version introduces newer, bigger, and nastier bugs, and

• new version is incompatible with the older version.

These are things that require testing, testing, and more testing.

Copyright © 2014, QNX Software Systems Limited 45

Failure modes and recovery models

Policies

Generally speaking, the HA infrastructure presented here is good but there's one more

thing that we need to talk about. What if a process dies, and when restarted, dies

again, and keeps dying? A good HA system will cover that aspect as well, by providing

per-process policies. A policy defines things such as:

• how often a process is allowed to fault,

• at what rate it's restarted, and

• what to do when these limits are exceeded.

While it's a good idea to restart a process when it faults, some processes can be very

expensive to restart (perhaps in terms of the amount of CPU the process takes to start

up, or the extent to which it ties up other resources).

An overlord process needs to be able to limit how fast and how often a process is

restarted. One technique is an exponential back-off algorithm. When the process dies,

it's restarted immediately. If it dies again with a certain time window, it's restarted

after 200 milliseconds. If it dies again with a certain time window, it's restarted after

400 milliseconds, then 800 milliseconds, then 1600 milliseconds, and so on, up to

a certain limit. If it exceeds the limit, another policy is invoked that determines what

to do about this process. One possibility is to run the previous version of the process,

in case the new version has some new bug that the older version doesn't. Another

might be to raise alarms, or page someone. Other actions are left to your imagination,

and depend on the kind of system that you're designing.

46 Copyright © 2014, QNX Software Systems Limited

High Availability

Implementing HA

Modifying a system to be HA after the system is designed can be stupidly expensive,

while designing an HA system in the first place is merely moderately expensive.

The question you need to answer is, how much availability do you need? To a large

extent this is a business decision (i.e., do you have service-level agreements with your

customers? Are you going to be sued if your system faults in the field? What's the

availability number for your competition's equipment?); often just thinking about HA

can lead to a system that's good enough.

Copyright © 2014, QNX Software Systems Limited 47

Implementing HA

RK drones on about his home systems again

On my home system, I had a problem with one of the servers periodically dying. There

didn't seem to be any particular situation that manifested the problem. Once every

few weeks this server would get hit with a SIGSEGV signal. I wasn't in a position to

fix it, and didn't really have the time to analyze the problem and submit a proper bug

report. What I did have time to do, though, was hack together a tiny shell script that

functions as an overlord. The script polls once per second to see if the server is up.

If the server dies, the script restarts it. Client programs simply reconnect to the server

once it's back up. Dead simple, ten lines of shell script, an hour of programming and

testing, and the problem is now solved (although masked might be a better term).

Even though I had a system with a poor MTBF, by fixing the situation in a matter of

a second or two (MTTR), I was able to have a system that met my availability

requirements.

Of course, in a proper production environment, the core dumps from the server would

be analyzed, the fault would be added to the regression test suite, and there'd be no

extra stock options for the designer of the server. :-)

48 Copyright © 2014, QNX Software Systems Limited

High Availability

Other HA systems

I've worked at a few companies that have HA systems.

QNX Software Systems has the HAT (High Availability Toolkit) and the HAM (High

Availability Manager). HAT is a toolkit that includes the HAM, various APIs for client

recovery, and many source code examples. HAM is the manager component that

monitors processes on your system.

QNX Neutrino includes the /proc filesystem, which is where you get information

about processes so you can write your own policies and monitor things that are of

interest in your system.

There are several other HA packages available.

Copyright © 2014, QNX Software Systems Limited 49

Other HA systems

Chapter 3
Design Philosophy

This chapter was first published in QNX Software Systems' email magazine,

QNX Source, as a two-part series.

Copyright © 2014, QNX Software Systems Limited 51

Decoupling design in a message-passing environment

When you're first designing a project using QNX Neutrino, a question that often arises

is “how should I structure my design?” This chapter answers that question by examining

the architecture of a sample application; a security system with door locks, card

readers, and related issues. We'll discuss process granularity — what components

should be put into what size of containers. That is, what the responsibilities of an

individual process should be, and where you draw the line between processes.

QNX Neutrino is advertised as a “message-passing” operating system. Understanding

the true meaning of that phrase when it comes to designing your system can be a

challenge. Sure, you don't need to understand this for a standard “UNIX-like”

application, like a web server, or a logging application. But it becomes an issue when

you're designing an entire system. A common problem that arises is design decoupling.

This problem often shows up when you ask the following questions:

1. How much work should one process do? Where do I draw the line in terms of

functionality?

2. How do I structure the drivers for my hardware?

3. How do I create a large system in a modular manner?

4. Is this design future-proof? Will it work two years from now when my requirements

change?

Here are the short answers, in order:

1. A process must focus on the task at hand; leave everything else to other processes.

2. Drivers must be structured to present an abstraction of the hardware.

3. To create a large system, start with several small, well-defined components and

glue them together.

4. If you've done these things, you'll have a system made of reusable components

that you can rearrange or reuse in the future, and that can accommodate new

building blocks.

In this chapter, we're going to look into these issues, using a reasonably simple

situation:

Say you're the software architect for a security company, and you're creating the

software design for a security system. The hardware consists of swipe-card readers,

door lock actuators, and various sensors (smoke, fire, motion, glass-break, etc.). Your

company wants to build products for a range of markets — a small security system

that's suitable for a home or a small office, up to gigantic systems that are suitable

for large, multi-site customers. They want their systems to be upgradable, so that as

a customer's site grows, they can just add more and more devices, without having to

throw out the small system to buy a whole new medium or large system (go figure!).

52 Copyright © 2014, QNX Software Systems Limited

Design Philosophy

Finally, any systems should support any device (the small system might be a super-high

security area, and require some high-end input devices).

Your first job is to sketch out a high-level architectural overview of the system, and

decide how to structure the software. Working from our goals, the implied requirements

are that the system must support various numbers of each device, distributed across

a range of physical areas, and it must be future-proof so you can add new types of

sensors, output devices, and so on as your requirements change or as new types of

hardware become available (e.g. retinal scanners).

The first step is to define the functional breakdown and answer the question, “How

much work should one process do?”

If we step back from our security example for a moment, and consider a database

program, we'll see some of the same concepts. A database program manages a database

— it doesn't worry about the media that the data lives on, nor is it worried about the

organization of that media, or the partitions on the hard disk, etc. It certainly does

not care about the SCSI or EIDE disk driver hardware. The database uses a set of

abstract services supplied by the filesystem — as far as the database is concerned,

everything else is opaque — it doesn't need to see further down the abstraction chain.

The filesystem uses a set of abstract services from the disk driver. Finally, the disk

driver controls the hardware. The obvious advantage of this approach is this: because

the higher levels don't know the details of the lower levels, we can substitute the lower

levels with different implementations, if we maintain the well-defined abstract

interfaces.

Thinking about our security system, we can immediately start at the bottom (the

hardware) — we know we have different types of hardware devices, and we know the

next level in the hierarchy probably does not want to know the details of the hardware.

Our first step is to draw the line at the hardware interfaces. What this means is that

we'll create a set of device drivers for the hardware and provide a well-defined API for

other software to use.

Figure 12: We've drawn the line between the control applications and the hardware

drivers.

We're also going to need some kind of control application. For example, it needs to

verify that Mr. Pink actually has access to door number 76 at 06:30 in the morning,

and if that's the case, allow him to enter that door. We can already see that the control

software will need to:

• access a database (for verification and logging)

Copyright © 2014, QNX Software Systems Limited 53

Decoupling design in a message-passing environment

• read the data from the swipe-card readers (to find out who's at the door)

• control the door locks (to open the door).

Figure 13: In the next design phase, we've identified some of the hardware components,

and refined the control application layer slightly.

Once we have these two levels defined, we can sort out the interface. Since we've

analyzed the requirements at a higher level, we know what “shape” our interface will

take on the lower level.

For the swipe-card readers, we're going to need to know:

• if someone has swiped their card at the card reader, and

• which card reader it was, so we can determine the person's location.

For the door-lock actuator hardware, we're going to need to open the door, and lock

the door (so that we can let Mr. Pink get in, but lock the door after him).

Earlier, we mentioned that this system should scale — that is, it should operate in a

small business environment with just a few devices, right up to a large campus

environment with hundreds (if not thousands) of devices.

When you analyze a system for scalability, you're looking at the following:

• Is there enough CPU power to handle a maximum system?

• Is there enough hardware capacity (PCI slots, etc.)?

• How do you distribute your system?

• Are there any bottlenecks? Where? How do we get around them?

As we'll see, these scalability concerns are very closely tied in with the way that we've

chosen to break up our design work. If we put too much functionality into a given

process (say we had one process that controls all the door locks), we're limiting what

we can do in terms of distributing that process across multiple CPUs. If we put too

little functionality into a process (one process per function per door lock), we run into

the problem of excessive communications and overhead.

So, keeping these goals in mind, let's look at the design for each of our hardware

drivers.

54 Copyright © 2014, QNX Software Systems Limited

Design Philosophy

Door-lock actuators

We'll start with the door-lock actuators, because they're the simplest to deal with. The

only thing we want this driver to do is to let a door be opened, or prevent one from

being opened — that's it! This dictates the commands that the driver will take — we

need to tell the driver which door lock it should manipulate, and its new state (locked

or unlocked). For the initial software prototype, those are the only commands that I'd

provide. Later, to offload processing and give us the ability to support new hardware,

we might consider adding more commands.

Suppose you have different types of door-lock actuators — there are at least two types

we should consider. One is a door release mechanism — when active, the door can

be opened, and when inactive, the door cannot be opened. The second is a motor-driven

door mechanism — when active, the motor starts and causes the door to swing open;

when inactive, the motor releases the door allowing it to swing closed. These might

look like two different drivers, with two different interfaces. However, they can be

handled by the same interface (but not the same driver).

All we really want to do is let someone go through the door. Naturally, this means that

we'd like to have some kind of timer associated with the opening of the door. When

we've granted access, we'll allow the door to remain unlocked for, say, 20 seconds.

After that point, we lock the door. For certain kinds of doors, we might wish to change

the time, longer or shorter, as required.

A key question that arises is, “Where do we put this timer?” There are several possible

places where it can go:

• the door lock driver itself,

• a separate timing manager driver that then talks to the door lock driver, or

• the control program itself.

This comes back to design decoupling (and is related to scalability).

If we put the timing functionality into the control program, we're adding to its workload.

Not only does the control program have to handle its normal duties (database

verification, operator displays, etc.), it now also has to manage timers.

For a small, simple system, this probably won't make much of a difference. But once

we start to scale our design into a campus-wide security system, we'll be incurring

additional processing in one central location. Whenever you see the phrase “one central

location” you should immediately be looking for scalability problems. There are a

number of significant problems with putting the functionality into the control program:

scalability

the control program must maintain a timer for each door; the more doors,

the more timers.

Copyright © 2014, QNX Software Systems Limited 55

Decoupling design in a message-passing environment

security

if the communications system fails after the control program has opened

the door, you're left with an unlocked door.

upgradability

if a new type of door requires different timing parameters (for example,

instead of lock and unlock commands, it might require multiple timing

parameters to sequence various hardware), you now have to upgrade the

control program.

The short answer here is that the control program really shouldn't have to manage the

timers. This is a low-level detail that's ideally suited to being offloaded.

Let's consider the next point. Should we have a process that manages the timers, and

then communicates with the door-lock actuators? Again, I'd answer no. The scalability

and security aspects raised above don't apply in this case (we're assuming that this

timer manager could be distributed across various CPUs, so it scales well, and since

it's on the same CPU we can eliminate the communications failure component). The

upgradability aspect still applies, however.

But there's also a new issue — functional clustering. What I mean by that is that the

timing function is tied to the hardware. You might have dumb hardware where you

have to do the timing yourself, or you might have smart hardware that has timers built

into it.

In addition, you might have complicated hardware that requires multi-phase

sequencing. By having a separate manager handle the timing, it has to be aware of

the hardware details. The problem here is that you've split the hardware knowledge

across two processes, without gaining any advantages. On a filesystem disk driver, for

example, this might be similar to having one process being responsible for reading

blocks from the disk while another one was responsible for writing. You're certainly

not gaining anything, and in fact you're complicating the driver because now the two

processes must coordinate with each other to get access to the hardware.

That said, there are cases where having a process that's between the control program

and the individual door locks makes sense.

Suppose that we wanted to create a meta door-lock driver for some kind of complicated,

sequenced door access (for example, in a high security area, where you want one door

to open, and then completely close, before allowing access to another door). In this

case, the meta driver would actually be responsible for cycling the individual door lock

drivers. The nice thing about the way we've structured our devices is that as far as the

control software is concerned, this meta driver looks just like a standard door-lock

driver — the details are hidden by the interface.

56 Copyright © 2014, QNX Software Systems Limited

Design Philosophy

Figure 14: The meta door-lock driver presents the same interface as a regular door-lock

driver.

At this point...

Our security system isn't complete! We've just looked at the door locks and illustrated

some of the common design decisions that get made. Our goals for the door-lock driver

were for the process to do as much work as was necessary to provide a clean, simple,

abstract interface for higher levels of software to use. We used functional clustering

(guided by the capabilities of the hardware) when deciding which functions were

appropriate for the driver, and which functions should be left to other processes. By

implication, we saw some of the issues associated with constructing a large system

as a set of small, well-defined building blocks, which could all be tested and developed

individually. This naturally led us to design a system that will allow new types of

modules to be added seamlessly.

Copyright © 2014, QNX Software Systems Limited 57

Decoupling design in a message-passing environment

Managing message flow

Once you've laid out your initial design, it's important to understand the send hierarchy

and its design impact. In this section, we'll examine which processes should be data

sources and which should be data sinks, as well as the overall structure of a larger

system.

Once the message flow is understood, we'll look at more scalability issues.

Let's focus on the swipe-card readers to illustrate some message flow and scalability

concepts.

Swipe-card readers

The swipe-card reader driver is a fairly simple program — it waits for a card to be

swiped through the hardware, and then collects the card ID. While the driver itself is

reasonably simple, there's a major design point we need to consider that's different

than what we've seen so far with the door lock driver. Recall that the door-lock driver

acted as a data sink — the control process sent it commands, telling it to perform

certain actions. With the swipe-card reader, we don't want it to be a data sink. We

don't want to ask the swipe card reader if it has data yet; we want it to tell us when

someone swipes their access card. We need the swipe-card reader to be a data source

— it should provide data to another application when the data is available.

To understand this, let's think about what happens in the control program. The control

program needs to know which user has swiped their card. If the control program kept

asking the swipe card reader if anything had happened yet, we'd run into at a scalability

problem (via polling), and possibly a blocking problem.

The scalability problem stems from the fact that the control program is constantly

inquiring about the status of the swipe card reader. This is analogous to being on a

road trip with kids who keep asking “Are we there yet?” It would be more efficient

(but far more unlikely) for them to ask (once!) “Tell us when we get there.”

If the control program is continually polling, we're wasting CPU cycles — it costs us

to ask, and it costs us to get an answer. Not only are we wasting CPU, but we could

also be wasting network bandwidth in a network-distributed system. If we only have

one or two swipe-card readers, and we poll them once per second, this isn't a big deal.

However, once we have a large number of readers, and if our polling happens faster,

we'll run into problems.

Ideally, we'll want to have the reader send us any data that it has as soon as it's

available. This is also the intuitive solution; you expect something to happen as soon

as you swipe your card.

58 Copyright © 2014, QNX Software Systems Limited

Design Philosophy

The blocking problem could happen if the control program sent a message to the

reader driver asking for data. If the reader driver didn't have any data, it could block

— that is, it wouldn't reply to the client (who is asking for the data) until data became

available. While this might seem like a good strategy, the control program might need

to ask multiple reader drivers for data. Unless you add threads to the control program

(which could become a scalability problem), you'd have a problem — the control

program would be stuck waiting for a response from one swipe-card reader. If this

request was made on a Friday night, and no one swiped in through that particular card

reader until Monday morning, the control program would be sitting there all weekend,

waiting for an answer.

Meanwhile, someone could be trying to swipe in on Saturday morning through a

different reader. Gratuitously adding threads to the control program (so there's one

thread per swipe card reader) isn't necessarily an ideal solution either. It doesn't scale

well. While threads are reasonably inexpensive, they still have a definite cost —

thread-local memory, some internal kernel data structures, and context-switch overhead.

It's the memory footprint that'll have the most impact (the kernel data structures used

are relatively small, and the context-switch times are very fast). Once you add these

threads to the control program, you'll need to synchronize them so they don't contend

for resources (such as the database). The only thing that these threads buy you is the

ability to have multiple blocking agents within your control program.

At this point, it seems that the solution is simple. Why not have the swipe-card reader

send a message to the control program, indicating that data is available? This way,

the control program doesn't have to poll, and it doesn't need a pool of threads. This

means that the swipe-card reader is a “data source,” as we suggested above.

There's one subtle but critical point here. If the reader sends a message to the control

program, and the control program sends a message to the reader at the same time,

we'll run into a problem. Both programs sent messages to each other, and are now

deadlocked, waiting for the other program to respond to their messages. While this

might be something that only happens every so often, it'll fail during a demo rather

than in the lab, or worse, it'll fail in the field.

Why would the control program want to send a message to the swipe-card reader in

the first place? Well, some readers have an LED that can be used to indicate if access

was allowed or not — the control program needs to set this LED to the correct color.

(Obviously, in this example, there are many ways of working around this; however, in

a general design, you should never design a system that even has a hint of allowing a

deadlock!)

The easiest way around this deadlock is to ensure that it never happens. This is done

with something called a send hierarchy. You structure your programs so those at one

level always send messages to those at a lower level, but that those at lower levels

never send messages to those at higher (or the same) levels. In this way, two programs

will never send each other messages at the same time.

Copyright © 2014, QNX Software Systems Limited 59

Managing message flow

Unfortunately, this seems to break the simple solution that we had earlier: letting the

swipe-card reader driver send a message to the control program. The standard solution

to this is to use a non-blocking message (a QNX Neutrino-specific “pulse”). This

message can be sent up the hierarchy, and doesn't violate our rules because it doesn't

block the sender. Even if a higher level used a regular message to send data to a lower

level at the same time the lower level used the pulse to send data to the higher level,

the lower level would receive and process the message from the higher level, because

the lower level wouldn't be blocked.

Let's put that into the context of our swipe-card reader. The control program would

“prime” the reader by sending it a regular message, telling it to send a pulse back up

whenever it has data. Then the control program goes about its business. Some time

later, when a card is swiped through the reader, the driver sends a pulse to the control

program. This tells the control program that it can now safely go and ask the driver

for the data, knowing that data is available, and that the control program won't block.

Since the driver has indicated that it has data, the control program can safely send a

message to the driver, knowing that it'll get a response back almost instantly.

In the following diagram, there are a number of interactions:

1. The control program primes the swipe-card reader.

2. The reader replies with an OK.

3. When the reader has data, it sends a pulse up to the control program.

4. The control program sends a message asking for the data.

5. The reader replies with the data.

Figure 15: A well-defined message-passing hierarchy prevents deadlocks.

Using this send hierarchy strategy, we have the swipe-card driver at the bottom, with

the control program above it. This means that the control program can send to the

driver, but the driver needs to use pulses to transfer indications “up” to the control

program. We could certainly have this reversed — have the driver at the top, sending

data down to the control program. The control program would use pulses to control

the LED status on the swipe-card hardware to indicate access granted or denied.

Why would we prefer one organization over the other? What are the impacts and

trade-offs?

Let's look at the situation step-by-step to see what happens in both cases.

60 Copyright © 2014, QNX Software Systems Limited

Design Philosophy

Control program sends to the swipe-card reader

In the case where the Control Program (Control) is sending data to the Swipe-Card

Reader (Swipe), we have the following steps:

1. Control sends to Swipe.

2. Swipe replies with “OK, event primed.”

3. A big delay occurs until the next person swipes their card.

4. Swipe uses a pulse to say “I have data available.”

5. Control sends a message, “What is your data?”

6. Swipe replies with “Swipe card ID # xxxx was swiped.”

7. Control sends message, “Change LED to GREEN.”

8. Swipe replies with “OK.”

9. A 20-second delay occurs, while the door is opened.

10. Control sends message, “Change LED to RED.”

11. Swipe replies with “OK.”

In this case, there was one pulse, and three messages. Granted, you would prime the

event just once, so the first message can be eliminated.

Swipe-card reader sends to control program

If we invert the relationship, here's what happens:

1. A big delay occurs until the next person swipes their card.

2. Swipe sends message “Swipe card ID # xxxx was swiped.”

3. Control replies with “OK, change LED to GREEN.”

4. A 20-second delay occurs, while the door is opened.

5. Control sends a pulse “Change LED to RED.”

In this case, there was one pulse, and just one message.

An important design note is that the LED color change was accomplished with a reply

in one case (to change it to green), and a pulse in another case (to change it to red).

This may be a key point for your design, depending on how much data you need to

carry in the pulse. In our example, simply carrying the color of the LED is well within

the capabilities of the pulse.

Let's see what happens when we add a keypad to the system. The purpose of the

keypad is for Control to issue a challenge to the person trying to open the door; they

must respond with some kind of password.

Using a keypad challenge — control program sends to the swipe-card reader

In the case where Control is sending data to Swipe, in conjunction with a keypad

challenge, we have the following steps:

Copyright © 2014, QNX Software Systems Limited 61

Managing message flow

1. Control sends to Swipe.

2. Swipe replies with, “OK, event primed.”

3. A big delay occurs until the next person swipes their card.

4. Swipe uses a pulse to say, “I have data available.”

5. Control sends a message, “What is your data?”

6. Swipe replies with, “Swipe card ID # xxxx was swiped.”

7. Control sends message, “Challenge the user with YYYY.”

8. Swipe replies with, “OK, challenge in progress.”

9. A delay occurs while the user types in the response.

10. Swipe sends a pulse to Control with, “Challenge complete.” (We're assuming that

the challenge response doesn't fit in a pulse.)

11. Control sends a message, “What is the challenge response?”

12. Swipe replies with, “Challenge response is IZZY.”

13. Control sends a message, “change LED to GREEN.”

14. Swipe replies with, “OK.”

15. A 20-second delay occurs, while the door is opened.

16. Control sends a message, “Change LED to RED.”

17. Swipe replies with, “OK.”

In this case, there were two pulses and six messages. Again, the initial priming message

could be discounted.

Using a keypad challenge — swipe-card reader sends to control program

If we invert the relationship, here's what happens:

1. A big delay occurs until the next person swipes their card.

2. Swipe sends message “Swipe card ID # xxxx was swiped.”

3. Control replies with “Challenge the user with YYYY.”

4. A delay occurs while the user types in the response.

5. Swipe sends message “Challenge response is IZZY.”

6. Control replies with “OK, change LED to GREEN.”

7. A 20-second delay occurs, while the door is opened.

8. Control sends a pulse “Change LED to RED.”

In this case, there was one pulse and two messages.

So, by carefully analyzing the transactions between your clients and servers, and by

being able to carry useful data within pulses, you can make your transactions much

more efficient! This has ramifications over a network connection, where message

speeds are much slower than locally.

62 Copyright © 2014, QNX Software Systems Limited

Design Philosophy

Scalability

The next issue we need to discuss is scalability. Scalability can be summarized by the

question, “Can I grow this system by an order of magnitude (or more) and still have

everything work?” To answer this question, you have to analyze a number of factors:

• How much CPU, memory, and other resources are you using?

• How much message passing are you performing?

• Can you distribute your application across multiple CPUs?

The first point is probably self-evident. If you're using half of the CPU time and half

of the memory of your machine, then you probably won't be able to more than double

the size of the system (assuming that the resource usage is linearly increasing with

the size of the system).

Closely related to that is the second point — if you're doing a lot of message passing,

you will eventually “max out” the message passing bandwidth of whatever medium

you're using. If you're only using 10% of the CPU but 90% of the bandwidth of your

medium, you'll hit the medium's bandwidth limit first.

This is tied to the third point, which is the real focus of the scalability discussion here.

If you're using a good chunk of the resources on a particular machine (also called a

node under QNX Neutrino), the traditional scalability solution is to share the work

between multiple nodes. In our security example, let's say we were scaling up to a

campus-wide security system. We certainly wouldn't consider having one CPU

responsible for hundreds (or thousands) of door lock actuators, swipe card readers,

etc. Such a system would probably die a horrible death immediately after a fire drill,

when everyone on the campus has to badge-in almost simultaneously when the all-clear

signal is given.

What we'd do instead is set up zone controllers. Generally, you'd set these up along

natural physical boundaries. For example, in the campus that you're controlling, you

might have 15 buildings. I'd immediately start with 15 controller CPUs; one for each

building. This way, you've effectively reduced most of the problem into 15 smaller

problems — you're no longer dealing with one, large, monolithic security system, but

instead, you're dealing with 15 individual (and smaller) security systems.

During your design phase, you'd figure out what the maximum capacity of a single

CPU was — how many door-lock actuators and swipe-card readers it could handle in

a worst-case scenario (like the fire drill example above). Then you'd deploy CPUs as

appropriate to be able to handle the expected load.

While it's good that you now have 15 separate systems, it's also bad — you need to

coordinate database updates and system-level monitoring between the individual

systems. This is again a scalability issue, but at one level higher. (Many commercial

Copyright © 2014, QNX Software Systems Limited 63

Scalability

off-the-shelf database packages handle database updates, high availability, fail-overs,

redundant systems, etc. for you.)

You could have one CPU (with backup!) dedicated to being the master database for

the entire system. The 15 subsystems would all ask the one master database CPU to

validate access requests. Now, it may turn out that a single CPU handling the database

would scale right up to 200 subsystems, or it might not. If it does, then your work is

done — you know that you can handle a fairly large system. If it doesn't, then you

need to once again break the problem down into multiple subsystems.

In our security system example, the database that controls access requests is fairly

static — we don't change the data on a millisecond-to-millisecond basis. Generally,

we'd update the data only when a new employee joins the company, one gets

terminated, someone loses their card, or the access permissions for an employee

change.

To distribute this database, we can simply have the main database server send out

updates to each of its “mirror” servers. The mirror servers are the ones that then handle

the day-to-day operations of access validation. This nicely addresses the issue of a

centralized outage — if the main database goes down, all of the mirror servers will

still have a fairly fresh update. Since you've designed the central database server to

be redundant, it'll come back up real soon, and no one will notice the outage.

Distributed processing

For purposes of illustration, let's say that the data did in fact change very fast. How

would we handle that? The standard solution here is “distributed processing.”

We'd have multiple database servers, but each one would handle only a certain subset

of the requests. The easiest way to picture this is to imagine that each of the swipe

cards has a 32-bit serial number to identify the swipe card.

If we needed to break the database server problem down into, say, 16 sub-problems,

then you could do something very simple. Look at the four least significant bits of the

serial number, and then use that as a server address to determine which server should

handle the request. (This assumes that the 32-bit serial numbers have an even

distribution of least-significant four-bit addresses; if not, there are plenty of other

hashing algorithms.) Need to break the problem into 32 “sub-problems?” Just look

at the five least significant bits of the serial number, and so on.

This kind of approach is done all the time at trade shows — you'll see several

registration desks. One might have “Last Name A-H,” “Last Name I-P,” and “Last

Name Q-Z” to distribute the hoards of people into three separate streams. Depending

on where you live, your local driver's license bureau may do something similar — your

driver's license expires on your birthday. While there isn't necessarily a completely

even distribution of birthdays over the days of the year, it does distribute the problem

somewhat evenly.

64 Copyright © 2014, QNX Software Systems Limited

Design Philosophy

Summary

I've shown you some of the basic implications of message passing, notably the send

hierarchy and how to design with it in mind to avoid deadlocks. We've also looked at

scalability and distributed processing, noting that the idea is to break the problem

down into a number of sub-problems that can be distributed among multiple CPUs.

Copyright © 2014, QNX Software Systems Limited 65

Summary

Chapter 4
Web Counter Resource Manager

The web counter resource manager was created specifically for this book, and the code

is presented in a three-phase building-block approach. In addition, there are a few

interesting diversions that occurred along the way.

Copyright © 2014, QNX Software Systems Limited 67

Requirements

The requirements for the web counter resource manager are very simple — it

dynamically generates a graphic file that contains a bitmap of the numbers representing

the current hit count. The hit count is meant to indicate how many times the resource

has been accessed. Further phases of the project refine this by adding font selection,

directory management, and other features.

Using the web counter resource manager

The web counter is very simple to use. As root, you run it in the background:

webcounter &

The web counter is now running, and has taken over the pathname

/dev/webcounter.gif. To see if it's really doing its job, I used my aview

(Animation Viewer) program. If you test it using a web browser, you'll need to hit the

reload or refresh button to get the next count to display.

To use it as part of a web page, you'd include it in an tag:

<html>
<head>
<title>My Web Page</title>
<body>
<h1>My Web Page</h1>
<p>
My web page has been accessed this many times:

</p>
</body>
</html>

Of course, your web server must be set up to allow access to /dev/webcounter.gif

— you can get around this by using a symlink, or by setting the name of the web

counter output file on the command line (use -n):

webcounter -n /home/rk/public_html/hits.gif &

68 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

Design

The webcounter design was very ad-hoc — the requirements were that it display a

graphical image to illustrate on-demand data generation in a resource manager. Most

of the command-line options were defined right at the time that I edited main.c —

things like the X and Y image size, the background and foreground colors, and so on.

The -n parameter, to determine the name of the resource, was already part of the

“standard” resource manager “framework” library that I use as a template. The -s

option was added last. It controls the starting count, and after the first draft of the

code was completed, I got bored with the fact that it always started at zero, and wanted

to provide a way of getting an arbitrary count into the counter.

Generating the graphical image

The hardest part of the design was generating the graphical image. I chose a 7-segment

LED style because I figured it would be the easiest to generate. Of course, a plain

7-segment representation, where each segment was a rectangle, proved to be too

simple, so I had to make the segments with a nice diagonal corner so they'd fit together

nicely. Sometimes, I just have too much time on my hands.

Figure 16: The simulated 7-segment digits.

Copyright © 2014, QNX Software Systems Limited 69

Design

The code — phase 1

In this section, we'll discuss the code for the phase 1 implementation. In later sections,

we'll examine the differences between this code and the phase 2 and phase 3

implementations.

The code consists of the following modules:

Makefile

This is a very basic Makefile, nothing special here.

main.use

Usage message for the web counter resource manager.

main.c

Main module. This contains pretty much everything.

7seg.c

7-segment LED simulator module.

You'll also need a GIF encoder.

Operation

Operation begins in the usual manner with main() in main.c. We call our option

processor (optproc()) and then we enter the resource manager main loop at

execute_resmgr(). The resource manager main loop never returns.

All of the work is done as callouts by the connect and I/O functions of the resource

manager. We take over the io_open(), io_read(), and io_close_ocb() functions, and

leave all the rest to the QNX Neutrino libraries. This makes sense when you think

about it — apart from the magic of generating a graphical image on-the-fly, all we're

really doing is handling the client's open() (so we can set up our data areas), giving

the data to the client (via the client's read()), and cleaning up after ourselves (when

we get the client's close()).

However, as you'll see shortly, even these simple operations have some interesting

consequences that need to be considered.

Generating the graphical image

Part of the magic of this resource manager is generating the graphical image. The

process is quite simple. We allocate an array to hold the graphical image as a bitmap.

Then, we draw the 7-segment display into the bitmap, and finally we convert the

70 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

bitmap into a GIF-encoded data block. It's the GIF-encoded data block — not the raw

bitmap — that's returned by the io_read() handler to the client.

Step-by-step code walkthrough

Let's look at the source for the web counter resource manager, starting with the include

files.

Include files and data structures

This project uses the following include files:

7seg.h

Nothing interesting here, just a function prototype.

gif.h

This contains the GIF compressor's work area data structure,

gif_context_t. The work area is used for compressing the bitmap to GIF

format. Since the topic of GIF compression is beyond the scope of this book

I won't go details. All of the global variables that were present in the original

GIF encoder were gathered up and placed into a data structure.

Source files

The web counter resource manager uses the following source files:

main.c

Standard main() and option-processing functions. Since this is such a small

example, the three resource manager callouts (io_open(), io_read(), and

io_close_ocb()) are present in this file as well.

version.c

This just contains the version number.

7seg.c

This file contains the render_7segment() routine. It draws the graphical

representation of the 7-segment LED picture into the bitmap.

Apart from those files, there's also a fairly generic Makefile for building the

executable.

Copyright © 2014, QNX Software Systems Limited 71

The code — phase 1

The code

As usual, execution begins at main() in main.c. We won't talk about main(); it only

does very basic command-line processing (via our optproc() function), and then calls

execute_resmgr().

The execute_resmgr() function

One thing that you'll notice right away is that we extended the attributes

(iofunc_attr_t) and the OCB (iofunc_ocb_t) structures:

typedef struct my_attr_s
{
 iofunc_attr_t base;
 int count;
} my_attr_t;

typedef struct my_ocb_s
{
 iofunc_ocb_t base;
 unsigned char *output;
 int size;
} my_ocb_t;

It's a resource manager convention to place the standard structure as the first member

of the extended structure. Thus, both members named base are the nonextended

versions.

Extending the attributes and OCB structures is discussed in Get Programming

with the QNX Neutrino RTOS in the Resource Managers chapter.

Recall that an instance of the attributes structure is created for each device. This

means that for the device /dev/webcounter1.gif, there will be exactly one

attributes structure. Our extension simply stores the current count value. We certainly

could have placed that into a global variable, but that would be bad design. If it were

a global variable, we would be prevented from manifesting multiple devices. Granted,

the current example shows only one device, but it's good practice to make the

architecture as flexible as possible, especially if it doesn't add undue complexity.

Adding one field to an extended structure is certainly not a big issue.

Things get more interesting in the OCB extensions. The OCB structure is present on

a per-open basis; if four clients have called open() and haven't closed their file

descriptors yet, there will be four instances of the OCB structure.

This brings us to the first design issue. The initial design had an interesting bug.

Originally, I reasoned that since the QNX Neutrino resource manager library allows

only single-threaded access to the resource (our /dev/webcounter.gif), then it

would be safe to place the GIF context (the output member) and the size of the resource

(the size member) into global variables. This singled-threaded behavior is standard

for resource managers, because the QNX Neutrino library locks the attributes structure

before performing any I/O function callouts. Thus, I felt confident that there would be

no problems.

72 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

In fact, during initial testing, there were no problems — only because I tested the

resource manager with a single client at a time. I felt that this was an insufficient

test, and ran it with multiple simultaneous clients:

aview -df1 /dev/webcounter.gif &
aview -df1 /dev/webcounter.gif &
aview -df1 /dev/webcounter.gif &
aview -df1 /dev/webcounter.gif &

and that's when the first bug showed up. Obviously, the GIF context members needed

to be stored on a per-client basis, because each client would be requesting a different

version of the number (one client would be at 712, the next would be at 713, and so

on). This was readily fixed by extending the OCB and adding the GIF context member

output. (I really should have done this initially, but for some reason it didn't occur to

me at the time.)

At this point, I thought all the problems were fixed; multiple clients would show the

numbers happily incrementing, and each client would show a different number, just

as you would expect.

Then, the second interesting bug hit. Occasionally, I'd see that some of the aview

clients would show only part of the image; the bottom part of the image would be cut

off. This glitch would clear itself up on the next refresh of the display, so I was initially

at a loss to explain where the problem was. I even suspected aview, although it had

worked flawlessly in the past.

The problem turned out to be subtle. Inside of the base attributes structure is a member

called nbytes, which indicates the size of the resource. The “size of the resource” is

the number of bytes that would be reported by ls -l — that is, the size of the “file”

/dev/webcounter1.gif.

When you do an ls -l of the web counter, the size reported by ls is fetched from

the attributes structure via ls's stat() call. You'd expect that the size of a resource

wouldn't change, but it does! Since the GIF compression algorithm squeezes out

redundancy in the source bitmap image, it will generate different sizes of output for

each image that's presented to it. Because of the way that the io_read() callout works,

it requires the nbytes member to be accurate. That's how io_read() determines that

the client has reached the end of the resource.

The first client would open() the resource, and begin reading. This caused the GIF

compression algorithm to generate a compressed output stream. Since I needed the

size of the resource to match the number of bytes that are returned, I wrote the number

of bytes output by the GIF compression algorithm into the attributes structure's nbytes

member, thinking that was the correct place to put it.

But consider a second client, preempting the first client, and generating a new

compressed GIF stream. The size of the second stream was placed into the attributes

structure's nbytes member, resulting in a (potentially) different size for the resource!

This means that when the first client resumed reading, it was now comparing the new

Copyright © 2014, QNX Software Systems Limited 73

The code — phase 1

nbytes member against a different value than the size of the stream it was processing!

So, if the second client generated a shorter compressed data stream, the first client

would be tricked into thinking that the data stream was shorter than it should be. The

net result was the second bug: only part of the image would appear — the bottom

would be cut off because the first client hit the end-of-file prematurely.

The solution, therefore, was to store the size of the resource on a per-client basis in

the OCB, and force the size (the nbytes member of the attributes structure) to be the

one appropriate to the current client. This is a bit of a kludge, in that we have a

resource that has a varying size depending on who's looking at it. You certainly wouldn't

run into this problem with a traditional file — all clients using the file get whatever

happens to be in the file when they do their read(). If the file gets shorter during the

time that they are doing their read(), it's only natural to return the shorter size to the

client.

Effectively, what the web counter resource manager does is maintain virtual

client-sensitive devices (mapped onto the same name), with each client getting a

slightly different view of the contents.

Think about it this way. If we had a standalone program that generated GIF images,

and we piped the output of that program to a file every time a client came along and

opened the image, then multiple concurrent clients would get inconsistent views of

the file contents. They'd have to resort to some kind of locking or serialization method.

Instead, by storing the actual generated image, and its size, in the per-client data area

(the OCB), we've eliminated this problem by taking a snapshot of the data that's

relevant to the client, without the possibility of having another client upset this

snapshot.

That's why we need the io_close_ocb() handler — to release the per-client context

blocks that we generated in the io_open().

So what size do we give the resource when no clients are actively changing it? Since

there's no simple way of pre-computing the size of the generated GIF image (short of

running the compressor, which is a mildly expensive operation), I simply give it the

size of the uncompressed bitmap buffer (in the io_open()).

Now that I've given you some background into why the code was designed the way it

was, let's look at the resource manager portion of the code.

The io_open() function

static int
io_open (resmgr_context_t *ctp, io_open_t *msg,
 RESMGR_HANDLE_T *handle, void *extra)
{
 IOFUNC_OCB_T *ocb;
 int sts;

 sts = iofunc_open (ctp, msg, &handle -> base, NULL, NULL);
 if (sts != EOK) {
 return (sts);
 }

 ocb = calloc (1, sizeof (*ocb));

74 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

 if (ocb == NULL) {
 return (ENOMEM);
 }

 // give them the unencoded size
 handle -> base.nbytes = optx * opty;

 sts = iofunc_ocb_attach (ctp, msg, &ocb -> base,
 &handle -> base, NULL);
 return (sts);
}

The only thing that's unique in this io_open() handler is that we allocate the OCB

ourselves (we do this because we need a non standard size), and then jam the nbytes

member with the raw uncompressed size, as discussed above.

In an earlier version of the code, instead of using the raw uncompressed size, I decided

to call the 7-segment render function and to GIF-encode the output. I thought this

was a good idea, reasoning that every time the client calls open() on the resource, I

should increment the number. This way, too, I could give a more “realistic” size for

the file (turns out that the compressed file is on the order of 5% of the size of the raw

image). Unfortunately, that didn't work out because a lot of things end up causing the

io_open() handler to run — things like ls would stat() the file, resulting in an

inaccurate count. Some utilities prefer to stat() the file first, and then open it and

read the data, causing the numbers to jump unexpectedly. I removed the code that

generates the compressed stream from io_open() and instead moved it down to the

io_read().

The io_read() function

static int
io_read (resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb)
{
 int nbytes;
 int nleft;
 int sts;
 char string [MAX_DIGITS + 1];

 // 1) we don't do any xtypes here...
 if ((msg -> i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE) {
 return (ENOSYS);
 }

 // standard helper
 sts = iofunc_read_verify (ctp, msg, &ocb -> base, NULL);
 if (sts != EOK) {
 return (sts);
 }

 // 2) generate and compress an image
 if (!ocb -> output) {
 unsigned char *input; // limited scope

 input = calloc (optx, opty);
 if (input == NULL) {
 return (ENOMEM);
 }
 ocb -> output = calloc (optx, opty);
 if (ocb -> output == NULL) {
 free (input);
 return (ENOMEM);
 }

 sprintf (string, "%0*d", optd, ocb -> base.attr -> count++);
 render_7segment (string, input, optx, opty);
 ocb -> size = encode_image (input, optx, opty, ocb -> output);
 free (input);
 }

Copyright © 2014, QNX Software Systems Limited 75

The code — phase 1

 // 3) figure out how many bytes are left
 nleft = ocb -> size - ocb -> base.offset;

 // 4) and how many we can return to the client
 nbytes = min (nleft, msg -> i.nbytes);

 if (nbytes) {
 // 5) return it to the client
 MsgReply (ctp -> rcvid, nbytes,
 ocb -> output + ocb -> base.offset, nbytes);

 // 6) update flags and offset
 ocb -> base.attr -> base.flags |=
 IOFUNC_ATTR_ATIME | IOFUNC_ATTR_DIRTY_TIME;
 ocb -> base.offset += nbytes;
 } else {
 // 7) nothing to return, indicate End Of File
 MsgReply (ctp -> rcvid, EOK, NULL, 0);
 }

 // 8) already done the reply ourselves
 return (_RESMGR_NOREPLY);
}

Let's look at this code step-by-step:

1. If there are any XTYPE directives, we return ENOSYS because we don't handle

XTYPEs. XTYPEs are discussed in the Get Programming with the QNX Neutrino

RTOS book in the “Resource Managers” chapter.

2. If we currently don't have a compressed image to work from (i.e. this is the first

time that we've been called for this particular open() request), we allocate the

temporary input (raw buffer) and OCB's output (compressed buffer) data areas,

call render_7segment() to draw the picture into the raw buffer, and then

encode_image() to compress it. Notice that encode_image() returns the number of

bytes that it generated and we store that into the OCB's size member. Then we free

the temporary input buffer area.

3. We calculate the number of bytes that are left, which is simply the difference

between the number of bytes that we have in the compressed image buffer and

our current offset within that buffer. Note that we use the OCB's size member

rather than the attributes structure's nbytes member (see note after step 8 below).

4. We then calculate the number of bytes we can return to the client. This could be

smaller than the number of bytes that we have left because the client may request

fewer bytes than what we could give them.

5. If we have any bytes to return to the client (i.e. we haven't reached EOF), we perform

the MsgReply() ourselves, giving the client nbytes' worth of data, starting at the

output area plus the current offset.

6. As per POSIX, we update our ATIME flag, because we just accessed the device

and returned more than zero bytes. We also move our offset to reflect the number

of bytes we just returned to the client, so that we have the correct position within

the file for the next time.

7. If, on the other hand, we were not returning any bytes to the client (i.e. we've

reached EOF), we indicate this by doing a MsgReply() with zero bytes.

8. By returning _RESMGR_NOREPLY we're indicating to the QNX Neutrino resource

manager framework that we've already called MsgReply() and that it should not.

76 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

Notice that we used the OCB's size member rather than the attributes structure's

nbytes member. This is because the image that we generated has a different

size (shorter) than the size stored in the attributes structure's nbytes member.

Since we want to return the correct number of bytes to the client, we use the

smaller size number.

The io_close_ocb() function

static int
io_close_ocb (resmgr_context_t *ctp, void *reserved,
 RESMGR_OCB_T *ocb)
{
 if (ocb -> output) {
 free (ocb -> output);
 ocb -> output = NULL;
 }

 return (iofunc_close_ocb_default (ctp, reserved,
 &ocb -> base));
}

The io_close_ocb() function doesn't do anything special, apart from releasing the

memory that may have been allocated in io_read(). The check to see if anything is

present in the output member of the extended OCB structure is necessary because

it's entirely possible that io_read() was never called and that member never had anything

allocated to it (as would be the case with a simple stat() call — stat() doesn't cause

read() to be called, so our io_read() would never get called).

The render_7segment() function

I won't go into great detail on the render_7segment() function, except to describe in

broad terms how it works.

Here's the prototype for render_7segment()

void
render_7segment (char *digits,
 unsigned char *r,
 int xsize,
 int ysize);

The parameters are:

digits

This is the ASCII string to render into the raw bitmap. Currently, the

render_7seg() function understands the numbers 0 through 9, a blank, and

the digits A through F (upper and lower case).

r

This is the raw graphics bitmap, allocated by the caller. It is stored as one

byte per pixel, left to right, top to bottom (i.e. r [7] is X-coordinate 7,

Y-coordinate 0).

xsize, ysize

Copyright © 2014, QNX Software Systems Limited 77

The code — phase 1

This defines the size of the graphical bitmap. To write to an arbitrary (X, Y)

location, add the X value to the product of the Y value and the xsize

parameter.

As an exercise for the reader, you can extend the character set accepted by the

render_7segment() function. You'll want to pay particular attention to the seg7 array,

because it contains the individual segment encodings for each character.

The encode_image() function

Finally, the encode_image() function is used to encode the raw bitmap array into a

GIF compressed stream. This code was originally found in an antique version of

FRACTINT (a Fractal graphics generator; see http://fractint.org/) that I had

on my system from the BIX (Byte Information Exchange) days. I've simplified the code

to deal only with a limited range of colors and a fixed input format. You'll need to

provide your own version.

I won't go into great detail on the encode_image() function, but here's the prototype:

int
encode_image (unsigned char *raster,
 int x,
 int y,
 unsigned char *output);

The parameters are:

raster

The raw bitmap, in the same format as the input to the render_7segment()

function, above.

x, y

The X and Y size of the raw bitmap.

output

The compressed output buffer, allocated by the caller.

Since we don't know a priori how big the compressed output buffer will be, I allocate

one that's the same size as the input buffer. This is safe, because the nature of the

7-segment rendering engine is that there will be many “runs” (adjacent pixels with

the same color), which are compressible. Also, the bitmap used is really only one bit

(on or off), and the compressed output buffer makes full use of all 8 bits for the

compressed streams. (If you modify this, beware that in certain cases, especially with

“random” data, the compressed output size can be bigger than the input size.)

As another exercise, you can modify the webcounter resource manager to generate a

JPEG or PNG file instead of, or in addition to, the GIF files that it currently generates.

The return value from the encode_image() function is the number of bytes placed into

the compressed data buffer, and is used in io_read() to set the size of the resource.

78 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

http://fractint.org/

The code — phase 2

Now that we understand the basic functionality of the web counter, it's time to move

on to phase 2 of the project.

In this second phase, we're going to add (in order of increasing complexity):

persistent count file

This stores the count to a file every time the count changes. It lets you

shutdown and restart the resource manager without losing your count.

font selection

We're going to give the client the ability to choose from different fonts.

Currently, we'll add only one additional font, because adding more fonts is

a simple matter of font design.

ability to render in plain text

For simplicity, sometimes it's nice to get the data in a completely different

manner, so this modification lets you use cat to view (and not increase)

the count.

ability to write() to the resource

This lets you set the current value of the counter just by writing an ASCII

text string to the counter resource.

Why these particular features, and not others? They're incremental, and they are more

or less independent of each other, which means we can examine them one at a time,

and understand what kind of impact they have on the code base. And, most of them

are useful. :-)

The biggest modification is the ability to write() to the resource. What I mean by that

is that we can set the counter's value by writing a value to it:

echo 1234 >/dev/webcounter.gif

This will reset the counter value to 1234.

This modification will illustrate some aspects of accumulating data from a client's

write() function, and then seeing how this data needs to be processed in order to

interact correctly with the resource manager. We'll also look at extending this

functionality later.

All of the modifications take place within main.c (with the exception of the

font-selection modification, which also adds two new files, 8x8.c and 8x8.h).

Copyright © 2014, QNX Software Systems Limited 79

The code — phase 2

Persistent count file

Soon after finishing the phase 1 web counter, I realized that it really needed to be

able to store the current count somewhere, so that I could just restart the web counter

and have it magically continue from where it left off, rather than back at zero.

The first change to accomplish this is to handle the -S option, which lets you specify

the name of the file that stores the current web counter value. If you don't specify a

-S then nothing different happens — the new version behaves just the same as the

old version. Code-wise, this change is trivial — just add “S:” to the getopt() string

list in the command line option processor (optproc() in main.c), and put in a handler

for that option. The handler saves the value into the global variable optS.

At the end of option processing, if we have a -S option, we read the value from it (by

calling read_file()), but only if we haven't specified a -s. The logic here is that if you

want to reset the web counter to a particular value, you'd want the -s to override the

count from the -S option. (Of course, you could always edit the persistent data file

with a text editor once the resource manager has been shut down.)

Once the web counter has started, we're done reading from the persistent count file.

All we need to do is update the file whenever we update the counter. This too is a

trivial change. After we increment the counter's value in io_read(), we call write_file()

to store the value to the persistent file (only if optS is defined; otherwise, there's no

file, so no need to save the value).

Font selection

As it turns out, font selection is almost as trivial to implement as the persistent count

file, above.

We had to add a -r option (for “render”), and a little bit of logic to determine which

font was being specified:

case 'r':
 if (!strcmp (optarg, "8x8")) {
 optr = render_8x8;
 } else if (!strcmp (optarg, "7seg")) {
 optr = render_7segment;
 } else {
 // error message
 exit (EXIT_FAILURE);
 }
 break;

The specified font is selected by storing a function pointer to the font-rendering

function in the optr variable. Once that's done, it's a simple matter of storing the

function pointer into a new field (called render) within the OCB:

typedef struct my_ocb_s
{
 iofunc_ocb_t base;
 unsigned char *output;
 int size;
 void (*render) (char *string,

80 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

 unsigned char *bitmap,
 int x, int y);
} my_ocb_t;

Then, in io_read(), we replaced the hard-coded call to render_7segment():

render_7segment (string, input, optx, opty);

with a call through the OCB's new pointer:

(*ocb -> render) (string, input, optx, opty);

Fairly painless. Of course, we needed to create a new font and font-rendering module,

which probably took more time to do than the actual modifications. See the source in

8x8.c for the details of the new font.

Plain text rendering

The next modification is to make the resource manager return an ASCII string instead

of a GIF-encoded image. You could almost argue that this should have been “Phase

0,” but that's not the way that the development path ended up going.

It would be simple to create a rendering module that copied the ASCII string sent to

the “raw bitmap” array, and skip the GIF encoding. The code changes would be

minimal, but there would be a lot of wasted space. The raw bitmap array is at least

hundreds of bytes, and varies in size according to the X and Y sizes given on the

command line. The ASCII string is at most 11 bytes (we impose an arbitrary limit of

10 digits maximum, and you need one more byte for the NUL terminator for the string).

Additionally, having the resource manager register a name in the pathname space that

ends in .gif, and then having text come out of the GIF-encoded “file” is a little odd.

Therefore, the approach taken was to create a second pathname that strips the

extension and adds a different extension of “.txt” for the text version. We now have

two attributes structures: one for the original GIF-encoded version and another for the

text version.

This is a fairly common extension to resource managers in the field. Someone

decides they need data to come out of the resource manager in a different

format, so instead of overloading the meaning of the registered pathname, they

add a second one.

The first change is to create the two attributes structures in execute_resmgr(). So,

instead of:

static void
execute_resmgr (void)
{
 resmgr_attr_t resmgr_attr;
 resmgr_connect_funcs_t connect_func;
 resmgr_io_funcs_t io_func;
 my_attr_t attr;
 dispatch_t *dpp;
 resmgr_context_t *ctp;
 ...

Copyright © 2014, QNX Software Systems Limited 81

The code — phase 2

we now have:

// one for GIF, one for text
static my_attr_t attr_gif;
static my_attr_t attr_txt;

static void
execute_resmgr (void)
{
 resmgr_attr_t resmgr_attr;
 resmgr_connect_funcs_t connect_func;
 resmgr_io_funcs_t io_func;
 dispatch_t *dpp;
 resmgr_context_t *ctp;
 ...

Notice how we moved the two attributes structures out of the execute_resmgr() function

and into the global space. You'll see why we did this shortly. Ordinarily, I'd be wary

of moving something into global space. In this case, it's purely a scope issue — the

attributes structure is a per-device structure, so it doesn't really matter where we store

it.

Next, we need to register the two pathnames instead of just the one. There are some

code modifications that we aren't going to discuss in this book, such as initializing

both attributes structures instead of just the one, and so on. Instead of:

// establish a name in the pathname space
if (resmgr_attach (dpp, &resmgr_attr, optn, _FTYPE_ANY, 0,
 &connect_func, &io_func, &attr) == -1) {
 perror ("Unable to resmgr_attach()\n");
 exit (EXIT_FAILURE);
}

we now have:

// establish a name in the pathname space for the .GIF file:
if (resmgr_attach (dpp, &resmgr_attr, optn, _FTYPE_ANY, 0,
 &connect_func, &io_func, &attr_gif) == -1) {
 perror ("Unable to resmgr_attach() for GIF device\n");
 exit (EXIT_FAILURE);
}

// establish a name in the pathname space for the text file:
convert_gif_to_txt_filename (optn, txtname);
if (resmgr_attach (dpp, &resmgr_attr, txtname, _FTYPE_ANY, 0,
 &connect_func, &io_func, &attr_txt) == -1) {
 perror ("Unable to resmgr_attach() for text device\n");
 exit (EXIT_FAILURE);
}

The convert_gif_to_txt_filename() function does the magic of stripping out the extension

and replacing it with “.txt.” It also handles other extensions by adding “.txt” to

the filename.

At this point, we have registered two pathnames in the pathname space. If you didn't

specify a name via -n, then the default registered names would be:

/dev/webcounter.gif
/dev/webcounter.txt

82 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

Notice how we don't change the count based on reading the text resource. This was

a conscious decision on my part — I wanted to be able to read the “current” value

from the command line without affecting the count:

cat /dev/webcounter.txt

The rationale is that we didn't actually read the web page; it was an administrative

read of the counter, so the count should not be incremented. There's a slight hack

here, in that I reach into the GIF's attributes structure to grab the count. This is

acceptable, because the binding between the two resources (the GIF-encoded resource

and the text resource) is done at a high level.

Writing to the resource

The final change we'll make to our resource manager is to give it the ability to handle

the client's write() requests. Initially, the change will be very simple — the client can

write a number up to MAX_DIGITS (currently 10) digits in length, and when the client

closes the file descriptor, that number will be jammed into the current count value.

This lets you do the following from the command line:

echo 1433 >/dev/webcounter.gif

or

echo 1433 >/dev/webcounter.txt

We're not going to make any distinction between the GIF-encoded filename and the

text filename; writing to either will reset the counter to the specified value, 1433 in

this case (yes, it's a little odd to write a plain ASCII string to a .gif file).

Adding the io_write() handler

If we're going to be handling the client's write() function, we need to have an io_write()

handler. This is added in execute_resmgr() to the table of I/O functions, right after

the other functions that we've already added:

// override functions in "connect_func" and
// "io_func" as required here
connect_func.open = io_open;
io_func.read = io_read;
io_func.close_ocb = io_close_ocb;
io_func.write = io_write; // our new io_write handler

What are the characteristics of the io_write() handler?

First of all, it must accumulate characters from the client. As with the io_read() handler,

the client can “dribble” in digits, one character at a time, or the client can write() the

entire digit stream in one write() function call. We have to be able to handle all of the

cases. Just like we did with the io_read() handler, we'll make use of the OCB's offset

member to keep track of where we are in terms of reading data from the client. The

offset member is set to zero (by the calloc() in io_open()) when the resource is opened,

so it's already initialized.

Copyright © 2014, QNX Software Systems Limited 83

The code — phase 2

We need to ensure that the client doesn't overflow our buffer, so we'll be comparing

the offset member against the size of the buffer as well.

We need to determine when the client is done sending us data. This is done in the

io_close_ocb() function, and not in the io_write() function.

The io_write() function

Let's look at the io_write() function first, and then we'll discuss the code:

static int
io_write (resmgr_context_t *ctp, io_write_t *msg, RESMGR_OCB_T *ocb)
{
 int nroom;
 int nbytes;

 // 1) we don't do any xtypes here...
 if ((msg -> i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE) {
 return (ENOSYS);
 }

 // standard helper function
 if ((sts = iofunc_write_verify (ctp, msg, &ocb -> base, NULL)) != EOK) {
 return (sts);
 }

 // 2) figure out how many bytes we can accept in total
 nroom = sizeof (ocb -> wbuf) - 1 - ocb -> base.offset;

 // 3) and how many we can accept from the client
 nbytes = min (nroom, msg -> i.nbytes);

 if (nbytes) {
 // 4) grab the bytes from the client
 memcpy (ocb -> wbuf + ocb -> base.offset, &msg -> i + 1, nbytes);

 // 5) update flags and offset
 ocb -> base.attr -> base.flags |=
 IOFUNC_ATTR_MTIME | IOFUNC_ATTR_DIRTY_TIME;
 ocb -> base.offset += nbytes;
 } else {
 // 6) we're full, tell them
 if (!nroom) {
 return (ENOSPC);
 }
 }

 // 7) set the number of returning bytes
 _IO_SET_WRITE_NBYTES (ctp, nbytes);
 return (EOK);
}

The io_write() function performs the following steps:

1. Just like in the io_read() handler, we fail the attempt to perform any XTYPE

operations.

2. We determine how much room we have available in the buffer by subtracting the

current offset from its size.

3. Next, we determine how many bytes we can accept from the client. This is going

to be the smaller of the two numbers representing how much room we have, and

how many bytes the client wants to transfer.

4. If we are transferring any bytes from the client, we do that via memcpy(). (See note

after step 7 below!)

84 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

5. POSIX says that the MTIME time field must be updated if transferring more than

zero bytes, so we set the “MTIME is dirty” flag.

6. If we can't transfer any bytes, and it's because we have no room, we give the client

an error indication.

7. Finally, we tell the resource manager framework that we've processed nbytes worth

of data, and that the status was EOK.

In step 4, we assume that we have all of the data! Remember that the resource

manager framework doesn't necessarily read in all of the bytes from the client

— it reads in only as many bytes as you've specified in your

resmgr_attr.msg_max_size parameter to the resmgr_attach() function (and in

the network case it may read in less than that). However, we are dealing with

tiny amounts of data — ten or so bytes at the most, so we are safe in simply

assuming that the data is present. For details on how this is done “correctly,”

take a look at the RAM-disk Filesystem (p. 135) chapter.

The io_close_ocb() function

Finally, here are the modifications required for the io_close_ocb() function:

static int
io_close_ocb (resmgr_context_t *ctp, void *reserved, RESMGR_OCB_T *ocb)
{
 int tmp;

 if (ocb -> output) {
 free (ocb -> output);
 ocb -> output = NULL;
 }

 // if we were writing, parse the input
 // buffer and possibly adjust the count
 if (ocb -> base.ioflag & _IO_FLAG_WR) {
 // ensure NUL terminated and correct size
 ocb -> wbuf [optd + 1] = 0;
 if (isdigit (*ocb -> wbuf)) {
 attr_gif.count = attr_txt.count = tmp = atoi (ocb -> wbuf);
 if (optS) {
 write_file (optS, tmp);
 }
 }
 }

 return (iofunc_close_ocb_default (ctp, reserved, &ocb -> base));
}

All that's different in the io_close_ocb() function is that we look at the OCB's ioflag

to determine if we were writing or not. Recall that the ioflag is the “open mode” plus

one — by comparing against the constant _IO_FLAG_WR we can tell if the “write”

bit is set. If the write bit is set, we were writing, therefore we process the buffer that

we had been accumulating in the io_write(). First of all, we NULL-terminate the buffer

at the position corresponding to the number of digits specified on the command line

(the -d option, which sets optd). This ensures that the atoi() call doesn't run off the

end of the string and into Deep Outer Space (DOS) — this is redundant because we

Copyright © 2014, QNX Software Systems Limited 85

The code — phase 2

calloc() the entire OCB, so there is a NULL there anyway. Finally, we write the persistent

counter file if optS is non-NULL.

We check to see if the first character is indeed a digit, and jam the converted value

into both attribute structures' count members. (The atoi() function stops at the first

non digit.)

This is where you could add additional command parsing if you wanted to. For example,

you might allow hexadecimal digits, or you might wish to change the

background/foreground colors, etc., via simple strings that you could echo from the

command line:

echo "bgcolor=#FFFF00" >/dev/webcounter.gif

This is left as an exercise for the reader.

86 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

The code — phase 3

In the last phase of our project, we're going to change from managing one file at a

time to managing multiple counters.

What this means is that we'll take over a directory instead of a file or two, and we'll

be able to present multiple counters. This is useful in the real world if, for example,

you want to be able to maintain separate counters for several web pages.

Before we tackle that, though, it's worthwhile to note that you could achieve a similar

effect by simply performing more resmgr_attach() calls; one pair of resources (the

GIF-encoded and the text file) per web counter. The practical downside of doing this

is that if you are going to be attaching a lot of pathnames, QNX Neutrino's process

manager will need to search through a linear list in order to find the one that the client

has opened. Once that search is completed and the resource is opened, however, the

code path is identical. All we're doing by creating a directory instead of a pathname

is moving the pathname-matching code into our resource manager instead of the

process manager.

The main differences from the previous version will be:

• We specify the directory flag instead of the file flag to resmgr_attach().

• There's more complex processing in io_open().

• There's more complex processing when dealing with our persistent count files.

Filename processing tricks

There are a number of “tricks” that we can play when we manage our own pathname

space. For example, instead of having a plain filename for the web resource, we can

have a built-in command in the resource filename, like this:

/dev/webcounters/counter-00.gif/fg=#ffff00,bg=#00ffa0

(I would have really liked to put a “?” character instead of the last “/” character, but

web-browsers strip off anything after (and including) the “?” character; plus it would

be cumbersome to use within the shell). Here, we're accessing the

/dev/webcounters/counter-00.gif resource, and “passing” it the arguments

for the foreground and background colors.

The process manager doesn't care about the pathname after our registered mount

point. In this example, our mount point is just /dev/webcounters — anything after

that point is passed on to our io_open() as a text string. So in this case, our io_open()

would receive the string:

counter-00.gif/fg=#ffffff0,bg=#00ffa0

Copyright © 2014, QNX Software Systems Limited 87

The code — phase 3

How we choose to interpret that string is entirely up to us. For simplicity, we won't do

any fancy processing in our resource manager, but I wanted to point out what could

be done if you wanted to.

Our resource manager will accept a fixed-format string, as suggested above. The format

is the string “counter-” followed by two decimal digits, followed by the string “.gif”

and nothing further. This lets our io_open() code parse the string quite simply, and

yet demonstrates what you can do.

This is one of the reasons that our pathname parsing will be faster than the

generic linear search inside of the process manager. Since our filenames are

of a fixed form, we don't actually “search” for anything, we simply convert the

ASCII number to an integer and use it directly as an index.

The default number of counters is set to 100, but the command-line option -N can

be used to set a different number.

We're also going to reorganize the storage file format of the persistent counter a little

bit just to make things simpler. Rather than have 100 files that each contain one line

with the count, instead we're going to have one file that contains 100 32-bit binary

integers (i.e. a 400-byte file).

Changes

There are a number of architectural changes required to go from a single pair of file-type

resources to a directory structure that manages a multitude of pairs of file-type

resources.

Globals

The first thing I did was add a few new global variables, and modify others:

optN, optNsize

(new) This is the number of counters, and the number of digits required to

represent the number of counters.

attr_gif, attr_txt

(modified) These are two attributes structures, one for GIF-encoded files

and one for text files. I've modified them to be arrays rather than scalars.

attr

(new) This is the attributes structure for the directory itself.

You'll notice that the attributes structures and the OCB remain the same as before;

no changes are required there.

88 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

The new-and-improved execute_resmgr()

We need to change the execute_resmgr() function a little. We're no longer registering

a pair of file-type resources, but rather just a single directory.

Therefore, we need to allocate and initialize the arrays attr_gif and attr_txt so that

they contain the right information for the GIF-encoded and text files:

// initialize the individual attributes structures
for (i = 0; i < optN; i++) {
 iofunc_attr_init (&attr_gif [i].base, S_IFREG | 0666, 0, 0);
 iofunc_attr_init (&attr_txt [i].base, S_IFREG | 0666, 0, 0);

 // even inodes are TXT files
 attr_txt [i].base.inode = (i + 1) * 2;

 // odd inodes are GIF files
 attr_gif [i].base.inode = (i + 1) * 2 + 1;
}

It's important to realize that the attributes structure's inode (or “file serial number”)

member plays a key role. First of all, the inode cannot be zero. To QNX Neutrino, this

indicates that the file is no longer in use. Therefore, our inodes begin at 2. I've made

it so that even-numbered inodes are used with the text files, and odd-numbered inodes

are used with the GIF-encoded files. There's nothing saying how you use your inodes;

it's completely up to you how you interpret them — so long as all inodes in a particular

filesystem are unique.

We're going to use the inode to index into the attr_gif and attr_txt attributes structures.

We're also going to make use of the even/odd characteristic when we handle the client's

read() function.

Next, we initialize the attributes structure for the directory itself:

iofunc_attr_init (&attr.base, S_IFDIR | 0777, 0, 0);

// our directory has an inode of one.
attr.base.inode = 1;

Notice the S_IFDIR | 0777 — this sets the mode member of the attributes structure

to indicate that this is a directory (the S_IFDIR part) and that the permissions are

0777 — readable, writable, and seekable by all.

Finally, we register the pathname with the process manager:

if (resmgr_attach (dpp, &resmgr_attr, optn, _FTYPE_ANY,
 _RESMGR_FLAG_DIR, &connect_func, &io_func, &attr) == -1) {
 perror ("Unable to resmgr_attach()\n");
 exit (EXIT_FAILURE);
}

Notice that this time there is only one resmgr_attach() call — we're registering only

one pathname, the directory. All of the files underneath the directory are managed by

our resource manager, so they don't need to be registered with the process manager.

Also notice that we use the flag _RESMGR_FLAG_DIR. This tells the process manager

that it should forward any requests at and below the registered mount point to our

resource manager.

Copyright © 2014, QNX Software Systems Limited 89

The code — phase 3

Option processing

The change to the option processing is almost trivial. We added “N:” to the list of

options processed by getopt() and we added a case statement for the -N option. The

only funny thing we do is calculate the number of digits that the number of counters

will require. This is done by calling sprintf() to generate a string with the maximum

value, and by using the return value as the count of the number of digits. We need to

know the size because we'll be using it to match the filenames that come in on the

io_open(), and to generate the directory entries.

Finally, we initialize the attributes structure in the option processor (instead of

execute_resmgr() as in previous versions) because we need the attributes structures

to exist before we call read_file() to read the counter values from the persistent file.

Handling io_read()

This is where things get interesting. Our io_read() function gets called to handle three

things:

1. a read() of the text counter value

2. a read() of the GIF-encoded counter picture

3. a readdir() of the directory (e.g. ls /dev/webcounters)

The first two operate on a file, and the last operates on a directory. So that's the first

decision point in our new io_read() handler:

static int
io_read (resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb)
{
 int sts;

 // use the helper function to decide if valid
 if ((sts = iofunc_read_verify (ctp, msg, &ocb -> base, NULL)) != EOK) {
 return (sts);
 }

 // decide if we should perform the "file" or "dir" read
 if (S_ISDIR (ocb -> base.attr -> base.mode)) {
 return (io_read_dir (ctp, msg, ocb));
 } else if (S_ISREG (ocb -> base.attr -> base.mode)) {
 return (io_read_file (ctp, msg, ocb));
 } else {
 return (EBADF);
 }
}

By looking at the attributes structure's mode field, we can tell if the request is for a

file or a directory. After all, we set this bit ourselves when we initialized the attributes

structures (the S_IFDIR and S_IFREG values).

Operating on a file

If we are handling a file, then we proceed to io_read_file(), which has changed slightly

from the previous version:

...

90 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

// 1) odd inodes are GIF files, even inodes are text files
if (ocb -> base.attr -> base.inode & 1) {
 if (!ocb -> output) {
 ...
 // 2) allocate the input and output structures as before
 ...

 sprintf (string, "%0*d", optd, ocb -> base.attr -> count++);
 (*ocb -> render) (string, input, optx, opty);
 ocb -> size = ocb -> base.attr -> base.nbytes = encode_image (
 input, optx, opty, ocb -> output);

 // 3) note the changes to write_file()
 if (optS) {
 write_file (optS, ocb -> base.attr -> base.inode / 2 - 1,
 ocb -> base.attr -> count);
 }
 }
} else { // 4) even, so must be the text attribute
 int tmp; // limited scope

 ocb -> base.attr -> count =
 attr_gif [ocb -> base.attr -> base.inode / 2 - 1].count;
 tmp = sprintf (string, "%0*d\n", optd, ocb -> base.attr -> count);
 if (ocb -> output) {
 free (ocb -> output);
 }
 ocb -> output = strdup (string);
 ocb -> size = tmp;
}

Notice a few things:

1. We determine if we are dealing with the GIF-encoded file or the text file by looking

at the inode member of the attributes structure. This is why we made the inodes

odd for GIF-encoded and even for text, so that we could tell them apart easily.

2. Code not shown for brevity, no change from previous.

3. I've added an extra parameter to write_file(), namely the counter number. This lets

write_file() seek into the correct spot in the persistent counter file and make a tiny

write() rather than writing out the entire file.

4. If we are dealing with the text file, then we need to get the count. However, the

“real” value of the count is only maintained in the GIF-encoded file's attributes

structure. Therefore, we need to use the inode as an index into the array of

GIF-encoded attributes structures in order to find the correct one. This is why we

made the inodes sequential, so that there's a direct mapping between the inode

number and the index for the array of either attributes structure. Also notice that

we check to see if we already have memory allocated for the string. If so, we free()

it first.

What might appear to be “clever” use of inodes is in fact standard programming

practice. When you think about it, a disk-based filesystem makes use of the inodes

in a similar manner; it uses them to find the disk blocks on the media.

Operating on a directory

Our resource manager needs to be able to handle an ls of the directory.

While this isn't an absolute requirement, it's a “nice-to-have.” It's acceptable

to simply lie and return nothing for the client's readdir(), but most people

Copyright © 2014, QNX Software Systems Limited 91

The code — phase 3

consider this tacky and lazy programming. As you'll see below, it's not rocket

science.

I've presented the code for returning directory entries in the “Resource Managers”

chapter of my previous book, Get Programming with the QNX Neutrino RTOS. This

code is a cut-and-paste from the atoz resource manager example, with some important

changes.

#define ALIGN(x) (((x) + 3) & ~3)

This is an alignment macro to help align things on a 32-bit boundary within the struct

dirent that we are returning.

static int
io_read_dir (resmgr_context_t *ctp, io_read_t *msg,
 RESMGR_OCB_T *ocb)
{
 int nbytes;
 int nleft;
 struct dirent *dp;
 char *reply_msg;
 char fname [PATH_MAX];

 // 1) allocate a buffer for the reply
 reply_msg = calloc (1, msg -> i.nbytes);
 if (reply_msg == NULL) {
 return (ENOMEM);
 }

 // 2) assign output buffer
 dp = (struct dirent *) reply_msg;

 // 3) we have "nleft" bytes left
 nleft = msg -> i.nbytes;

 while (ocb -> base.offset < optN * 2) {

 // 4) create the filename
 if (ocb -> base.offset & 1) {
 sprintf (fname, "counter-%0*d.gif",
 optNsize, (int) (ocb -> base.offset / 2));
 } else {
 sprintf (fname, "counter-%0*d.txt",
 optNsize, (int) (ocb -> base.offset / 2));
 }

 // 5) see how big the result is
 nbytes = dirent_size (fname);

 // 6) do we have room for it?
 if (nleft - nbytes >= 0) {

 // 7) fill the dirent, advance the dirent pointer
 dp = dirent_fill (dp, ocb -> base.offset + 2,
 ocb -> base.offset, fname);

 // 8) move the OCB offset
 ocb -> base.offset++;

 // 9) account for the bytes we just used up
 nleft -= nbytes;
 } else {

 // 10) don't have any more room, stop
 break;
 }
 }

 // 11) return info back to the client
 MsgReply (ctp -> rcvid, (char *) dp - reply_msg,
 reply_msg, (char *) dp - reply_msg);

92 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

 // 12) release our buffer
 free (reply_msg);

 // 13) tell resmgr library we already did the reply
 return (_RESMGR_NOREPLY);
}

Now I'll walk you through the code:

1. We're generating data, so we must allocate a place to store our generated data.

The client has told us how big their buffer is (the nbytes member of the incoming

message), so we allocate a buffer of that size.

2. For convenience, we're going to use a pointer to struct dirent to write our data

into the buffer. Unfortunately, the struct dirent is a variable size (with implicit

data fields following the end of the structure) so we can't just simply use an array;

we'll need to do pointer arithmetic.

3. Just like when we are returning file data to the client, we need to see how many

bytes we have available to us. In this case, we don't want to overflow our allocated

memory. The while loop runs until we have returned all of the data items to the

client, with an early out at step 10 in case the data buffer is full.

4. Once again we use the odd/even aspect of the inode to determine whether we are

dealing with the GIF-encoded file or the text file. This time, however, we're

generating the inodes ourselves (see note after step 13 below). Depending on what

type of file we are returning, we call the appropriate version of sprintf(). Also note

the use of the optNsize variable to generate the correct number of digits in the

filename.

5. The nbytes variable holds the size of the new, proposed struct dirent. It might

not fit, so we check that in the next step. The helper routine dirent_size() is

discussed below.

6. If we have room for the new struct dirent we proceed; else we go to step 10.

7. Now that we know that the proposed size of the struct dirent is okay, we

proceed to fill the information by calling the helper routine dirent_fill() (discussed

below). Notice that we add 2 to the OCB's offset member. That's because our first

inode number is 2 (1 is reserved for the directory entry itself, and 0 is invalid).

Also notice that dirent_fill() returns a new pointer to where the next directory entry

should go; we assign this to our dp pointer.

8. Next we increment the OCB's offset member. This is analogous to what we did

when returning file data (in io_read_file()) in that we are making note of where we

last were, so that we can resume on the next readdir() call.

9. Since we wrote nbytes through the dp pointer in step 7, we need to account for

these bytes by subtracting them from the number of bytes we still have available.

10. This is the “early-out” step that just breaks out of the while loop in case we've

run out of room.

Copyright © 2014, QNX Software Systems Limited 93

The code — phase 3

11. Just like when we handle a file, we need to return the data to the client. Unlike

when we handle a file, we're returning data from our own allocated buffer, rather

than the text buffer or the GIF-encoded output buffer.

12. Clean up after ourselves.

13. Finally, we tell the resource manager library that we did the reply, so that it doesn't

need to.

In step 4, we need to make note of the relationship between inode values and

the offset member of the OCB. The meaning of the offset member is entirely

up to us — all that QNX Neutrino demands is that it be consistent between

invocations of the directory-reading function. In our case, I've decided that the

offset member is going to be directly related to the array index (times 2) of the

two arrays of attributes structures. The array index is directly related to the

actual counter number (i.e. an array index of 7 corresponds to counter number

7).

static int
dirent_size (char *fname)
{
 return (ALIGN (sizeof (struct dirent) - 4 + strlen (fname)));
}

static struct dirent *
dirent_fill (struct dirent *dp, int inode, int offset, char *fname)
{
 dp -> d_ino = inode;
 dp -> d_offset = offset;
 strcpy (dp -> d_name, fname);
 dp -> d_namelen = strlen (dp -> d_name);
 dp -> d_reclen = ALIGN (sizeof (struct dirent)
 - 4 + dp -> d_namelen);
 return ((struct dirent *) ((char *) dp + dp -> d_reclen));
}

These two utility functions calculate the size of the directory entry (dirent_size()) and

then fill it (dirent_fill()).

The persistent counter file

Finally, the last thing to modify is the utilities that manage the persistent counter file,

read_file() and write_file().

The changes here are very simple. Instead of maintaining one counter value in the file

(and in ASCII text at that), we maintain all of the counter values in the file, in binary

(4 bytes per counter, native-endian format).

This implies that read_file() needs to read the entire file and populate all of the counter

values, while write_file() needs to write the value of the counter that has changed,

and leave the others alone. This also, unfortunately, implies that we can no longer

modify the file “by hand” using a regular text editor, but instead must use something

like spatch — this is fine, because we still have the ability to write() a number to

the resource manager's “files.”

94 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

I've used the buffered I/O library (fopen(), fread(), fwrite())) in the implementation,

and I fopen() and fclose() the file for each and every update. It would certainly be

more efficient to use the lower-level I/O library (open(), read(), write(), etc.), and

consider leaving the file open, rather than opening and closing it each time. I stayed

with buffered I/O due to, yes, I'll admit it, laziness. The original used fopen() and

fprintf() to print the counter value in ASCII; it seemed easier to change the fprintf()

to an fseek()/fwrite().

Copyright © 2014, QNX Software Systems Limited 95

The code — phase 3

Enhancements

The ability to have each web counter be a different size (and that information stored

in a persistent configuration file), or to have the size specified as a “trailer” in the

pathname, is something that can be added fairly easily. Try it and see!

96 Copyright © 2014, QNX Software Systems Limited

Web Counter Resource Manager

References

The following references apply to this chapter.

Header files

• <sys/dirent.h>

Functions

See the following functions in the QNX Neutrino C Library Reference:

• readdir()

• read()

• write()

Books

Get Programming with the QNX Neutrino RTOS's “Resource Managers”

chapter goes into exhaustive detail about handling resource managers.

Copyright © 2014, QNX Software Systems Limited 97

References

Chapter 5
ADIOS — Analog/Digital I/O Server

There I was, on my summer break, preparing to do a bunch of painting and drywalling

in the basement when the phone rings. It's a former student of mine asking if I'd like

to help with a data acquisition project. Well, how could I resist? A few days later,

FedEx showed up with a bunch of analog and digital I/O cards, and the festivities

began.

This chapter documents the ADIOS project. ADIOS stands for Analog/Digital

Input/Output Server. ADIOS consists of a series of inter-related modules, which I'll

describe here.

ADIOS was developed under contract to Century Aluminum in Kentucky (USA), and

I'd like to thank them for letting me publish the source code in this book!

Copyright © 2014, QNX Software Systems Limited 99

Requirements

Century Aluminum has several production lines where they smelt aluminum. Each line

has several analog and digital I/O points that they monitor so they can feed data into

the proprietary process control software that controls the line.

I was involved on the low-level driver and data acquisition side, and have no idea what

they do with the data once it leaves the QNX Neutrino box.

The requirements for this contract came in two sets. The first set of requirements was

to support three different hardware cards. For those of you not familiar with the

industrial automation/process control world, the next statement will come as a surprise.

The buses on all three cards are ISA (not PCI). These folks use rack-mounted PC's

(with modern Pentium 3-class CPUs), with a huge ISA bus — some of them have room

for up to twenty ISA cards! The three cards are the DIO-144 (144 digital I/O pins),

PCL-711 (16 digital I/O, 8 analog inputs, and 1 analog output), and the ISO-813 (32

analog inputs).

The second set of requirements was for something to periodically read the data from

the cards, and put that data into shared memory. The idea was that Century Aluminum's

control software would then grab samples out of shared memory, do the processing,

and control the lines.

As with all software projects, there were some extras that got included into the contract

just because they came in handy during development. One of these extras was a

showsamp utility that displayed samples out of the shared memory maintained by

ADIOS. Another one was called tag and it lets you query or set various analog or

digital I/O channels. Finally, a master parser was created to handle the configuration

file. This was incorporated into the drivers, ADIOS, and tag, so everything could be

referred to by a symbolic name (like OVEN_CONTROL_1, rather than “card at address

0x220, channel 3, port B, bit 4”). For analog ports, the configuration file also contained

range information (so that a 12-bit analog converter might actually be scaled to

represent voltages from -5V to +5V, rather than a raw binary value from 0x000 to

0xFFF).

So, in this chapter, we'll look at the following pieces of software:

• Card drivers: pcl711, dio144, and iso813

• ADIOS server: adios

• Show sample utility: showsamp

• Tag utility: tag

We'll also discuss some of the common code that's shared between modules.

This high-level diagram shows the pieces that we'll be discussing:

100 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

pcl711 dio144 iso813

/dev/iso813-0280

/dev/iso813-0260

/dev/dio144-0240

/dev/pcl711-0220

/dev/pcl711-0200

PCL-711
card

(@0x0200)

PCL-711
card

(@0x0220)

DIO-144
card

(@0x0240)

ISO_813
card

(@0x0260)

ISO_813
card

(@0x0280)

adios

Database
(shared memory)

Figure 17: The relationship between ADIOS, the shared memory database, the hardware

drivers, and their cards.

Copyright © 2014, QNX Software Systems Limited 101

Requirements

Design

Most of the design was fairly straightforward — we needed to configure each card,

and we had to be able to get and set the analog and digital I/O points. For the shared

memory interface, I had to figure out how to minimize the amount of work needed for

the process control software to access data in the shared memory (an API library was

created, along with some demo software).

Driver Design

The first design decision I made was that all of the device drivers should accept the

same set of devctl() commands. This meant that to anyone using the device drivers,

they'd all look the same. One could argue that sending a “turn on digital bit 1”

command to a card that only has analog input doesn't make sense. That's true — in

that case, the card simply returns ENOSYS. But the important thing is that we didn't

reuse the command number for something else — all cards know about that command,

but only some may support it.

The next design decision was that each driver would support one or more cards. This

way, instead of having multiple pcl711 drivers running for multiple PCL-711 cards,

there'd be only one driver running. Each driver creates multiple mount points under

/dev — one for each card. So in a system with three PCL-711 cards and one DIO-144

card (at addresses 0x220, 0x240, 0x260 and 0x280, respectively) you'd see the

following devices:

/dev/pcl711-0220
/dev/pcl711-0240
/dev/pcl711-0260
/dev/dio144-0280

The three PCL-711 devices are managed by the one pcl711 driver, and the one

DIO-144 device is managed by the one dio144 driver. At one point I considered

having just one mount point for each driver (e.g. /dev/pcl711), instead of multiple

mount points, but it turned out to be much easier to consider each device as a separate

entity.

You'll notice that we didn't take over /dev/pcl711 as a directory and create the

individual devices underneath. This is because the number of devices is limited by

the number of ISA slots, which, even in the industrial automation space, is still only

a dozen or two. It wasn't worth the extra effort of maintaining a directory hierarchy in

the driver.

As mentioned above, all three of the supported cards are ISA cards, so there's no

automatic configuration to deal with — whatever you set the I/O port address to on

the card is where the card will be. (The one thing that did get me, though, is that on

102 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

the card's I/O port selector switch, “ON” is a zero and “OFF” is a one. That had me

scratching my head for a few hours.)

DIO-144

The DIO-144 card has 144 bits of digital I/O, and you can configure them as inputs

or outputs by 8-bit or (for some ports) 4-bit chunks. This gives you a fair bit of

flexibility, but also presents some problems for the driver. There is no analog I/O on

this card.

All of the programming for this card is done by reading and writing I/O ports.

For those of you not familiar with the x86 architecture, an x86 CPU maintains

two separate address spaces. One is the traditional memory address space that

every CPU in the world has, and the second is called an I/O address space.

There are special CPU instructions to access this second address space. From

C, you can access the I/O address space using the in8() and out8() (and related)

functions (see <hw/inout.h> and mmap_device_io()).

The hardest part of the DIO-144 software driver design is setting up the bits to be

input or output. Once you have the card configured, reading from it involves calling

several in8() functions, and writing involves calling several out8() functions. The only

trick to writing is that you often need to change just one bit — so the software will

have to keep a current image of the other 7 bits, because the hardware allows only

8-bit-at-a-time writes.

ISO-813

The ISO-813 card has 32 12-bit analog input channels. In reality, this is implemented

as a 32-channel multiplexer that feeds into one analog-to-digital (A/D) converter. The

trick with this card is that you need to tell the multiplexer which channel it should be

reading, set up the gain (1x, 2x, 4x, 8x, or 16x), wait for the multiplexer and A/D to

stabilize, and then trigger an A/D conversion. When the A/D conversion is complete,

you can read the 12-bit result from an I/O port.

PCL-711

The PCL-711 card is the most versatile of the three. It has 16 digital inputs and 16

digital outputs (these are simple; you just read or write an I/O port). It has one analog

output (this too is fairly simple; you just write the 12-bit value to an I/O port). It also

has 8 analog inputs (these function like the ISO-813's analog input ports). There is

no configuration for the digital I/O; they're fixed. The configuration of the analog input

is the same as the ISO-813 card — mainly the selection of the gain.

Copyright © 2014, QNX Software Systems Limited 103

Design

Note that for both the ISO-813 and the PCL-711 cards, there are jumpers on

the card to control the input range and whether the input is single-ended or

differential. We're not going to discuss these jumpers further, because they

have no impact on the software design.

Shared Memory Design

Another design consideration was the shared memory driver and the layout of the

shared memory. We'll see the details when we look at the adios server itself.

The shared memory design involved setting up the layout of the data areas, as well as

figuring out a method to ensure that the control process would get valid samples. To

achieve this, I divided the shared memory into two sections, each on a 4k page

boundary. The first section is a database section that has information about which

drivers are being polled for data, how many analog and digital I/O points they have,

as well as the current head and tail index into the data section. The second section

is the data section, and it contains the actual data that's been acquired from the cards.

Note that the shared memory contains only analog and digital inputs — when the

software needs to write to an analog or digital output, it contacts the driver directly.

We'll see an example of this when we look at the tag utility.

Control Information

Inputs (sample 0)

Inputs (sample 1)

Inputs (sample 2)

...

Database
information
section

Data
section

Figure 18: The shared memory layout.

Tags database design

The ability to associate ASCII labels with data points evolved during the term of the

project. Initially, there was no requirement for it — as long as adios put the samples

into shared memory, everyone was happy. When the time came to configure the analog

and digital I/O ports, we decided we needed a way of saving that configuration. The

tags database was really a text-file-based configuration database initially. Then I added

the tag keyword, and the tags database was born.

Before we proceed with the details of the software, it's a good idea to explain the tags

database because it's common to the drivers, adios, and the tag utility.

At a high level, the tags database is a flat ASCII text file. The default name is

adios.cfg, and the utilities search for it in /etc first and then in the local directory

(unless you override the name).

104 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

Configuration (and tag) information is presented card-by-card and spans multiple lines.

It's important to keep in mind that this information is used by both the drivers and

utilities. The drivers use it to configure their I/O ports, and the utilities use it to make

sense of the shared memory region maintained by adios.

The device keyword indicates the beginning of configuration for a particular card.

Recall that the dio144, pcl711, and iso813 drivers create device names of the

form /dev/driver-port (e.g. /dev/pcl711-0220 for a PCL-711 card at port address

0x220). The device keyword uses the same format.

Once a device keyword has been read, all further configuration information in the

file applies to that device, until another device keyword (or the end of file). Here's

the formal grammar (I've broken the ccfga and cfgd keyword definitions over two

lines):

cfgfile :: [devdirs]... ["#" comment]

devdirs :: devs [chandirs]...

devs :: "device" devicename

chandirs :: "channel" channum [[portspec] [cfg]...]...

portspec :: "port" <"A" | "B" | "C">

cfg :: <cfga | cfgd>

cfga :: <"ain" | "aout"> ["span" loval","hival]
 ["gain" gainval] ["tag" tagname]

cfgd :: "bit" bitnum [<"din" | "dout">]
 [<"positive" | "negative">] ["tag" tagname]

So, as a short example:

device /dev/pcl711-0220
 channel 1 ain span 0,70 tag BOILER_TEMPERATURE
 channel 2
 ain
 span -3,+4.2285
 gain 2
 tag VOLTAGE_1
 channel 3 ain span +100,-100 tag PRESSURE_1
 # channels 4 and 5 are not used here
 channel 6 ain tag RAW_ANALOG_1
 channel
 7 ain
 span 0,1 tag spud

 # Channel 8 is not used

 # Channel 9 is the output channel
 channel 9 aout span 0,8191 tag OUTPUT_TEMPERATURE_1

 # Channel 10 is the digital input channel with 8 bits
 channel 10
 bit 0 din negative tag CHECK_1
 bit 1 din positive tag CHECK_2
 din bit 2 positive tag SWITCH_1
 din bit 3 positive tag SWITCH_2
 # bits 4 through 7 are not used

 # Channel 11 is the digital output channel with 8 bits
 channel 11
 bit 0 dout positive tag CONVEYOR_MOTOR_1
 bit 1 negative tag CONVEYOR_START
 bit 2 negative tag ALARM_1_LED
 bit 3 dout negative tag ALARM_2_LED
 # bits 4 through 7 are not used

Copyright © 2014, QNX Software Systems Limited 105

Design

This configures a PCL-711 driver at port 0x220.

• Channel 1 is an analog input (the ain keyword). Its 12-bit range is to be interpreted

as a range between 0 and 70, and it has a tag associated with it called

BOILER_TEMPERATURE.

• Channel 2 is also an analog input, has a range of -3 to +4.2285, and has a gain

setting of 2. Its tag is called VOLTAGE_1. Notice that it spans multiple lines in

the configuration file.

• Channel 3 is similar to channel 1.

• Channels 4 and 5 are not used, so we simply put in a comment.

• Channel 6 is a raw analog input value, with no scaling.

• Channel 7 is similar to channel 1.

• Channel 10 is a digital input channel. Notice how we specify each bit's

characteristics. The positive and negative commands are used to determine

if the bit's value is true or complemented.

• Channel 11 is the digital output channel. Notice how bits 1 and 2 don't explicitly

say dout to indicate a digital output — this is inferred by the software.

The gain settings are simply numbers passed directly to the driver. So, a gain setting

of 2 doesn't mean that the gain setting is 2 ×, it simply means that the PCL-711 driver

will receive the constant 2 and interpret it accordingly (i.e. in this case it means gain

setting number 2, which is actually a 4 × gain setting.)

106 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

The Driver Code

The drivers are all similar, so we'll examine only the PCL-711 driver (pcl711) because

it's a superset of the other two (the DIO-144 and the ISO-813).

Theory of operation

The first thing each driver does is read its configuration file. There is usually only one

common configuration file, which describes the configuration of the entire system.

Each driver must read through the configuration file, looking for entries that apply to

it and ignoring entries for other drivers.

Once the configuration file is read and parsed, the individual fields are validated.

That's because only the driver knows the intimate details of which ports can be

configured how. It also lets you easily add other drivers, without having to add

knowledge about the characteristics of the new driver.

Once validation is done, the driver becomes a resource manager and waits for requests.

Code walkthrough

We'll walk through the following modules:

• main(), option processing, and initialization

• the resource manager modules

• the card interface modules.

main() and friends

The main() function is typically short; it does the option processing and then calls the

resource manager mainline. However, there's one important call in main() that should

be pointed out:

ThreadCtl (_NTO_TCTL_IO, 0);

This function allows a root-owned process (or one that's setuid() to root) to access

the hardware I/O ports. If you don't call this function, and attempt to do I/O port

manipulation (via in8() for example), your process dies with a SIGSEGV.

Option processing is fairly standard as well, except that at the end of option processing

we read in the configuration file. The configuration file drives the card installation

(I've deleted some of the long error messages for clarity and brevity):

parser_t *p;
parser_handle_t *ph;

...

if (ph = parser_open (optc)) {

Copyright © 2014, QNX Software Systems Limited 107

The Driver Code

 if (p = parser_parse (ph, "/dev/pcl711*")) {
 if (p -> status != PARSER_OK) {
 // error message
 exit (EXIT_FAILURE);
 }
 if (optv) {
 parser_dump (p);
 }
 install_cards_from_database (p);
 parser_free (p);
 }
 parser_close (ph);
} else {
 if (optc) {
 // error message
 exit (EXIT_FAILURE);
 } else {
 // warning message
 }
}

Basically, the logic is that we call parser_open() to get a parse handle, which we then

pass to parser_parse(). Notice that parser_parse() is given a wild-card pattern of

/dev/pcl711* to match — this is how we filter out only our card's information from

the configuration file. This aspect of the driver names was one of the reasons that I

create multiple mount points per driver, rather than just one. Finally, the real work is

done in install_cards_from_database() (in pcl711.c).

Skipping vast amounts of code (the parser_*() functions — see the source code) and

hiding the details, install_cards_from_database() boils down to:

int
install_cards_from_database (parser_t *data)
{
 int s;

 s = strlen ("/dev/pcl711-");

 for (nd = 0; nd < data -> ndevices; nd++) {
 card = install_card (d -> devname,
 strtol (d -> devname + s, NULL, 16));
 for (nc = 0; nc < d -> nchannels; nc++) {
 for (np = 0; np < c -> nports; np++) {
 for (naio = 0; naio < p -> naios; naio++) {
 // verify and optionally default configuration
 }
 for (ndio = 0; ndio < p -> ndios; ndio++) {
 // verify and optionally default configuration
 }
 }
 }
 }
}

We process all devices in the database (the first for loop). This is to handle the case

where there are multiple PCL-711 cards installed; this iterates through all of them.

The next for loop processes all of the channels on each card, and then the next for

loop processes all of the ports on each channel. Finally, the two innermost for loops

process the analog and digital points.

Notice that we call install_card() within the first for loop. This function registers the

card name with the process manager via resmgr_attach().

Processing mainly involves range checking. For the PCL-711, the channels are

organized like this:

108 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

MeaningChannel(s)

Analog Inputs0 - 7

Analog Output8

Digital Input (16 bits)9

Digital Output (16 bits)10

There is no concept of a “port” on the PCL-711 card (nor on the ISO-813 card, for

that matter), so we don't do any checking for ports in that logic.

An easy way to remember the ordering is with the name of the server, ADIOS. Analog

channels are grouped together first, followed by digital channels. Within each group,

the inputs are first, followed by the outputs.

Port 0

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Port 7

Port 8

8-to-1
multiplexer
(base + 10)

ISA Bus

ISA Bus

ISA Bus

ISA Bus

Gain Control
(base + 9)

12-bit
D/A

(base +4)
(base + 5)
(base + 12)

12-bit
A/D

(base + 4)
(base + 5)

(base + 7) (base + 6)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Port 9, 16 bits of digital input

Port 10, 16 bits of digital output

(base + 14) (base + 13)

Figure 19: The PCL-711 card, with register offsets.

For reference, here are the channel assignments for the other two cards (DIO-144 and

ISO-813), starting with the DIO-144:

Copyright © 2014, QNX Software Systems Limited 109

The Driver Code

MeaningPort(s)Channel(s)

Digital I/OA, B, or C0 - 5

On the DIO-144, ports A and B can be configured as input or output for the entire

8-bit port, whereas port C can be configured on a nybble (4-bit) basis (the upper or

lower 4 bits have the same direction within each nybble, but the nybbles are configured

independently). To obtain the base address for any given channel and port, multiply

the channel number by 4 and add it to the base address plus the port offset.

Port A

Port B

Port C

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

(base + 0 + channel *4)

(base + 1 + channel *4)

(base + 2 + channel * 4)

ISA Bus

ISA Bus

ISA Bus

Figure 20: The DIO-144 card with register offsets.

On the ISO-813, the assignments are as follows:

MeaningChannel(s)

Analog input0–31

Port 0

Port 1

Port 2

...

Port 29

Port 30

Port 31

...

32 to 1
multiplexer
(base + 10)

Gain Control
(base + 9)

12-bit
D/A

(base + 4)
(base +5)
(base + 12)

ISA Bus

Figure 21: The ISO-813 card high-level view with register offsets.

When install_cards_from_database() returns, we have already registered the pathnames

with the process manager (via install_card()) and configured it (again via install_card()).

All that's left to do is to enter the resource manager main loop, execute_resmgr().

110 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

There's nothing special or different in execute_resmgr() that we haven't seen before

in the other examples (like the web counter presented in the Web Counter Resource

Manager chapter) so we won't discuss it.

What I will quickly discuss is the extended attributes structure:

typedef struct pcl711_s
{
 iofunc_attr_t attr;
 int port;
 char *name;
 int dout;
 int gains [NAI];
} pcl711_t;

As usual, the normal attributes structure is the first member of the extended attributes

structure. Here are the other members:

port

I/O port that this device is based at.

name

ASCII name of the device (e.g. the string “/dev/pcl711-0200”).

dout

Shadow copy of the digital output for this card — see “Digital output,”

below.

gains

This array stores the gain values (in card-native format) for each channel.

We'll see how most of these fields are used when we discuss the code for the analog

and digital I/O functions.

The resource manager modules

Once the option processor has finished, all of the cards are initialized, and we've

entered the execute_resmgr() main processing loop. From that point on, we are a

resource manager, and we're waiting for requests. The driver doesn't do anything on

its own; it's entirely client-driven.

In iofuncs.c you see the one and only callout that we're providing, namely the

io_devctl() handler.

The io_devctl() handler is responsible for the following commands:

DCMD_GET_CONFIG

Copyright © 2014, QNX Software Systems Limited 111

The Driver Code

Returns the number of analog and digital I/O points, the analog I/O resolution

(number of bits), and the number of bytes per digital channel. The data for

the configuration comes from the constants in the include file pcl711.h.

DCMD_GET_ADIS

Read the analog and digital inputs and return them to the client. This is the

main command that's used to get data out of the resource manager. (ADIS

stands for Analog/Digital InputS.) The data originates from the card interface

functions pcl711_read_analog() and pcl711_read_digital() in pcl711.c.

DCMD_SET_CPAO

Writes one or more analog outputs. This is the command that clients use to

write analog data. (CPAO is Channel and Port Analog Output.) The data is

handled by the card interface function pcl711_write_analog() in pcl711.c.

DCMD_SET_CPBDO

Writes one or more digital output bits (not nybbles nor bytes). This is the

command that clients use to write digital data. (CPBDO means Channel and

Port Bit Digital Output). The data is handled by the card interface function

pcl711_write_digital_bit() in pcl711.c

The other drivers (DIO-144 and ISO-813) are responsible for the same commands

(and use similarly named card interface functions), and return EINVAL for any

commands that aren't appropriate.

So as far as the resource manager interface goes, it's very simple. The real work gets

done in the individual interface functions in pcl711.c (and dio144.c and iso813.c

for the other cards).

The card interface modules

Finally, we'll look at the hardware interface.

Card configuration

As mentioned above, card configuration happens with the install_card() function. You'll

note that there's a special debug flag, -d, that puts the driver into diagnostic mode

(for the first detected card) and causes it to never become a resource manager.

Analog input

The pcl711_read_analog() function is used to handle the analog input:

#define PCL711_DELAY 1000 // 1 us

int pcl711_read_analog (pcl711_t *pcl, int channel)
{
 int data, base, timeout;
 static int calibrated = 0;
 static struct timespec when;

 // 1) calibrate nanospin if required

112 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

 if (!calibrated) {
 nanospin_calibrate (1); // with interrupts off
 nsec2timespec (&when, PCL711_DELAY);
 calibrated = 1;
 }

 // 2) ensure we are in range
 channel &= 7;
 base = pcl -> port;

 // 3) select the channel
 out8 (base + PCL711_MUX_SCAN_CONTROL, channel);

 // 4) select the gain
 out8 (base + PCL711_GAIN_CONTROL, pcl -> gains [channel]);

 // 5) trigger the conversion
 out8 (base + PCL711_SOFTWARE_AD_TRIGGER, 0 /* any data */);

 // 6) wait for the conversion
 timeout = PCL711_TIMEOUT;
 do {
 data = in8 (base + PCL711_ANALOG_HIGH);
 nanospin (&when); // spin
 } while ((data & PCL711_ANALOG_HIGH_DRDY) && (timeout-- >= 0));

 // 7) indicate timeout if any
 if (timeout < 0) {
 return (-1);
 }

 // 8) return data
 data = ((data & 0x0f) << 8) + in8 (base + PCL711_ANALOG_LOW);
 return (data);
}

The code performs the following steps:

1. If we haven't already done so (in a previous invocation) calibrate the nanospin()

values, and set up a time delay (PCL711_DELAY is 1000, or 1 microsecond).

2. The channel number is clamped to the range of 0 through 7. This is a sanity

enforcement within the code. We get the I/O port base address from the pcl711_t

structure (see the section after step 8, below).

3. We write the desired channel number into the multiplexer control register. This

doesn't start the conversion yet, but selects the input channel only.

4. We write the desired gain to the gain control register. Notice how the gains are

stored in the extended attributes structure, just as the base register was stored

there and used in step 3 above.

5. When we write any data to the software A/D trigger register, the PCL-711 card

begins the data conversion. We've already gated the source into the gain amplifier,

and the converter takes the output of the gain amplifier and converts it. The manual

says that this operation takes on the order of microseconds.

6. Here we poll for the conversion to be complete (see the section after step 8, below).

When the data is ready, the PCL711_ANALOG_HIGH_DRDY bit will go low, and

we'll exit the loop (we also exit on timeout).

7. If there was a timeout, we return the special value of -1 to whoever called us.

8. Finally, our data is ready. We use the lowest four bits of the data register we used

for polling (these four bits end up being bits 8 through 11 of the result) and we

add that to the least-significant part of the value (from the PCL711_ANALOG_LOW

register).

Copyright © 2014, QNX Software Systems Limited 113

The Driver Code

Notice that the first parameter, pcl, is of type pointer to pcl711_t. The pcl711_t

is the extended attributes structure used in the resource manager. It's a convenient

place to store additional information, such as the base port address.

Notice that in step 6 we are polling. While polling is generally frowned upon in realtime

control systems, we have no choice. The manual states that the conversion will take

place within microseconds, so the overhead of giving up the CPU and letting another

thread run is going to be the same as, or greater than, the time it takes to poll and

get the data. So we might as well poll. Note also that we don't poll forever; we poll

only for PCL711_TIMEOUT number of iterations.

The polling is in place to handle hardware that's not present — if the hardware is

missing (or defective), we will time out. Also, notice that we use nanospin() to give

up the ISA bus between polling. The nanospin() delay value is selected to be 1

microsecond; this ensures that we poll “often enough” to minimize the number of

times we poll.

In conjunction with the pcl711_read_analog() function, there's a function that sets

the gain value. While we could have written the gain value directly into the extended

attributes structure's gain member, it's much nicer to have a function to do it, so that

we can isolate accesses to that parameter (and change things around if we need to,

without changing a bunch of code).

This function is pcl711_set_gain():

void
pcl711_set_gain (pcl711_t *pcl, int channel, int gaincode)
{
 if (gaincode < 0 || gaincode > 4) {
 return;
 }
 channel &= 7;
 pcl -> gains [channel] = gaincode;
}

Notice the sanity checking up front to ensure that no bad values are used before we

write the value into the gains array member.

Analog output

For analog output, the function pcl711_write_analog() is used:

void
pcl711_write_analog (pcl711_t *pcl, int value)
{
 out8 (pcl -> port + PCL711_ANALOG_LOW, value & 0xff);
 out8 (pcl -> port + PCL711_ANALOG_HIGH, (value & 0xf00) >> 8);
}

This function simply writes the low byte of the value to the register

PCL711_ANALOG_LOW and then writes the high byte (actually, bits 8 through 11) of

the value to PCL711_ANALOG_HIGH.

Order is important here! The PCL-711 is an 8-bit ISA card, which means that

the I/O ports are only eight bits, so they must be written individually. The D/A

conversion is triggered after the HIGH portion of the value is written, so if we

114 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

wrote the data in the opposite order, we'd be triggering a conversion with the

correct HIGH value, but the previous LOW value.

Just something to watch out for.

Digital input

Digital input is accomplished by:

static int bits [16] = {
 0x0001, 0x0002, 0x0004, 0x0008,
 0x0010, 0x0020, 0x0040, 0x0080,
 0x0100, 0x0200, 0x0400, 0x0800,
 0x1000, 0x2000, 0x4000, 0x8000
};

int
pcl711_read_digital_bit (pcl711_t *pcl, int bitnum)
{
 bitnum &= 15; // guarantee range

 if (bitnum < 8) {
 return (!!(in8 (pcl -> port + PCL711_DI_LOW) & bits [bitnum]));
 } else {
 return (!!(in8 (pcl -> port + PCL711_DI_HIGH) & bits [bitnum - 8]));
 }
}

This function determines if the bit that's to be read is in the LOW or HIGH register,

and then reads it. The read bit is then logically ANDed against the bits array to isolate

the bit, and then the special Boolean typecast operator (“!!”) that I invented a few

years back is used to convert a zero or nonzero value to a zero or a one.

The !! technique is something I discovered a few years back. It's 100% legal

ANSI C and, more importantly, guaranteed to work. And it made my editor

think there was a feature of C that he'd missed! :-)

Digital output

Finally, digital output is accomplished by:

void
pcl711_write_digital_bit (pcl711_t *pcl, int bitnum, int bitval)
{
 bitnum &= 15; // guarantee range

 if (bitval) {
 pcl -> dout |= bits [bitnum];
 } else {
 pcl -> dout &= ~bits [bitnum];
 }

 if (bitnum < 8) { // 0 .. 7 are in the first byte
 out8 (pcl -> port + PCL711_DO_LOW, pcl -> dout & 0xff);
 } else {
 out8 (pcl -> port + PCL711_DO_HIGH, pcl -> dout >> 8);
 }
}

Digital output is a little bit trickier, because the hardware wants to be written to one

byte at a time, rather than one bit at a time. We manage this by maintaining a shadow,

called dout, in the extended attributes structure. This shadow contains the currently

written value of the digital output port. When we wish to set or clear a particular bit,

Copyright © 2014, QNX Software Systems Limited 115

The Driver Code

the first if in the function updates the shadow register to reflect the

about-to-be-written value. Next, we determine whether the bit is in the HIGH or LOW

portion of the word, then write out the entire 8-bit byte to the port.

116 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

The ADIOS server code

Now that we've seen all of the work that goes into the low-level driver, it's time to look

at the ADIOS server that uses these drivers.

At the highest layer of abstraction, ADIOS creates a shared memory segment and

periodically polls all of the installed drivers for their analog and digital data before

sticking it into shared memory.

ADIOS has two threads: one thread handles the resource manager side of things, and

another thread handles polling the individual drivers. This approach was taken because

I didn't want the polling thread to bog down the responsiveness of the resource

manager. However, this is a moot point, because the resource manager currently

doesn't actually do anything. I provided a resource manager interface for future

compatibility in case we needed a way of changing the sampling rate (for example),

but there haven't been any requirements to do that.

The usual stuff

There's nothing to see in main(), optproc(), and execute_resmgr() that you haven't

seen before, with the possible exception of the pthread_create() in main() to create

the worker thread, daq_thread():

pthread_create (NULL, NULL, daq_thread, NULL);

Even that is a plain vanilla call to pthread_create().

For every card that's specified in the configuration file, optproc() calls the worker

function install_cards_from_database() to create a database (stored in the global

variable adios). Part of the work of installing the card is to send its driver a devctl()

asking it about its capabilities. You'll recall from above that this is the

DCMD_GET_CONFIG message.

The shared memory region

Finally, the main thread sets up a shared memory region.

If we find that there's already a shared memory region present, we invalidate

its signature block and unlink it. The rationale here is that a previous ADIOS

manager created one, and was killed (or died). By invalidating the signature,

we're telling any users of that shared memory region that it's no longer valid.

Creating the shared memory region (and setting up various pointers and data areas)

is done by the function create_shmem() in daq.c. Since it's a fairly large function

(about 100 lines), I'll present the steps it performs first, and then we'll look at the

details in smaller chunks:

Copyright © 2014, QNX Software Systems Limited 117

The ADIOS server code

1. Calculate sizes of various data structures.

2. Open the shared memory via shm_open().

3. If it already exists, invalidate its signature, close it, unlink it, and attempt to reopen

it.

4. If that second open fails, we abort.

5. Truncate the shared memory region to the correct (calculated) size.

6. Using mmap(), map the shared memory region into our address space.

7. Set up our utility pointers.

8. Clear the signature, and initialize the other fields in the signature structure.

9. Set the head member to point to the last entry in the buffer, so that when we add

our first entry, head will point to 0.

10. Fill the card information structure (CIS) for all the cards that we are polling.

Calculating the sizes of data structures

As mentioned above, the shared memory region is divided into two sections, each

beginning on a 4k page boundary. The first section contains the adios_signature_t,

followed by the adios_daq_status_t, followed by one adios_cis_t for each

installed card.

Suppose that we have one PCL-711 card and one DIO-144 installed. This is what the

first part of the memory layout will look like:

ValueDescriptionSize

(bytes)

NameOffset

(bytes)

adios_signature_t

"ADIO"Signature4signature0000

1Datablock; which 4 KB page the data

section starts on

4datablock0004

2Number of entries in the CIS4num_cis0008

2000Size of the ring buffer4num_elems000C

adios_daq_status_t

0Index to the newest valid and stable data

element

4head0010

99Index to the oldest valid and stable data

element

4tail0014

52Size of each element, including any

padding

4element_size0018

adios_cis_t

118 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

ValueDescriptionSize

(bytes)

NameOffset

(bytes)

/dev/pcl711-02d0Name of the device128name001C

8Number of analog inputs4nai009C

1Number of analog outputs4nao00A0

16Number of digital inputs4ndi00A4

16Number of digital outputs4ndo00A8

2Number of bytes per channel4nbpc00AC

12Maximum bit resolution of analog input4maxresai00B0

adios_cis_t

/dev/dio144-0220Name of the device128name00B4

0Number of analog inputs4nai0134

0Number of analog outputs4nao0138

144Number of digital inputs4ndi013C

144Number of digital outputs4ndo0140

3Number of bytes per channel4nbpc0144

0Maximum bit resolution of analog input4maxresai0148

Filler014C–0FFF

The second part of the shared memory contains the data. Each data set consists of a

tiny adios_data_header_t followed by the samples from the various cards. There

are as many data sets as specified with the command line -S option (or the default of

1000).

Continuing with our example of the two cards from above, here's what the first and

part of the second data set look like:

DescriptionSize

(bytes)

NameOffset

(bytes)

adios_data_header_t

Beginning of snapshot 0 time8t0ns1000

End of snapshot 0 time8t1ns1008

(Data)

PCL-711 analog input channel 0 sample2ai01010

Copyright © 2014, QNX Software Systems Limited 119

The ADIOS server code

DescriptionSize

(bytes)

NameOffset

(bytes)

PCL-711 analog input channel 1 sample2ai11012

PCL-711 analog input channel 2 sample2ai21014

PCL-711 analog input channel 3 sample2ai31016

PCL-711 analog input channel 4 sample2ai41018

PCL-711 analog input channel 5 sample2ai5101A

PCL-711 analog input channel 6 sample2ai6101C

PCL-711 analog input channel 7 sample2ai7101E

PCL-711 digital input channel 8 (16 bits)2di1020

DIO-144 digital input channel 0–5 samples18di1022

adios_data_header_t

Beginning of snapshot 1 time8t0ns1034

End of snapshot 1 time8t1ns103C

(Data)

PCL-711 analog input channel 0 sample2ai01044

PCL-711 analog input channel 1 sample2ai11046

......

Therefore, the first job of create_shmem() is to figure out the sizes of the various data

structures.

void
create_shmem (void)
{
 int size;
 int size_c, size_d;
 int size_d_ai, size_d_di;
 int size_element;
 int i;
 int sts;

 // size_c is the control section size
 size_c = sizeof (adios_signature_t) + sizeof (adios_cis_t) * nadios;

 // size_d is the data section size
 size_d = sizeof (adios_data_header_t);
 for (i = 0; i < nadios; i++) {
 size_d_ai = adios [i].nai * ((adios [i].maxresai + 15) / 16) * 2;
 size_d_di = (adios [i].ndi + 31) / 32 * 4;
 size_d += size_d_ai + FILLER_ALIGN_32bits (size_d_ai) + size_d_di;
 }
 size_element = size_d;
 size_d *= optS;

 // compute the total size of shared memory
 size = size_c + FILLER_ALIGN_4kbytes (size_c)

120 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

 + size_d + FILLER_ALIGN_4kbytes (size_d);
...

As you can see, the code runs through the adios global database that it filled in as

the final phase of option processing, and accumulates the total data sizes that all of

the samples will need. The optS variable is the number of samples; once we know

each sample's size we multiply by that number to compute the total size. The total

size of the shared memory is size_c (rounded up to be a multiple of 4096 bytes) plus

size_d (also rounded up).

Open and check the shared memory

The next step in processing is to open the shared memory region. If one already exists,

we invalidate it and remove it, and then try to open it again (error messages in code

not shown):

...

 sts = shm_open (opts, O_RDWR | O_CREAT | O_EXCL, 0644);
 if (sts == -1) {
 if (errno == EEXIST) {

 // in the case that it already exists, we'll wipe the
 // signature of the existing one and unlink it.
 sts = shm_open (opts, O_RDWR, 0);
 if (sts == -1) {
 exit (EXIT_FAILURE);
 }

 // map it in so we can wipe it
 shmem_ptr = mmap (0, 4096, PROT_READ | PROT_WRITE,
 MAP_SHARED, sts, 0);
 if (shmem_ptr == MAP_FAILED) {
 exit (EXIT_FAILURE);
 }

 // wipe it
 memset (shmem_ptr, 0, 4096);
 close (sts);
 munmap (shmem_ptr, 4096);
 shm_unlink (opts);

 // now try again to open it!
 sts = shm_open (opts, O_RDWR | O_CREAT | O_EXCL, 0644);
 if (sts == -1) {
 exit (EXIT_FAILURE);
 }
 } else {
 // if the initial open failed for any reason
 // *other than* EEXIST, die.
 exit (EXIT_FAILURE);
 }
 }
 shmem_fd = sts;
...

The first call to shm_open() uses the O_CREAT and O_EXCL flags. These indicate that

the shared memory region is being created, and must not already exist. Notice that

the work involved in wiping the signature is the same work that we must do later to

map the shared memory region into our address space.

At this point, we now have shmem_fd as the shared memory file descriptor.

Copyright © 2014, QNX Software Systems Limited 121

The ADIOS server code

Truncate and map shared memory

Finally, we need to set the size of the shared memory segment:

...

 sts = ftruncate (shmem_fd, size);
 // error check code omitted
...

And map it into our address space via mmap():

...

 shmem_ptr = mmap (0, size, PROT_READ | PROT_WRITE,
 MAP_SHARED, shmem_fd, 0);
 // error checking code omitted
...

The flags to mmap() are:

PROT_READ

Let us read from the shared memory region.

PROT_WRITE

Let us write into the shared memory region.

MAP_SHARED

We are mapping an existing object (the one given by shmem_fd), or we

anticipate sharing the object.

Now that our shared memory region exists and is the correct size, we assign some

utility pointers into the areas within the shared memory:

...

 // set up our utility pointers
 sig = (adios_signature_t *) shmem_ptr;
 daq = (adios_daq_status_t *) (shmem_ptr + sizeof (*sig));
 cis = (adios_cis_t *) (shmem_ptr + sizeof (*sig)
 + sizeof (*daq));
...

Note that inside the shared memory region we never store any pointer values.

After all, the shared memory region could be mapped into a different address

space within each process that needs to access it. In the code snippet above,

we create pointers into the areas of interest after we know where the shared

memory region is mapped in our address space.

Then we fill the shared memory structure:

...

 // clear the signature (just for safety, a
 // new shmem region is zeroed anyway)
 memset (sig -> signature, 0, sizeof (sig -> signature));
 sig -> datablock = size_c + FILLER_ALIGN_4kbytes (size_c);

122 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

 sig -> datablock /= 4096; // convert to blocks
 sig -> num_cis = nadios;
 sig -> num_elems = optS;
 database = shmem_ptr + sig -> datablock * 4096;

 daq -> element_size = size_element;

 // head points to the last entry in the buffer, so that
 // when we add our first entry head will point to 0
 daq -> tail = daq -> head = optS - 1;

 for (i = 0; i < nadios; i++) {
 strncpy (cis [i].name, adios [i].name, MAXNAME);
 cis [i].nai = adios [i].nai;
 cis [i].nao = adios [i].nao;
 cis [i].ndi = adios [i].ndi;
 cis [i].ndo = adios [i].ndo;
 cis [i].nbpc = adios [i].nbpc;
 cis [i].maxresai = adios [i].maxresai;
 }
}

Filling the shared memory structure means that we set:

datablock

Indicates which 4k block the data block starts on.

num_cis

The number of card information structures (CISs) that are present.

num_elems

The number of data elements (sets) that are in the shared memory ring

buffer.

element_size

The size of each element within the data set.

head and tail

Indexes into the data elements to indicate head and tail of the ring buffer.

nai, nao, ndi, ndo

The number of AI, AO, DI, and DO points (note that analog points, AI and

AO, are given as the number of channels, and digital points, DI and DO, are

given as the number of bits).

nbpc

The number of bytes per channel. This comes in handy when retrieving data

from the ring buffer; you'll see it again in the tag utility description.

maxresai

Number of bits of analog input resolution (12 for all of the card types

mentioned in this chapter).

Copyright © 2014, QNX Software Systems Limited 123

The ADIOS server code

Notice that we did not fill in the signature field (we only zeroed it). That's because we

validate the signature only when we have at least one valid sample in the shared

memory ring buffer.

That was a lot of work. Compared to this, managing the shared memory ring buffer

data is much simpler!

Acquiring data

Now that the shared memory ring buffer is set up, we can enter a polling loop and

acquire data from the various devices.

This involves the following steps:

• Allocate a buffer for the transfer from the individual drivers.

• Loop forever:

• Adjust the tail index to make room.

• Take a snapshot of the clock before and after the sample set.

• Using DCMD_GET_ADIS, issue a devctl() to get the data from each driver.

• Copy the data into shared memory.

• Adjust the head pointer to reflect the new valid sample set.

• If we haven't signed the signature area, do so now.

• Delay until the next polling interval.

Notice that we sign the signature if we haven't done so yet. This ensures that there is

at least one valid sample before we declare the shared memory area okay to use.

Here are the pieces of the DAQ thread that do the above steps (error messages in code

not shown):

daq_thread (void *not_used)
{
 ...
 // calculate the *maximum* transfer size
 ai = di = 0;
 for (i = 0; i < nadios; i++) {
 if (adios [i].ndi > di) {
 di = adios [i].ndi;
 }
 if (adios [i].nai > ai) {
 ai = adios [i].nai;
 }
 }

 // allocate a buffer which we never free
 xfersize = ai * 2 + di / 8;

 c = malloc (sizeof (*c) + xfersize);
 if (c == NULL) {
 // trash the process; no real use in continuing
 // without this thread
 exit (EXIT_FAILURE);
 }
...

We have the adios array in memory, and that tells us the number of analog and digital

input points. We use this in our calculation to come up with a transfer size (xfersize)

124 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

that represents the maximum transfer size. The transfer size calculated may be much

bigger than actually required, because we've summed all of the data I/O points, rather

than trying to figure out the biggest transfer size required per card. In smaller systems,

this won't be a problem because we're talking about only a few hundred bytes. In a

large system, you may wish to revisit this piece of code and calculate a more appropriate

transfer size. The xfersize variable gets overwritten later, so it's safe to modify it in

the above code.

Within the loop, we perform some head and tail manipulations in a local copy. That's

because we don't want to move the head and tail pointers in shared memory until the

data set is in place. In case the shared memory region is full (as it will be once it

initially fills up — it never actually “drains”), we do need to adjust the tail pointer in

the shared memory region as soon as possible, so we do so immediately.

...

 // now loop forever, acquiring samples
 while (1) {
 // do one sample

 // adjust the head in a local working copy
 // while we futz with the data
 head = daq -> head + 1;
 if (head >= optS) {
 head = 0;
 }

 // adjust the tail in an atomic manner
 // so that it's always valid
 if (daq -> tail == head) {
 tail = daq -> tail + 1;
 if (tail >= optS) {
 tail = 0;
 }
 daq -> tail = tail;
 }
...

Notice how the daq -> tail member is adjusted after we calculate the correct version

of tail in a local copy. This is done in order to present an atomic update of the tail

index. Otherwise, we'd have a potentially out-of-range value of tail in shared memory

after we incremented it, and before we looped it back around to zero.

There's another window of failure here. Theoretically, the client of the shared

memory interface and ADIOS should maintain a mutex (or semaphore) to control

access to the shared memory. That's because it's possible that, if the client

requires the full number of sample sets (i.e. the 1000 samples or whatever

it's been changed to via -S on the command line), ADIOS could be in the

middle of writing out the new data sample set over top of the oldest data set.

I thought about this, and decided not to incur the additional complexity of a

synchronization object, and instead informed the end-users of ADIOS that they

should make their number of samples bigger than the number of samples they

actually require from the shared memory region. While this may appear to be

somewhat tacky, in reality it's not that bad owing to the speed at which things

happen. In normal operation, the customer needs something like a few hundred

Copyright © 2014, QNX Software Systems Limited 125

The ADIOS server code

samples at most, and these samples are updated at a rate of ten per second.

So by extending the number of samples to be much bigger than a few hundred,

it would take a significant amount of time (tens of seconds) before the oldest

data set reached this about-to-be-overwritten state.

...

 // get the data
 ptr = (void *) (database + head * daq -> element_size);
 dhdr = ptr;
 ClockTime (CLOCK_REALTIME, NULL, &dhdr -> t0ns);
 ptr = dhdr + 1;

...

 /*
 * Here we get the data; I've moved this code into the next
 * para so we can see just the clock manipulation here.
 */

...

 ClockTime (CLOCK_REALTIME, NULL, &dhdr -> t1ns);

 // finally, set the daq -> head to our "working" head now
 // that the data is stable
 daq -> head = head;
...

The code above illustrates the outer time snapshot and update of the head index.

Between the two time snapshots, we acquire the data (see the code below). The point

of doing the two ClockTime() snapshots was for performance measuring, statistics,

and sanity.

The ClockTime() function gives us the number of nanoseconds since the beginning of

time (well, QNX Neutrino's concept of the “beginning of time” anyway). The difference

in the value of the members t0ns and t1ns is the amount of time it took to acquire

the samples, and t0ns can also be used to determine when the sample acquisition

started. This data is stored with each sample set. The performance measurement

aspect of this should be obvious — we just determine how long it takes to acquire the

samples. The statistics and freshness aspects of this are based on the customer's

requirement. They need to know exactly when each sample was taken, so that they

can plug these numbers into their proprietary process control formula.

...

 // code removed from section above:
 for (i = 0; i < nadios; i++) {
 c -> i.nais = adios [i].nai;
 c -> i.ndis = adios [i].ndi;
 xfersize = c -> i.nais * 2 + c -> i.ndis / 8;
 sts = devctl (adios [i].fd, DCMD_GET_ADIS,
 c, xfersize, NULL);
 if (sts != EOK) {
 // code prints an error here...
 exit (EXIT_FAILURE);
 }
 // just memcpy the data from there to shmem
 memcpy (ptr, c -> o.buf, xfersize);
 ptr = (void *) ((char *) ptr + xfersize);
 }
...

126 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

Above is the code that went between the two time snapshots. As you can see, we run

through our adios array database, calculate an appropriate transfer size for each

particular transfer (but still using the bigger transfer buffer we allocated above). The

transfer is accomplished by a devctl() to each driver with the DCMD_GET_ADIS

command. This command returns a packed analog input and digital input array, which

we simply memcpy() into shared memory at the correct place. (We do pointer math

with ptr to get it to walk along the data set.)

...

 /*
 * See if we need to sign the data area. We do this only
 * after at least one sample has been put into shmem.
 */

 if (!memory_signed) {
 memcpy (sig -> signature, ADIOS_SIGNATURE,
 sizeof (sig -> signature));
 memory_signed = 1;
 }

 // wait for the next sample time to occur
 delay (optp);
 }
}

Finally, we sign the shared memory region if we haven't already (to ensure that there's

at least one sample before the signature is valid), and we delay until the next sample

time.

You may have noticed that we aren't going to be acquiring samples at exactly 10 Hz

(or whatever rate the user specifies on the command line). That's because the amount

of time spent in accumulating the samples adds to the total delay time. This was not

a concern for the customer, and code with a fixed delay (and with slippage) is much

easier to implement than code that runs at a fixed period.

If we did want the code to run at a fixed period, then there are a couple of ways to do

that:

• We could replace the delay() with a semaphore wait (sem_wait()), and then have

a separate thread that hits the semaphore at a fixed interval, or

• We could replace the delay() with a MsgReceive() and wait for a pulse from a

periodic timer that we would set up earlier.

Both approaches are almost identical as far as timing is concerned. The semaphore

approach may also suffer from “lag” if the thread that's hitting the semaphore gets

preempted. Both approaches may suffer from the inability to keep up on a large system,

or if a higher sample rate were used. Because enabling the next sample (i.e. the

sem_wait() or the MsgReceive()) is asynchronously updated with respect to the data

acquisition, it's possible that if the data acquisition takes longer than the period,

things will start to “back up.”

This too can be solved, by draining all events (semaphore or pulses) before continuing

to the next sample set. If you count the number of events you've drained, you can get

Copyright © 2014, QNX Software Systems Limited 127

The ADIOS server code

a good idea of how far behind you are lagging, and that can be output to an operator

or a log for diagnostics.

128 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

The showsamp and tag utilities

Now that we have a good understanding of where the data comes from (the pcl711,

iso813, and the dio144 drivers and their implementation) and how the data gets

put into shared memory (the adios server), let's take a quick look at two additional

utilities, namely showsamp and tag.

The showsamp utility was written first, and was mainly a debugging aid to determine

if the samples being stored by ADIOS were correct and accessible. Then tag was

written to exercise the configuration files and the tag accessibility. So, as with most

projects, two of the useful utilities weren't in the initial requirements, and were actually

written as simple debug programs.

The showsamp utility

Before we dive into the code for showsamp, here is an example of what the output

looks like. I'm running this with a simulated device, called /dev/sim000-0220,

which generates patterns of data.

showsamp

SHOWSAMP
Shared memory region: /adios
Size: 40960 bytes
Devices: (1)
 [0] "/dev/sim000-0220" 8 x AI, 16 x DI
HEAD 206 TAIL 999 ELEMENT_SIZE 36 NUM_ELEMS 1000
Data Set 202, acquired 2003 10 09 14:25:50.73824624 (delta 0 ns)
CARD /dev/sim000-0220, 8 AI, (1 AO), 16 DI, (16 DO)
 AI: 0651 0652 0653 0654 0655 0656 0657 0658
 DI: 00CB

Data Set 203, acquired 2003 10 09 14:25:50.83914604 (delta 0 ns)
CARD /dev/sim000-0220, 8 AI, (1 AO), 16 DI, (16 DO)
 AI: 0659 065A 065B 065C 065D 065E 065F 0660
 DI: 00CC

Data Set 204, acquired 2003 10 09 14:25:50.94004585 (delta 0 ns)
CARD /dev/sim000-0220, 8 AI, (1 AO), 16 DI, (16 DO)
 AI: 0661 0662 0663 0664 0665 0666 0667 0668
 DI: 00CD

Data Set 205, acquired 2003 10 09 14:25:51.04096166 (delta 0 ns)
CARD /dev/sim000-0220, 8 AI, (1 AO), 16 DI, (16 DO)
 AI: 0669 066A 066B 066C 066D 066E 066F 0670
 DI: 00CE

Data Set 206, acquired 2003 10 09 14:25:51.14186147 (delta 0 ns)
CARD /dev/sim000-0220, 8 AI, (1 AO), 16 DI, (16 DO)
 AI: 0671 0672 0673 0674 0675 0676 0677 0678
 DI: 00CF

The showsamp utility starts up and tells me that it's using a shared memory region

identified as /adios, that it's 40k bytes in size, and that there is only one device

present, called /dev/sim000-0220. It then tells me that this device has 8 analog

inputs and 16 digital inputs and dumps the default 5 samples, showing the analog

and the digital values.

Copyright © 2014, QNX Software Systems Limited 129

The showsamp and tag utilities

The showsamp utility has a rather large main() function. That's because, as stated

above, it was written initially to be a quick hack to test ADIOS's shared memory.

Basically, it opens the shared memory segment, calls mmap() to map the shared

memory segment to a pointer, and then verifies the signature.

If this all succeeds, then main() creates a series of pointers into the various data

structures of interest, and dumps out the last N samples (where N defaults to 5 and

can be overridden on the command line with -n):

for (i = head - optn + 1; i <= head; i++) {
 if (i < 0) {
 do_data_set (i + sig -> num_elems);
 } else {
 do_data_set (i);
 }
}

The code above starts at N positions before the current head and goes until the head.

Notice that the result of the subtraction may be negative, and that's fine — we handle

it by adding in the number of elements from the num_elems member in shared memory.

To actually get one data set's worth of samples:

static void
do_data_set (int ds)
{
 int i, j;
 adios_data_header_t *dhead;
 uint16_t *u16;
 struct tm *tm;
 char buf [BUFSIZ];

 dhead = (adios_data_header_t *) (database
 + ds * daq -> element_size);
 i = dhead -> t0ns / 1000000000LL;
 tm = localtime (&i);
 strftime (buf, sizeof (buf), "%Y %m %d %H:%M:%S", tm);

 printf ("Data Set %d, acquired %s.%09lld (delta %lld ns)\n",
 ds, buf, dhead -> t1ns % 1000000000LL,
 dhead -> t1ns - dhead -> t0ns);
 u16 = (uint16_t *) (dhead + 1);
 for (i = 0; i < sig -> num_cis; i++) {
 printf ("CARD %s, %d AI, (%d AO), %d DI, (%d DO)\n",
 cis [i].name,
 cis [i].nai, cis [i].nao,
 cis [i].ndi, cis [i].ndo);
 if (cis [i].nai) {
 printf (" AI: ");
 for (j = 0; j < cis [i].nai; j++) {
 printf ("%04X ", *u16++);
 }
 printf ("\n");
 }
 if (cis [i].ndi) {
 printf (" DI: ");
 for (j = 0; j < (cis [i].ndi + 15) / 16; j++) {
 printf ("%04X ", *u16++);
 }
 printf ("\n");
 }
 }
 printf ("\n");
}

The ds parameter is the data set number, and the first line of code does pointer

arithmetic to get the pointer dhead to point to the appropriate data set. We adjust and

format the time that the sample was acquired, and then dump out all of the data

130 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

elements. The CIS tells us how many samples we are expecting. Note that the CIS

does not tell us the formatting of the digital I/O — whether they are “naturally”

presented as 8-bit or 16-bit samples, or how they are grouped (e.g. on the DIO-144

they are grouped as three sets of 8-bit samples). There are other assumptions in this

code, like that all analog samples will be 16 bits or less, and that all digital samples

will be printed as 16-bit quantities. You can easily change this by adding more

information into the CIS and then examining that information here.

The tag utility

Here's an example of a command-line session using the tag utility with the simulator

device, sim000:

[wintermute@ttyp0] tag -m1000 s_pc10b9=1 s_pc8=259 \
s_pc9b0 s_pc9b1 s_pc9b2
Data Set 217, acquired 2003 10 09 14:32:36.16915388 (delta 0 ns)
Tag "s_pc9b0" 0
Tag "s_pc9b1" 1
Tag "s_pc9b2" 0

Data Set 227, acquired 2003 10 09 14:32:37.17816996 (delta 0 ns)
Tag "s_pc9b0" 0
Tag "s_pc9b1" 0
Tag "s_pc9b2" 1

Data Set 237, acquired 2003 10 09 14:32:38.18866655 (delta 0 ns)
Tag "s_pc9b0" 0
Tag "s_pc9b1" 1
Tag "s_pc9b2" 1

Data Set 247, acquired 2003 10 09 14:32:39.19768263 (delta 0 ns)
Tag "s_pc9b0" 0
Tag "s_pc9b1" 0
Tag "s_pc9b2" 0

Data Set 257, acquired 2003 10 09 14:32:40.20668071 (delta 0 ns)
Tag "s_pc9b0" 0
Tag "s_pc9b1" 1
Tag "s_pc9b2" 0

In this example, I've instructed tag to set the tag s_pc10b9 to the value 1, and the

tag s_pc8 to the value 259 (decimal). Then, via the -m option, I told tag to dump

out the values for the three tags s_pc9b0, s_pc9b1, and s_pc9b2 every 1000

milliseconds. I killed the tag program via Ctrl–C after five samples were printed.

Part of the functionality present in the tag utility is identical to that from showsamp,

namely the setup of shared memory, mapping the shared memory to a pointer, and

setting up the various utility pointers to point into items of interest in the shared

memory.

Basically, tag can do three things:

1. Set a tag to a particular raw or converted value.

2. Display the raw and converted value of a tag once.

3. Display the raw and converted value of a tag repeatedly.

Obviously, the last two are mutually exclusive. Setting a tag is performed within the

option processor optproc(), while all display activities are deferred until after the shared

Copyright © 2014, QNX Software Systems Limited 131

The showsamp and tag utilities

memory has been set up. This is because in order to set a tag, we don't need the

shared memory — we can talk directly to the device driver and get it to perform the

work. However, in order to read a tag, we need to have access to the shared memory,

because that's where we will be reading the tag from.

To set a tag, the library function adios_set_tag_raw() or adios_set_tag_span() is called.

What I mean by “raw” is that the value that you are writing is not interpreted by the

configuration file's optional span keyword — on a card with a 12-bit D/A converter,

the raw value would be between 0 and 4095. Contrast that with the span version,

where we look at the configuration file and determine, for example, that the analog

output point has a range of -5 to +5, so only values in that range would be valid.

(They're converted from floating-point to raw values by the library anyway — this is a

nicety for the applications programmer.)

To display a tag, the option processor adds the tag into a list of tags. After option

processing has finished, the list of tags is finalized (by looking into shared memory

and finding the actual offsets into the data set), and displayed. The function

fixup_display_list() that does this is long and boring. Basically, what it does is match

the channel, port, and, in the case of digital I/O points, the bit number, against the

data contained in the CIS, and then it determines the offset.

You can see the result of this by looking at the function that actually displays the data,

display_list():

static int bits [16] = {
 0x0001, 0x0002, 0x0004, 0x0008,
 0x0010, 0x0020, 0x0040, 0x0080,
 0x0100, 0x0200, 0x0400, 0x0800,
 0x1000, 0x2000, 0x4000, 0x8000};

static void
display_list (void)
{
 adios_data_header_t *dhead;
 int ds;
 int i;
 char buf [BUFSIZ];
 uint16_t *u16;
 uint8_t *u8;
 struct tm *tm;
 double v;

 ds = daq -> head;
 dhead = (adios_data_header_t *) (database
 + ds * daq -> element_size);

 i = dhead -> t0ns / 1000000000LL;
 tm = localtime (&i);
 strftime (buf, sizeof (buf), "%Y %m %d %H:%M:%S", tm);
 u16 = (uint16_t *) (dhead + 1); // get ptr to sample set
 u8 = (uint8_t *) u16; // get 8-bit version too

 printf ("Data Set %d, acquired %s.%09lld (delta %lld ns)\n",
 ds, buf, dhead -> t1ns % 1000000000LL,
 dhead -> t1ns - dhead -> t0ns);

 for (i = 0; i < ntags; i++) {
 if (tags [i].type == 'a') {
 printf ("Tag \"%s\" raw value 0x%04X", tags [i].name,
 u16 [tags [i].offset / 2]);
 if (tags [i].span_low != tags [i].span_high) {
 v = u16 [tags [i].offset / 2];
 v = v / 4095. * (tags [i].span_high - tags [i].span_low)

132 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

 + tags [i].span_low;
 printf (" span-compensated value %s%g",
 v > 0.0 ? "+" : "", v);
 }
 printf ("\n");
 }
 if (tags [i].type == 'd') {
 printf ("Tag \"%s\" %d\n", tags [i].name,
 !!(u8 [tags [i].offset] & bits [tags [i].bitnum]));
 }
 }
 printf ("\n");
}

It has similar date and time printing and calculation logic as the showsamp utility.

The for loop runs through all of the tags, and determines if they are analog or digital.

If the tag is an analog tag, we display the raw value. If the tag has a span range that's

not zero, we calculate and display the converted value as well. In the case of a digital

value, we simply fetch the appropriate byte, and mask it off with the appropriate bit

number.

The fine distinction between displaying the values once and displaying the values

repeatedly is handled by main():

do {
 display_list ();
 if (optm != -1) {
 delay (optm);
 }
} while (optm != -1);

The do-while ensures that the code executes at least once. The delay factor, optm

(from the command line -m), is used as both a flag (when the value is -1, meaning

“display once”) and the actual delay count in milliseconds (if not -1).

Copyright © 2014, QNX Software Systems Limited 133

The showsamp and tag utilities

References

The following references apply to this chapter.

Header files

• <hw/inout.h> — contains the hardware in*() and out*() functions

used to access I/O ports.

Functions

See the following functions in the QNX Neutrino C Library Reference:

• ClockTime()

• delay()

• in8()

• mmap()

• mmap_device_io()

• munmap()

• nanospin()

• nanospin_calibrate()

• nsec2timespec()

• out8()

• shm_open()

• shm_unlink()

134 Copyright © 2014, QNX Software Systems Limited

ADIOS — Analog/Digital I/O Server

Chapter 6
RAM-disk Filesystem

This resource manager is something I've been wanting to do for a long time. Since I

wrote the first book on QNX Neutrino, I've noticed that a lot of people still ask questions

in the various newsgroups about resource managers, such as “How, exactly, do I

support symbolic links?” or “How does the io_rename() callout work?”

I've been following the newsgroups, and asking questions of my own, and the result

of this is the following RAM-disk filesystem manager.

The code isn't necessarily the best in terms of data organization for a RAM-disk

filesystem — I'm sure there are various optimizations that can be done to improve

speed, cut down on memory, and so on. My goal with this chapter is to answer the

detailed implementation questions that have been asked over the last few years. So,

consider this a “reference design” for a filesystem resource manager, but don't consider

this the best possible design for a RAM disk.

In the next chapter (p. 177), I'll present a variation on this theme — a TAR filesystem

manager. This lets you cd into a .tar (or, through the magic of the zlib compression

library, a .tar.gz) file, and perform ls, cp, and other commands, as if you had

gone through the trouble of (optionally uncompressing and) unpacking the .tar file

into a temporary directory.

In the Filesystems appendix, I present background information about filesystem

implementation within the resource manager framework. Feel free to read that before,

during, or after you read this chapter.

Copyright © 2014, QNX Software Systems Limited 135

Requirements

The requirements for this project are fairly simple: “Handle all of the messages that

a filesystem would handle, and store the data in RAM.” That said, let me clarify the

functions that we will be looking at here.

Connect functions

The RAM disk supports the following connect functions:

c_link()

Handles symbolic and hard links.

c_mknod()

Makes a directory.

c_mount()

Mounts a RAM disk at a specified mount point.

c_open()

Opens a file (possibly creating it), resolves all symbolic links, and performs

permission checks.

c_readlink()

Returns the value of a symbolic link.

c_rename()

Changes the name of a file or directory, or moves a file or directory to a

different location within the RAM disk.

c_unlink()

Removes a file or directory.

I/O functions

The RAM disk supports the following I/O functions:

io_read()

Reads a file's contents or returns directory entries.

io_close_ocb()

136 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

Closes a file descriptor, and releases the file if it was open but unlinked.

io_devctl()

Handles a few of the standard devctl() commands for filesystems.

io_write()

Writes data to a file.

Missing functions

We won't be looking at functions like io_lseek(), for example, because the QNX Neutrino

default function iofunc_lseek_default() does everything that we need.

Other functions are not generally used, or are understood only by a (very) few people

(e.g. io_mmap()). :-)

Copyright © 2014, QNX Software Systems Limited 137

Requirements

Design

Some aspects of the design are apparent from the Filesystems appendix; I'll just note

the ones that are different.

The design of the RAM-disk filesystem was done in conjunction with the development,

so I'll describe the design in terms of the development path, and then summarize the

major architectural features.

The development of the RAM disk started out innocently enough. I implemented the

io_read() and io_write() functions to read from a fixed (internal) file, and the writes

went to the bit bucket. The nice thing about the resource manager library is that the

worker functions (like io_read() and io_write()) can be written independently of things

like the connect functions (especially c_open()). That's because the worker functions

base all of their operations on the OCB and the attributes structure, regardless of

where these actually come from.

The next functionality I implemented was the internal in-memory directory structure.

This let me create files with different names, and test those against the already-existing

io_read() and io_write() functions. Of course, once I had an in-memory directory

structure, it wasn't too long before I added the ability to read the directory structure

(as a directory) from within io_read(). Afterward, I added functionality like a block

allocator and filled in the code for the io_write() function.

Once that was done, I worked on functions like the c_open() in order to get it to search

properly through multiple levels of directories, handle things like the O_EXCL and

O_TRUNC flags, and so on. Finally, the rest of the functions fell into place.

The main architectural features are:

• extended attributes structures

• block allocator and memory pool subsystem.

Notice that we didn't need to extend the OCB.

138 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

The code

Before we dive into the code, let's look at the major data structures.

The extended attributes structure

The first is the extended attributes structure:

typedef struct cfs_attr_s
{
 iofunc_attr_t attr;

 int nels;
 int nalloc;
 union {
 struct des_s *dirblocks;
 iov_t *fileblocks;
 char *symlinkdata;
 } type;
} cfs_attr_t;

As normal, the regular attributes structure, attr, is the first member. After this, the

three fields are:

nels

The number of elements actually in use. These elements are the type union

described below.

nalloc

The number of elements allocated. This number may be bigger than nels to

make more efficient use of allocated memory. Instead of growing the memory

each time we need to add one more element, the memory is grown by a

multiple (currently, 64). The nels member indicates how many are actually

in use. This also helps with deallocation, because we don't have to shrink

the memory; we simply decrement nels.

type

This is the actual type of the entry. As you can see, it's a union of three

possible types, corresponding to the three possible data elements that we

can store in a filesystem: directories (type struct des_s), files (an array

of iov_t's), and symbolic links (a string).

For reference, here is the struct des_s directory entry type:

typedef struct des_s
{
 char *name; // name of entry
 cfs_attr_t *attr; // attributes structure
} des_t;

Copyright © 2014, QNX Software Systems Limited 139

The code

It's the name of the directory element (i.e. if you had a file called spud.txt, that

would be the name of the directory element) and a pointer to the attributes structure

corresponding to that element.

From this we can describe the organization of the data stored in the RAM disk.

The root directory of the RAM disk contains one cfs_attr_t, which is of type struct

des_s and holds all of the entries within the root directory. Entries can be files, other

directories, or symlinks. If there are 10 entries in the RAM disk's root directory, then

nels would be equal to 10 (nalloc would be 64 because that's the “allocate-at-once”

size), and the struct des_s member dirblocks would be an array with 64 elements

in it (with 10 valid), one for each entry in the root directory.

Each of the 10 struct des_s entries describes its respective element, starting with

the name of the element (the name member), and a pointer to the attributes structure

for that element.

…

…

…

…

…

…

…

…

…

cfs_attr_t

dirblocks[0]

des_t

name

attr

“spud.txt”

fileblocks[0]

...contents...cfs_attr_t

dirblocks[2]

...contents...

...contents...

des_t

des_t

name

name

attr

attr

“.”

“..”

dirblocks[3]

dirblocks[1]

dirblocks[4]

dirblocks[5]

dirblocks[6]

dirblocks[7]

dirblocks[9]

dirblocks[8]

fileblocks[1]

fileblocks[2]

Figure 22: A directory, with subdirectories and a file, represented by the internal data

types.

If the element is a text file (our spud.txt for example), then its attributes structure

would use the fileblocks member of the type union, and the content of the fileblocks

would be a list of iov_ts, each pointing to the data content of the file.

A direct consequence of this is that we do not support sparse files. A sparse

file is one with “gaps” in the allocated space. Some filesystems support this

notion. For example, you may write 100 bytes of data at the beginning of the

file, lseek() forward 1000000 bytes and write another 100 bytes of data. The

file will occupy only a few kilobytes on disk, rather than the expected megabyte,

because the filesystem didn't store the “unused” data. If, however, you write

one megabyte worth of zeros instead of using lseek(), then the file would

actually consume a megabyte of disk storage.

140 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

We don't support that, because all of our iov_ts are implicitly contiguous.

As an exercise, you could modify the filesystem to have variable-sized iov_ts,

with the constant NULL instead of the address member to indicate a “gap.”

If the element was a symbolic link, then the symlinkdata union member is used instead;

the symlinkdata member contains a strdup()'d copy of the contents of the symbolic

link. Note that in the case of symbolic links, the nels and nalloc members are not

used, because a symbolic link can have only one value associated with it.

The mode member of the base attributes structure is used to determine whether we

should look at the dirblocks, fileblocks, or symlinkdata union member. (That's why

there appears to be no “demultiplexing” variable in the structure itself; we rely on the

base one provided by the resource manager framework.)

A question that may occur at this point is, “Why isn't the name stored in the attributes

structure?” The short answer is: hard links. A file may be known by multiple names,

all hard-linked together. So, the actual “thing” that represents the file is an unnamed

object, with zero or more named objects pointing to it. (I said “zero” because the file

could be open, but unlinked. It still exists, but doesn't have any named object pointing

to it.)

The io_read() function

Probably the easiest function to understand is the io_read() function. As with all

resource managers that implement directories, io_read() has both a file personality

and a directory personality.

The decision as to which personality to use is made very early on, and then branches

out into the two handlers:

int
cfs_io_read (resmgr_context_t *ctp, io_read_t *msg,
 RESMGR_OCB_T *ocb)
{
 int sts;

 // use the helper function to decide if valid
 if ((sts = iofunc_read_verify (ctp, msg, ocb, NULL)) != EOK) {
 return (sts);
 }

 // decide if we should perform the "file" or "dir" read
 if (S_ISDIR (ocb -> attr -> attr.mode)) {
 return (ramdisk_io_read_dir (ctp, msg, ocb));
 } else if (S_ISREG (ocb -> attr -> attr.mode)) {
 return (ramdisk_io_read_file (ctp, msg, ocb));
 } else {
 return (EBADF);
 }
}

The functionality above is standard, and you'll see similar code in every resource

manager that has these two personalities. It would almost make sense for the resource

manager framework to provide two distinct callouts, say an io_read_file() and an

io_read_dir() callout.

Copyright © 2014, QNX Software Systems Limited 141

The code

It's interesting to note that the previous version of the operating system, QNX

4, did in fact have two separate callouts, one for “read a file” and one for “read

a directory.” However, to complicate matters a bit, it also had two separate

open functions, one to open a file, and one to open a “handle.”

Win some, lose some.

To read the directory entry, the code is almost the same as what we've seen in the

Web Counter Resource Manager chapter.

I'll point out the differences:

int
ramdisk_io_read_dir (resmgr_context_t *ctp, io_read_t *msg,
 iofunc_ocb_t *ocb)
{
 int nbytes;
 int nleft;
 struct dirent *dp;
 char *reply_msg;
 char *fname;
 int pool_flag;

 // 1) allocate a buffer for the reply
 if (msg -> i.nbytes <= 2048) {
 reply_msg = mpool_calloc (mpool_readdir);
 pool_flag = 1;
 } else {
 reply_msg = calloc (1, msg -> i.nbytes);
 pool_flag = 0;
 }

 if (reply_msg == NULL) {
 return (ENOMEM);
 }

 // assign output buffer
 dp = (struct dirent *) reply_msg;

 // we have "nleft" bytes left
 nleft = msg -> i.nbytes;
 while (ocb -> offset < ocb -> attr -> nels) {

 // 2) short-form for name
 fname = ocb -> attr -> type.dirblocks [ocb -> offset].name;

 // 3) if directory entry is unused, skip it
 if (!fname) {
 ocb -> offset++;
 continue;
 }

 // see how big the result is
 nbytes = dirent_size (fname);

 // do we have room for it?
 if (nleft - nbytes >= 0) {

 // fill the dirent, and advance the dirent pointer
 dp = dirent_fill (dp, ocb -> offset + 1,
 ocb -> offset, fname);

 // move the OCB offset
 ocb -> offset++;

 // account for the bytes we just used up
 nleft -= nbytes;

 } else {

 // don't have any more room, stop

142 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

 break;
 }
 }

 // if we returned any entries, then update the ATIME
 if (nleft != msg -> i.nbytes) {
 ocb -> attr -> attr.flags |= IOFUNC_ATTR_ATIME
 | IOFUNC_ATTR_DIRTY_TIME;
 }

 // return info back to the client
 MsgReply (ctp -> rcvid, (char *) dp - reply_msg, reply_msg,
 (char *) dp - reply_msg);

 // 4) release our buffer
 if (pool_flag) {
 mpool_free (mpool_readdir, reply_msg);
 } else {
 free (reply_msg);
 }

 // tell resource manager library we already did the reply
 return (_RESMGR_NOREPLY);
}

There are four important differences in this implementation compared to the

implementations we've already seen:

1. Instead of calling malloc() or calloc() all the time, we've implemented our own

memory-pool manager. This results in a speed and efficiency improvement because,

when we're reading directories, the size of the allocations is always the same. If

it's not, we revert to using calloc(). Note that we keep track of where the memory

came from by using the pool_flag.

2. In previous examples, we generated the name ourselves via sprintf(). In this case,

we need to return the actual, arbitrary names that are stored in the RAM-disk

directory entries. While dereferencing the name may look complicated, it's only

looking through the OCB to find the attributes structure, and from there it's looking

at the directory structure as indicated by the offset stored in the OCB.

3. Oh yes, directory gaps. When an entry is deleted (i.e. rm spud.txt), the

temptation is to move all the entries by one to cover the hole (or, at least to swap

the last entry with the hole). This would let you eventually shrink the directory

entry, because you know that all the elements at the end are blank. By examining

nels versus nalloc in the extended attributes structure, you could make a decision

to shrink the directory. But alas! That's not playing by the rules, because you cannot

move directory entries around as you see fit, unless absolutely no one is using the

directory entry. So, you must be able to support directory entries with holes. (As

an exercise, you can add this “optimization cleanup” in the io_close_ocb() handler

when you detect that the use-count for the directory has gone to zero.)

4. Depending on where we allocated our buffer from, we need to return it to the correct

place.

Apart from the above comments, it's a plain directory-based io_read() function.

To an extent, the basic skeleton for the file-based io_read() function,

ramdisk_io_read_file(), is also common. What's not common is the way we get the

data. Recall that in the web counter resource manager (and in the atoz resource

Copyright © 2014, QNX Software Systems Limited 143

The code

manager in the previous book) we manufactured our data on the fly. Here, we must

dutifully return the exact same data as what the client wrote in.

Therefore, what you'll see here is a bunch of code that deals with blocks and iov_ts.

For reference, this is what an iov_t looks like:

typedef struct iovec {
 void *iov_base;
 uint32_t iov_len;
} iov_t;

(This is a slight simplification; see <sys/target_nto.h> for the whole story.) The

iov_base member points to the data area, and the iov_len member indicates the size

of that data area. We create arrays of iov_ts in the RAM-disk filesystem to hold our

data. The iov_t is also the native data type used with the message-passing functions,

like MsgReplyv(), so it's natural to use this data type, as you'll see soon.

Before we dive into the code, let's look at some of the cases that come up during

access of the data blocks. The same cases (and others) come up during the write

implementation as well.

We'll assume that the block size is 4096 bytes.

When reading blocks, there are several cases to consider:

• The total transfer will originate from within one block.

• The transfer will span two blocks, perhaps not entirely using either block fully.

• The transfer will span many blocks; the intermediate blocks will be fully used, but

the end blocks may not be.

It's important to understand these cases, especially since they relate to boundary

transfers of:

• 1 byte

• 2 bytes within the same block

• 2 bytes and spanning two blocks

• 4096 bytes within one complete block

• more than 4096 bytes within two blocks (the first block complete and the second

incomplete)

• more than 4096 bytes within two blocks (the first block incomplete and the second

incomplete)

• more than 4096 bytes within two blocks (the first block incomplete and the second

complete)

• more than 4096 bytes within more than two blocks (like the three cases immediately

above, but with one or more full intermediate blocks).

Believe me, I had fun drawing diagrams on the white board as I was coding this. :-)

144 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

Block

End of transfer

Start of transfer

BlockBlock

Figure 23: Total transfer originating entirely within one block.

In the above diagram, the transfer starts somewhere within one block and ends

somewhere within the same block.

Block

End of transfer

Start of transfer

BlockBlock

Figure 24: Total transfer spanning a block.

In the above diagram, the transfer starts somewhere within one block, and ends

somewhere within the next block. There are no full blocks transferred. This case is

similar to the case above it, except that two blocks are involved rather than just one

block.

Block

End of transfer

Start of transfer

BlockBlock

Figure 25: Total transfer spanning at least one full block.

In the above diagram, we see the case of having the first and last blocks incomplete,

with one (or more) full intermediate blocks.

Keep these diagrams in mind when you look at the code.

int
ramdisk_io_read_file (resmgr_context_t *ctp, io_read_t *msg,
 iofunc_ocb_t *ocb)
{
 int nbytes;
 int nleft;
 int towrite;
 iov_t *iovs;
 int niovs;
 int so; // start offset
 int sb; // start block
 int i;
 int pool_flag;

 // we don't do any xtypes here...
 if ((msg -> i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE) {
 return (ENOSYS);
 }

 // figure out how many bytes are left
 nleft = ocb -> attr -> attr.nbytes - ocb -> offset;

 // and how many we can return to the client
 nbytes = min (nleft, msg -> i.nbytes);

 if (nbytes) {

 // 1) calculate the number of IOVs that we'll need
 niovs = nbytes / BLOCKSIZE + 2;
 if (niovs <= 8) {
 iovs = mpool_malloc (mpool_iov8);

Copyright © 2014, QNX Software Systems Limited 145

The code

 pool_flag = 1;
 } else {
 iovs = malloc (sizeof (iov_t) * niovs);
 pool_flag = 0;
 }
 if (iovs == NULL) {
 return (ENOMEM);
 }

 // 2) find the starting block and the offset
 so = ocb -> offset & (BLOCKSIZE - 1);
 sb = ocb -> offset / BLOCKSIZE;
 towrite = BLOCKSIZE - so;
 if (towrite > nbytes) {
 towrite = nbytes;
 }

 // 3) set up the first block
 SETIOV (&iovs [0], (char *)
 (ocb -> attr -> type.fileblocks [sb].iov_base) + so, towrite);

 // 4) account for the bytes we just consumed
 nleft = nbytes - towrite;

 // 5) setup any additional blocks
 for (i = 1; nleft > 0; i++) {
 if (nleft > BLOCKSIZE) {
 SETIOV (&iovs [i],
 ocb -> attr -> type.fileblocks [sb + i].iov_base,
 BLOCKSIZE);
 nleft -= BLOCKSIZE;
 } else {

 // 6) handle a shorter final block
 SETIOV (&&iovs [i],
 ocb -> attr -> type.fileblocks [sb + i].iov_base, nleft);
 nleft = 0;
 }
 }

 // 7) return it to the client
 MsgReplyv (ctp -> rcvid, nbytes, iovs, i);

 // update flags and offset
 ocb -> attr -> attr.flags |= IOFUNC_ATTR_ATIME
 | IOFUNC_ATTR_DIRTY_TIME;
 ocb -> offset += nbytes;

 if (pool_flag) {
 mpool_free (mpool_iov8, iovs);
 } else {
 free (iovs);
 }
 } else {
 // nothing to return, indicate End Of File
 MsgReply (ctp -> rcvid, EOK, NULL, 0);
 }

 // already done the reply ourselves
 return (_RESMGR_NOREPLY);
}

We won't discuss the standard resource manager stuff, but we'll focus on the unique

functionality of this resource manager.

1. We're going to be using IOVs for our data-transfer operations, so we need to allocate

an array of them. The number we need is the number of bytes that we'll be

transferring plus 2 — we need an extra one in case the initial block is short, and

another one in case the final block is short. Consider the case were we're transferring

two bytes on a block boundary. The nbytes / BLOCKSIZE calculation yields

zero, but we need one more block for the first byte and one more block for the

second byte. Again, we allocate the IOVs from a pool of IOVs because the maximum

146 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

size of IOV allocation fits well within a pool environment. We have a malloc()

fallback in case the size isn't within the capabilities of the pool.

2. Since we could be at an arbitrary offset within the file when we're asked for bytes,

we need to calculate where the first block is, and where in that first block our offset

for transfers should be.

3. The first block is special, because it may be shorter than the block size.

4. We need to account for the bytes we just consumed, so that we can figure out how

many remaining blocks we can transfer.

5. All intermediate blocks (i.e. not the first and not the last) will be BLOCKSIZE bytes

in length.

6. The last block may or may not be BLOCKSIZE bytes in length, because it may be

shorter.

7. Notice how the IOVs are used with the MsgReplyv() to return the data from the

client.

The main trick was to make sure that there were no boundary or off-by-one conditions

in the logic that determines which block to start at, how many bytes to transfer, and

how to handle the final block. Once that was worked out, it was smooth sailing as far

as implementation.

You could optimize this further by returning the IOVs directly from the extended

attributes structure's fileblocks member, but beware of the first and last block — you

might need to modify the values stored in the fileblocks member's IOVs (the address

and length of the first block, and the length of the last block), do your MsgReplyv(),

and then restore the values. A little messy perhaps, but a tad more efficient.

The io_write() function

Another easy function to understand is the io_write() function. It gets a little more

complicated because we have to handle allocating blocks when we run out (i.e. when

we need to extend the file because we have written past the end of the file).

The io_write() functionality is presented in two parts, one is a fairly generic io_write()

handler, the other is the actual block handler that writes the data to the blocks.

The generic io_write() handler looks at the current size of the file, the OCB's offset

member, and the number of bytes being written to determine if the handler needs to

extend the number of blocks stored in the fileblocks member of the extended attributes

structure. Once that determination is made, and blocks have been added (and zeroed!),

then the RAM-disk-specific write handler, ramdisk_io_write(), is called.

The following diagram illustrates the case where we need to extend the blocks stored

in the file:

Copyright © 2014, QNX Software Systems Limited 147

The code

Block

End of write (past existing
allocated block)
Start of transfer (within existing
allocated block)

Block

Figure 26: A write that overwrites existing data in the file, adds data to the “unused”

portion of the current last block, and then adds one more block of data.

The following shows what happens when the RAM disk fills up. Initially, the write

would want to perform something like this:

Block

End of write (past existing
allocated block)
Start of transfer (within existing
allocated block)

Block

Figure 27: A write that requests more space than exists on the disk.

However, since the disk is full (we could allocate only one more block), we trim the

write request to match the maximum space available:

Block

End of write (trimmed)

Start of transfer (within existing
allocated block)

Block

Figure 28: A write that's been trimmed due to lack of disk space.

There was only 4 KB more available, but the client requested more than that, so the

request was trimmed.

int
cfs_io_write (resmgr_context_t *ctp, io_write_t *msg,
 RESMGR_OCB_T *ocb)
{
 cfs_attr_t *attr;
 int i;
 off_t newsize;

 if ((i = iofunc_write_verify (ctp, msg, ocb, NULL)) != EOK) {
 return (i);
 }

 // shortcuts
 attr = ocb -> attr;
 newsize = ocb -> offset + msg -> i.nbytes;

 // 1) see if we need to grow the file
 if (newsize > attr -> attr.nbytes) {
 // 2) truncate to new size using TRUNCATE_ERASE
 cfs_a_truncate (attr, newsize, TRUNCATE_ERASE);
 // 3) if it's still not big enough
 if (newsize > attr -> attr.nbytes) {
 // 4) trim the client's size
 msg -> i.nbytes = attr -> attr.nbytes - ocb -> offset;
 if (!msg -> i.nbytes) {
 return (ENOSPC);
 }
 }
 }

 // 5) call the RAM disk version
 return (ramdisk_io_write (ctp, msg, ocb));

148 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

}

The code walkthrough is as follows:

1. We compare the newsize (derived by adding the OCB's offset plus the number of

bytes the client wants to write) against the current size of the resource. If the

newsize is less than or equal to the existing size, then it means we don't have to

grow the file, and we can skip to step 5.

2. We decided that we needed to grow the file. We call cfs_a_truncate(), a utility

function, with the parameter TRUNCATE_ERASE. This will attempt to grow the file

to the required size by adding zero-filled blocks. However, we could run out of

space while we're doing this. There's another flag we could have used,

TRUNCATE_ALL_OR_NONE, which would either grow the file to the required size

or not. The TRUNCATE_ERASE flag grows the file to the desired size, but does not

release newly added blocks in case it runs out of room. Instead, it simply adjusts

the base attributes structure's nbytes member to indicate the size it was able to

grow the file to.

3. Now we check to see if we were able to grow the file to the required size.

4. If we can't grow the file to the required size (i.e. we're out of space), then we trim

the size of the client's request by storing the actual number of bytes we can write

back into the message header's nbytes member. (We're pretending that the client

asked for fewer bytes than they really asked for.) We calculate the number of bytes

we can write by subtracting the total available bytes minus the OCB's offset member.

5. Finally, we call the RAM disk version of the io_write() routine, which deals with

getting the data from the client and storing it in the disk blocks.

As mentioned above, the generic io_write() function isn't doing anything that's

RAM-disk-specific; that's why it was separated out into its own function.

Now, for the RAM-disk-specific functionality. The following code implements the

block-management logic (refer to the diagrams for the read logic):

int
ramdisk_io_write (resmgr_context_t *ctp, io_write_t *msg,
 RESMGR_OCB_T *ocb)
{
 cfs_attr_t *attr;
 int sb; // startblock
 int so; // startoffset
 int lb; // lastblock
 int nbytes, nleft;
 int toread;
 iov_t *newblocks;
 int i;
 off_t newsize;
 int pool_flag;

 // shortcuts
 nbytes = msg -> i.nbytes;
 attr = ocb -> attr;
 newsize = ocb -> offset + nbytes;

 // 1) precalculate the block size constants...
 sb = ocb -> offset / BLOCKSIZE;
 so = ocb -> offset & (BLOCKSIZE - 1);
 lb = newsize / BLOCKSIZE;

Copyright © 2014, QNX Software Systems Limited 149

The code

 // 2) allocate IOVs
 i = lb - sb + 1;
 if (i <= 8) {
 newblocks = mpool_malloc (mpool_iov8);
 pool_flag = 1;
 } else {
 newblocks = malloc (sizeof (iov_t) * i);
 pool_flag = 0;
 }

 if (newblocks == NULL) {
 return (ENOMEM);
 }

 // 3) calculate the first block size
 toread = BLOCKSIZE - so;
 if (toread > nbytes) {
 toread = nbytes;
 }
 SETIOV (&newblocks [0], (char *)
 (attr -> type.fileblocks [sb].iov_base) + so, toread);

 // 4) now calculate zero or more blocks;
 // special logic exists for a short final block
 nleft = nbytes - toread;
 for (i = 1; nleft > 0; i++) {
 if (nleft > BLOCKSIZE) {
 SETIOV (&newblocks [i],
 attr -> type.fileblocks [sb + i].iov_base, BLOCKSIZE);
 nleft -= BLOCKSIZE;
 } else {
 SETIOV (&newblocks [i],
 attr -> type.fileblocks [sb + i].iov_base, nleft);
 nleft = 0;
 }
 }

 // 5) transfer data from client directly into the ramdisk...
 resmgr_msgreadv (ctp, newblocks, i, sizeof (msg -> i));

 // 6) clean up
 if (pool_flag) {
 mpool_free (mpool_iov8, newblocks);
 } else {
 free (newblocks);
 }

 // 7) use the original value of nbytes here...
 if (nbytes) {
 attr -> attr.flags |= IOFUNC_ATTR_MTIME | IOFUNC_ATTR_DIRTY_TIME;
 ocb -> offset += nbytes;
 }
 _IO_SET_WRITE_NBYTES (ctp, nbytes);
 return (EOK);
}

1. We precalculate some constants to make life easier later on. The sb variable contains

the starting block number where our writing begins. The so variable (“start offset”)

contains the offset into the start block where writing begins (we may be writing

somewhere other than the first byte of the block). Finally, lb contains the last block

number affected by the write. The sb and lb variables define the range of blocks

affected by the write.

2. We're going to allocate a number of IOVs (into the newblocks array) to point into

the blocks, so that we can issue the MsgRead() (via resmgr_msgreadv() in step 5,

below). The + 1 is in place in case the sb and lb are the same — we still need to

read at least one block.

150 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

3. The first block that we read may be short, because we don't necessarily start at

the beginning of the block. The toread variable contains the number of bytes we

transfer in the first block. We then set this into the first newblocks array element.

4. The logic we use to get the rest of the blocks is based on the remaining number

of bytes to be read, which is stored in nleft. The for loop runs until nleft is

exhausted (we are guaranteed to have enough IOVs, because we calculated the

number in step 1, above).

5. Here we use the resmgr_msgreadv() function to read the actual data from the client

directly into our buffers through the newblocks IOV array. We don't read the data

from the passed message, msg, because we may not have enough data from the

client sitting in that buffer (even if we somehow determine the size a priori and

specify it in the resmgr_attr.msg_max_size, the network case doesn't necessarily

transfer all of the data). In the network case, this resmgr_msgreadv() may be a

blocking call — just something to be aware of.

6. Clean up after ourselves. The flag pool_flag determines where we allocated the

data from.

7. If we transferred any data, adjust the access time as per POSIX.

The c_open() function

Possibly the most complex function, c_open() performs the following:

1. Find the target.

2. Analyze the mode flag, and create/truncate as required.

3. Bind the OCB and attributes structure.

We'll look at the individual sub-tasks listed above, and then delve into the code

walkthrough for the c_open() call itself at the end.

Finding the target

In order to find the target, it seems that all we need to do is simply break the pathname

apart at the / characters and see if each component exists in the dirblocks member

of the extended attributes structure. While that's basically true at the highest level,

as the saying goes, “The devil is in the details.”

Permission-checks complicate this matter slightly. Symbolic links complicate this

matter significantly (a symbolic link can point to a file, a directory, or another symbolic

link). And, to make things even more complicated, under certain conditions the target

may not even exist, so we may need to operate on the directory entry above the target

instead of the target itself.

So, the connect function (c_open()) calls connect_msg_to_attr(), which in turn calls

pathwalk().

Copyright © 2014, QNX Software Systems Limited 151

The code

The pathwalk() function

The pathwalk() function is called only by connect_msg_to_attr() and by the rename

function (c_rename(), which we'll see later). Let's look at this lowest-level function

first, and then we'll proceed up the call hierarchy.

int
pathwalk (resmgr_context_t *ctp, char *pathname,
 cfs_attr_t *mountpoint, int flags, des_t *output,
 int *nrets, struct _client_info *cinfo)
{
 int nels;
 int sts;
 char *p;

 // 1) first, we break apart the slash-separated pathname
 memset (output, 0, sizeof (output [0]) * *nrets);
 output [0].attr = mountpoint;
 output [0].name = "";

 nels = 1;
 for (p = strtok (pathname, "/"); p; p = strtok (NULL, "/")) {
 if (nels >= *nrets) {
 return (E2BIG);
 }
 output [nels].name = p;
 output [nels].attr = NULL;
 nels++
 }

 // 2) next, we analyze each pathname
 for (*nrets = 1; *nrets < nels; ++*nrets) {

 // 3) only directories can have children.
 if (!S_ISDIR (output [*nrets - 1].attr -> attr.mode)) {
 return (ENOTDIR);
 }

 // 4) check access permissions
 sts = iofunc_check_access (ctp,
 &output [*nrets-1].attr -> attr,
 S_IEXEC, cinfo);
 if (sts != EOK) {
 return (sts);
 }

 // 5) search for the entry
 output [*nrets].attr = search_dir (output [*nrets].name,
 output [*nrets-1].attr);
 if (!output [*nrets].attr) {
 ++*nrets;
 return (ENOENT);
 }

 // 6) process the entry
 if (S_ISLNK (output [*nrets].attr -> attr.mode)) {
 ++*nrets;
 return (EOK);
 }
 }

 // 7) everything was okay
 return (EOK);
}

The pathwalk() function fills the output parameter with the pathnames and attributes

structures of each pathname component. The *nrets parameter is used as both an

input and an output. In the input case it tells pathwalk() how big the output array is,

and when pathwalk() returns, *nrets is used to indicate how many elements were

successfully processed (see the walkthrough below). Note that the way that we've

broken the string into pieces first, and then processed the individual components one

152 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

at a time means that when we abort the function (for any of a number of reasons as

described in the walkthrough), the output array may have elements that are valid past

where the *nrets variable indicates. This is actually useful; for example, it lets us get

the pathname of a file or directory that we're creating (and hence doesn't exist). It

also lets us check if there are additional components past the one that we're creating,

which would be an error.

Detailed walkthrough:

1. The first element of the output string is, by definition, the attributes structure

corresponding to the mount point and to the empty string. The for loop breaks

the pathname string apart at each and every / character, and checks to see that

there aren't too many of them (the caller tells us how many they have room for in

the passed parameter *nrets).

Note that we use strtok() which isn't thread-safe; in this resource manager

we are single-threaded. We would have used strtok_r() if thread-safety were

a concern.

2. Next, we enter a for loop that analyzes each pathname component. It's within

this loop that we do all of the checking. Note that the variable *nrets points to the

“current” pathname element.

3. In order for the current pathname element to even be valid, its parent (i.e. *nrets

minus 1) must be a directory, since only directories can have children. If that isn't

the case, we return ENOTDIR and abort. Note that when we abort, the *nrets return

value includes the nondirectory that failed.

4. We use the helper function iofunc_check_access() to verify accessibility for the

component. Note that if we abort, *nrets includes the inaccessible directory.

5. At this point, we have verified that everything is okay up to the entry, and all we

need to do is find the entry within the directory. The helper function search_dir()

looks through the dirblocks array member of the extended attributes structure and

tries to find our entry. If the entry isn't found, *nrets includes the entry. (This is

important to make note of when creating files or directories that don't yet exist!)

6. We check if the entry itself is a symbolic link. If it is, we give up, and let higher

levels of software deal with it. We return EOK because there's nothing actually

wrong with being a symbolic link, it's just that we can't do anything about it at this

level. (Why? The symbolic link could be a link to a completely different filesystem

that we have no knowledge of.) The higher levels of software will eventually tell the

client that the entry is a symlink, and the client's library then tries the path again

— that's why we don't worry about infinite symlink loops and other stuff in our

resource manager. The *nrets return value includes the entry.

7. Finally, if everything works, (we've gone through all of the entries and found and

verified each and every one of them) we return EOK and *nrets contains all

pathname elements.

Copyright © 2014, QNX Software Systems Limited 153

The code

The job of *nrets is to give the higher-level routines an indication of where the

processing stopped. The return value from pathwalk() will tell them why it stopped.

The connect_msg_to_attr() function

The next-higher function in the call hierarchy is connect_msg_to_attr(). It calls

pathwalk() to break apart the pathname, and then looks at the return code, the type

of request, and other parameters to make a decision.

You'll see this function used in most of the resource manager connect functions in

the RAM disk.

After pathwalk(), several scenarios are possible:

• All components within the pathname were accessible, of the correct type, and

present. In this case, pathname processing is done, and we can continue on to the

next step (a zero value, indicating “all OK,” is returned).

• As above, except that the final component doesn't exist. In this case, we may be

done; it depends on whether we're creating the final component or not (a zero value

is returned, but rval is set to ENOENT). We leave it to a higher level to determine

if the final component was required.

• A component in the pathname was not a directory, does not exist, or the client

doesn't have permission to access it. In this case, we're done as well, but we abort

with an error return (a nonzero is returned, and rval is set to the error number).

• A component in the pathname is a symbolic link. In this case, we're done as well,

and we perform a symlink redirect. A nonzero is returned, which should be passed

up to the resource-manager framework of the caller.

This function accepts two parameters, parent and target, which are used extensively

in the upper levels to describe the directory that contains the target, as well as the

target itself (if it exists).

int
connect_msg_to_attr (resmgr_context_t *ctp,
 struct _io_connect *cmsg,
 RESMGR_HANDLE_T *handle,
 des_t *parent, des_t *target,
 int *sts, struct _client_info *cinfo)
{
 des_t components [_POSIX_PATH_MAX];
 int ncomponents;

 // 1) Find target, validate accessibility of components
 ncomponents = _POSIX_PATH_MAX;
 *sts = pathwalk (ctp, cmsg -> path, handle, 0, components,
 &ncomponents, cinfo);

 // 2) Assign parent and target
 *target = components [ncomponents - 1];
 *parent = ncomponents == 1 ? *target
 : components [ncomponents - 2];

 // 3) See if we have an error, abort.
 if (*sts == ENOTDIR || *sts == EACCES) {
 return (1);
 }

 // 4) missing non-final component
 if (components [ncomponents].name != NULL && *sts == ENOENT) {
 return (1);

154 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

 }

 if (*sts == EOK) {
 // 5) if they wanted a directory, and we aren't one, honk.
 if (S_ISDIR (cmsg -> mode)
 && !S_ISDIR (components [ncomponents-1].attr->attr.mode)) {
 *sts = ENOTDIR;
 return (1);
 }

 // 6) yes, symbolic links are complicated!
 // (See walkthrough and notes)
 if (S_ISLNK (components [ncomponents - 1].attr -> attr.mode)
 && (components [ncomponents].name
 || (cmsg -> eflag & _IO_CONNECT_EFLAG_DIR)
 || !S_ISLNK (cmsg -> mode))) {
 redirect_symlink (ctp, cmsg, target -> attr,
 components, ncomponents);
 *sts = _RESMGR_NOREPLY;
 return (1);
 }
 }
 // 7) all OK
 return (0);
}

1. Call pathwalk() to validate the accessibility of all components. Notice that we use

the des_t directory entry structure that we used in the extended attributes structure

for the call to pathwalk() — it's best if you don't need to reinvent many similar but

slightly different data types.

2. The last two entries in the broken-up components array are the last two pathname

components. However, there may be only one entry. (Imagine creating a file in the

root directory of the filesystem — the file that you're creating doesn't exist, and

the root directory of the filesystem is the first and only entry in the broken-up

pathname components.) If there is only one entry, then assign the last entry to

both the parent and target.

3. Now take a look and see if there were any problems. The two problems that we're

interested in at this point are missing directory components and the inability to

access some path component along the way. If it's either of these two problems,

we can give up right away.

4. We're missing an intermediate component (i.e. /valid/missing/extra/extra

where missing is not present).

5. The caller of connect_msg_to_attr() passes its connect message, which includes

a mode field. This indicates what kind of thing it's expecting the target to be. If

the caller wanted a directory, but the final component isn't a directory, we return

an error as well.

6. Symbolic links. Remember that pathwalk() aborted at the symbolic link (if it found

one) and didn't process any of the entries below the symlink (see below).

7. Everything passed.

Fun with symlinks

Symbolic links complicate the processing greatly.

Copyright © 2014, QNX Software Systems Limited 155

The code

Let's spend a little more time with the line:

if (
 S_ISLNK (components [ncomponents - 1].attr -> attr.mode)
 &&
 (
 components [ncomponents].name
 || (cmsg -> eflag & _IO_CONNECT_EFLAG_DIR)
 || !S_ISLNK (cmsg -> mode)
)
)
{

I've broken it out over a few more lines to clarify the logical relationships. The very

first condition (the one that uses the macro S_ISLNK()) gates the entire if clause. If

the entry we are looking at is not a symlink, we can give up right away, and continue

to the next statement.

Next, we examine a three-part OR condition. We perform the redirection if any of the

following conditions is true:

• We have an intermediate component. This would be the case in the example

/valid/symlink/extra where we are currently positioned at the symlink part

of the pathname. In this case, we must look through the symlink.

• The _IO_CONNECT_EFLAG_DIR flag of the connect message's eflag member is

set. This indicates that we wish to proceed as if the entity is a directory, and that

means that we need to look through the symbolic link.

• The connect message's mode member indicates symlink operation. This is a flag

that's set to indicate that the connect message refers to the contents of the symlink,

so we need to redirect.

In case we need to follow the symlink, we don't do it ourselves! It's not the job of this

resource manager's connect functions to follow the symlink. All we need to do is call

redirect_symlink() and it will reply with a redirect message back to the client's open()

(or other connect function call). All clients' open() calls know how to handle the

redirection, and they (the clients) are responsible for retrying the operation with the

new information from the resource manager.

To clarify:

• We have a symlink in our RAM disk: s -> /dev/ser1.

• A client issues an open ("/ramdisk/s", O_WRONLY); call.

• The process manager directs the client to the RAM disk, where it sends an open()

message.

• The RAM disk processes the s pathname component, then redirects it. This means

that the client gets a message of “Redirect: Look in /dev/ser1 instead.”

• The client asks the process manager who it should talk to about /dev/ser1 and

the client is told the serial port driver.

• The client opens the serial port.

156 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

So, it's important to note that after the RAM disk performed the “redirect” function,

it was out of the loop after that point.

Analyze the mode flag

We've made sure that the pathname is valid, and we've resolved any symbolic links

that we needed to. Now we need to figure out the mode flags.

There are a few combinations that we need to take care of:

• If both the O_CREAT and O_EXCL flags are set, then the target must not exist (else

we error-out with EEXIST).

• If the flag O_CREAT is set, the target may or may not exist; we might be creating

it.

• If the flag O_CREAT is not set, then the target must exist (else we error-out with

ENOENT).

• If the flag O_TRUNC and either O_RDWR or O_WRONLY are set, then we need to

trim the target's length to zero and wipe out its data.

This may involve creating or truncating the target, or returning error indications. We'll

see this in the code walkthrough below.

Bind the OCB and attributes structure

To bind the OCB and the attributes structures, we simply call the utility functions (see

the walkthrough, below).

Finally, the c_open() code walkthrough

Now that we understand all of the steps involved in processing the c_open() (and,

coincidentally, large chunks of all other connect functions), it's time to look at the

code.

int
cfs_c_open (resmgr_context_t *ctp, io_open_t *msg,
 RESMGR_HANDLE_T *handle, void *extra)
{
 int sts;
 des_t parent, target;
 struct _client_info cinfo;

 // 1) fetch the client information
 if (sts = iofunc_client_info (ctp, 0, &cinfo)) {
 return (sts);
 }

 // 2) call the helper connect_msg_to_attr
 if (connect_msg_to_attr (ctp, &msg -> connect, handle,
 &parent, &target, &sts, &cinfo)) {
 return (sts);
 }

 // if the target doesn't exist
 if (!target.attr) {
 // 3) and we're not creating it, error
 if (!(msg -> connect.ioflag & O_CREAT)) {
 return (ENOENT);

Copyright © 2014, QNX Software Systems Limited 157

The code

 }

 // 4) else we are creating it, call the helper iofunc_open
 sts = iofunc_open (ctp, msg, NULL, &parent.attr -> attr,
 NULL);
 if (sts != EOK) {
 return (sts);
 }

 // 5) create an attributes structure for the new entry
 target.attr = cfs_a_mkfile (parent.attr,
 target.name, &cinfo);
 if (!target.attr) {
 return (errno);
 }

 // else the target exists
 } else {
 // 6) call the helper function iofunc_open
 sts = iofunc_open (ctp, msg, &target.attr -> attr,
 NULL, NULL);
 if (sts != EOK) {
 return (sts);
 }
 }

 // 7) Target existed or just created, truncate if required.
 if (msg -> connect.ioflag & O_TRUNC) {
 // truncate at offset zero because we're opening it:
 cfs_a_truncate (target.attr, 0, TRUNCATE_ERASE);
 }

 // 8) bind the OCB and attributes structures
 sts = iofunc_ocb_attach (ctp, msg, NULL,
 &target.attr -> attr, NULL);

 return (sts);
}

Walkthrough

The walkthrough is as follows:

1. The “client info” is used by a lot of the called functions, so it's best to fetch it in

one place. It tells us about the client, such as the client's node ID, process ID,

group, etc.

2. We discussed the connect_msg_to_attr() earlier.

3. If the target doesn't exist, and we don't have the O_CREAT flag set, then we return

an error of ENOENT.

4. Otherwise, we do have the O_CREAT flag set, so we need to call the helper function

iofunc_open(). The helper function performs a lot of checks for us (including, for

example, the check against O_EXCL).

5. We need to create a new attributes structure for the new entry. In c_open() we are

only ever creating new files (directories are created in c_mknod() and symlinks are

created in c_link()). The helper routine cfs_a_mkfile() initializes the attributes

structure for us (the extended part, not the base part; that was done earlier by

iofunc_open()).

6. If the target exists, then we just call iofunc_open() (like step 4).

7. Finally, we check the truncation flag, and truncate the file to zero bytes if required.

We've come across the cfs_a_truncate() call before, when we used it to grow the

file in ramdisk_io_write(), above. Here, however, it shrinks the size.

158 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

8. The OCB and attributes structures are bound via the helper function

iofunc_ocb_attach().

The redirect_symlink() function

How to redirect a symbolic link is an interesting topic.

First of all, there are two cases to consider: either the symlink points to an absolute

pathname (one that starts with a leading / character) or it doesn't and hence is relative.

For the absolute pathname, we need to forget about the current path leading up to

the symbolic link, and replace the entire path up to and including the symbolic link

with the contents of the symbolic link:

ln -s /tmp /ramdisk/tempfiles

In that case, when we resolve /ramdisk/tempfiles, we will redirect the symlink

to /tmp. However, in the relative case:

ln -s ../resume.html resume.htm

When we resolve the relative symlink, we need to preserve the existing pathname up

to the symlink, and replace only the symlink with its contents. So, in our example

above, if the path was /ramdisk/old/resume.htm, we would replace the symlink,

resume.htm, with its contents, ../resume.html, to get the pathname

/ramdisk/old/../resume.html as the redirection result. Someone else is

responsible for resolving /ramdisk/old/../resume.html into

/ramdisk/resume.html.

In both cases, we preserve the contents (if any) after the symlink, and simply append

that to the substituted value.

Here is the redirect_symlink() function presented with comments so that you can see

what's going on:

static void
redirect_symlink (resmgr_context_t *ctp,
 struct _io_connect *msg, cfs_attr_t *attr,
 des_t *components, int ncomponents)
{
 int eflag;
 int ftype;
 char newpath [PATH_MAX];
 int i;
 char *p;
 struct _io_connect_link_reply link_reply;

 // 1) set up variables
 i = 1;
 p = newpath;
 *p = 0;

 // 2) a relative path, do up to the symlink itself
 if (*attr -> type.symlinkdata != '/') {
 // 3) relative -- copy up to and including
 for (; i < (ncomponents - 1); i++) {
 strcat (p, components [i].name);
 p += strlen (p);
 strcat (p, "/");
 p++;

Copyright © 2014, QNX Software Systems Limited 159

The code

 }
 } else {
 // 4) absolute, discard up to and including
 i = ncomponents - 1;
 }

 // 5) now substitute the content of the symlink
 strcat (p, attr -> type.symlinkdata);
 p += strlen (p);

 // skip the symlink itself now that we've substituted it
 i++;

 // 6) copy the rest of the pathname components, if any
 for (; components [i].name && i < PATH_MAX; i++) {
 strcat (p, "/");
 strcat (p, components [i].name);
 p += strlen (p);
 }

 // 7) preserve these, wipe rest
 eflag = msg -> eflag;
 ftype = msg -> file_type;
 memset (&link_reply, 0, sizeof (link_reply));

 // 8) set up the reply
 _IO_SET_CONNECT_RET (ctp, _IO_CONNECT_RET_LINK);
 link_reply.file_type = ftype;
 link_reply.eflag = eflag;
 link_reply.path_len = strlen (newpath) + 1;
 SETIOV (&ctp -> iov [0], &link_reply, sizeof (link_reply));
 SETIOV (&ctp -> iov [1], newpath, link_reply.path_len);

 MsgReplyv (ctp -> rcvid, ctp -> status, ctp -> iov, 2);
}

1. The architecture of the RAM-disk resource manager is such that by the time we're

called to fix up the path for the symlink, we have the path already broken up into

components. Therefore, we use the variable newpath (and the pointer p) during

the reconstruction phase.

2. The variable ncomponents tells us how many components were processed before

connect_msg_to_attr() stopped processing components (in this case, because it

hit a symlink). Therefore, ncomponents - 1 is the index of the symlink entry.

We see if the symlink is absolute (begins with /) or relative.

3. In the relative case, we need to copy (because we are reconstructing components

into newpath) all of the components up to but not including the symbolic link.

4. In the absolute case, we discard all components up to and including the symbolic

link.

5. We then copy the contents of the symlink in place of the symlink, and increment

i (our index into the original pathname component array).

6. Then we copy the rest of the pathname components, if any, to the end of the new

path string that we're constructing.

7. While preparing the reply buffer, we need to preserve the eflag and file_type

members, so we stick them into local variables. Then we clear out the reply buffer

via memset().

8. The reply consists of setting a flag via the macro _IO_SET_CONNECT_RET() (to

indicate that this is a redirection, rather than a pass/fail indication for the client's

open()), restoring the two flags we needed to preserve, setting the path_len

parameter to the length of the string that we are returning, and setting up a two

160 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

part IOV for the return. The first part of the IOV points to the struct

_io_connect_link_reply (the header), the second part of the reply points to

the string (in our case, newpath). Finally, we reply via MsgReplyv().

So basically, the main trick was in performing the symlink substitution, and setting

the flag to indicate redirection.

The c_readlink() function

This is a simple one. You've already seen how symlinks are stored internally in the

RAM-disk resource manager. The job of c_readlink() is to return the value of the

symbolic link. It's called when you do a full ls, for example:

ls -lF /my_temp
lrwxrwxrwx 1 root root 4 Aug 16 14:06 /my_temp@ -> /tmp

Since this code shares a lot in common with the processing for c_open(), I'll just point

out the major differences.

int
cfs_c_readlink (resmgr_context_t *ctp, io_readlink_t *msg,
 RESMGR_HANDLE_T *handle, void *reserved)
{
 des_t parent, target;
 int sts;
 int eflag;
 struct _client_info cinfo;
 int tmp;

 // get client info
 if (sts = iofunc_client_info (ctp, 0, &cinfo)) {
 return (sts);
 }

 // get parent and target
 if (connect_msg_to_attr (ctp, &msg -> connect, handle,
 &parent, &target, &sts, &cinfo)) {
 return (sts);
 }

 // there has to be a target!
 if (!target.attr) {
 return (sts);
 }

 // 1) call the helper function
 sts = iofunc_readlink (ctp, msg, &target.attr -> attr, NULL);
 if (sts != EOK) {
 return (sts);
 }

 // 2) preserve eflag...
 eflag = msg -> connect.eflag;
 memset (&msg -> link_reply, 0, sizeof (msg -> link_reply));
 msg -> link_reply.eflag = eflag;

 // 3) return data
 tmp = strlen (target.attr -> type.symlinkdata);
 SETIOV (&ctp -> iov [0], &msg -> link_reply,
 sizeof (msg -> link_reply));
 SETIOV (&ctp -> iov[1], target.attr -> type.symlinkdata, tmp);
 msg -> link_reply.path_len = tmp;
 MsgReplyv (ctp -> rcvid, EOK, ctp -> iov, 2);
 return (_RESMGR_NOREPLY);
}

The detailed code walkthrough is as follows:

Copyright © 2014, QNX Software Systems Limited 161

The code

1. We use the helper function iofunc_readlink() to do basic sanity checking for us. If

it's not happy with the parameters, then we return whatever it returned.

2. Just like in symlink redirection, we need to preserve flags; in this case it's just the

eflag — we zero-out everything else.

3. And, just as in the symlink redirection, we return a two-part IOV; the first part

points to the header, the second part points to the string. Note that in this case,

unlike symlink redirection, we didn't need to construct the pathname. That's because

the goal of this function is to return just the contents of the symlink, and we know

that they're sitting in the symlinkdata member of the extended attributes structure.

The c_link() function

The c_link() function is responsible for soft and hard links. A hard link is the “original”

link from the dawn of history. It's a method that allows one resource (be it a directory

or a file, depending on the support) to have multiple names. In the example in the

symlink redirection, we created a symlink from resume.htm to ../resume.html;

we could just as easily have created a hard link:

ln ../resume.html resume.htm

Figure 29: A hard link implemented as two different attributes structures pointing to

the same file.

In this case, both ../resume.html and resume.htm would be considered identical;

there's no concept of “original” and “link” as there is with symlinks.

When the client calls link() or symlink() (or uses the command-line command ln),

our RAM-disk resource manager's c_link() function will be called.

The c_link() function follows a similar code path as all of the other connect functions

we've discussed so far (c_open() and c_readlink()), so once again we'll just focus on

the differences:

int
cfs_c_link (resmgr_context_t *ctp, io_link_t *msg,
 RESMGR_HANDLE_T *handle, io_link_extra_t *extra)
{
 RESMGR_OCB_T *ocb;
 des_t parent, target;
 int sts;
 char *p, *s;
 struct _client_info cinfo;

 if (sts = iofunc_client_info (ctp, 0, &cinfo)) {
 return (sts);
 }

162 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

 if (connect_msg_to_attr (ctp, &msg -> connect, handle,
 &parent, &target, &sts, &cinfo)) {
 return (sts);
 }
 if (target.attr) {
 return (EEXIST);
 }

 // 1) find out what type of link we are creating
 switch (msg -> connect.extra_type) {
 // process a hard link
 case _IO_CONNECT_EXTRA_LINK:
 ocb = extra -> ocb;
 p = strdup (target.name);
 if (p == NULL) {
 return (ENOMEM);
 }
 // 2) add a new directory entry
 if (sts = add_new_dirent (parent.attr, ocb -> attr, p)) {
 free (p);
 return (sts);
 }
 // 3) bump the link count
 ocb -> attr -> attr.nlink++;
 return (EOK);

 // process a symbolic link
 case _IO_CONNECT_EXTRA_SYMLINK:
 p = target.name;
 s = strdup (extra -> path);
 if (s == NULL) {
 return (ENOMEM);
 }
 // 4) create a symlink entry
 target.attr = cfs_a_mksymlink (parent.attr, p, NULL);
 if (!target.attr) {
 free (s);
 return (errno);
 }
 // 5) write data
 target.attr -> type.symlinkdata = s;
 target.attr -> attr.nbytes = strlen (s);
 return (EOK);

 default:
 return (ENOSYS);
 }

 return (_RESMGR_DEFAULT);
}

The following is the code walkthrough for creating hard or symbolic links:

1. The extra_type member of the connect message tells us what kind of link we're

creating.

2. For a hard link, we create a new directory entry. The utility function

add_new_dirent() is responsible for adjusting the dirblocks member of the attributes

structure to hold another entry, performing whatever allocation is needed (except

for allocating the name, which is done with the strdup()). Notice that we get an

OCB as part of the extra parameter passed to us. This OCB's extended attributes

structure is the resource that we're creating the hard link to (yes, this means that

our c_open() would have been called before this — that's done automatically).

3. Since this is a hard link, we need to increment the link count of the object itself.

Recall that we talked about named objects (the dirblocks array) and unnamed

objects (the fileblocks member). The unnamed object is the actual entity that we

bump the link count of, not the individual named objects.

Copyright © 2014, QNX Software Systems Limited 163

The code

4. If we're creating a symlink, call the utility function cfs_a_mksymlink(), which

allocates a directory entry within the parent. Notice that in the symlink case, we

don't get an OCB, but rather a pathname as part of the extra parameter.

5. Write the data into the extended attribute's symlinkdata member, and set the size

to the length of the symlink content.

The c_rename() function

The functionality to perform a rename can be done in one of two ways. You can simply

return ENOSYS, which tells the client's rename() that you don't support renaming, or

you can handle it. If you do return ENOSYS, an end user might not notice it right away,

because the command-line utility mv deals with that and copies the file to the new

location and then deletes the original. For a RAM disk, with small files, the time it

takes to do the copy and unlink is imperceptible. However, simply changing the name

of a directory that has lots of large files will take a long time, even though all you're

doing is changing the name of the directory!

In order to properly implement rename functionality, there are two interesting issues:

• Never rename such that the destination is a child of the source. An example of

this is mv x x/a — before I fixed this bug you could do the above mv command

and have the directory x simply vanish! That's because the internal logic effectively

creates a hard link from the original x to the new x/a, and then unlinks the original

x. Well, with x gone, you'd have a hard time going into the directory!

• All of our rename targets are on our filesystem, and are free of symlinks.

The rename logic is further complicated by the fact that we are dealing with two paths

instead of just one. In the c_link() case, one of the pathnames was implied by either

an OCB (hard link) or actually given (symlink) — for the symlink we viewed the second

“pathname” as a text string, without doing any particular checking on it.

You'll notice this “two path” impact when we look at the code:

int
cfs_c_rename (resmgr_context_t *ctp, io_rename_t *msg,
 RESMGR_HANDLE_T *handle, io_rename_extra_t *extra)
{
 // source and destination parents and targets
 des_t sparent, starget, dparent, dtarget;
 des_t components [_POSIX_PATH_MAX];
 int ncomponents;
 int sts;
 char *p;
 int i;
 struct _client_info cinfo;

 // 1) check for "initial subset" (mv x x/a) case
 i = strlen (extra -> path);
 if (!strncmp (extra -> path, msg -> connect.path, i)) {
 // source could be a subset, check character after
 // end of subset in destination
 if (msg -> connect.path [i] == 0
 || msg -> connect.path [i] == '/') {
 // source is identical to destination, or is a subset
 return (EINVAL);
 }

164 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

 }

 // get client info
 if (sts = iofunc_client_info (ctp, 0, &cinfo)) {
 return (sts);
 }

 // 2) do destination resolution first in case we need to
 // do a redirect or otherwise fail the request.
 if (connect_msg_to_attr (ctp, &msg -> connect, handle,
 &dparent, &dtarget, &sts, &cinfo)) {
 return (sts);
 }

 // 3) if the destination exists, kill it and continue.
 if (sts != ENOENT) {
 if (sts == EOK) {
 if ((sts = cfs_rmnod (&dparent, dtarget.name,
 dtarget.attr)) != EOK) {
 return (sts);
 }
 } else {
 return (sts);
 }
 }

 // 4) use our friend pathwalk() for source resolution.
 ncomponents = _POSIX_PATH_MAX;
 sts = pathwalk (ctp, extra -> path, handle, 0, components,
 &ncomponents, &cinfo);

 // 5) missing directory component
 if (sts == ENOTDIR) {
 return (sts);
 }

 // 6) missing non-final component
 if (components [ncomponents].name != NULL && sts == ENOENT) {
 return (sts);
 }

 // 7) an annoying bug
 if (ncomponents < 2) {
 // can't move the root directory of the filesystem
 return (EBUSY);
 }

 starget = components [ncomponents - 1];
 sparent = components [ncomponents - 2];

 p = strdup (dtarget.name);
 if (p == NULL) {
 return (ENOMEM);
 }

 // 8) create new...
 if (sts = add_new_dirent (dparent.attr, starget.attr, p)) {
 free (p);
 return (sts);
 }
 starget.attr -> attr.nlink++;

 // 9) delete old
 return (cfs_rmnod (&sparent, starget.name, starget.attr));
}

The walkthrough is as follows:

1. The first thing we check for is that the destination is not a child of the source as

described in the comments above. This is accomplished primarily with a strncmp().

Then we need to check that there's something other than nothing or a / after the

string (that's because mv x xa is perfectly legal, even though it would be picked

up by the strncmp()).

Copyright © 2014, QNX Software Systems Limited 165

The code

2. We do the “usual” destination resolution by calling connect_msg_to_attr(). Note

that we use the dparent and dtarget (“d” for “destination”) variables.

3. The destination better not exist. If it does, we attempt to remove it, and if that

fails, we return whatever error cfs_rmnod() returned. If it doesn't exist, or we were

able to remove it, we continue on. If there was any problem (other than the file

originally existing or not existing, e.g. a permission problem), we return the status

we got from connect_msg_to_attr().

4. This is the only time you see pathwalk() called apart from the call in c_open().

That's because this is the only connect function that takes two pathnames as

arguments.

5. Catch missing intermediate directory components in the source.

6. Catch missing nonfinal components.

7. This was a nice bug, triggered by trying to rename . or the mount point. By simply

ensuring that we're not trying to move the root directory of the filesystem, we fixed

it. Next, we set up our “source” parent/target (sparent and starget).

8. This is where we perform the “link to new, unlink old” logic. We call

add_new_dirent() to create a new directory entry in the destination parent, then

bump its link count (there are now two links to the object we're moving).

9. Finally, we call cfs_rmnod() (see code below in discussion of c_unlink()) to remove

the old. The removal logic decrements the link count.

The c_mknod() function

The functionality of c_mknod() is straightforward. It calls iofunc_client_info_ext() to

get information about the client, then resolves the pathname using

connect_msg_to_attr(), does some error checking (among other things, calls the helper

function iofunc_mknod()), and finally creates the directory by calling the utility function

cfs_a_mkdir().

The c_unlink() function

To unlink an entry, the following code is used:

int
c_unlink (resmgr_context_t *ctp, io_unlink_t *msg,
 RESMGR_HANDLE_T *handle, void *reserved)
{
 des_t parent, target;
 int sts;
 struct _client_info cinfo;

 if (sts = iofunc_client_info (ctp, 0, &cinfo)) {
 return (sts);
 }

 if (connect_msg_to_attr (ctp, &msg -> connect, handle,
 &parent, &target, &sts, &cinfo)) {
 return (sts);
 }

 if (sts != EOK) {
 return (sts);

166 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

 }

 // see below
 if (target.attr == handle) {
 return (EBUSY);
 }

 return (cfs_rmnod (&parent, target.name, target.attr));
}

The code implementing c_unlink() is straightforward as well — we get the client

information and resolve the pathname. The destination had better exist, so if we don't

get an EOK we return the error to the client. Also, it's a really bad idea (read: bug) to

unlink the mount point, so we make a special check against the target attribute's being

equal to the mount point attribute, and return EBUSY if that's the case. Note that QNX

4 returns the constant EBUSY, QNX Neutrino returns EPERM, and OpenBSD returns

EISDIR. So, there are plenty of constants to choose from in the real world! I like

EBUSY.

Other than that, the actual work is done in cfs_rmnod(), below.

int
cfs_rmnod (des_t *parent, char *name, cfs_attr_t *attr)
{
 int sts;
 int i;

 // 1) remove target
 attr -> attr.nlink--;
 if ((sts = release_attr (attr)) != EOK) {
 return (sts);
 }

 // 2) remove the directory entry out of the parent
 for (i = 0; i < parent -> attr -> nels; i++) {
 // 3) skip empty directory entries
 if (parent -> attr -> type.dirblocks [i].name == NULL) {
 continue;
 }
 if (!strcmp (parent -> attr -> type.dirblocks [i].name,
 name)) {
 break;
 }
 }
 if (i == parent -> attr -> nels) {
 // huh. gone. This is either some kind of internal error,
 // or a race condition.
 return (ENOENT);
 }

 // 4) reclaim the space, and zero out the entry
 free (parent -> attr -> type.dirblocks [i].name);
 parent -> attr -> type.dirblocks [i].name = NULL;

 // 5) catch shrinkage at the tail end of the dirblocks[]
 while (parent -> attr -> type.dirblocks
 [parent -> attr -> nels - 1].name == NULL) {
 parent -> attr -> nels--;
 }

 // 6) could check the open count and do other reclamation
 // magic here, but we don't *have to* for now...

 return (EOK);
}

Notice that we may not necessarily reclaim the space occupied by the resource! That's

because the file could be in use by someone else. So the only time that it's appropriate

Copyright © 2014, QNX Software Systems Limited 167

The code

to actually remove it is when the link count goes to zero, and that's checked for in the

release_attr() routine as well as in the io_close_ocb() handler (below).

Here's the walkthrough:

1. This is the place where we decrement the link count. The function release_attr()

will try to remove the file, but will abort if the link count isn't zero, instead deferring

the removal until io_close_ocb() decides it's safe to do so.

2. The for loop scans the parent, attempting to find this directory entry by name.

3. Notice that here we must skip removed entries, as mentioned earlier.

4. Once we've found it (or errored-out), we free the space occupied by the strdup()'d

name, and zero-out the dirblocks entry.

5. We attempt to do a little bit of optimization by compressing empty entries at the

end of the dirblocks array. This while loop will be stopped by .. which always

exists.

6. At this point, you could do further optimizations only if the directory entry isn't in

use.

The io_close_ocb() function

This naturally brings us to the io_close_ocb() function. In most resource managers,

you'd let the default library function, iofunc_close_ocb_default(), do the work. However,

in our case, we may need to free a resource. Consider the case where a client performs

the following perfectly legal (and useful for things like temporary files) code:

fp = fopen ("/ramdisk/tmpfile", "r+");
unlink ("/ramdisk/tmpfile");
// do some processing with the file
fclose (fp);

We cannot release the resources for the /ramdisk/tmpfile until after the link

count (the number of open file descriptors to the file) goes to zero.

The fclose() will eventually translate within the C library into a close(), which will then

trigger our RAM disk's io_close_ocb() handler. Only when the count goes to zero can

we free the data.

Here's the code for the io_close_ocb():

int
cfs_io_close_ocb (resmgr_context_t *ctp, void *reserved,
 RESMGR_OCB_T *ocb)
{
 cfs_attr_t *attr;
 int sts;

 attr = ocb -> attr;
 sts = iofunc_close_ocb (ctp, ocb, &attr -> attr);
 if (sts == EOK) {
 // release_attr makes sure that no-one is using it...
 sts = release_attr (attr);
 }
 return (sts);
}

168 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

Note the attr -> attr — the helper function iofunc_close_ocb() expects the

normal, nonextended attributes structure.

Once again, we rely on the services of release_attr() to ensure that the link count is

zero.

Here's the source for release_attr() (from attr.c):

int
release_attr (cfs_attr_t *attr)
{
 int i;

 // 1) check the count
 if (!attr -> attr.nlink && !attr -> attr.count) {
 // decide what kind (file or dir) this entry is...

 if (S_ISDIR (attr -> attr.mode)) {
 // 2) it's a directory, see if it's empty
 if (attr -> nels > 2) {
 return (ENOTEMPTY);
 }
 // 3) need to free "." and ".."
 free (attr -> type.dirblocks [0].name);
 free (attr -> type.dirblocks [0].attr);
 free (attr -> type.dirblocks [1].name);
 free (attr -> type.dirblocks [1].attr);

 // 4) release the dirblocks[]
 if (attr -> type.dirblocks) {
 free (attr -> type.dirblocks);
 free (attr);
 }
 } else if (S_ISREG (attr -> attr.mode)) {
 // 5) a regular file
 for (i = 0; i < attr -> nels; i++) {
 cfs_block_free (attr,
 attr -> type.fileblocks [i].iov_base);
 attr -> type.fileblocks [i].iov_base = NULL;
 }
 // 6) release the fileblocks[]
 if (attr -> type.fileblocks) {
 free (attr -> type.fileblocks);
 free (attr);
 }
 } else if (S_ISLNK (attr -> attr.mode)) {
 // 7) a symlink, delete the contents
 free (attr -> type.symlinkdata);
 free (attr);
 }
 }
 // 8) return EOK if everything went well
 return (EOK);
}

Note that the definition of “empty” is slightly different for a directory. A directory is

considered empty if it has just the two entries . and .. within it.

You'll also note that we call free() to release all the objects. It's important that all the

objects be allocated (whether via malloc()/calloc() for the dirblocks and fileblocks, or

via stdrup() for the symlinkdata).

The code walkthrough is as follows:

1. We verify the nlink count in the attributes structure, as well as the count maintained

by the resource manager library. Only if both of these are zero do we go ahead and

process the deletion.

2. A directory is empty if it has exactly two entries (. and ..).

Copyright © 2014, QNX Software Systems Limited 169

The code

3. We therefore free those two entries.

4. Finally, we free the dirblocks array as well as the attributes structure (attr) itself.

5. In the case of a file, we need to run through all of the fileblocks blocks and delete

each one.

6. Finally, we free the fileblocks array as well as the attributes structure itself.

7. In the case of a symbolic link, we delete the content (the symlinkdata) and the

attributes structure.

8. Only if everything went well do we return EOK. It's important to examine the return

code and discontinue further operations; for example, if we're trying to release a

non-empty directory, you can't continue the higher-level function (in io_unlink(),

for example) of releasing the parent's entry.

The io_devctl() function

In normal (i.e. nonfilesystem) resource managers, the io_devctl() function is used to

implement device control functions. We used this in the ADIOS data acquisition driver

to, for example, get the configuration of the device.

In a filesystem resource manager, io_devctl() is used to get various information about

the filesystem.

A large number of the commands aren't used for anything other than block I/O

filesystems; a few are reserved for internal use only.

Here's a summary of the commands:

DCMD_BLK_PARTENTRY

Used by x86 disk partitions with harddisk-based filesystems.

DCMD_BLK_FORCE_RELEARN

Triggers a media reversioning and cache invalidation (for removable media).

This command is also used to sync-up the filesystem if chkfsys (and other

utilities) play with it “behind its back.”

DCMD_FSYS_STATISTICS and DCMD_FSYS_STATISTICS_CLR

Returns struct fs_stats (see <sys/fs_stats.h>). The _CLR version

resets the counters to zero after returning their values. And, to quote QNX's

filesystem guru John Garvey, “There is no supported utility which obtains

this, the fs_stats is completely undocumented, and may/will change in

the future, and certainly has changed in the past.”

DCMD_FSYS_STATVFS

Returns struct statvfs (see below for more details).

170 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

DCMD_FSYS_MOUNTED_ON, DCMD_FSYS_MOUNTED_AT and

DCMD_FSYS_MOUNTED_BY

Each returns 256 bytes of character data, giving information about their

relationship to other filesystems. See the discussion below.

DCMD_FSYS_OPTIONS

Returns 256 bytes of character data. This can be used to return the

command-line options that the filesystem was mounted with.

Mounting options

The DCMD_FSYS_MOUNTED_ON, DCMD_FSYS_MOUNTED_AT, and

DCMD_FSYS_MOUNTED_BY commands allow traversal of the filesystem hierarchy by

utilities (like df, dinit, and chkfsys) that need to move between the filesystem

and the host/image of that filesystem.

For example, consider a disk with /dev/hd0t79 as a partition of /dev/hd0, mounted

at the root (/), with a directory /tmp. The table below gives a summary of the responses

for each command (shortened to just the two last letters of the command) for each

entity:

/tmp//dev/hd0t79Command

/dev/hd0t79/dev/hd0t79/dev/hd0ON

///dev/hd0t79AT

/BY

ENODEV is returned when there is no such entity (for example, an ON query of

/dev/hd0, or a BY query of /).

Basically:

• ON means “Who am I on top of?”

• BY means “Who is on top of me?”

• AT means “Where am I? Who is my owner?”

Filesystem statistics

The most important command that your filesystem should implement is the

DCMD_FSYS_STATVFS. In our io_devctl() handler, this ends up calling the utility

function cfs_block_fill_statvfs() (in lib/block.c):

void
cfs_block_fill_statvfs (cfs_attr_t *attr, struct statvfs *r)
{
 uint32_t nalloc, nfree;
 size_t nbytes;

Copyright © 2014, QNX Software Systems Limited 171

The code

 mpool_info (mpool_block, &nbytes, &r -> f_blocks, &nalloc,
 &nfree, NULL, NULL);

 // INVARIANT SECTION

 // file system block size
 r -> f_bsize = nbytes;

 // fundamental filesystem block size
 r -> f_frsize = nbytes;

 // total number of file serial numbers
 r -> f_files = INT_MAX;

 // file system id
 r -> f_fsid = 0x12345678;

 // bit mask of f_flag values
 r -> f_flag = 0;

 // maximum filename length
 r -> f_namemax = NAME_MAX;

 // null terminated name of target file system
 strcpy (r -> f_basetype, "cfs");

 // CALCULATED SECTION

 if (optm) { // for system-allocated mem with a max

 // tot number of blocks on file system in units of f_frsize
 r -> f_blocks = optm / nbytes;

 // total number of free blocks
 r -> f_bfree = r -> f_blocks - nalloc;

 // total number of free file serial numbers (approximation)
 r -> f_ffree = r -> f_files - nalloc;

 } else if (optM) { // for statically-allocated mem with a max

 // total #blocks on file system in units of f_frsize
 r -> f_blocks = optM / nbytes;

 // total number of free blocks
 r -> f_bfree = nfree;

 // total number of free file serial numbers (approximation)
 r -> f_ffree = nfree;

 } else { // for unbounded system-allocated memory

 // total #blocks on file system in units of f_frsize
 r -> f_blocks = nalloc + 1;

 // total number of free blocks
 r -> f_bfree = r -> f_blocks - nalloc;

 // total #free file serial numbers (an approximation)
 r -> f_ffree = r -> f_files - nalloc;

 }

 // MIRROR

 // number of free blocks available to non-priv. proc
 r -> f_bavail = r -> f_bfree;

 // number of file serial numbers available to non-priv. proc
 r -> f_favail = r -> f_ffree;
}

The reason for the additional complexity (as opposed to just stuffing the fields directly)

is due to the command-line options for the RAM disk. The -m option lets the RAM

disk slowly allocate memory for itself as it requires it from the operating system, up

172 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

to a maximum limit. If you use the -M option instead, the RAM disk allocates the

specified memory right up front. Using neither option causes the RAM disk to allocate

memory as required, with no limit.

Some of the numbers are outright lies — for example, the f_files value, which is

supposed to indicate the total number of file serial numbers, is simply set to INT_MAX.

There is no possible way that we would ever use that many file serial numbers

(INT_MAX is 9 × 1018)!

So, the job of cfs_block_fill_statvfs() is to gather the information from the block

allocator, and stuff the numbers (perhaps calculating some of them) into the struct

statvfs structure.

The c_mount() function

The last function we'll look at is the one that handles mount requests. Handling a

mount request can be fairly tricky (there are lots of options), so we've just stuck with

a simple version that does everything we need for the RAM disk.

When the RAM-disk resource manager starts up, there is no mounted RAM disk, so

you must use the command-line mount command to mount one:

mount -Tramdisk /dev/ramdisk /ramdisk

The above command creates a RAM disk at the mount point /ramdisk.

The code is:

int
cfs_c_mount (resmgr_context_t *ctp, io_mount_t *msg,
 RESMGR_HANDLE_T *handle, io_mount_extra_t *extra)
{
 char *mnt_point;
 char *mnt_type;
 int ret;
 cfs_attr_t *cfs_attr;

 // 1) shortcuts
 mnt_point = msg -> connect.path;
 mnt_type = extra -> extra.srv.type;

 // 2) Verify that it is a mount request, not something else
 if (extra -> flags &
 (_MOUNT_ENUMERATE | _MOUNT_UNMOUNT | _MOUNT_REMOUNT)) {
 return (ENOTSUP);
 }

 // 3) decide if we should handle this request or not
 if (!mnt_type || strcmp (mnt_type, "ramdisk")) {
 return (ENOSYS);
 }

 // 4) create a new attributes structure and fill it
 if (!(cfs_attr = malloc (sizeof (*cfs_attr)))) {
 return (ENOMEM);
 }
 iofunc_attr_init (&cfs_attr -> attr, S_IFDIR | 0777,
 NULL, NULL);

 // 5) initializes extended attribute structure
 cfs_attr_init (cfs_attr);

 // set up the inode
 cfs_attr -> attr.inode = (int) cfs_attr;

Copyright © 2014, QNX Software Systems Limited 173

The code

 // create "." and ".."
 cfs_a_mknod (cfs_attr, ".", S_IFDIR | 0755, NULL);
 cfs_a_mknod (cfs_attr, "..", S_IFDIR | 0755, NULL);

 // 6) attach the new pathname with the new value
 ret = resmgr_attach (dpp, &resmgr_attr, mnt_point,
 _FTYPE_ANY, _RESMGR_FLAG_DIR,
 &connect_func, &io_func,
 &cfs_attr -> attr);
 if (ret == -1) {
 free (cfs_attr);
 return (errno);
 }

 return (EOK);
}

The code walkthrough is:

1. We create some shortcuts into the msg and extra fields. The mnt_point indicates

where we would like to mount the RAM disk.. mnt_type indicates what kind of

resource we are mounting, in this case we expect the string “ramdisk.”

2. We don't support any of the other mounting methods, like enumeration, unmounting,

or remounting, so we just fail if we detect them.

3. We ensure that the type of mount request matches the type of our device

(ramdisk).

4. We create a new attributes structure that represents the root directory of the new

RAM disk, and we initialize it.

5. We also initialize the extended portion of the attributes structure, set up the inode

member (see below), and create the . and .. directories.

6. Finally, we call resmgr_attach() to create the new mount point in the pathname

space.

The inode needs to be unique on a per-device basis, so the easiest way of doing that

is to give it the address of the attributes structure.

174 Copyright © 2014, QNX Software Systems Limited

RAM-disk Filesystem

References

The following references apply to this chapter.

Header files

• <dirent.h> — contains the directory structure type used by readdir().

• <devctl.h> — contains the definition for devctl(); also defines the

component flags used to create a command.

• <sys/dcmd_blk.h> — contains the FSYS devctl() block commands.

• <sys/disk.h> — defines partition_entry_t.

• <sys/dispatch.h>, <sys/iofunc.h>— used by resource managers.

• <sys/fs_stats.h> — defines the fs_stats structure returned by

the filesystem block command DCMD_FSYS_STATISTICS.

Functions

See the following functions in the QNX Neutrino C Library Reference:

• _IO_SET_WRITE_NBYTES() in the entry for iofunc_write_verify()

• iofunc_check_access()

• iofunc_client_info_ext()

• iofunc_ocb_attach()

• iofunc_open()

• iofunc_read_verify()

• iofunc_write_verify()

• MsgReply()

• MsgReplyv()

• resmgr_msgreadv()

• S_ISDIR() and S_ISREG()in the entry for stat()

• SETIOV()

Copyright © 2014, QNX Software Systems Limited 175

References

Chapter 7
TAR Filesystem

The .tar file resource manager is similar to the previous chapter's RAM-disk filesystem

manager, and they share quite a bit of code. However, it illustrates a different way of

managing files — as a virtual filesystem map of a physical file.

This resource manager lets you cd into a .tar (or, through the magic of the zlib

compression library, into a .tar.gz) file, and perform ls, cp, and other commands,

as if you had gone through the trouble of (optionally uncompressing and) unpacking

the .tar file into a temporary directory. (That's a small lie; a directory entry can't be

both a file and a directory at the same time, so you can't cd into the .tar file, but

the resource manager creates a .tar.dir file that you can cd into.)

In the Filesystems appendix, I present background information about filesystem

implementation within the resource manager framework. You might want to refer to

that before, during, or after you read this chapter.

I assume that you've read the RAM-disk Filesystem (p. 135) chapter, because anything

that's common between these two resource managers isn't repeated here.

Copyright © 2014, QNX Software Systems Limited 177

Requirements

The requirements for this project stemmed from my desire to “just cd into a .tar

file.” I presented a similar, but much more basic, version of the .tar filesystem when

I wrote the Writing a Resource Manager course for QNX Software Systems. In that

course, students were asked to parse a .tar file (with lots of helper code already in

place), and write a tiny virtual filesystem that would work like the resource manager

presented in this chapter. Unfortunately, due to the limitations on class time, the

resource manager presented in that class was very basic — it handled only one type

of .tar file (the POSIX standard one, not the GNU one, which has a slightly different

format), it mounted only one .tar at a time, and — the most severe limitation — the

.tar file could have files only in the “current” directory (i.e. it didn't support

subdirectories).

This resource manager remedies all that.

178 Copyright © 2014, QNX Software Systems Limited

TAR Filesystem

Design

To understand the design of this resource manager, it's necessary to understand the

basics of a .tar file, and the two common formats.

Way back in the dim dark early days of UNIX (I think it must have been in the roaring

twenties or something), huge 30cm (1 foot) diameter 9-track magnetic tapes were all

the rage. In order to transport data from one machine to another, or to make backups,

many files would be archived onto these tapes. The name “TAR” stood for Tape

ARchive, and the format of the .tar file was an attempt to accommodate tape media.

The tapes worked best in block mode; rather than write individual bytes of data, the

system would read or write 512-byte (or other sized) blocks of data. When you consider

the technology of the day, it made a lot of sense — here was this moving magnetic

tape that passed over a head at a certain speed. While the tape was moving, it was

good to pump data to (or from) the tape. When the tape stopped, it would be awkward

to position it exactly into the middle of a block of data, so most tape operations were

block-oriented (with the notable exception of incremental tape drives, but we won't

go into that here). A typical magnetic tape could hold tens to hundreds of megabytes

of data, depending on the density (number of bits per inch).

The .tar format, therefore, was block-oriented, and completely sequential (as opposed

to random access). For every file in the archive, there was a block-aligned header

describing the file (permissions, name, owner, date and time, etc.), followed by one

or more blocks consisting of the file's data.

Creating a .tar file

So following along in this command-line session, I'll show you the resulting .tar file:

ls -la
total 73
drwxrwxr-x 2 root root 4096 Aug 17 17:31 ./
drwxrwxrwt 4 root root 4096 Aug 17 17:29 ../
-rw-rw-r-- 1 root root 1076 Jan 14 2003 io_read.c
-rw-rw-r-- 1 root root 814 Jan 12 2003 io_write.c
-rw-rw-r-- 1 root root 6807 Feb 03 2003 main.c
-rw-rw-r-- 1 root root 11883 Feb 03 2003 tarfs.c
-rw-rw-r-- 1 root root 683 Jan 12 2003 tarfs.h
-rw-rw-r-- 1 root root 6008 Jan 15 2003 tarfs_io_read.c

tar cvf x.tar *
io_read.c
io_write.c
main.c
tarfs.c
tarfs.h
tarfs_io_read.c

ls -l x.tar
-rw-rw-r-- 1 root root 40960 Aug 17 17:31 x.tar

Copyright © 2014, QNX Software Systems Limited 179

Design

Here I've taken some of the source files in a directory and created a .tar file (called

x.tar) that ends up being 40960 bytes — a nice multiple of 512 bytes, as we'd

expect.

Each of the files is prefixed by a header in the .tar file, followed by the file content,

aligned to a 512-byte boundary.

This is what each header looks like:

Field NameLengthOffset

name1000

mode8100

uid8108

gid8116

size12124

mtime12136

chksum8148

typeflag1156

linkname100157

magic6257

version2263

uname32265

gname32297

devmajor8329

devminor8337

prefix155345

filler11500

Here's a description of the fields that we're interested in for the filesystem (all fields

are ASCII octal unless noted otherwise):

name

The name of the stored entity (plain ASCII).

mode

The mode: read, write, execute permissions, as well as what the entity is (a

file, symlink, etc.).

180 Copyright © 2014, QNX Software Systems Limited

TAR Filesystem

uid

The user ID.

gid

The group ID.

size

The size of the resource (symlinks and links get a 0 size).

typeflag

POSIX says one thing, GNU says another. Under POSIX, this is supposed to

be one of the single characters “g,” “x,” or “0.” Under GNU, this is one of

the single ASCII digits zero through seven, or an ASCII NUL character,

indicating different types of entities. Sigh — “The nice thing about standards

is there are so many to choose from.”

mtime

The modification time.

linkname

The name of the file that this file is linked to (or blank if not linked), in plain

ASCII.

We've skipped a bunch of fields, such as the checksum, because we don't need them

for our filesystem. (For the checksum, for example, we're simply assuming that the

file has been stored properly — in the vast majority of cases, it's not actually on an

antique 9-track tape — so data integrity shouldn't be a problem!)

What I meant above by “ASCII octal” fields is that the value of the number is encoded

as a sequence of ASCII digits in base 8. Really.

For example, here's the very first header in the sample x.tar that we created above

(addresses on the left-hand side, as well as the dump contents, are in hexadecimal,

with printable ASCII characters on the right-hand side):

0000000 69 6f 5f 72 65 61 64 2e 63 00 00 00 00 00 00 00 io_read.c.......
0000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000060 00 00 00 00 30 31 30 30 36 36 34 00 30 30 30 300100664.0000
0000070 30 30 30 00 30 30 30 30 30 30 30 00 30 30 30 30 000.0000000.0000
0000080 30 30 30 32 30 36 34 00 30 37 36 31 31 31 34 31 0002064.07611141
0000090 34 36 35 00 30 31 31 33 33 34 00 20 30 00 00 00 465.011334..0...
00000A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Copyright © 2014, QNX Software Systems Limited 181

Design

0000100 00 75 73 74 61 72 20 20 00 72 6f 6f 74 00 00 00 .ustar...root...
0000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000120 00 00 00 00 00 00 00 00 00 72 6f 6f 74 00 00 00root...
0000130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Here are the fields that we're interested in for our .tar filesystem:

Offset 0

The name of the entity, in this case io_read.c.

Offset 100 (0x64 hex)

The ASCII octal digits 0100664 representing S_IFREG (indicating this is

a regular file), with a permission mode of 0664 (indicating it's readable by

everyone, but writable by the owner and group only).

Offset 108 (0x6C)

The ASCII octal digits 0000000 representing the user ID (in this case, 0,

or root).

Offset 116 (0x74)

The ASCII octal digits 0000000 representing the group ID (0000000, or

group 0).

Offset 124 (0x7C)

The ASCII octal digits 00000002064 (or decimal 1076) representing the

size of the entity. (This does present a limit to the file size of 77777777777

octal, or 8 gigabytes — not bad for something invented in the days of hard

disks the size of washing machines with capacities of tens of megabytes!).

Offset 136 (0x88)

The ASCII octal digits 07611141465 (or decimal 1042596661 seconds

after January 1st, 1970, which really converts to “Tue Jan 14 21:11:01

EST 2003.”)

The one interesting wrinkle has to do with items that are in subdirectories.

Depending on how you invoked tar when the archive was created, you may or may

not have the directories listed individually within the .tar file. What I mean is that

if you add the file dir/spud.txt to the archive, the question is, is there a tar

header corresponding to dir? In some cases there will be, in others there won't, so

182 Copyright © 2014, QNX Software Systems Limited

TAR Filesystem

our .tar filesystem will need to be smart enough to create any intermediate directories

that aren't explicitly mentioned in the headers.

Note that in all cases the full pathname is given; that is, we will always have

dir/spud.txt. We never have a header for the directory for dir followed by a header

for the file spud.txt; we'll always get the full path to each and every component

listed in a .tar file.

Let's stop and think about how this resource manager compares to the RAM-disk

resource manager in the previous chapter. If you squint your eyes a little bit, and

ignore a few minor details, you can say they are almost identical. We need to:

• set up data structures to hold directories, files, and symlinks

• set up all the administration that goes along with managing these entities

• search directories

• satisfy the client's readdir() calls by returning directory entries

• mount the root filesystem at arbitrary points.

The only thing that's really different is that instead of storing the file contents in RAM,

we're storing them on disk! (The fact that this is a read-only filesystem isn't really a

difference, it's a subset.)

Copyright © 2014, QNX Software Systems Limited 183

Design

The code

Let's now turn our attention to the code in the .tar filesystem. We'll begin by looking

at the data structures that are different from the ones in the RAM disk, and then we'll

look at the C modules that are different.

The structures

We still use an extended attributes structure in the .tar filesystem, because we still

need to store additional information (like the contents of directories and symlinks).

The main modification is the way we store files — we don't. We store only a reference

to the file, indicating where in the .tar file the actual file begins, and its name. (The

base attributes structure still stores the usual stuff: permissions, file times, etc., and

most importantly, the size.)

typedef struct fes_s
{
 char *name;
 off_t off;
} fes_t;

typedef struct cfs_attr_s
{
 iofunc_attr_t attr;

 int nels;
 int nalloc;
 union {
 struct des_s *dirblocks;
// iov_t *fileblocks;
 fes_t vfile;
 char *symlinkdata;
 } type;
} cfs_attr_t;

As you can see, the cfs_attr_t is almost identical to the RAM-disk structure. In

fact, I left the fileblocks member commented-out to show the evolution from one

source base to the next.

So our data for the file is now stored in a fes_t data type. All that the fes_t data

type contains is the name of the .tar file (where the data is actually stored), and the

offset into the .tar — we don't need to store the size of the file, because that's

already stored normally in the plain (not extended) attributes structure.

The other difference from the RAM-disk filesystem is that we store the fes_t directly,

rather than a pointer to it (as we did with the fileblocks IOV array). That's because the

fes_t doesn't ever grow, and storing a 4-byte pointer to a tiny, fixed-size malloc()'d

data region will take more space than just storing the 8-byte item directly.

The functions

Any functions that we don't mention here are either exactly the same as the RAM-disk

version, or have such minor changes that they're not worth mentioning.

184 Copyright © 2014, QNX Software Systems Limited

TAR Filesystem

Overall operation is the same as the RAM-disk resource manager — we parse the

command-line options, set up some data structures, and enter the resource manager

main loop.

The c_mount() function

The first function called is the c_mount() function, which is responsible for accepting

the name of a .tar file to operate on, and where to manifest its contents. There's a

“mount helper” utility (the file m_main.c) that we'll look at later.

The beginning part of c_mount() is the same as the RAM disk, so we'll just point out

the tail-end section that's different:

...

 // 1) allocate an attributes structure
 if (!(cfs_attr = malloc (sizeof (*cfs_attr)))) {
 return ENOMEM;
 }

 // 2) initialize it
 iofunc_attr_init (&cfs_attr -> attr,
 S_IFDIR | 0555, NULL, NULL);
 cfs_attr_init (cfs_attr);
 cfs_attr -> attr.inode = (int) cfs_attr;
 cfs_a_mknod (cfs_attr, ".", S_IFDIR | 0555, NULL);
 cfs_a_mknod (cfs_attr, "..", S_IFDIR | 0555, NULL);

 // 3) load the tar file
 if (ret = analyze_tar_file (cfs_attr, spec_name)) {
 return (ret);
 }

 // 4) Attach the new pathname with the new value
 ret = resmgr_attach (dpp, &resmgr_attr, mnt_point,
 _FTYPE_ANY, _RESMGR_FLAG_DIR,
 &connect_func, &io_func,
 &cfs_attr -> attr);
 if (ret == -1) {
 free (cfs_attr);
 return (errno);
 }
 return (EOK);
}

The code walkthrough is as follows:

1. Just like in the RAM disk, we initialize our attributes structure. (This is for

synchronization with the RAM-disk source; after this point we diverge.)

2. The initialization is almost the same as the RAM disk, except we use mode 0555

because we are a read-only filesystem. We could lie and show 0777 if we wanted

to, but we'd just run into grief later on (see below).

3. All of the tar-specific work is done in analyze_tar_file(), which we'll look at next.

The function can return a non-zero value if it detects something it doesn't like —

if that's the case, we just return it to the resource-manager framework.

4. Finally, we attach the mount point using resmgr_attr() as per normal (same as the

RAM disk).

Part of the grief mentioned in step 2 above actually turns out to have a useful

side-effect. If you were to reinstate the RAM-disk portion of the extended attributes

Copyright © 2014, QNX Software Systems Limited 185

The code

structure — even though it's not implemented in the current filesystem manager —

you could implement a somewhat “modifiable” .tar filesystem. If you ever went to

write to a file, the resource manager would copy the data from the .tar version of

the file, and then use the fileblocks member rather than the vfile member for

subsequent operations. This might be a fairly simple way of making a few small

modifications to an existing tar file, without the need to uncompress and untar the

file. You'd then need to re-tar the entire directory structure to include your new changes.

Try it and see!

The analyze_tar_file() function

At the highest level, the analyze_tar_function() function opens the .tar file, processes

each file inside by calling add_tar_entry(), and then closes the .tar file. There's a

wonderful library called zlib, which lets us open even compressed files and pretend

that they are just normal, uncompressed files. That's what gives us the flexibility to

open either a .tar or a .tar.gz file with no additional work on our part. (The

limitation of the library is that seeking may be slow, because decompression may need

to occur.)

int
analyze_tar_file (cfs_attr_t *a, char *fname)
{
 gzFile fd;
 off_t off;
 ustar_t t;
 int size;
 int sts;
 char *f;

 // 1) the .tar (or .tar.gz) file must exist :-)
 if ((fd = gzopen (fname, "r")) == NULL) {
 return (errno);
 }

 off = 0;
 f = strdup (fname);

 // 2) read the 512-byte header into "t"
 while (gzread (fd, &t, sizeof (t)) > 0 && *t.name) {
 dump_tar_header (off, &t);

 // 3) get the size
 sscanf (t.size, "%o", &size);
 off += sizeof (t);

 // 4) add this entry to the database
 if (sts = add_tar_entry (a, off, &t, f)) {
 gzclose (fd);
 return (sts);
 }

 // 5) skip the data for the entry
 off += ((size + 511) / 512) * 512;
 gzseek (fd, off, SEEK_SET);
 }
 gzclose (fd);

 return (EOK);
}

The code walkthrough is:

1. The zlib library makes things look just like an fopen() call.

186 Copyright © 2014, QNX Software Systems Limited

TAR Filesystem

2. We read each header into the variable t, and optionally dump the header if case

debug is enabled.

3. We read the ASCII octal size of the file following the header, then store it.

4. The real work is done in add_tar_entry().

5. The best part is that we skip the file content, which makes loading fast.

In step 5 we skip the file content. I'm surprised that not all of today's tar utilities do

this when they're dealing with files — doing a tar tvf to get a listing of the tar file

takes forever for huge files!

The add_tar_entry() function

Header analysis is done by the add_tar_entry() function. If this looks a little bit familiar

it's because the code is based on the pathwalk() function from the RAM-disk resource

manager, with logic added to process the tar file header.

static int
add_tar_entry (cfs_attr_t *a, off_t off, ustar_t *t, char *tarfile)
{
 des_t output [_POSIX_PATH_MAX];
 int nels;
 char *p;
 int i;
 int mode;

 // 1) first entry is the mount point
 output [0].attr = a;
 output [0].name = NULL;

 // 2) break apart the pathname at the slashes
 nels = 1;
 for (p = strtok (t -> name, "/"); p; p = strtok (NULL, "/"), nels++) {
 if (nels >= _POSIX_PATH_MAX) {
 return (E2BIG);
 }
 output [nels].name = p;
 output [nels].attr = NULL;
 }

 // 3) analyze each pathname component
 for (i = 1; i < nels; i++) {

 // 4) sanity check
 if (!S_ISDIR (output [i - 1].attr -> attr.mode)) {
 return (ENOTDIR); // effectively an internal error
 }

 // 5) check to see if the element exists...
 if (!(output [i].attr = search_dir (output [i].name,
 output [i-1].attr))) {
 mode = parse_mode (t);

 // 6) intermediate directory needs to be created...
 if (S_ISDIR (mode) || (i + 1 < nels)) {
 output [i].attr = cfs_a_mkdir (output [i - 1].attr,
 output [i].name, NULL);
 tar_to_attr (t, &output [i].attr -> attr);
 // kludge for implied "directories"
 if (S_ISREG (output [i].attr -> attr.mode)) {
 output [i].attr -> attr.mode =
 (output [i].attr -> attr.mode & ~S_IFREG) | S_IFDIR;
 }

 // 7) add a regular file
 } else if (S_ISREG (mode)) {
 output [i].attr = cfs_a_mkfile (output [i - 1].attr,
 output [i].name, NULL);
 tar_to_attr (t, &output [i].attr -> attr);

Copyright © 2014, QNX Software Systems Limited 187

The code

 output [i].attr -> nels = output [i].attr -> nalloc = 1;
 output [i].attr -> type.vfile.name = tarfile;
 output [i].attr -> type.vfile.off = off;

 // 8) add a symlink
 } else if (S_ISLNK (mode)) {
 output [i].attr = cfs_a_mksymlink (output [i - 1].attr,
 output [i].name, NULL);
 tar_to_attr (t, &output [i].attr -> attr);
 output [i].attr -> type.symlinkdata = strdup (t -> linkname);
 output [i].attr -> attr.nbytes = strlen (t -> linkname);

 } else {
 // code prints an error message here...
 return (EBADF); // effectively an internal error
 }
 }
 }

 return (EOK);
}

The code walkthrough is:

1. Just as in the RAM disk's pathwalk(), the first entry in the output array is the mount

point.

2. And, just as in the RAM disk's pathwalk(), we break apart the pathname at the /

delimiters.

3. Then we use the for loop to analyze each and every pathname component.

4. This step is a basic sanity check — we're assuming that the .tar file came from

a normal, sane, and self-consistent filesystem. If that's the case, then the parent

of an entry will always be a directory; this check ensures that that's the case. (It's

a small leftover from pathwalk().)

5. Next we need to see if the component exists. Just as in pathwalk(), we need to be

able to verify that each component in the pathname exists, not only for sanity

reasons, but also for implied intermediate directories.

6. In this case, the component does not exist, and yet there are further pathname

components after it! This is the case of the implied intermediate directory; we

simply create an intermediate directory and “pretend” that everything is just fine.

7. In this case, the component does not exist, and it's a regular file. We just go ahead

and create the regular file. Note that we don't check to see if there are any

components following this regular file, for two reasons. In a sane, consistent

filesystem, this wouldn't happen anyway (so we're really not expecting this case in

the .tar file). More importantly, that error will be caught in step 4 above, when

we go to process the next entry and discover that its parent isn't a directory.

8. In this case, we create a symbolic link.

The io_read() function and related utilities

The .tar filesystem's io_read() is the standard one that we've seen in the RAM disk

— it decides if the request is for a file or a directory, and calls the appropriate function.

188 Copyright © 2014, QNX Software Systems Limited

TAR Filesystem

The .tar filesystem's tarfs_io_read_dir() is the exact same thing as the RAM disk

version — after all, the directory entry structures in the extended attributes structure

are identical.

The only function that's different is the tarfs_io_read_file() function to read the data

from the .tar file on disk.

int
tarfs_io_read_file (resmgr_context_t *ctp, io_read_t *msg,
iofunc_ocb_t *ocb)
{
 int nbytes;
 int nleft;
 iov_t *iovs;
 int niovs;
 int i;
 int pool_flag;
 gzFile fd;

 // we don't do any xtypes here...
 if ((msg -> i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE) {
 return (ENOSYS);
 }

 // figure out how many bytes are left
 nleft = ocb -> attr -> attr.nbytes - ocb -> offset;

 // and how many we can return to the client
 nbytes = min (nleft, msg -> i.nbytes);

 if (nbytes) {

 // 1) open the on-disk .tar file
 if ((fd = gzopen (ocb -> attr -> type.vfile.name, "r")) == NULL) {
 return (errno);
 }

 // 2) calculate number of IOVs required for transfer
 niovs = (nbytes + BLOCKSIZE - 1) / BLOCKSIZE;
 if (niovs <= 8) {
 iovs = mpool_malloc (mpool_iov8);
 pool_flag = 1;
 } else {
 iovs = malloc (sizeof (iov_t) * niovs);
 pool_flag = 0;
 }
 if (iovs == NULL) {
 gzclose (fd);
 return (ENOMEM);
 }

 // 3) allocate blocks for the transfer
 for (i = 0; i < niovs; i++) {
 SETIOV (&iovs [i], cfs_block_alloc (ocb -> attr), BLOCKSIZE);
 if (iovs [i].iov_base == NULL) {
 for (--i ; i >= 0; i--) {
 cfs_block_free (ocb -> attr, iovs [i].iov_base);
 }
 gzclose (fd);
 return (ENOMEM);
 }
 }

 // 4) trim last block to correctly read last entry in a .tar file
 if (nbytes & BLOCKSIZE) {
 iovs [niovs - 1].iov_len = nbytes & BLOCKSIZE;
 }

 // 5) get the data
 gzseek (fd, ocb -> attr -> type.vfile.off + ocb -> offset, SEEK_SET);
 for (i = 0; i < niovs; i++) {
 gzread (fd, iovs [i].iov_base, iovs [i].iov_len);
 }
 gzclose (fd);

Copyright © 2014, QNX Software Systems Limited 189

The code

 // return it to the client
 MsgReplyv (ctp -> rcvid, nbytes, iovs, i);

 // update flags and offset
 ocb -> attr -> attr.flags |= IOFUNC_ATTR_ATIME
 | IOFUNC_ATTR_DIRTY_TIME;
 ocb -> offset += nbytes;
 for (i = 0; i < niovs; i++) {
 cfs_block_free (ocb -> attr, iovs [i].iov_base);
 }
 if (pool_flag) {
 mpool_free (mpool_iov8, iovs);
 } else {
 free (iovs);
 }
 } else {
 // nothing to return, indicate End Of File
 MsgReply (ctp -> rcvid, EOK, NULL, 0);
 }

 // already done the reply ourselves
 return (_RESMGR_NOREPLY);
}

Many of the steps here are common with the RAM disk version, so only steps 1 through

5 are documented here:

1. Notice that we keep the .tar on-disk file closed, and open it only as required.

This is an area for improvement, in that you might find it slightly faster to have a

certain cache of open .tar files, and maybe rotate them on an LRU-basis. We

keep it closed so we don't run out of file descriptors; after all, you can mount

hundreds (up to 1000 — a QNX Neutrino limit) of .tar files with this resource

manager (see the note below).

2. We're still dealing with blocks, just as we did in the RAM-disk filesystem, because

we need a place to transfer the data from the disk file. We calculate the number

of IOVs we're going to need for this transfer, and then allocate the iovs array.

3. Next, we call cfs_block_alloc() to get blocks from the block allocator, then we bind

them to the iovs array. In case of a failure, we free all the blocks and fail

ungracefully. A better failure mode would have been to shrink the client's request

size to what we can handle, and return that. However, when you analyze this, the

typical request size is 32k (8 blocks), and if we don't have 32k lying around, then

we might have bigger troubles ahead.

4. The last block is probably not going to be exactly 4096 bytes in length, so we need

to trim it. Nothing bad would happen if we were to gzread() the extra data into the

end of the block — the client's transfer size is limited to the size of the resource

stored in the attributes structure. So I'm just being extra paranoid.

5. And in this step, I'm being completely careless; we simply gzread() the data with

no error-checking whatsoever into the blocks! :-)

The rest of the code is standard; return the buffer to the client via MsgReplyv(), update

the access flags and offset, free the blocks and IOVs, etc.

In step 1, I mentioned a limit of 1000 open file descriptors. This limit is

controlled by the -F parameter to procnto (the kernel). In version 6.2.1 of

QNX Neutrino, whatever value you pass to -F is the maximum (and default),

190 Copyright © 2014, QNX Software Systems Limited

TAR Filesystem

and you cannot go higher than that value. In version 6.3 of QNX Neutrino,

whatever value you pass to -F is the default, and you can go higher. You can

change the value (to be lower in 6.2.1, or to be lower or higher in 6.3) via the

setrlimit() function, using the RLIMIT_NOFILE resource constant.

The mount helper program

One of the things that makes the .tar filesystem easy to use is the mount helper

program. For example, I snarf newsgroups and store them in compressed .tar archives.

So, I might have directories on my machine like /news/comp/os/qnx. As I

accumulate articles, I store them in batches, say every 1000 articles. Within that

directory, I might have files like 003xxx.tar.gz and 004xxx.tar.gz which are

two compressed .tar files containing articles 3000 through 3999 and 4000 through

4999.

Using the .tar filesystem resource manager, I'd have to specify the following command

lines to mount these two files:

mount -T tarfs /news/comp/os/qnx/003xxx.tar.gz 003xxx.tar.dir
mount -T tarfs /news/comp/os/qnx/004xxx.tar.gz 004xxx.tar.dir

That's not too bad for a handful of files, but it gets to be a real pain when you have

hundreds of files.

The find fans will of course realize that it could be done “easily” using find:

find /news/comp/os/qnx -type f -name "*tar.gz" \
 -exec "mount -T tarfs {} {3}.dir"

Which is ever-so-slightly different (the {3}.dir creates an absolute path rather than

a relative path, but that's okay).

However, for casual use, it would be really nice to just say:

mount_tarfs -m *.tar.gz

to mount all of the compressed archives in the current directory.

This is the job of the mount helper program. The mount helper is actually used in two

modes. In one mode (as seen above) it's invoked standalone. In the second mode, it's

invoked automatically by QNX Neutrino's mount command:

mount -T tarfs source.tar[.gz] [dirname]

The code for the mount_tarfs is remarkably simple: main() does the usual call to

the option-processing function, and then we determine if we are mounting a single

file or multiple files. We optionally generate the target's extension if required, and call

the library function mount().

Copyright © 2014, QNX Software Systems Limited 191

The code

Variations on a theme

The original RAM-disk filesystem was used to develop a framework that would support

enough of the resource-manager functions to be useful. This framework was then

adapted to the .tar filesystem, with very few changes.

In this section, I'd like to give you some further ideas about what can be done with

the framework and with filesystems (virtual or otherwise) in general. There are several

filesystems discussed here:

• Virtual filesystem for USENET news (VFNews)

• Strange and unusual filesystem

• Secure filesystem

• Line-based filesystem

Virtual filesystem for USENET news (VFNews)

I have created a virtual filesystem for USENET news (“VFNews”) under QNX 4, but I

haven't ported it to QNX Neutrino.

I'll describe what VFNews does and how it works. Most news services these days are

all NNTP-based high-speed article-at-a-time services, rather than the traditional bulk

systems that they used to be up until the mid 1990s, so the actual end-product is of

limited interest. However, you'll see an interesting way of increasing the efficiency of

a processing method by several orders of magnitude.

How does USENET news work?

People from around the world post messages (articles) to the various newsgroups.

Their news system then distributes these articles to neighboring machines. Neighboring

machines distribute the articles to their neighbors, and so on, until the articles have

propagated all the way around the world. Machines check the incoming articles to see

if they already have a copy, and quietly delete duplicates.

Historically, a program like cnews was responsible for the on-disk management of

the news articles, and performed two major operations:

1. Get the news articles, and store them on disk

2. Delete old news articles.

Let's look at a typical system. As each article arrives (whether by UUCP, NNTP, or

some other means), the article's “header” portion is scanned, and the news software

determines where (i.e. into which newsgroups) that article should be stored.

A long time ago, when there wasn't all that much news traffic, it seemed like a good

idea to just store one article per file. The newsgroup names got converted into

192 Copyright © 2014, QNX Software Systems Limited

TAR Filesystem

pathnames, and everything was simple. For example, if I had an incoming article for

comp.os.qnx, I would pick the next article number for that newsgroup (say 1143),

and store the new article in a file called /var/spool/news/comp/os/qnx/1143.

(The /var/spool/news part is just the name of the directory where all of the

incoming news articles live — it's up to each site to determine which directory that

is, but /var/spool/news is common.)

The next article that came in for that newsgroup would go into

/var/spool/news/comp/os/qnx/1144, and so on.

So why is this a problem?

There are a number of reasons why this isn't an ideal solution. Articles can arrive in

any order — we're not always going to get all of the articles for comp.os.qnx, then

all of the articles for comp.os.rsx11, then comp.os.svr4, etc. This means that

as the articles arrive, the news storage program is creating files in an ad-hoc manner,

all over the disk. Not only that, it's creating from a few hundred thousand to many

millions of files per day, depending on the size of the feed! (This works out to tens to

hundreds or more files per second! The poor disk — and filesystem — is getting quite

a workout.)

Given the volume of news these days, even terabyte-sized disks would fill up fairly

quickly. So, all news systems have an expiry policy, which describes how long various

articles hang around before being deleted. This is usually tuned based on the

newsgroup, and can range from a few days to weeks or even months for low-traffic

newsgroups. With current implementations, the expiry processing takes a significant

amount of time; sometimes, the expiry processing will take so long that it appears that

the machine is doing nothing but expiring!

The problem is that tons of files are being created in random places on the disk each

second, and also roughly the same number of files being deleted, from different random

places each second. This is suboptimal, and is exacerbated by the fact that each

article even gets copied around a few times before ending up in its final location.

How can this possibly be made better?

As you are no doubt suspecting, we can do much better by knowing something about

the problem domain, and putting our RAM-disk filesystem framework to good use.

One of the requirements, though, is that we still maintain the same directory structure

as the old systems (i.e. the /var/spool/news structure).

Operation

As mentioned above, there are two main things that happen in the news-processing

world: news comes in, and news expires.

Copyright © 2014, QNX Software Systems Limited 193

Variations on a theme

The first trick is to realize that most news expires unread, and all news expires at some

point. So by looking at the header for the article, we can determine when the article

will expire, and place it in a file with all the other articles that will expire at the same

time:

/var/spool/vfnews/20030804.news
/var/spool/vfnews/20030805.news
/var/spool/vfnews/20030806.news

Here we have three files, with the filenames representing the date that the batch of

news articles expires, ranging from August 4, 2003 to August 6, 2003.

All we need to do is make a virtual filesystem that knows how to index into a real

on-disk file, at a certain offset, for a certain length, and present those contents as if

they were the real contents of the virtual file. Well, we've just done the exact same

thing with the .tar filesystem! Effectively, (with a few optimizations) what we're

doing is very similar to creating several different .tar files, and placing articles into

those files. The files are named based on when they expire. When an article is added

to the end of a file, we track its name (like

/var/spool/news/comp/os/qnx/1145), the name of the bulk file we put it into,

and its offset and size. (Some of the optimizations stem from the fact that we don't

need to be 512-byte aligned, and that we don't need a header in the article's storage

file.)

Figure 30: Articles from different newsgroups stored in a bulk file that expires on

August 4, 2003.

When the time comes to expire old news, we simply remove the bulk file and any

in-memory references to it.

This is the real beauty of this filesystem, and why we gain so much improvement from

doing things this way than the original way. We've changed our disk access from writing

tons of tiny files all over the disk to now writing sequentially to a few very large files.

For expiration, we've done the same thing — we've changed from deleting tons of tiny

files all over the disk to deleting one very large file when it expires. (The in-memory

virtual filesystem deletion of the files is very fast; orders of magnitude faster than

releasing blocks on disk.)

To give you an idea of the efficiency of this approach, consider that this system

was running on a QNX 4 box in the early 1990s, with a 386 at 20 MHz, and

a “full” news feed (19.2 kilobaud Trailblazer modem busy over 20 hours per

194 Copyright © 2014, QNX Software Systems Limited

TAR Filesystem

day). When running with cnews, the hard disk was constantly thrashing. When

running with VFNews, there was no disk activity, except every five seconds

when a cache was flushed. In those days, system administrators would run

cnews “expiry” once a day because of the overhead. I was able to run it once

per hour with no noticeable impact on the CPU/disk! Also, ISPs would replace

their hard disks every so often due to the amount of disk thrashing that was

occurring.

Strange and unusual filesystems

Another very interesting thing that you can do with filesystems is completely abuse

the assumptions about what a filesystem can do, and thus come up with strange and

unusual filesystems. (Cue Twilight Zone theme music...)

The easiest entity to abuse is the symbolic link. Effectively, it's a back door into the

filesystem. Since you control what happens in the c_link() entry point when the symlink

is created, you control the interpretation of the symlink. This gives tremendous potential

for abuse — as I like to quote Dr Seuss:

Then he got an idea!

An awful idea!

The Grinch got a wonderful, awful idea!

Indexed filesystem

For example, we could implement what can generally be called an indexed filesystem.

This shares the characteristics of the .tar and VFNews filesystems. In an indexed

filesystem, you create a symlink that contains the information about which filename

we are accessing, the start offset, and the size.

For example:

ln -s @/etc/data:1024:44 spud

This creates a symlink with the value @/etc/data:1024:44. If a regular filesystem

tried to open this, it would yield an ENOENT immediately, as there is no path that

starts with an at-sign.

However, since we control the c_link() function call, we can look at the value of the

symlink, and determine that it's something special. The @ is our escape character.

When you process the c_link() function call, instead of creating a symlink as you would

normally, you can create anything you like. In this case, we'd create a plain,

ordinary-looking file, that internally had the information that we passed to the symlink.

You can now see how this worked in the .tar filesystem — the information that we

stored in the extended attributes structure told us the name of the on-disk file (the

Copyright © 2014, QNX Software Systems Limited 195

Variations on a theme

.tar or .tar.gz file) and the offset into that file where the data begins; the regular

(non-extended) attributes structure gave us the length.

It's a “simple matter of programming” for you to do the same thing with the indexed

filesystem. The only funny thing that happens, though, is that after we create the

special symlink, the file looks like a regular file:

ln -s @/etc/data:1024:44 spud
ls -lF spud
-r--r--r-- 1 root root 44 Aug 16 17:41 spud

Normally, you'd expect to see:

ls -lF spud
-r--r--r-- 1 root root 18 Aug 16 17:41 spud@ -> @/etc/data:1024:44

but since we converted the symlink to a plain file in the c_link() function, you'll never

see that.

Executing commands

Don't despair, further abuses are possible!

We can create a symlink that has a ! or | as the first character. We can take this to

mean, “Execute the following command and return the standard output of the command

as the file content” (in the case of !) or “When writing data to the file, pipe it through

the following command” (in the case of |).

Or, with the creative use of shell escape sequences, you can have the filename in the

symlink actually be the name of a command to execute; the standard output of that

command is the filename that gets used as the actual value of the symlink:

ln -s \"redirector\" spud
ls -l spud
-r--r--r-- 1 root root 44 Aug 16 17:41 spud@ -> /dev/server1
ls -l spud
-r--r--r-- 1 root root 44 Aug 16 17:41 spud@ -> /dev/server2
ls -l spud
-r--r--r-- 1 root root 44 Aug 16 17:41 spud@ -> /dev/server3

In this manner, you could implement some load-sharing functionality all by using what

appears to be a “normal” symlink (the double quote character in "redirector" is

what's used to tell the c_link() code that this command's standard output should be

used as the value of the symlink). Our little program, redirector, simply has a

printf() that outputs different server names.

And the fun doesn't end there, because when you're processing your c_link() handler,

you have access to all of the client's information — so you can make decisions based

on who the client is, what node they are based on, etc.

You're limited purely by your imagination and what you can get away with at a code

review.

196 Copyright © 2014, QNX Software Systems Limited

TAR Filesystem

Secure filesystem

A more practical filesystem, however, is a secure (or encrypted) filesystem. In this

filesystem, you use the underlying facilities of the disk-based filesystem for your

backing store (the place where you actually store the data), and you present an

encryption/decryption layer on top of the backing store's filesystem.

In essence, this is a modification of the .tar filesystem (in that we aren't actually

storing the files in memory as in the RAM disk), with the added challenge that we are

also allowing writes as well as file/directory creation.

An interesting facet of this filesystem would be to encrypt the filenames themselves.

You could use something like the Rijndael/AES algorithm for all of your encryption,

and then use base-64 encoding on the resulting (binary) filenames so that they can

be stored by a conventional filesystem.

The reason you'd want to encrypt the filenames as well is to prevent “known plain-text”

attacks. For example, if you didn't encrypt the filenames, an intruder could look at

the files, and seeing a whole bunch of .wav files, could immediately deduce that

there's a standard header present, giving them a portion of your file in plain text with

which to begin their attack.

Line-based filesystem

Another potentially useful spin on filesystems is to make one that's explicitly able to

manage text files. Whether you do it with a backing store (on-disk) implementation,

or as a RAM disk, depends on your requirements. The characteristic of text files is

that they are sequences of line-feed-separated entities, with the data on each line

somewhat independent of the data on the previous or following lines. Consider a

form-letter, where the only things that might change are the salutation, the account

number, and perhaps an amount that's already overdue.

By creating a line-based filesystem, you could change the dynamic components of the

form-letter without having to readjust all of the other bytes in the file. If you combine

this with something like HTML or PostScript, you can start to see the potential.

The basis of line-based filesystems lies in the same technology used in text editors.

An array of pointers-to-characters forms the basis of the “lines.” What the pointer

points to is a complete line of text, and that's where you'd make your dynamic content

plug in. The rest of the lines wouldn't need to change. By implementing it as an array

of IOVs, you can pass this directly to the MsgReplyv() function that you'd use to return

the data to the client in your io_read() handler.

Copyright © 2014, QNX Software Systems Limited 197

Variations on a theme

References

Dr. Dobb's Journal, May 1996, “Improving USENET News Performance” describes

the original design of the Virtual Filesystem for USENET News.

Header files

The following header files contain useful things for filesystem handlers:

• <devctl.h> — contains the definition for devctl(), and also defines

the component flags used to create a command.

• <dirent.h> — contains the directory structure type used by readdir().

• <sys/dcmd_blk.h> — contains the FSYS devctl() block commands.

• <sys/disk.h> — defines partition_entry_t.

• <sys/dispatch.h>, <sys/iofunc.h>— Used by resource managers.

• <sys/fs_stats.h> — defines the fs_stats structure returned by

the FSYS block command DCMD_FSYS_STATISTICS.

• <sys/mount.h> — defines the mount flags.

• <tar.h> — defines the layout of the .tar header.

• <zlib.h> — contains the definitions for the transparent compression

library.

Functions

See the following functions:

• gzclose()

• gzopen()

• gzread()

• gzseek()

as well as the following in the QNX Neutrino C Library Reference:

• _IO_SET_WRITE_NBYTES() in the entry for iofunc_write_verify()

• iofunc_attr_init()

• iofunc_check_access()

• iofunc_client_info_ext()

• iofunc_ocb_attach()

• iofunc_open()

• iofunc_read_verify()

• iofunc_write_verify()

• MsgReply()

• MsgReplyv()

198 Copyright © 2014, QNX Software Systems Limited

TAR Filesystem

• resmgr_attach()

• resmgr_msgreadv()

• S_ISDIR(), S_ISREG(), and S_ISLNK() in the entry for stat()

• SETIOV()

• setrlimit()

Books

An excellent introduction to cryptography is Applied Cryptography —

Protocols, Algorithms, and Source Code in C by Bruce Schneier (John Wiley

& Sons, Inc., 1996, ISBN 0-471-11709-9)

Copyright © 2014, QNX Software Systems Limited 199

References

Appendix A
Filesystems

In this appendix, we'll discuss what filesystems are, and how they're implemented

within the resource-manager framework. This chapter is written as a tutorial, starting

from the basic operations required, and proceeding into detailed implementation.

We'll cover the basic concepts used by the RAM disk and the .tar filesystem. The

RAM disk and .tar filesystems themselves are covered in their own chapters,

presented earlier in this book.

Copyright © 2014, QNX Software Systems Limited 201

What is a filesystem?

Before delving deeply into such topics as inodes and attributes structures and symbolic

links, let's step back a little and discuss what a filesystem is. At the most basic level,

a filesystem is usually a hierarchical arrangement of data. I say “usually” because

several (historical) filesystems were flat filesystems — there was no hierarchical

ordering of the data. An example of this is the old floppy-based MS-DOS 1.00 and

1.10 filesystems. A nonhierarchical filesystem is a subset of a hierarchical one.

Hierarchical arrangement

The concept of a hierarchical arrangement for filesystems dates back to the dawn of

modern computing history. And no, it wasn't invented by Microsoft in MS-DOS 2.00.

:-)

The hierarchy, or layering, of the filesystem is accomplished by directories. By

definition, a directory can contain zero or more subdirectories, and zero or more data

elements. (We're not counting the two directories . and .. here.) On UNIX (and

derived) systems, pathnames are constructed by having each component separated

by a forward slash. (On other systems, like VAX/VMS for example, pathname components

were placed in square brackets and separated by periods.) Each slash-separated

component represents a directory, with the last component representing a directory

or a data element. Only directories can contain further subdirectories and data

elements.

Since a directory can contain subdirectories, and the subdirectories can contain further

subsubdirectories, this “chain” can theoretically go on forever. Practically, however,

there are limits to the length of this chain, because utilities need to be able to allocate

buffers big enough to deal with the longest possible pathname. It's for this reason that

the names of the individual components (be they directories or data elements) have

a maximum length as well.

Data elements

So far, I've been talking about “data elements” rather than the more familiar term

“file.” That's because a directory can contain not just files, but also symbolic links,

named special devices, block devices, and so on. I wanted to distinguish between

directories and everything else — that's because only directories can have subdirectories

and data elements (although symlinks can “appear” to have sub-directories, but that's

a topic for later).

202 Copyright © 2014, QNX Software Systems Limited

Filesystems

The mount point and the root

A filesystem is often represented as an inverted tree — the root of the tree is shown

on the top, and the trunk and branches grow downwards.

Figure 31: A small portion of a filesystem tree.

Note that I've used an ellipsis (...) to indicate that there are other entries,

but they're not shown. Do not confuse this with the two standard directories

. and .., which are also not shown!

Here we see the root directory contains etc, home, usr, and var, all of which are

directories. The home directory contains users' home directories, and one of these

directories is shown, jack, as containing two other directories (Mail and .elm) and

a file called spud.txt.

A QNX Neutrino system may have many filesystems within it — there's no reason that

there should be only one filesystem. Examples of filesystems are things like CD-ROMs,

hard disks, foreign filesystems (like an MS-DOS, EXT2, or QNX 2 partition), network

filesystems, and other, more obscure things. The important thing to remember, though,

is that these filesystems have their root at a certain location within QNX Neutrino's

filesystem space. For example, the CD-ROM filesystem might begin at /fs/cd0. This

means that the CD-ROM itself is mounted at /fs/cd0. Everything under /fs/cd0

is said to belong to the CD-ROM filesystem. Therefore, we say that the CD-ROM

filesystem is mounted at /fs/cd0.

Copyright © 2014, QNX Software Systems Limited 203

What is a filesystem?

What does a filesystem do?

Now that we've looked at the components of a filesystem, we need to understand the

basic functionality. A filesystem is a way of organizing data (the hierarchical nature

of directories, and the fact that directories and data elements have names), as well

as a way of storing data (the fact that the data elements contain useful information).

There are many types of filesystems. Some let you create files and directories within

the filesystem, others (called read-only) don't. Some store their data on a hard-disk,

others might manufacture the data on-the-fly when you request it. The length of the

names of data elements and directories varies with each filesystem. The characters

that are valid for the names of data elements and directories vary as well. Some let

you create links to directories, some do not. And so on.

204 Copyright © 2014, QNX Software Systems Limited

Filesystems

Filesystems and QNX Neutrino

Filesystems are implemented as resource managers under QNX Neutrino.

At the highest level, the mount point is represented by the mount structure,

iofunc_mount_t. Directories and data elements (files, symlinks, etc.) are represented

by the attributes structure, iofunc_attr_t, which is almost always extended with

additional information pertaining to the filesystem.

Note that this representation may look almost exactly, or nothing like, the on-disk data

structures (if there even are any). For example, the disk structures corresponding to

an MS-DOS filesystem have no concept of QNX Neutrino's iofunc_attr_t, even

though the filesystem itself has concepts for files and directories. Part of the magic

of a filesystem resource manager is that it arranges the attributes structures to mimic

the perceived organization of the on-media (if any) data structures.

Effectively, the resource manager builds an internal representation of the

underlying filesystem, by using the QNX Neutrino data structures. This is key

to understanding QNX Neutrino filesystem implementations.

In our previous example, the filesystem might be represented internally as follows:

Figure 32: Internal resource manager view of a filesystem.

The example above shows the data structures leading up to the file

/home/jack/spud.txt. The numbers in hexadecimal (e.g. 0x7800333) are sample

addresses of the data structures, to emphasize the point that these things live in

memory (and not on a disk somewhere).

Copyright © 2014, QNX Software Systems Limited 205

Filesystems and QNX Neutrino

As you can see, we've used extended versions of the regular resource manager

structures. This is because the regular structures have no concepts of things like

directories, so we need to add that kind of information. Our attributes structure

extensions are of two types, one for directories (to contain the names of the components

within that directory) and another for data elements (to contain, in this example, the

data itself).

Note that the attributes structure for the data element is shown containing the data

directly (this would be the case, for example, with the RAM disk — the data is stored

in RAM, so the extended attributes structure would simply contain a pointer to the

block or blocks that contain the data). If, on the other hand, the data was stored on

media, then instead of storing a pointer to the data, we might store the starting disk

block number instead. This is an implementation detail we'll discuss later.

206 Copyright © 2014, QNX Software Systems Limited

Filesystems

How does a filesystem work?

There are several distinct operations carried out by a filesystem resource manager:

• mount point management

• pathname resolution

• directory management

• data element content management

Most of these operations are either very trivial or nonexistent in a non-filesystem

manager. For example, a serial port driver doesn't worry about mount point, pathname,

or directory management. Its data element content management consists of managing

the circular buffer that's common between the resource manager and the interrupt

service routine that's interfacing to the serial port hardware. In addition, the serial

port driver may worry about things like devctl() functionality, something that's rarely

used in filesystem managers.

Regardless of whether the filesystem that we're discussing is based on a traditional

disk-based medium, or if it's a virtual filesystem, the operations are the same. (A

virtual filesystem is one in which the files or directories aren't necessarily tied directly

to the underlying media, perhaps being manufactured on-demand.)

Let's look at the operations of the filesystem in turn, and then we'll take a look at the

detailed implementation.

Mount point management

A filesystem needs to have a mount point — somewhere that we consider to be the

root of the filesystem. For a traditional disk-based filesystem, this often ends up being

in several places, with the root directory (i.e. /) being one of the mount points. On

your QNX Neutrino system, other filesystems are mounted by default in /fs. The .tar

filesystem, just to give another example, may be mounted in the same directory as

the .tar file it's managing.

The exact location of the mount point isn't important for our discussion here. What is

important is that there exists some mount point, and that the top level directory (the

mount point itself) is called the root of the filesystem. In our earlier example, we had

a CD-ROM filesystem mounted at /fs/cd0, so we said that the directory /fs/cd0

is both the “mount point” for the CD-ROM filesystem, and is also the “root” of the

CD-ROM filesystem.

One of the first things that the filesystem must do, therefore, is to register itself at a

given mount point. There are actually three registrations that need to be considered:

• unnamed mount registration

• special device registration

Copyright © 2014, QNX Software Systems Limited 207

How does a filesystem work?

• mount point registration

All three registrations are performed with the resource manager function

resmgr_attach(), with variations given in the arguments. For reference, here's the

prototype of the resmgr_attach() function (from <sys/dispatch.h>):

int resmgr_attach (
 dispatch_t *dpp,
 resmgr_attr_t *attr,
 const char *path,
 enum _file_type file_type,
 unsigned flags,
 const resmgr_connect_funcs_t *connect_funcs,
 const resmgr_io_funcs_t *io_funcs,
 RESMGR_HANDLE_T *handle);

Of interest for this discussion are path, file_type, and flags.

Unnamed mount registration

The purpose of the unnamed mount registration is to serve as a place to “listen” for

mount messages. These messages are generated from the command-line mount

command (or the C function mount(), which is what the command-line version uses).

To register for the unnamed mount point, you supply a NULL for the path (because

it's unnamed), a _FTYPE_MOUNT for the file_type, and the flags

_RESMGR_FLAG_DIR | _RESMGR_FLAG_FTYPEONLY for the flags field.

Special device registration

The special device is used for identifying your filesystem driver so that it can serve as

a target for mounts and other operations. For example, if you have two CD-ROMs,

they'll show up as /dev/cd0 and /dev/cd1. When you mount one of those drives,

you'll need to specify which drive to mount from. The special device name is used to

make that determination.

Together with the unnamed mount registration, the special device registration lets you

get the mount message and correctly determine which device should be mounted, and

where.

Once you've made that determination, you'd call resmgr_attach() to perform the actual

mount point registration (see the next section below).

The special device is registered with a valid name given to path (for example,

/dev/ramdisk), a flag of _FTYPE_ANY given to file_type, and a 0 passed to flags.

Mount point registration

The final step in mounting your filesystem is the actual mount point registration where

the filesystem will manifest itself. The preceding two steps (the unnamed and the

special device registration) are optional — you can write a perfectly functioning

filesystem that doesn't perform those two steps, but performs only this mount point

registration (e.g. the RAM-disk filesystem).

208 Copyright © 2014, QNX Software Systems Limited

Filesystems

Apart from the initial setup of the filesystem, the unnamed and special device

registration mount points are almost never used.

Once you've called resmgr_attach() to create your filesystem's mount point, you can

handle requests for the filesystem. The resmgr_attach() function is called with a valid

path given to path (for example, /ramdisk), a flag of _FTYPE_ANY given to file_type,

and a flag of _RESMGR_FLAG_DIR given to flags (because you will support directories

within your mount point).

Pathname resolution

The next function that your filesystem must perform is called pathname resolution.

This is the process of accepting an arbitrary pathname, and analyzing the components

within the pathname to determine if the target is accessible, possibly creating the

target, and eventually resolving the target into an attributes structure.

While this may sound fairly trivial, it's actually a fair bit of work to get it just right,

especially if you want to handle symbolic links correctly along the way. :-)

The algorithm can be summarized as follows. Break up the pathname into components

(each component is delimited by the forward slash / character). For each pathname

component, perform the following:

1. If there are additional components after this one, then this component must be a

directory. Return an error if this component is not a directory.

2. Check to see that we can access the current component (permission checks). If

we can't, return an error indicating the access problem.

3. Search the directory of the parent to see if this component exists. If not, return an

error (for new component creation, this error is handled higher up, and a new

component is created.)

4. If this component is a symbolic link (symlink), and it's either a non-terminal symlink,

or certain flags are set, redirect the symlink (processing ends).

If all of the above steps proceeded without problems, we've effectively performed

“pathname resolution.” We now have either a pointer to an attributes structure that

identifies the target (and, for convenience, the target's parent attributes structure as

well), or we have a pointer to just the parent attributes structure. The reason we might

not have a pointer to the target is when we're creating the target. We need to verify

that we can actually get to where the target will be, but obviously we don't expect the

target to exist.

Returning to our example of /home/jack/spud.txt, let's imagine a user trying to

open that file for reading. Here's the diagram we used earlier:

Copyright © 2014, QNX Software Systems Limited 209

How does a filesystem work?

Figure 33: Internal resource manager view of filesystem.

We see that the root of this filesystem is the attributes structure at address

0x80001234. We're assuming (for simplicity) that this filesystem is mounted at the

root of the filesystem space. The first component we see in /home/jack/spud.txt

is home. Because we have the address of the attributes structure (0x80001234), we

can look at the array of directory elements and see if we can find the component home.

According to our first rule, since there are additional components after this one (in

fact, they are jack/spud.txt), we know that home must be a directory. So we check

the attributes structure's mode member, and discover that home is indeed a directory.

Next, we need to look at the attributes structure's uid, gid, and mode fields to verify

that the user doing the open() call (to open the file for reading) is actually allowed to

perform that operation. Note that we look at all the pathname components along the

way, not just the final one! We assume this passes. We repeat the process for the

attributes structure at 0x80005678, and this time search for the next component,

jack. We find it, and we have the appropriate permissions. Next we perform this

process again for the attributes structure at 0x80009000, and find spud.txt (and

once again assume permissions are OK). This leads us to the attributes structure at

0x8000ABCD, which contains the data that we're after. Since we're only doing an

open(), we don't actually return any data. We bind our OCB to the attributes structure

at 0x8000ABCD and declare the open() a terrific success.

Directory management

The example walkthrough above hinted at a few of the directory management features;

we need to have the contents of the directories stored somewhere where we can search

210 Copyright © 2014, QNX Software Systems Limited

Filesystems

them, and we need to have the individual directory entries point to the attributes

structures that contain information for that entry.

So far, we've made it look as if all possible files and directories need to be

stored in RAM at all times. This is not the case! Almost all disks these days

are far, far, bigger than available memory, so storing all possible directory and

file entries is just not possible. Typically, attributes structures are cached, with

only a fixed number of them being present in memory at any one time. When

an attributes structure is no longer needed, its space is reused (or it's free()'d).

The notable exception to this is, of course, a RAM disk, where all the data

(including the contents!) must be stored in RAM.

The extended attributes structure shown in the diagram earlier implies that all of the

directory entries are stored within the attributes structure itself, in some kind of an

array. The actual storage method (array, linked list, hash table, balanced tree, whatever)

is entirely up to your imagination; I just showed a simple one for discussion. The two

examples in this book, the RAM disk and the .tar filesystem, use the array method;

again, purely for simplicity.

You must be able to search in a directory, and you also need to be able to add, remove,

and move (rename) entries. An entry is added when a file or directory is created; an

entry is removed when the file or directory is deleted; and an entry is moved (renamed)

when the name of the entry is changed. Depending on the complexity of your filesystem,

you may allow or disallow moving directory entries from one directory entry to another.

A simple rename, like mv spud.txt abc.txt, is supported by almost all filesystems.

A more complex rename, like mv spud.txt tmp/ may or may not be supported.

The RAM-disk filesystem supports complex renames.

Finally, the last aspect of directory management that your filesystem must support is

the ability to return information about the contents of directories. This is accomplished

in your io_read() handler (when the client calls readdir()), and is discussed thoroughly

in the RAM-disk Filesystem (p. 135) chapter.

Data element content management

Finally, your filesystem might just contain some actual files! There's no requirement

to do this — you can have perfectly legal and useful filesystems that have only symlinks

(and no files), for example.

Data element content management consists of binding data to the attributes structure,

and providing some access to the data. There's a range of complexity involved here.

In the RAM disk, the simplest thing to do is allocate or deallocate space as the size

of the file changes (using a block allocator for efficiency), and store the new contents

in the allocated space. It's more complicated if you're dealing with an actual disk-based

filesystem, since you'll need to allocate blocks on disk, make records of which blocks

you allocated, perhaps link them together, and so on. You can see the details of the

Copyright © 2014, QNX Software Systems Limited 211

How does a filesystem work?

io_read() handlers in both the RAM disk and the .tar filesystem, and the io_write()

handler in the RAM disk filesystem (the .tar filesystem is read-only and therefore

doesn't support writing).

212 Copyright © 2014, QNX Software Systems Limited

Filesystems

References

The following references apply to this chapter:

• See the RAM-disk Filesystem (p. 135), TAR Filesystem (p. 177), and Web Counter

Resource Manager (p. 67) chapters in this book for examples of filesystem resource

managers.

• Get Programming with the QNX Neutrino RTOS by Robert Krten contains the basics

of resource managers, message passing, etc.

Copyright © 2014, QNX Software Systems Limited 213

References

Appendix B
The /proc Filesystem

If you need to gather information about the processes running on your machine, you

can use the /proc filesystem. Although there's a section about it in the Processes

chapter of the QNX Neutrino Programmer's Guide, this filesystem isn't understood

very well. This appendix describes the main features of the /proc filesystem so you

can use it in your own utilities.

First of all, the /proc filesystem is a virtual filesystem — it doesn't actually exist on

disk; it exists only as a figment of the process manager's imagination.

The /proc filesystem contains a number of entities:

• directories, one per process, for every process running in the system

• the boot subdirectory — a “mini” filesystem that contains the files from the

startup image

• the (hidden) mount subdirectory.

Our main focus in this chapter is the first item, the directories describing each process

in the system. We'll describe the functions available to get information about the

processes (and their threads).

For completeness, however, we'll just briefly mention the other two items.

Copyright © 2014, QNX Software Systems Limited 215

The /proc/boot directory

By default, the files from the startup image are placed into a read-only filesystem

mounted at /, in a directory called /proc/boot. In a tiny embedded system, for

example, this might be used to hold configuration files, or other data files, without

the need for a full-blown filesystem manager, and also without the need for additional

storage. You can get more information about this by looking at the mkifs command

in the Utilities Reference.

216 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

The /proc/mount directory

This one is actually pretty neat. When I say that this filesystem is hidden, I mean that

when you do an ls of /proc, the mount directory doesn't show up. But you can

certainly cd into it and look at its contents.

There are two main types of entities:

• directories with names that are comma-separated numbers,

• directories with names corresponding to mounted (i.e. resmgr_pathname_attach()'d)

entities.

This is what /proc/mount looks like on my system:

ls /proc/mount
ls: No such file or directory (/proc/mount/0,8,1,0,0)
ls: No such file or directory (/proc/mount/0,1,1,2,-1)
0,1,1,10,11/ 0,344083,1,0,11/ 0,6,7,10,0/ proc/
0,1,1,11,0/ 0,360468,1,0,11/ 0,8,1,1,0/ usr/
0,1,1,3,-1/ 0,393228,4,0,11/ dev/
0,12292,1,0,6/ 0,4105,1,0,4/ fs/
0,12292,1,1,8/ 0,6,7,0,11/ pkgs/

Each “numbered” directory name (e.g. 0,344083,1,0,11) consists of five numbers,

separated by commas. The numbers are, in order:

• node ID,

• process ID,

• channel ID,

• handle, and

• file type.

The node ID is usually zero, indicating “this node.” The process ID is that of the

process. The channel ID is the number of the channel created via ChannelCreate().

Finally, the handle is an index describing which resmgr_pathname_attach() this is.

The last number is the file type (see <sys/ftype.h> for values and meanings).

Together, these five numbers describe a pathname prefix that has been registered in

the pathname space.

The other, “normal” directories are the actual registered paths. If we examine a random

one, say /proc/mount/dev, we'll see directories corresponding to each of the

registered mount points under /dev. You may be wondering why they are directories,

and not the actual devices. That's because you can register the same pathname multiple

times. Recall that in the High Availability chapter we said that in order to achieve

hot-standby mode, we'd want to register two resource managers at the same mount

point — the one “in front” would be the active resource manager, the one registered

“behind” would be the standby resource manager. If we did this, we'd have two sets

of numbers in the subdirectory corresponding to the named device.

Copyright © 2014, QNX Software Systems Limited 217

The /proc/mount directory

For example, currently we have one resource manager managing the serial ports:

ls /proc/mount/dev/ser1
0,344080,1,0,0

If we had a hot-standby serial port driver (we don't, but play along) the directory listing

might now look something like:

ls /proc/mount/dev/ser1
0,344080,1,0,0 0,674453,1,0,0

The process ID 344080 is the active serial port driver, and the process ID 674453

is the standby serial port driver. The order of the pathname resolution is given by the

order that the entries are returned by the readdir() function call. This means that it's

not immediately apparent via the ls above which process is resolved first (because

by default, ls sorts alphabetically by name), but by calling ls with the -S (“do not

sort” option) the order can be determined.

218 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

The /proc by-process-ID directories

In the main portion of this appendix, we'll look at the format, contents, and functions

you can use with the remainder of the /proc filesystem.

You may wish to have the <sys/procfs.h>, <sys/syspage.h>, and

<sys/debug.h> header files handy — I'll show important pieces as we discuss them.

A casual ls of /proc yields something like this, right now on my system:

ls -F /proc
1/ 12292/ 3670087/ 6672454/ 950306/
1011730/ 2/ 3670088/ 6676553/ 950309/
1011756/ 3/ 393228/ 7/ 950310/
1011757/ 344077/ 405521/ 7434315/ 950311/
1011760/ 344079/ 4105/ 7462988/ 950312/
1011761/ 344080/ 442378/ 7467085/ 950313/
1011762/ 344083/ 45067/ 7499854/ 950314/
1011764/ 3551288/ 466965/ 770071/ 950315/
1011769/ 3551294/ 471062/ 8/ 950318/
1011770/ 3571775/ 479246/ 815133/ 950319/
1011773/ 360468/ 4886602/ 831519/ boot/
1015863/ 3608627/ 5/ 831520/ dumper#
1036347/ 3608629/ 548888/ 868382/ self/
1040448/ 3629116/ 593947/ 868387/
1044547/ 3629121/ 6/ 868388/
1044548/ 3649602/ 622620/ 950298/
1093686/ 3649605/ 626713/ 950305/

We've discussed the boot entry above. The dumper entry is a hook for dumper (the

system core dump utility). Finally, self is a short-form for the current process (in

this case, ls).

The individual numbered directories are more interesting. Each number is a process

ID. For example, what is process ID 4105? Doing the following:

pidin -p4105
 pid tid name prio STATE Blocked
 4105 1 sbin/pipe 10o RECEIVE 1
 4105 2 sbin/pipe 10o RECEIVE 1
 4105 4 sbin/pipe 10o RECEIVE 1
 4105 5 sbin/pipe 10o RECEIVE 1

shows us that process ID 4105 is the pipe process. It currently has four threads

(thread IDs 1, 2, 4 and 5 — thread ID 3 ran at some point and died, that's why it's

not shown).

Within the /proc directory, doing a:

ls -l 4105
total 2416
-rw-r--r-- 1 root root 1236992 Aug 21 21:25 as

shows us a file called as (not in the sense of “as if...” but as an abbreviation for

address space). This file contains the addressable address space of the entire process.

The size of the file gives us the size of the addressable address space, so we can see

that pipe is using a little under one and a quarter megabytes of address space.

Copyright © 2014, QNX Software Systems Limited 219

The /proc by-process-ID directories

To further confuse our findings, here's:

pidin -p4105 mem
 pid tid name prio STATE code data stack
4105 1 sbin/pipe 10o RECEIVE 16K 148K 4096(132K)
4105 2 sbin/pipe 10o RECEIVE 16K 148K 4096(132K)
4105 4 sbin/pipe 10o RECEIVE 16K 148K 4096(132K)
4105 5 sbin/pipe 10o RECEIVE 16K 148K 4096(132K)
 ldqnx.so.2 @b0300000 312K 16K

If you do the math (assuming the stack is 4096 bytes, as indicated) you come up

with:

16k + 148k + 4 x 132k + 312k + 16k

Or 1020k (1,044,480 bytes), which is short by 192,512 bytes.

You'll notice that the sizes don't match up! That's because the as file totals up all

the segments that have the MAP_SYSRAM flag on in them and uses that as the size

that it reports for a stat(). MAP_SYSRAM can't be turned on by the user in mmap(),

but it indicates that the system allocated this piece of memory (as opposed to the

user specifying a direct physical address with MAP_PHYS), so when the memory no

longer has any references to it, the system should free the storage (this total includes

memory used by any shared objects that the process has loaded). The code in pidin

that calculates the pidin mem sizes is, to put it nicely, a little convoluted.

Operations on the as entry

Given that the as entry is the virtual address space of the process, what can we do

with it? The as entity was made to look like a file so that you could perform file-like

functions on it (read(), write(), and lseek()).

For example, if we call lseek() to seek to location 0x80001234, and then call read()

to read 4 bytes, we have effectively read 4 bytes from the process's virtual address

space at 0x80001234. If we then print out this value, it would be equivalent to doing

the following code within that process:

...

int *ptr;

ptr = (int *) 0x80001234;
printf ("4 bytes at location 0x80001234 are %d\n", *ptr);

However, the big advantage is that we can read the data in another process's address

space by calling lseek() and read().

Discontiguous address space

The address space within the entry is discontiguous, meaning that there are “gaps”

in the “file offsets.” This means that you will not be able to lseek() and then read()

or write() to arbitrary locations — only the locations that are valid within the address

space of that process. This only makes sense, especially when you consider that the

220 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

process itself has access to only the “valid” portions of its own address space — you

can't construct a pointer to an arbitrary location and expect it to work.

Someone else's virtual address space

Which brings us to our next point. The address space that you are dealing with is that

of the process under examination, not your own. It is impossible to map that process's

address space on a one-to-one basis into your own (because of the potential for virtual

address conflicts), so you must use lseek(), read() and write() to access this memory.

The statement about not being able to mmap() the process's address space to

your own is true right now (as of version 6.2.1), but eventually you will be able

to use that file as the file descriptor in mmap() (it'll be allowed as a

memory-mapped file). My sources at QNX Software Systems indicate that this

is not in the “short term” plan, but something that might appear in a future

version.

Why is it impossible to map it on a one-to-one basis? Because the whole point of virtual

addressing is that multiple processes could have their own, independent address

spaces. It would defeat the purpose of virtual addressing if, once a process was assigned

a certain address range, that address range then became unavailable for all other

processes.

Since the reason for mapping the address space of the other process to your own would

be to use the other process's pointers “natively,” and since that's not possible due to

address conflicts, we'll just stick with the file operations.

Now, in order to be able to read “relevant portions” of the process's address space,

we're going to need to know where these address ranges actually are. There are a

number of devctl()'s that are used in this case (we'll see these shortly).

Finding a particular process

Generally, the first thing you need to do is select a particular process (or some set of

processes) to perform further work on. Since the /proc filesystem contains process

IDs, if you already know the process ID, then your work is done, and you can continue

on to the next step (see “Iterating through the list of processes” below). However, if

all you know is the name of the process, then you need to search through the list of

process IDs, retrieve the names of each process, and match it against the process

name you're searching for.

There may be criteria other than the name that you use to select your particular process.

For example, you may be interested in processes that have more than six threads, or

processes that have threads in a particular state, or whatever. Regardless, you will still

need to iterate through the process ID list and select your process(es).

Copyright © 2014, QNX Software Systems Limited 221

The /proc by-process-ID directories

Iterating through the list of processes

Since the /proc filesystem looks like a normal filesystem, it's appropriate to use the

filesystem functions opendir() and readdir() to iterate through the process IDs.

The following code sample illustrates how to do this:

void
iterate_processes (void)
{
 struct dirent *dirent;
 DIR *dir;
 int r;
 int pid;

 // 1) find all processes
 if (!(dir = opendir ("/proc"))) {
 fprintf (stderr, "%s: couldn't open /proc, errno %d\n",
 progname, errno);
 perror (NULL);
 exit (EXIT_FAILURE);
 }

 while (dirent = readdir (dir)) {
 // 2) we are only interested in process IDs
 if (isdigit (*dirent -> d_name)) {
 pid = atoi (dirent -> d_name);
 iterate_process (pid);
 }
 }
 closedir (dir);
}

At this point, we've found all valid process IDs. We use the standard opendir() function

in step 1 to open the /proc filesystem. In step 2, we read through all entries in the

/proc filesystem, using the standard readdir(). We skip entries that are nonnumeric

— as discussed above, there are other things in the /proc filesystem besides process

IDs.

Next, we need to search through the processes generated by the directory functions

to see which ones match our criteria. For now, we'll just match based on the process

name — by the end of this appendix, it will be apparent how to search based on other

criteria (short story: ignore the name, and search for your other criteria in a later step).

void
iterate_process (int pid)
{
 char paths [PATH_MAX];
 int fd;

 // 1) set up structure
 static struct {
 procfs_debuginfo info;
 char buff [PATH_MAX];
 } name;

 sprintf (paths, "/proc/%d/as", pid);

 if ((fd = open (paths, O_RDONLY)) == -1) {
 return;
 }

 // 2) ask for the name
 if (devctl (fd, DCMD_PROC_MAPDEBUG_BASE, &name,
 sizeof (name), 0) != EOK) {
 if (pid == 1) {
 strcpy (name.info.path, "(procnto)");

222 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

 } else {
 strcpy (name.info.path, "(n/a)");
 }
 }

 // 3) we can compare against name.info.path here...
 do_process (pid, fd, name.info.path);
 close (fd);
}

In step 1, we set up an extension to the procfs_debuginfo data structure. The

buff buffer is implicitly past the end of the structure, so it's natural to set it up this

way. In step 2, we ask for the name, using DCMD_PROC_MAPDEBUG_BASE.

Note that some versions of QNX Neutrino didn't provide a “name” for the

process manager. This is easy to work around, because the process manager

is always process ID 1.

Just before step 3 is a good place to compare the name against whatever it was you're

looking for. By not performing any comparison, we match all names.

If the name matches (or for all processes, as shown in the code above), we can call

do_process(), which will now work on the process. Notice that we pass do_process()

the opened file descriptor, fd, to save on having to reopen the as entry again in

do_process().

Finding out information about the process

Once we've identified which process we're interested in, one of the first things we

need to do is find information about the process. (We'll look at how to get information

about the threads in a process shortly.)

There are six devctl() commands that deal with processes:

DCMD_PROC_MAPDEBUG_BASE

Returns the name of the process (we've used this one above, in

iterate_process()).

DCMD_PROC_INFO

Returns basic information about the process (process IDs, signals, virtual

addresses, CPU usage).

DCMD_PROC_MAPINFO and DCMD_PROC_PAGEDATA

Returns information about various chunks (“segments,” but not to be

confused with x86 segments) of memory.

DCMD_PROC_TIMERS

Returns information about the timers owned by the process.

DCMD_PROC_IRQS

Copyright © 2014, QNX Software Systems Limited 223

The /proc by-process-ID directories

Returns information about the interrupt handlers owned by the process.

Other devctl() commands deal with processes as well, but they're used for control

operations rather than fetching information.

DCMD_PROC_INFO

The following information is readily available about the process via the

DCMD_PROC_INFO devctl() command:

typedef struct _debug_process_info {
 pid_t pid;
 pid_t parent;
 _Uint32t flags;
 _Uint32t umask;
 pid_t child;
 pid_t sibling;
 pid_t pgrp;
 pid_t sid;
 _Uint64t base_address;
 _Uint64t initial_stack;
 uid_t uid;
 gid_t gid;
 uid_t euid;
 gid_t egid;
 uid_t suid;
 gid_t sgid;
 sigset_t sig_ignore;
 sigset_t sig_queue;
 sigset_t sig_pending;
 _Uint32t num_chancons;
 _Uint32t num_fdcons;
 _Uint32t num_threads;
 _Uint32t num_timers;
 _Uint64t start_time; /* Start time in nsec */
 _Uint64t utime; /* User running time in nsec */
 _Uint64t stime; /* System running time in nsec */
 _Uint64t cutime; /* terminated children user time in nsec */
 _Uint64t cstime; /* terminated children user time in nsec */
 _Uint8t priority; /* process base priority */
 _Uint8t reserved2[7];
 _Uint8t extsched[8];
 _Uint64t pls; /* Address of process local storage */
 _Uint64t sigstub; /* Address of process signal trampoline */
 _Uint64t canstub; /* Address of process thread cancellation trampoline */
 _Uint64t private_mem; /* Amount of MAP_PRIVATE memory */
 _Uint32t appid; /* Application id */
 _Uint32t reserved3[1];
 _Uint64t reserved[8];
} debug_process_t;

This information is filled into the debug_process_t structure by issuing the

DCMD_PROC_INFO devctl(). Note that the debug_process_t is the same type as

procfs_info (via a typedef in <sys/procfs.h>). To get this structure:

void
dump_procfs_info (int fd, int pid)
{
 procfs_info info;
 int sts;

 sts = devctl (fd, DCMD_PROC_INFO, &info, sizeof (info), NULL);
 if (sts != EOK) {
 fprintf(stderr, "%s: DCMD_PROC_INFO pid %d errno %d (%s)\n",
 progname, pid, errno, strerror (errno));
 exit (EXIT_FAILURE);
 }

 // structure is now full, and can be printed, analyzed, etc.

224 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

 ...
}

As an example, we'll stick with the pipe process. Here are the contents of the

procfs_info structure for the pipe process:

PROCESS ID 4105
Info from DCMD_PROC_INFO
 pid 4105
 parent 2
 flags 0x00000210
 umask 0x00000000
 child 0
 sibling 8
 pgrp 4105
 sid 1
 base_address 0x0000000008048000
 initial_stack 0x0000000008047F18
 uid 0
 gid 0
 euid 0
 egid 0
 suid 0
 sgid 0
 sig_ignore 0x06800000-00000000
 sig_queue 0x00000000-FF000000
 sig_pending 0x00000000-00000000
 num_chancons 4
 num_fdcons 3
 num_threads 4
 num_timers 0
 start_time 0x0EB99001F9CD1EF7
 utime 0x0000000016D3DA23
 stime 0x000000000CDF64E8
 cutime 0x0000000000000000
 cstime 0x0000000000000000
 priority 10

Let's look at the various fields that are present here.

Process information

The pid, parent, child, and sibling fields tell us the relationship of this process to

other processes. Obviously, pid is the process ID of the process itself, and parent is

the process ID of the process that created this one. Where things get interesting is

the child and sibling entries. Let's take an example of a process P that created

processes A, B, and C. Process P is the parent of A, B and C, thus we'd expect that

the parent field would contains the process ID for process P (in each of the three

children processes). However, you'll notice that the child member is a scalar, and not

an array as you may have been expecting. This means that P's children are listed as

a child/sibling relationship, rather than an array of children. So, it may be the case

that P's child member is the process ID for process A, and the other children, B and

C are listed as siblings (in the sibling member) of each other. So, instead of:

Figure 34: A parent/child relationship.

Copyright © 2014, QNX Software Systems Limited 225

The /proc by-process-ID directories

we'd see a relationship more like:

Figure 35: A parent/child/sibling relationship.

It's the same, hierarchically speaking, except that we've avoided having to keep an

array of children. Instead, we have each of the children point to a sibling, thus forming

a list.

Additional process information provided is the process group (pgrp), session ID (sid),

and the usual extended user and group information (uid, gid, euid, egid, suid, and

sgid).

The process's base priority is provided in the priority member. Note that, practically

speaking, a process doesn't really have a priority — since threads are the actual

schedulable entities, they will be the ones that “actually” have a priority. The priority

given here is the default priority that's assigned to the process's first thread when the

process started. New threads that are started can inherit the priority of the creating

thread, have a different priority set via the POSIX thread attributes structure, or can

change their priority later.

Finally, the number of threads (num_threads) is provided.

Memory information

Basic memory information is provided by the base_address and initial_stack members.

Remember, these are the virtual addresses used by the process, and have no meaning

for any other process, nor are they (easily) translatable to physical addresses.

Signal information

Three fields relating to signals are provided: sig_ignore, sig_queue, and sig_pending,

representing, respectively, the signals that this process is ignoring, the signals that

are enqueued on this process, and the signals that are pending. A signal is one of

these “weird” things that has both a “process” and a “thread” facet — the fields

mentioned here are for the “process” aspect.

Note also that the signals are stored in a sigset_t. QNX Neutrino implements the

sigset_t as an array of two long integers; that's why I've shown them as a 16-digit

hexadecimal number with a dash between the two 32-bit halves.

CPU usage information

Another nice thing that's stored in the structure is a set of CPU usage (and time-related)

members:

226 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

start_time

The time, in nanoseconds since January 1, 1970, when the process was

started.

utime

The number of nanoseconds spent running in user space (see below).

stime

The number of nanoseconds spent running in system space (see below).

cutime and cstime

Accumulated time that terminated children have run, in nanoseconds, in

user and system space.

The start_time is useful not only for its obvious “when was this process started”

information, but also to detect reused process IDs. For example, if a process ID X is

running and then dies, eventually the same process ID (X) will be handed out to a new

(and hence completely different) process. By comparing the two process's start_time

members, it's possible to determine that the process ID has in fact been reused.

The utime and stime values are calculated very simply — if the processor is executing

in user space when the timer tick interrupt occurs, time is allocated to the utime

variable; otherwise, it's allocated to the stime variable. The granularity of the time

interval is equivalent to the time tick (e.g. 1 millisecond on an x86 platform with the

default clock setting).

Miscellaneous

There are a few other miscellaneous members:

flags

Process flags; see <sys/neutrino.h>, specifically the constants beginning

with _NTO_PF.

umask

The umask file mode mask used for creating files.

num_chancons

The number of connected channels.

num_fdcons

The number of connected file descriptors.

Copyright © 2014, QNX Software Systems Limited 227

The /proc by-process-ID directories

num_timers

The number of timers in use.

DCMD_PROC_MAPINFO and DCMD_PROC_PAGEDATA

The next thing that we can do with a process is look at the memory segments that it

has in use. There are two devctl() commands to accomplish this: DCMD_PROC_MAPINFO

and DCMD_PROC_PAGEDATA.

Both commands use the same data structure (edited for clarity):

typedef struct _procfs_map_info {
 _Uint64t vaddr;
 _Uint64t size;
 _Uint32t flags;
 dev_t dev;
 off_t offset;
 ino_t ino;
} procfs_mapinfo;

The original data structure declaration has #ifdef's for 32 versus 64 bit sizes of the

offset and ino members.

The procfs_mapinfo is used in its array form, meaning that we must allocate

sufficient space for all of the memory segments that we will be getting information

about. Practically speaking, I've managed just fine with 512 (MAX_SEGMENTS)

elements. When I use this call in code, I compare the number of elements available

(returned by the devctl() function) and ensure that it is less than the constant

MAX_SEGMENTS. In the unlikely event that 512 elements are insufficient, you can

allocate the array dynamically and reissue the devctl() call with a bigger buffer. In

practice, the 10 to 100 element range is sufficient; 512 is overkill.

Here's how the call is used:

#define MAX_SEGMENTS 512

void
dump_procfs_map_info (int fd, int pid)
{
 procfs_mapinfo membufs [MAX_SEGMENTS];
 int nmembuf;
 int i;

 // fetch information about the memory regions for this pid
 if (devctl (fd, DCMD_PROC_PAGEDATA, membufs, sizeof (membufs),
 &nmembuf) != EOK) {
 fprintf(stderr, "%s: PAGEDATA process %d, errno %d (%s)\n",
 progname, pid, errno, strerror (errno));
 exit (EXIT_FAILURE);
 }

 // check to see we haven't overflowed
 if (nmembuf > MAX_SEGMENTS) {
 fprintf (stderr, "%s: proc %d has > %d memsegs (%d)!!!\n",
 progname, pid, MAX_SEGMENTS, nmembuf);
 exit (EXIT_FAILURE);
 }

 for (i = 0; i < nmembuf; i++) {
 // now we can print/analyze the data

228 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

 }
}

Here's the output for the pipe process (I've added blank lines for clarity):

Info from DCMD_PROC_PAGEDATA
 Buff# --vaddr--- ---size--- ---flags-- ---dev---- ---ino----

 [0] 0x07F22000 0x00001000 0x01001083 0x00000002 0x00000001
 [1] 0x07F23000 0x0001F000 0x01001783 0x00000002 0x00000001
 [2] 0x07F42000 0x00001000 0x01401783 0x00000002 0x00000001

 [3] 0x07F43000 0x00001000 0x01001083 0x00000002 0x00000001
 [4] 0x07F44000 0x0001F000 0x01001783 0x00000002 0x00000001
 [5] 0x07F63000 0x00001000 0x01401783 0x00000002 0x00000001

 [6] 0x07F64000 0x00001000 0x01001083 0x00000002 0x00000001
 [7] 0x07F65000 0x0001F000 0x01001783 0x00000002 0x00000001
 [8] 0x07F84000 0x00001000 0x01401783 0x00000002 0x00000001

 [9] 0x07FA6000 0x00001000 0x01001083 0x00000002 0x00000001
 [10] 0x07FA7000 0x0001F000 0x01001783 0x00000002 0x00000001
 [11] 0x07FC6000 0x00001000 0x01401783 0x00000002 0x00000001

 [12] 0x07FC7000 0x00001000 0x01001083 0x00000002 0x00000001
 [13] 0x07FC8000 0x0007E000 0x01001383 0x00000002 0x00000001
 [14] 0x08046000 0x00002000 0x01401383 0x00000002 0x00000001

 [15] 0x08048000 0x00004000 0x00400571 0x00000001 0x00000009

 [16] 0x0804C000 0x00001000 0x01400372 0x00000001 0x00000009
 [17] 0x0804D000 0x00024000 0x01400303 0x00000002 0x00000001

 [18] 0xB0300000 0x0004E000 0x00410561 0x00000004 0xB0300000
 [19] 0xB034E000 0x00004000 0x01400772 0x00000004 0xB0300000

This tells us that there are 20 memory regions in use, and gives us the virtual address,

the size, flags, device number, and inode for each one. Let's correlate this to the

pidin output:

pidin -p4105 mem
 pid tid name prio STATE code data stack
4105 1 sbin/pipe 10o RECEIVE 16K 148K 4096(132K)
4105 2 sbin/pipe 10o RECEIVE 16K 148K 4096(132K)
4105 4 sbin/pipe 10o RECEIVE 16K 148K 4096(132K)
4105 5 sbin/pipe 10o RECEIVE 16K 148K 4096(132K)
 ldqnx.so.2 @b0300000 312K 16K

Regions 0, 3, 6, 9 and 12

These are the guard pages at the end of the stacks, one for each of the five

threads.

Regions 1, 4, 7, 10 and 13

These are the growth areas for the stacks, one for each of the five threads.

This memory is physically allocated on demand; these regions serve to reserve

the virtual address ranges. This corresponds to the “(132K)” from the

pidin output.

Regions 2, 5, 8, 11 and 14

These are the in-use 4k stack segments, one for each of the five threads.

Only four threads are alive — we'll discuss this below. This corresponds to

the 4096 from the pidin output.

Copyright © 2014, QNX Software Systems Limited 229

The /proc by-process-ID directories

Region 15

This is the 16 KB of code for pipe.

Regions 16 and 17

These are the data areas (4 KB and 144 KB, for a total of 148 KB).

Regions 18 and 19

These are for the shared object, ldqnx.so.2. Region 18 is the code area,

region 19 is the data area. These correspond to the ldqnx.so.2 line from

the pidin output.

The key to decoding the regions is to look at the flags member. You'll notice that there

are two commands: DCMD_PROC_PAGEDATA and DCMD_PROC_MAPINFO. Both of

these are used to obtain information about memory regions. However,

DCMD_PROC_MAPINFO merges non-PG_* regions together, whereas

DCMD_PROC_PAGEDATA lists them individually. This also implies that the three PG_*

flags (PG_HWMAPPED, PG_REFERENCED, and PG_MODIFIED are valid only with

DCMD_PROC_PAGEDATA).

The flags member is a bitmap, broken down as follows:

Figure 36: Process flags.

By looking for a “tell-tale” flag, namely MAP_STACK (0x1000), I was able to find all

of the stack segments (regions 0 through 14). Having eliminated those, regions 15,

18, and 19 are marked as PROT_EXEC (0x0400), so must be executable (the data

area of the shared library is marked executable.) By process of elimination, regions

16 and 17 are not marked executable; therefore, they're data.

230 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

DCMD_PROC_TIMERS

We can find out about the timers that are associated with a process.

We use the DCMD_PROC_TIMERS command, and expect to get back zero or more data

structures, as we did in the DCMD_PROC_PAGEDATA and DCMD_PROC_MAPINFO

examples above. The structure is defined as follows:

typedef struct _debug_timer {
 timer_t id;
 unsigned spare;
 struct _timer_info info;
} debug_timer_t;

This structure relies on the struct _timer_info type (defined in

<sys/platform.h>, and paraphrased slightly):

struct _timer_info {
 struct _itimer itime;
 struct _itimer otime;
 _Uint32t flags;
 _Int32t tid;
 _Int32t notify;
 clockid_t clockid;
 _Uint32t overruns;
 struct sigevent event;
};

This data type, struct _timer_info is used with the TimerInfo() function call.

To fetch the data, we utilize code that's almost identical to that used for the memory

segments (above):

#define MAX_TIMERS 512

static void
dump_procfs_timer (int fd, int pid)
{
 procfs_timer timers [MAX_TIMERS];
 int ntimers;
 int i;

 // fetch information about the timers for this pid
 if (devctl (fd, DCMD_PROC_TIMERS, timers, sizeof (timers),
 &ntimers) != EOK) {
 fprintf (stderr, "%s: TIMERS err, proc %d, errno %d (%s)\n",
 progname, pid, errno, strerror (errno));
 exit (EXIT_FAILURE);
 }

 if (ntimers > MAX_TIMERS) {
 fprintf (stderr, "%s: proc %d has > %d timers (%d) !!!\n",
 progname, pid, MAX_TIMERS, ntimers);
 exit (EXIT_FAILURE);
 }

 printf ("Info from DCMD_PROC_TIMERS\n");
 for (i = 0; i < ntimers; i++) {
 // print information here
 }
 printf ("\n");
}

Since our pipe command doesn't use timers, let's look at the devb-eide driver

instead. It has four timers; I've selected just one:

 Buffer 2 timer ID 2
 itime 1063180.652506618 s, 0.250000000 interval s

Copyright © 2014, QNX Software Systems Limited 231

The /proc by-process-ID directories

 otime 0.225003825 s, 0.250000000 interval s
 flags 0x00000001
 tid 0
 notify 196612 (0x30004)
 clockid 0
 overruns 0
 event (sigev_notify type 4)
 SIGEV_PULSE (sigev_coid 1073741832,
 sigev_value.sival_int 0,
 sigev_priority -1, sigev_code 1)

The fields are as follows:

itime

This represents the time when the timer will fire, if it is active (i.e. the flags

member has the bit _NTO_TI_ACTIVE set). If the timer is not active, but

has been active in the past, then this will contain the time that it fired last,

or was going to fire (in case the timer was canceled before firing).

otime

Time remaining before the timer expires.

flags

One or more of the flags _NTO_TI_ACTIVE (the timer is active),

_NTO_TI_ABSOLUTE (the timer is waiting for an absolute time to occur;

otherwise, the timer is considered relative), _NTO_TI_TOD_BASED (the

timer is based relative to the beginning of the world (January 1, 1970,

00:00:00 GMT); otherwise, the timer is based relative to the time that QNX

Neutrino was started on the machine (see the system page qtime boot_time

member)), and _NTO_TI_EXPIRED (the timer has expired).

tid

The thread to which the timer is directed (or the value 0 if it's directed to

the process).

notify

The notification type (only the bottom 16 bits are interesting; the rest are

used internally).

clockid

This is the clock ID (e.g. CLOCK_REALTIME).

overruns

This is a count of the number of timer overruns.

event

232 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

This is a struct sigevent that indicates the type of event that should

be delivered when the timer fires. For the example above, it's a

SIGEV_PULSE, meaning that a pulse is sent. The fields listed after the

SIGEV_PULSE pertain to the pulse delivery type (e.g. connection ID, etc.).

In the example above, the flags member has only the bit _NTO_TI_ACTIVE (the value

0x0001) set, which means that the timer is active. Since the _NTO_TI_TOD_BASED

flag is not set, however, it indicates that the timer is relative to the time that the

machine was booted. So the next time the timer will fire is 1063180.652506618

seconds past the time that the machine was booted (or 12 days, 7 hours, 19 minutes,

and 40.652506618 seconds past the boot time). This timer might be used for flushing

the write cache — at the time the snapshot was taken, the machine had already been

up for 12 days, 7 hours, 19 minutes, and some number of seconds.

The notify type (when examined in hexadecimal) shows 0x0004 as the bottom 16

bits, which is a notification type of SIGEV_PULSE (which agrees with the data in the

event structure).

DCMD_PROC_IRQS

Finally, we can also find out about the interrupts that are associated with a process.

We use the DCMD_PROC_IRQS command, and expect to get back zero or more data

structures, as we did in the DCMD_PROC_PAGEDATA, DCMD_PROC_MAPINFO, and

DCMD_PROC_TIMERS examples above. The structure procfs_irq is the same as

the debug_irq_t, which is defined as follows:

typedef struct _debug_irq {
 pid_t pid;
 pthread_t tid;
 const struct sigevent *(*handler)(void *area, int id);
 void *area;
 unsigned flags;
 unsigned level;
 unsigned mask_count;
 int id;
 unsigned vector;
 struct sigevent event;
} debug_irq_t;

To fetch the data, we use code similar to what we used with the timers and memory

segments:

#define MAX_IRQS 512

static void
dump_procfs_irq (int fd, int pid)
{
 procfs_irq irqs [MAX_IRQS];
 int nirqs;
 int i;

 // fetch information about the IRQs for this pid
 if (devctl (fd, DCMD_PROC_IRQS, irqs, sizeof (irqs),
 &nirqs) != EOK) {
 fprintf (stderr, "%s: IRQS proc %d, errno %d (%s)\n",
 progname, pid, errno, strerror (errno));
 exit (EXIT_FAILURE);

Copyright © 2014, QNX Software Systems Limited 233

The /proc by-process-ID directories

 }

 if (nirqs > MAX_IRQS) {
 fprintf (stderr, "%s: proc %d > %d IRQs (%d) !!! ***\n",
 progname, pid, MAX_IRQS, nirqs);
 exit (EXIT_FAILURE);
 }

 printf ("Info from DCMD_PROC_IRQS\n");
 for (i = 0; i < nirqs; i++) {
 // print information here
 }
 printf ("\n");
}

Since our pipe command doesn't use interrupts either, I've once again selected

devb-eide:

Info from DCMD_PROC_IRQS
 Buffer 0
 pid 6
 tid 2
 handler 0x00000000
 area 0xEFFF7168
 flags 0x0000000E
 level 14
 mask_count 0
 id 2
 vector 14
 event (sigev_notify type 4)
 SIGEV_PULSE (sigev_coid 1073741826,
 sigev_value.sival_int 0,
 sigev_priority 21, sigev_code 2)
 Buffer 1
 pid 6
 tid 3
 handler 0x00000000
 area 0xEFFF71E0
 flags 0x0000000E
 level 15
 mask_count 0
 id 3
 vector 15
 event (sigev_notify type 4)
 SIGEV_PULSE (sigev_coid 1073741829,
 sigev_value.sival_int 0,
 sigev_priority 21, sigev_code 2)

The members of the debug_irq_t shown above are as follows:

pid and tid

The pid and tid fields give the process ID and the thread ID (obviously, it

will be process ID 6, which is devb-eide).

handler and area

Indicates the interrupt service routine address, and its associated parameter.

The fact that the interrupt handler address is zero indicates that there is no

real interrupt vector associated with the interrupts; rather, the event (a pulse

in both cases) should be returned (i.e. the interrupt was attached with

InterruptAttachEvent() rather than InterruptAttach()). In the case of the

handler being zero, the area member is not important.

flags

234 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

The flags value is hexadecimal 0x0E, which is composed of the bits

_NTO_INTR_FLAGS_SMPRDY, _NTO_INTR_FLAGS_PROCESS, and

_NTO_INTR_FLAGS_TRK_MSK, meaning, respectively, that the interrupt

handler is SMP-capable (this flag is deprecated in version 6.3; everything

must be SMP-ready then), the interrupt belongs to the process (rather than

the thread), and the number of times the interrupt is masked and unmasked

should be kept track of.

level and vector

This is the interrupt level and vector for this particular interrupt. For an x86

architecture, they happen to be the same number. (The level is an internal

kernel number and has no meaning for the end-user.) In our example,

devb-eide is attached to two interrupt sources (as defined by the vector

parameter; i.e. interrupts 14 and 15, the two EIDE controllers on my PC).

mask_count

Indicates the number of times the interrupt is masked (0 indicates the

interrupt is not masked). Useful as a diagnostic aid when you are trying to

determine why your interrupt fires only once. :-)

id

This is the interrupt identification number returned by InterruptAttach() or

InterruptAttachEvent().

event

A standard struct sigevent that determines what the

InterruptAttachEvent() should do when it fires.

Finding out information about the threads

Even though we can get a lot of information about processes (above), in QNX Neutrino

a process doesn't actually do anything on its own — it acts as a container for multiple

threads. Therefore, to find out about the threads, we can call devctl() with the following

commands:

DCMD_PROC_TIDSTATUS

This command gets most of the information about a thread, and also sets

the “current thread” that's used for subsequent operations (except the next

two in this list).

DCMD_PROC_GETGREG

This returns the general registers for the current thread.

Copyright © 2014, QNX Software Systems Limited 235

The /proc by-process-ID directories

DCMD_PROC_GETFPREG

This returns the floating-point registers for the current thread.

There are other commands available for manipulating the thread status (such as starting

or stopping a thread, etc.), which we won't discuss here.

First we need a way of iterating through all the threads in a process. Earlier in this

chapter, we called out to a function do_process(), which was responsible for the

“per-process” processing. Let's now see what this function does and how it relates to

finding all the threads in the process:

void
do_process (int pid, int fd, char *name)
{
 procfs_status status;

 printf ("PROCESS ID %d\n", pid);

 // dump out per-process information
 dump_procfs_info (fd, pid);
 dump_procfs_map_info (fd, pid);
 dump_procfs_timer (fd, pid);
 dump_procfs_irq (fd, pid);

 // now iterate through all the threads
 status.tid = 1;
 while (1) {
 if (devctl (fd, DCMD_PROC_TIDSTATUS, &status,
 sizeof (status), 0) != EOK) {
 break;
 } else {
 do_thread (fd, status.tid, &status);
 status.tid++;
 }
 }
}

The do_process() function dumps out all the per-process information that we discussed

above, and then iterates through the threads, calling do_thread() for each one. The

trick here is to start with thread number 1 and call the devctl() with

DCMD_PROC_TIDSTATUS until it returns something other than EOK. (QNX Neutrino

starts numbering threads at “1.”)

The magic that happens is that the kernel will return information about the thread

specified in the tid member of status if it has it; otherwise, it will return information

on the next available thread ID (or return something other than EOK to indicate it's

done).

The DCMD_PROC_TIDSTATUS command

The DCMD_PROC_TIDSTATUS command returns a structure of type procfs_status,

which is equivalent to debug_thread_t:

typedef struct _debug_thread_info {
 pid_t pid;
 pthread_t tid;
 _Uint32t flags;
 _Uint16t why;
 _Uint16t what;
 _Uint64t ip;
 _Uint64t sp;

236 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

 _Uint64t stkbase;
 _Uint64t tls;
 _Uint32t stksize;
 _Uint32t tid_flags;
 _Uint8t priority;
 _Uint8t real_priority;
 _Uint8t policy;
 _Uint8t state;
 _Int16t syscall;
 _Uint16t last_cpu;
 _Uint32t timeout;
 _Int32t last_chid;
 sigset_t sig_blocked;
 sigset_t sig_pending;
 siginfo_t info;

 // blocking information deleted (see next section)

 _Uint64t start_time;
 _Uint64t sutime;
} debug_thread_t;

More information than you can shake a stick at (224 bytes)! Here are the fields and

their meanings:

pid and tid

The process ID and the thread ID.

flags

Flags indicating characteristics of the thread (see <sys/debug.h> and

look for the constants beginning with _DEBUG_FLAG_).

why and what

The why indicates why the thread was stopped (see <sys/debug.h> and

look for the constants beginning with _DEBUG_WHY_) and the what provides

additional information for the why parameter. For

_DEBUG_WHY_TERMINATED, the what variable contains the exit code value,

for _DEBUG_WHY_SIGNALLED and _DEBUG_WHY_JOBCONTROL, what

contains the signal number, and for _DEBUG_WHY_FAULTED, what contains

the fault number (see <sys/fault.h> for the values).

ip

The current instruction pointer where this thread is executing.

sp

The current stack pointer for the thread.

stkbase and stksize

The base of the thread's stack, and the stack size.

tls

The Thread Local Storage (TLS) data area. See <sys/storage.h>.

Copyright © 2014, QNX Software Systems Limited 237

The /proc by-process-ID directories

tid_flags

See <sys/neutrino.h> constants beginning with _NTO_TF.

priority and real_priority

The priority indicates thread priority used for scheduling purposes (may be

boosted), and the real_priority indicates the actual thread priority (not

boosted).

policy

The scheduling policy (e.g. FIFO, Round Robin).

state

The current state of the thread (see <sys/states.h>, e.g. STATE_MUTEX

if blocked waiting on a mutex).

syscall

Indicates the last system call that the thread made (see

<sys/kercalls.h>).

last_cpu

The last CPU number that the thread ran on (for SMP systems).

timeout

Contains the flags parameter from the last TimerTimeout() call.

last_chid

The last channel ID that this thread MsgReceive()'d on. Used for priority

boosting if a client does a MsgSend() and there are no threads in

STATE_RECEIVE on the channel.

sig_blocked, sig_pending, and info

These fields all relate to signals — recall that signals have a process aspect

as well as a thread aspect. The sig_blocked indicates which signals this

thread has blocked. Similarly, sig_pending indicates which signals are

pending on this thread. The info member carries the information for a

sigwaitinfo() function.

start_time

The time, in nanoseconds since January 1, 1970, that the thread was started.

Useful for detecting thread ID reuse.

238 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

sutime

Thread's system and user running times (in nanoseconds).

Blocked thread information

When a thread is blocked, there's an additional set of fields that are important (they

are within the debug_thread_t, above, where the comment says “blocking

information deleted”). The deleted content is:

 union {

 struct {
 pthread_t tid;
 } join;

 struct {
 _Int32t id;
 _Uintptrt sync;
 } sync;

 struct {
 _Uint32t nd;
 pid_t pid;
 _Int32t coid;
 _Int32t chid;
 _Int32t scoid;
 } connect;

 struct {
 _Int32t chid;
 } channel;

 struct {
 pid_t pid;
 _Uintptrt vaddr;
 _Uint32t flags;
 } waitpage;

 struct {
 _Uint32t size;
 } stack;

 } blocked;

As you can see, there are six major structures (join, sync, connect, channel,

waitpage, and stack) that are unioned together (because a thread can be in only

one given blocking state at a time):

join

When a thread is in STATE_JOIN, it's waiting to synchronize to the

termination of another thread (in the same process). This thread is waiting

for the termination of the thread identified by the tid member.

sync

When a thread is blocked on a synchronization object (such as a mutex,

condition variable, or semaphore), the id member indicates the virtual address

of the object, and the sync member indicates the type of object.

Copyright © 2014, QNX Software Systems Limited 239

The /proc by-process-ID directories

connect

Indicates who the thread is blocked on (used with STATE_SEND and

STATE_REPLY).

channel

Indicates the channel ID the thread is blocked in (used with

STATE_RECEIVE).

waitpage

Indicates the virtual address that the thread is waiting for to be lazy-mapped

in (used with STATE_WAITPAGE).

stack

Used with STATE_STACK, indicates the thread is waiting for size bytes of

virtual address space to be made available for the stack.

The DCMD_PROC_GETGREG and DCMD_PROC_GETFPREG commands

These two commands are used to fetch the current general registers and floating-point

registers for the thread.

This will, of course, be architecture-specific. For simplicity, I've shown the x86 version,

and just the general registers.

The data structure is (slightly edited for clarity):

typedef union _debug_gregs {
 X86_CPU_REGISTERS x86;
 ARM_CPU_REGISTERS arm;
 _Uint64t padding [1024];
} debug_greg_t;

The x86 version, (the x86 member), is as follows (from <x86/context.h>):

typedef struct x86_cpu_registers {
 _Uint32t edi, esi, ebp, exx, ebx, edx, ecx, eax;
 _Uint32t eip, cs, efl;
 _Uint32t esp, ss;
} X86_CPU_REGISTERS;

To get the information, a simple devctl() is issued:

static void
dump_procfs_greg (int fd, int tid)
{
 procfs_greg g;
 int sts;

 // set the current thread first!
 if ((sts = devctl (fd, DCMD_PROC_CURTHREAD, &tid,
 sizeof (tid), NULL)) != EOK) {
 fprintf (stderr, "%s: CURTHREAD for tid %d, sts %d (%s)\n",
 progname, tid, sts, strerror (sts));
 exit (EXIT_FAILURE);
 }

240 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

 // fetch information about the registers for this pid/tid
 if ((sts = devctl (fd, DCMD_PROC_GETGREG, &g,
 sizeof (g), NULL)) != EOK) {
 fprintf (stderr, "%s: GETGREG information, sts %d (%s)\n",
 progname, sts, strerror (sts));
 exit (EXIT_FAILURE);
 }

 // print information here...
}

This call, unlike the other calls mentioned so far, requires you to call devctl()

with DCMD_PROC_CURTHREAD to set the current thread. Otherwise, you'll get

an EINVAL return code from the devctl().

Here is some sample output:

Info from DCMD_PROC_GETGREG
 cs 0x0000001D eip 0xF000EF9C
 ss 0x00000099 esp 0xEFFF7C14
 eax 0x00000002 ebx 0xEFFFEB00
 ecx 0xEFFF7C14 edx 0xF000EF9E
 edi 0x00000000 esi 0x00000000
 ebp 0xEFFF77C0 exx 0xEFFFEBEC
 efl 0x00001006

Copyright © 2014, QNX Software Systems Limited 241

The /proc by-process-ID directories

References

The following references apply to this chapter:

Header files

• <sys/procfs.h> — contains the devctl() command constants (e.g.,

DCMD_PROC_GETGREG) used to fetch information.

• <sys/states.h> — defines the states that a thread can be in (see

also “Thread life cycle” in the System Architecture guide).

• <sys/syspage.h> — defines the structure of the system page, which

contains system-wide items of interest (e.g. the boot_time member of

the qtime structure that tells you when the machine was booted).

• <sys/debug.h> — defines the layout of the various structures in which

information is returned.

Functions

See the following functions in the QNX Neutrino C Library Reference:

• opendir() and readdir() (to access the /proc directory)

• devctl() to issue the commands

Utilities

See pidin in the Utilities Reference.

242 Copyright © 2014, QNX Software Systems Limited

The /proc Filesystem

Appendix C
Sample Programs

We've put copies of the code discussed in this book in an archive that you can get

from the Download area of http://www.qnx.com/. This archive includes all of the

samples from the book.

The top-level directories in the archive include:

web/

The web counter source code, in three phases (one directory for each version).

adios/

The ADIOS (Analog/Digital I/O Server) utility, including showsamp, tag,

and the required libraries.

fsys/

The RAM Disk filesystem, the .tar filesystem, and a library used by both.

procfs/

The procfs utility from the /proc filesystem appendix.

Most directories include the following:

• version.c, a string that states the version number of the program

• main.use, the usage message

• Makefile

Copyright © 2014, QNX Software Systems Limited 243

http://www.qnx.com/

Web-Counter resource manager

The Web Counter is presented in three design phases. The web directory includes a

Makefile for the entire project, as well as a directory for each phase.

phase-1/

Phase I consists of the following files:

• 7seg.h—manifest constants and declarations for the 7-segment render

module

• 7seg.c—a 7-segment LED simulator that draws images into a memory

buffer

• gif.h—manifest constants and declarations for the GIF encoder

• main.c—main module

You'll also need a GIF encoder.

phase-2/

Phase 2 adds the following:

• 8x8.h—manifest constants and declarations for the 8 by 8 dot render

module

• 8x8.c—an 8 by 8 “dot” font generator

phase-3/

Phase 3 includes updated versions of the files from phases 1 and 2.

244 Copyright © 2014, QNX Software Systems Limited

Sample Programs

ADIOS — Analog / Digital I/O Server

The ADIOS project consists of the ADIOS server, drivers for the various hardware cards,

a library, API headers, and some utilities.

adios.cfg

A test configuration file.

adios/

The server consists of the following:

• adios.h—manifest constants and declarations for the Analog / Digital

I/O Server (ADIOS)

• daq.h—manifest constants and declarations for the data acquisition

component

• iofuncs.h—manifest constants and declarations for the I/O and connect

functions for the resource manager

• adios.c—the Analog / Digital I/O Server (ADIOS) module

• daq.c—shared memory region handler and the data acquisition thread

• iofuncs.c—I/O and connect functions for the resource manager

• main.c—main module for the ADIOS data acquisition server

api/

API header files:

• api.h—manifest constants and declarations for clients of ADIOS

• driver.h—manifest constants and declarations for ADIOS drivers

lib/

The ADIOS library consists of the following files:

• client.h—manifest constants and declarations for the client data

acquisition library

• parser.h—manifest constants and declarations for the parser module

used for ADIOS and its drivers

• client.c—library functions for the client

• parser.c—module used to parse the configuration file for ADIOS and

its drivers

Drivers

Copyright © 2014, QNX Software Systems Limited 245

ADIOS — Analog / Digital I/O Server

The source code for the drivers is in the following directories:

• dio144/

• iso813/

• pcl711/

• sim000/

utils/

The utilities include:

• showsamp.c

• tag.c

Each utility has a usage message in a separate file.

246 Copyright © 2014, QNX Software Systems Limited

Sample Programs

RAM-disk and tar filesystem managers

These managers are in the same directory (fsys) in the archive because they rely on

a common library.

fsys/lib/

The library includes the following:

• block.h—manifest constants and declarations for the block functions

• cfs.h—constants and declarations for the captive filesystem library

• mpool.h—manifest constants and declarations for the memory pool

module

• block.c—block functions that deal with the data storage blocks

• cfs_attr_init.c, cfs_func_init.c—the captive filesystem utility

library's initialization functions

• io_close.c, io_devctl.c, io_space.c—handler functions for the

captive filesystem utility library

• mpool.c—memory pool library

The captive filesystem utility library isn't thread-safe, but the memory

pool library is.

fsys/ramdisk/

The RAM-disk filesystem includes the following:

• cfs.h, ramdisk.h—manifest constants and declarations for the

RAMDISK filesystem

• attr.c—attribute-handling module

• c_link.c, c_mknod.c, c_mount.c, c_open.c, c_readlink.c,

c_rename.c, c_unlink.c—handlers for the connect functions

• debug.c—functions to help with debugging

• dirent.c—functions that handle directory entries

• io_read.c, io_write.c—handlers for the captive filesystem I/O

functions

• main.c—main module

• pathname.c—functions that handle pathnames

• ramdisk_io_read.c, ramdisk_io_write.c—handlers for the

RAM-disk I/O functions

• utils.c—utility functions

Copyright © 2014, QNX Software Systems Limited 247

RAM-disk and tar filesystem managers

fsys/tarfs/

The TAR filesystem and its mount_tarfs helper program consist of the

following:

• cfs.h, tarfs.h—manifest constants and declarations for the TAR

filesystem

• attr.c—attribute-handling module

• c_link.c, c_mknod.c, c_mount.c, c_open.c, c_readlink.c,

c_rename.c, c_unlink.c—handlers for the connect functions

• debug.c—functions to help with debugging

• dirent.c—functions that handle directory entries

• io_read.c, io_write.c— handlers for the I/O functions

• m_main.c—main module for the mount_tarfs utility

• main.c—main module for the TAR filesystem

• pathname.c—functions that handle pathnames

• tarfs.c—support routines

• tarfs_io_read.c—the io_read handler

• utils.c—utility functions

248 Copyright © 2014, QNX Software Systems Limited

Sample Programs

The /proc filesystem

The /proc filesystem utility module is in procfs/procfs.c. This program dumps

just about everything it can get its hands on from this filesystem.

Copyright © 2014, QNX Software Systems Limited 249

The /proc filesystem

Glossary

5 nines (high availability)

A system that's characterized as having a “5 nines” availability rating

(99.999%). This means that the system has a downtime of just 5 minutes

per year. A “6 nines” system will have a downtime of just 20 minutes every

forty years. This is also known variously in the industry as “carrier-class” or

“telco-class” availability.

analog (data acquisition)

Indicates an input or output signal that corresponds to a range of voltages.

In the real world, an analog signal is continuously variable, meaning that it

can take on any value within the range. When the analog value is used with

a data acquisition card, it will be digitized, meaning that only a finite number

of discrete values are represented. Analog inputs are digitized by an “analog

to digital” (A/D) convertor, and analog outputs are synthesized by a “digital

to analog” (D/A) convertor. Generally, most convertors have an accuracy of

8, 12, 16, or more bits. Compare digital.

asynchronous

Used to indicate that a given operation is not synchronized to another

operation. For example, a pulse is a form of asynchronous message-passing

in that the sender is not blocked waiting for the message to be received.

Contrast with synchronous. See also blocking and receive a message.

availability (high availability)

Availability is a ratio that expresses the amount of time that a system is “up”

and available for use. It is calculated by taking the MTBF and dividing it by

the sum of the MTBF plus the MTTR, and is usually expressed as a

percentage. To increase a system's availability, you need to raise the MTBF

and/or lower the MTTR. The availability is usually stated as the number of

leading 9s in the ratio (see 5 nines). An availability of 100% (also known

as continuous availability) is extremely difficult, if not impossible, to attain

because that would imply that the value of MTTR was zero (and the

availability was just MTBF divided by MTBF, or 1) or that the MTBF was

infinity.

blocking

A means for a thread to synchronize with other threads or events. In the

blocking state (of which there are about a dozen), a thread doesn't consume

any CPU — it's waiting on a list maintained within the kernel. When the

Copyright © 2014, QNX Software Systems Limited 251

event that the thread was waiting for occurs (or a timeout occurs), the thread

is unblocked and is able to consume CPU again. See also unblock.

cascade failure (high availability)

A cascade failure is one in which several modules fail as the result of a

single failure. A good example of this is if a process is using a driver, and

the driver fails. If the process that used the driver isn't fault tolerant, then

it too may fail. If other processes that depend on this driver aren't fault

tolerant, then they too will fail. This chain of failures is called a “cascade

failure.” The North American power outage of August 14, 2003 is a good

example. See also fault tolerance.

client (message-passing)

QNX Neutrino's message-passing architecture is structured around a

client/server relationship. In the case of the client, it's the one requesting

services of a server. The client generally accesses these services using

standard file-descriptor-based function calls (e.g., lseek()), which are

synchronous, in that the client's call doesn't return until the request is

completed by the server. A thread can be both a client and a server at the

same time.

code (memory)

A code segment is one that is executable. This means that instructions can

be executed from it. Also known as a “text” segment. Contrast with data or

stack segments.

cold standby (high availability)

Cold standby mode refers to the way a failed software component is restarted.

In cold-standby mode, the software component is generally restarted by

loading it from media (disk, network), having the component go through

initializations, and then having the component advertise itself as ready. Cold

standby is the slowest of the three modes (cold, warm, and hot), and, while

its timing is system specific, it usually takes on the order of tens of

milliseconds to seconds. Cold standby is the simplest standby model to

implement, but also the one that impacts MTTR the most negatively. See

also hot standby, restartability, and warm standby.

continuous availability (high availability)

A system with an availability of 100%. The system has no downtime, and

as such, is difficult, if not impossible, to attain with moderately complex

systems. The reason it's difficult to attain is that every piece of software,

252 Copyright © 2014, QNX Software Systems Limited

Glossary

hardware, and infrastructure has some kind of failure rate. There is always

some non-zero probability of a catastrophic failure for the system as a whole.

data (memory)

A data segment is one that is not executable. It's typically used for storing

data, and as such, can be marked read-only, write-only, read/write, or no

access. Contrast with code or stack segments.

deadlock

A failure condition reached when two threads are mutually blocked on each

other, with each thread waiting for the other to respond. This condition can

be generated quite easily; simply have two threads send each other a message

— at this point, both threads are waiting for the other thread to reply to the

request. Since each thread is blocked, it will not have a chance to reply,

hence deadlock. To avoid deadlock, clients and servers should be structured

around a send hierarchy. (Of course, deadlock can occur with more than two

threads; A sends to B, B sends to C, and C sends back to A, for example.)

See also blocking, client, reply to a message, send a message, server, and

thread.

digital (data acquisition)

Indicates an input or output signal that has two states only, usually identified

as on or off (other names are commonly used as well, “energized” and

“de-energized” for example). Compare analog.

exponential backoff (high availability)

A policy that's used to determine at what intervals a process should be

restarted. Its use is to prevent overburdening the system in case a component

keeps failing. See also restartability.

fault tolerance (high availability)

A term used in conjunction with high availability that refers to a system's

ability to handle a fault. When a fault occurs in a fault-tolerant system, the

software is able to work around the fault, for example, by retrying the

operation or switching to an alternate server. Generally, fault tolerance is

incorporated into a system to avoid cascade failures. See also cascade failure.

guard page (stack)

An inaccessible data area present at the end of the valid virtual address

range for a stack. The purpose of the guard page is to cause a memory-access

exception should the stack overflow past its defined range.

HA (or high availability)

Copyright © 2014, QNX Software Systems Limited 253

A designation applied to a system to indicate that it has a high level of

availability. A system that's designed for high-availability needs to consider

cascade failures, restartability, and fault tolerance. Generally speaking, a

system designated as “high availability” will have an availability of 5 nines

or better. See also cascade failure.

hot standby (high availability)

Hot-standby mode refers to the way in which a failed software component

is restarted. In hot-standby mode, the software component is actively running,

and effectively shadows the state of the primary process. The primary process

feeds it updates, so that the secondary (or “standby”) process is ready to

take over the instant that the primary process fails. Hot standby is the fastest,

but most expensive to implement of the three modes (cold, warm, and hot),

and, while its timing is system specific, is usually thought of as being on

the order of microseconds to milliseconds. Hot standby is very expensive to

implement, because it must continually be shadowing the data updates from

the primary process, and must be able to assume operation when the primary

dies. Hot standby, however, is the preferred solution to minimizing MTTR

and hence increasing availability. See also cold standby, restartability, and

warm standby.

in-service upgrade or ISU (high availability)

An upgrade performed on a live system, with the least amount of impact to

the operation of the system. The basic algorithm is to simulate a fault and

then, instead of having the overlord process restart the failed component,

it instead starts a new version. In certain cases, the policy of the overlord

may be to perform a version downgrade instead of an upgrade. See also fault

tolerance and restartability.

message-passing

The QNX Neutrino operating system is based on a message-passing model,

where all services are provided in a synchronous manner by passing messages

around from client to server. The client will send a message to the server

and block. The server will receive a message from the client, perform some

amount of processing, and then reply to the client's message, which will

unblock the client. See also blocking and reply to a message.

MTBF or Mean Time Between Failures (high availability)

The MTBF is expressed in hours and indicates the mean time that elapses

between failures. MTBF is applied to both software and hardware, and is

used, in conjunction with the MTTR, in the calculation of availability. A

computer backplane, for example, may have an MTBF that's measured in

254 Copyright © 2014, QNX Software Systems Limited

Glossary

the tens of thousands of hours of operation (several years). Software usually

has a lower MTBF than hardware.

MTTR or Mean Time To Repair (high availability)

The MTTR is expressed in hours, and indicates the mean time required to

repair a system. MTTR is applied to both software and hardware, and is

used, in conjunction with the MTBF, in the calculation of availability. A

server, for example, may have an MTTR that's measured in milliseconds,

whereas a hardware component may have an MTTR that's measured in

minutes or hours, depending on the component. Software usually has a

much lower MTTR than hardware.

overlord (high availability)

A process responsible for monitoring the stability of various system processes,

according to the policy, and performing actions (such as restarting processes

based on a restart policy). The overlord may also be involved with an

in-service upgrade or downgrade. See also restartability.

policy (high availability)

A set of rules used in a high-availability system to determine the limits that

are enforced by the overlord process against other processes in the system.

The policy also determines how such processes are restarted, and may include

algorithms such as exponential backoff. See also restartability.

primary (high availability)

The “primary” designation refers to the active process when used in

discussions of cold, warm, and hot standby. The primary system is running,

and the secondary system(s) is/are the “backup” system(s). See also cold

standby, warm standby, and hot standby.

process (noun)

A non-schedulable entity that occupies memory, effectively acting as a

container for one or more threads. See also thread.

pulse (message-passing)

A nonblocking message received in a manner similar to a regular message.

It is non-blocking for the sender, and can be waited on by the receiver using

the standard message-passing functions MsgReceive() and MsgReceivev()

or the special pulse-only receive function MsgReceivePulse(). While most

messages are typically sent from client to server, pulses are generally sent

in the opposite direction, so as not to break the send hierarchy (which could

cause deadlock). See also receive a message.

Copyright © 2014, QNX Software Systems Limited 255

QNX Software Systems

The company responsible for the QNX 2, QNX 4, and QNX Neutrino operating

systems.

QSS

An abbreviation for QNX Software Systems.

receive a message (message-passing)

A thread can receive a message by calling MsgReceive() or MsgReceivev().

If there is no message available, the thread will block, waiting for one. A

thread that receives a message is said to be a server. See also blocking.

reply to a message (message-passing)

A server will reply to a client's message to deliver the results of the client's

request back to the client, and unblock the client. See also client.

resource manager

A server process that provides certain well-defined file-descriptor-based

services to arbitrary clients. A resource manager supports a limited set of

messages that correspond to standard client C library functions such as

open(), read(), write(), lseek(), devctl(), etc. See also client.

restartability (high availability)

The characteristic of a system or process that lets it be gracefully restarted

from a faulted state. Restartability is key in lowering MTTR, and hence in

increasing availability. The overlord process is responsible for determining

that another process has exceeded some kind of limit, and then, based on

the policy, the overlord process may be responsible for restarting the

component.

secondary (or standby) (high availability)

Refers to the inactive process when used in discussions of cold, warm, and

hot standby. The primary system is the one that's currently running; the

secondary system is the “backup” system. There may be more than one

secondary process. See also cold standby, warm standby, and hot standby.

segment (memory)

A contiguous “chunk” of memory with the same accessibility permissions

throughout. Note that this is different from the (now archaic) x86 term,

which indicated something accessible via a segment register. In this

definition, a segment can be of an arbitrary size. Segments typically represent

code (or “text”), data, stack, or other uses.

256 Copyright © 2014, QNX Software Systems Limited

Glossary

send a message (message-passing)

A thread can send a message to another thread. The MsgSend*() series of

functions are used to send the message; the sending thread blocks until the

receiving thread replies to the message. A thread that sends a message is

said to be a client. See also blocking, message-passing, and reply to a

message.

send hierarchy

A design paradigm where messages are sent in one direction, and replies

flow in the opposite direction. The primary purpose of having a send hierarchy

is to avoid deadlock. A send hierarchy is accomplished by assigning clients

and servers a “level,” and ensuring that messages that are being sent go

only to a higher level. This avoids the potential for deadlock where two

threads would send to each other, because it would violate the send hierarchy

— one thread should not have sent to the other thread, because that other

thread must have been at a lower level. See also client, reply to a message,

send a message, server, and thread.

server (message-passing)

A regular, user-level process that provides certain types of functionality

(usually file-descriptor-based) to clients. Servers are typically resource

managers. QNX Neutrino provides an extensive library that performs much

of the functionality of a resource manager for you. The server's job is to

receive messages from clients, process them, and then reply to the messages,

which unblocks the clients. A thread within a process can be both a client

and a server at the same time. See also client, receive a message, reply to

a message, resource manager, and unblock.

stack (memory)

A stack segment is one used for the stack of a thread. It generally is placed

at a special virtual address location, can be grown on demand, and has a

guard page. Contrast with data or code segments.

synchronous

Used to indicate that a given operation has some synchronization to another

operation. For example, during a message-passing operation, when the server

does a MsgReply() (to reply to the client), unblocking the client is said to

be synchronous to the reply operation. Contrast with asynchronous. See also

message-passing and unblock.

timeout

Copyright © 2014, QNX Software Systems Limited 257

Many kernel calls support the concept of a timeout, which limits the time

spent in a blocked state. The blocked state will be exited if whatever

condition was being waited upon has been satisfied, or the timeout time has

elapsed. See also blocking.

thread

A single, schedulable, flow of execution. Threads are implemented directly

within the QNX Neutrino kernel and are manipulated by the POSIX pthread*()

function calls. A thread will need to synchronize with other threads (if any)

by using various synchronization primitives such as mutexes, condition

variables, semaphores, etc. Threads are scheduled in either FIFO or Round

Robin scheduling mode. A thread is always associated with a process.

unblock

A thread that had been blocked will be unblocked when the condition it has

been blocked on is met, or a timeout occurs. For example, a thread might

be blocked waiting to receive a message. When the message is sent, the

thread will be unblocked. See also blocking and send a message.

warm standby (high availability)

Warm-standby mode refers to the way a failed software component is

restarted. In warm-standby mode, the software component is lying in a

“dormant” state, perhaps having performed some rudimentary initialization.

The component is waiting for the failure of its primary component; when

that happens, the component completes its initializations, and then

advertises itself as being ready to serve requests. Warm standby is the

middle-of-the-road version of the three modes (cold, warm, and hot). While

its timing is system-specific, this is usually thought of as being on the order

of milliseconds. Warm standby is relatively easy to implement, because it

performs its usual initializations (as if it were running in primary mode),

then halts and waits for the failure of the primary before continuing operation.

See also cold standby, hot standby, restartability, and server.

258 Copyright © 2014, QNX Software Systems Limited

Glossary

Index

/proc 215, 219, 220, 221, 222, 224, 225, 226, 228, 231,
232, 233, 234, 235, 236, 237, 238, 239, 240

and DCMD_GETFPREG 236
and DCMD_GETGREG 235
and DCMD_PROC_INFO 224
and DCMD_PROC_IRQS 224, 233
and DCMD_PROC_MAPDEBUG_BASE 224
and DCMD_PROC_MAPINFO 224, 228
and DCMD_PROC_PAGEDATA 224, 228
and DCMD_PROC_TIDSTATUS 235, 236
and DCMD_PROC_TIMERS 224
and debug_thread_t 236
and interrupts 233
and procfs_mapinfo 228
and timers 231
as file 219, 220

lseek() 220
read() 220
write() 220

CPU usage information 226
debug_process_t 224
devctl() access 221
fetching thread floating-point registers 240
fetching thread general registers 240
finding thread information 235
group ID information 226
interrupt area 234
interrupt event 235
interrupt flags 235
interrupt handler 234
interrupt ID 235
interrupt level 235
interrupt mask count 235
interrupt process ID 234
interrupt thread ID 234
interrupt vector 235
iterating through threads in process 236
lazy-map paging information 240
non-numeric entries 222
number of threads in a process 226
process connected channels 228
process connected file descriptors 228
process default thread priority 226
process group information 226
process hierarchy information 225
process ID 237
process memory region information 228
process number of timers 228
process signals ignored 226
process signals pending 226
process signals queued 226
process umask information 228
searching for a process 221, 222
session ID information 226
stack information 240
stack location 226

/proc (continued)
stack size 226
struct sigevent 233
thread blocked state information 239
thread blocking reason 237
thread channel ID information 240
thread CPU time 239
thread current system call 238
thread flags 237, 238
thread ID 237
thread instruction pointer 237
thread kernel call timeout flags 238
thread last channel ID used 238
thread last CPU number 238
thread local storage (TLS) area 237
thread message passing information 240
thread policy 238
thread priority 238
thread signal information 238
thread signals blocked 238
thread signals pending 238
thread stack base 237
thread stack pointer 237
thread stack size 237
thread start time 238
thread state 238
thread STATE_JOIN information 239
thread STATE_RECEIVE information 240
thread STATE_REPLY information 240
thread STATE_SEND information 240
thread STATE_STACK information 240
thread STATE_WAITPAGE information 240
thread synchronization information 239
timer and associated thread ID 232
timer clock ID 232
timer event 233
timer firing time 232
timer flags 232
timer notification type 232
timer overruns 232
timer remaining time 232
user ID information 226

/proc/boot 215, 216, 219
/proc/dumper 219
/proc/mount 215, 217, 219

channel ID 217
file type 217
Handle 217
node ID 217
process ID 217, 219

/proc/self 219
/var/spool/news 193, 194

Copyright © 2014, QNX Software Systems Limited 259

The QNX® Neutrino® Cookbook

A

ADIOS 100, 102, 104, 105, 107, 111, 112, 117, 118, 119,
121, 122, 124, 125, 126, 127, 129, 131, 132

and the DCMD_GET_CONFIG command 117
and ThreadCtl() 107
big picture 100
calculating the transfer size 125
Card Information Structure (CIS) 131, 132
commands 102
configuration file 100, 105
configuration file parsing 107, 117
data acquisition overview 124
DCMD_GET_ADIS command 112, 126
DCMD_GET_CONFIG command 112
DCMD_SET_CPAO command 112
DCMD_SET_CPBDO command 112
devctl() 102
device naming 102, 111
driver configuration 117
extended attributes structure 111
filling shared memory 122
library function adios_set_tag_raw() 132
library function adios_set_tag_span() 132
mapping the shared memory region 122
measuring acquisition time 126
opening the shared memory region 121
parser 100
project definition 100
requirements 117
setting size of shared memory 122
shared memory 100
shared memory adios_data_header_t 119
shared memory big picture 118
shared memory design 104
shared memory layout 104
shared memory size 118
showsamp output example 129
showsamp utility 129
tag requirements 104, 131
tag utility 129
theory of operation 107
timing of acquisition 127

AES encryption 197
analog I/O 100, 108, 110, 111, 112, 114

gain settings 111
on ISO-813 card 110
on PCL-711 108
PCL-711 analog output 114
reading a channel 112
setting the gain 114

attributes structure 27, 72, 74, 82, 88, 89, 90, 111, 114,
116, 139, 140, 141, 154, 184, 206, 209, 211,
212

and data content 212
and object name 141
and pathname resolution 209
and thread synchronization 27
caching 211
demultiplexing extended fields 141
extended for pcl711 111
extending for file systems 206

attributes structure (continued)
extensions for Web Counter 72
finding based on pathname 154
for data storage 140
implementation of directories 211
initializing as directory 89
initializing as file 89
inode 89
inode as index into array of 89
maintaining hardware shadow of registers in extension 116
nbytes member 74
pcl711's gain value 114
pcl711's pcl711_t 114
RAM disk 139
RAM-disk directory 139
RAM-disk file 139
RAM-disk symlink 139
storing directory entries 140
tar filesystem 184
using inode as index into array of 90
using mode to tell file vs directory apart 90
Web Counter directory 88
Web Counter GIF file 82, 88
Web Counter text file 82, 88

availability, See high availability

B

books 13, 21, 199
Applied Cryptography 199
Compilers — Principles, Techniques, and Tools 21
Get Programming with the QNX Neutrino RTOS 21
Getting Started with QNX Neutrino 21
Systemantics 13
The Mythical Man-Month 13, 21

bugs 29, 32, 41, 59
cost to fix 32
cost to test for 32
deadlock 59
different sets by different teams 41
discovery rate model 32
eliminating all 32
recovering from 29
restarting 29
upgrading software 29

C

Century Aluminum 99
channel ID 217

under /proc/mount 217
code walkthrough 76, 85, 91, 94, 113, 143, 147, 149, 151,

153, 155, 159, 161, 162, 164, 166, 170, 174,
185, 187, 188, 190

pcl711's pcl711_read_analog() 113
RAM disk's c_open() 159
RAM disk's cfs_c_link() 164
RAM disk's cfs_c_mount() 174
RAM disk's cfs_c_readlink() 162
RAM disk's cfs_c_rename() 166
RAM disk's cfs_io_write() 149
RAM disk's connect_msg_to_attr() 155

260 Copyright © 2014, QNX Software Systems Limited

Index

code walkthrough (continued)
RAM disk's pathwalk() function 153
RAM disk's ramdisk_io_read_dir() 143
RAM disk's ramdisk_io_read_file() 147
RAM disk's ramdisk_io_write() 151
RAM disk's redirect_symlink() 161
RAM disk's release_attr() 170
tar filesystem add_tar_entry() 188
tar filesystem analyze_tar_file() 187
tar filesystem c_mount() 185
tar filesystem tarfs_io_read_file() 190
using inode as index into attributes structure array 91
Web Counter's io_read_dir() 94
Web Counter's io_read() 76
Web Counter's io_write() 85

command line 24, 25
-d 25
-v 25
and POSIX 25
final option sanity check 25
flags 25
optd 25
optproc() 25
optv 25
processing 24, 25
valued options 25

common 24, 25, 26
code reuse 24
coding practices 24
command-line option -d 25
command-line option -v 25
command-line option optd 25
command-line option optv 25
final option sanity check 25
global variable blankname 26
global variable progname 25
global variable version 25
main.c 24
Makefile 24
optproc() 25
resource manager framework 24
scripts 24, 26
usage message 24, 26

continuous availability, See high availability

D

data acquisition 126
See also DIO-144, ISO-813, PCL-711, and ADIOS
measuring acquisition time 126

See also DIO-144, ISO-813, PCL-711, and ADIOS
design 52

modularity 52
structure of 52

digital I/O 100, 108, 110, 111, 115, 116
on DIO-144 110
on PCL-711 108
PCL-711 input 115
PCL-711 output 115
shadow register 111, 116

DIO-144 103, 109, 110, 112
big picture 110

DIO-144 (continued)
card configuration 103
card features 103
channel assignments 109
io_devctl() handler 112

E

example 52, 68, 74, 75, 77, 78, 84, 85, 90, 92, 94, 105,
107, 108, 112, 114, 115, 120, 121, 122, 124,
125, 126, 127, 129, 130, 131, 132, 141, 142,
145, 149, 152, 154, 157, 159, 161, 162, 164,
166, 167, 168, 169, 171, 173, 185, 186, 187,
190, 222, 224, 228, 229, 231, 233, 235, 236,
240

accessing /proc's as file 222
ADIOS configuration file 105
adios's create_shmem() 120, 121, 122
adios's daq_thread() 124, 125, 126, 127
c_mount() function (tar filesystem) 185
DCMD_PROC_CURTHREAD 240
DCMD_PROC_GETGREG 240
DCMD_PROC_INFO 224
DCMD_PROC_IRQS 233
DCMD_PROC_MAPDEBUG_BASE 222
DCMD_PROC_PAGEDATA 228
DCMD_PROC_TIDSTATUS 235, 236
DCMD_PROC_TIMERS 231
debug_greg_t 240
debug_irq_t 233
debug_timer_t 231
devctl() 222, 224, 228, 231, 236, 240

DCMD_PROC_CURTHREAD 240
DCMD_PROC_GETGREG 240
DCMD_PROC_INFO 224
DCMD_PROC_TIDSTATUS 236

getting thread information 236
memory region info for pipe 229
number of timers in a process 231
opendir() 222
pcl711's install_cards_from_database() 108
pcl711's optproc() 107
pcl711's pcl711_read_analog() 112
pcl711's pcl711_read_digital_bit() 115
pcl711's pcl711_set_gain() 114
pcl711's pcl711_write_analog() 114
pcl711's pcl711_write_digital_bit() 115
procfs_debuginfo 222
procfs_mapinfo 228
RAM disk's c_open() 157
RAM disk's c_unlink() 166, 167
RAM disk's cfs_block_fill_statvfs() 171
RAM disk's cfs_c_link() 162
RAM disk's cfs_c_mount() 173
RAM disk's cfs_c_readlink() 161
RAM disk's cfs_c_rename() 164
RAM disk's cfs_io_close_ocb() 168
RAM disk's cfs_io_write() 149
RAM disk's cfs_rmnod() 167, 168
RAM disk's connect_msg_to_attr() 154
RAM disk's io_read() 141
RAM disk's pathwalk() function 152

Copyright © 2014, QNX Software Systems Limited 261

The QNX® Neutrino® Cookbook

example (continued)
RAM disk's ramdisk_io_read_dir() 141, 142
RAM disk's ramdisk_io_read_file() 141, 145
RAM disk's ramdisk_io_write() 149
RAM disk's redirect_symlink() 159
RAM disk's release_attr() 169
readdir() 222
retrieving memory region info 228
searching /proc 222
searching /proc by name 222
security system 52
showsamp output example 129
showsamp's do_data_set() 130
struct dirent 222
tag output example 131
tag's display_list() 132
tar filesystem's add_tar_entry() 187
tar filesystem's analyze_tar_file() 186
tar filesystem's tarfs_io_read_file() 190
using inode as index into attributes structure array 90
Web Counter invocation 68
Web Counter's dirent_fill() 94
Web Counter's dirent_size() 94
Web Counter's encode_image() 78
Web Counter's io_close_ocb() 77, 85
Web Counter's io_open() 74
Web Counter's io_read_dir() 92
Web Counter's io_read() 75
Web Counter's io_write() 84
Web Counter's render_7segment() 77

F

fail-over, See high availability
fault tolerance, See high availability
file type 217

under /proc/mount 217
filesystem 74, 136, 141, 142, 145, 147, 148, 151, 154,

155, 156, 159, 161, 162, 164, 166, 168, 170,
171, 174, 177, 183, 184, 188, 190, 192, 194,
195, 196, 197, 201, 202, 203, 204, 205, 206,
207, 208, 209, 211, 212, 215, 216

abuses of 195, 196
adding more blocks 147
and data content 211
and DCMD_FSYS_STATVFS 171
and devctl() 170
and dynamic HTML content 197
and extended attributes structures 206
and io_read() 211, 212
and io_write() 212
and mkdir() 166
and mv 211
and readdir() 183, 211
and rename 211
and resource managers 205
and symlinks 209
basing behavior on client 196
CD-ROM 203, 207, 208
client-sensitive contents 74
closing a file 168
comparing tar filesystem and USENET News 194

filesystem (continued)
comparison of tar and RAM disk 183, 184
creating a directory 166
creating a link 162
creating a symbolic link 188
definition 201
dereference on access 196
directory management 211
encrypted 197
execute on access 196
EXT2 203
for USENET news 192
handling read() 145
handling readdir() 142
handling write() 147
indexed 195
inode 174
line-based 197
mount message 208
mount point 183, 205
mount point management 207
MS-DOS 202, 203
network 203
on-media representation 205
operations 207
pathname components 202
pathname length 202
pathname resolution 209
pathname resolution (RAM disk) 151
permissions checks 151
pipe on access 196
QNX 2 203
RAM-disk 136
Read-only 183, 204
registering mount point 208
relation to attributes structure 205
removing an entry 166
rename 164
returning contents of symbolic link 161
returning data to client 190
secure 197
sparse files 141
symbolic link handling 151
symbolic link redirection 156, 159
symbolic link resolution 154, 155
tar 177
trimming client's request 148
USENET News 194
using for load-sharing 196
VAX/VMS 202
virtual 177, 194, 204, 207, 215, 216

/proc 215
image 216

virtual contents 74

G

GNU 178
tar format 178

262 Copyright © 2014, QNX Software Systems Limited

Index

H

handle 217
under /proc/mount 217

hard link 141
and attributes structure 141

high availability 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 48, 217, 218

active server 217, 218
and standby servers 38
and system startup 37
arranging for obituaries 41
availability definition 30
availability formula 30
Big Brother definition 37
cascade failure definition 36
cascade failure prevention 36
client and failover 43
client and failover tasks 43
cold standby 39
cold standby definition 38
comparison of cold, warm, and hot standby 38
complexity of hot standby 40
continuous availability definition 30
decreasing MTTR 32, 33, 38
definition 29
design goals 33
detecting failure 41
example using web servers 35
exponential back-off policy 46
failover definition 42
failover example 43
failure modes 36
fault tolerance definition 43
formula for aggregate components 35
formula for more than two components 35
hot standby 39, 40
hot standby definition 38
hot standby example 40
in-service downgrade 46
in-service upgrade as a failover mode 45
in-service upgrade definition 44
increasing availability 32
increasing MTBF 32
monitoring health of process 40
monitoring system sanity 37
monitoring the overlord 37
MTBF definition 30
MTTR definition 30
obituaries in case of failure 41
obituaries with primary and standby servers 41
overlord and cold standby 39
overlord and failover 43
overlord and warm standby 40
overlord definition 37
overlord responsibilities 41
overlord's role in in-service upgrades 45
parallel component availability formula 34
parallel components 33
parallel components in hardware 35
parallel components in software 35
pathname space shadows 44

high availability (continued)
perceptions about 31, 34
policy definition 46
polling for failure 41
primary process definition 40
primary/standby architecture 42
problems with synchronization 41
process restart policy 46
recover models 36
redundancy 35
requirements for 31
restarting failed components 37
secondary as client of primary 42
secondary as server for primary 42
serial component availability formula 33
serial components 33
serial port 218
simple overlord script example 48
standby as pathname space shadow 44
standby process definition 40
standby server 217, 218
synchronizing standby with primary 40
table of availabilities 31
unavailability definition 34
understanding availability 31
warm standby 39, 40
warm standby definition 38

I

I/O port 107, 110, 111
accessing 107
base address 110, 111

interrupt 233, 234, 235
area 234
event 235
flags 235
handler 234
information from /proc 233
interrupt ID 235
level 235
mask count 235
process ID 234
thread ID 234
vector 235

ISO-813 103, 104, 110, 112
big picture 110
card configuration 103
card features 103
channel assignments 110
io_devctl() handler 112
jumpers 104

L

library 177
zlib 177

limits 191
open file descriptors 191

Copyright © 2014, QNX Software Systems Limited 263

The QNX® Neutrino® Cookbook

M

magnetic tape 179
memory 229, 230

code region 230
data region 230
regions in a process 229
stack guard-page region 229
stack region 229

message passing 58, 59, 60, 62, 63
and blocking 58
and scalability 63
blocking 59
data sink 58
data source 58, 59
deadlock 59
pulse 60
pulse and send hierarchy 60
send hierarchy 58, 59, 60
trade off vs pulse 60
vs pulse for data 62

mount point 173, 183, 185, 191, 205, 207, 208, 209
and _FTYPE_ANY 209
and _FTYPE_MOUNT 208
and _RESMGR_FLAG_DIR 208, 209
and _RESMGR_FLAG_FTYPEONLY 208
and mount command 208
and resmgr_attach() 208, 209
as root of file system 207
definition 205
management of 207
mount message 208
RAM disk, management of 173
registration of 208
special device 208
tar filesystem 183, 185
tar filesystem mount helper 191
unnamed 208

MTBF, See high availability
MTTR, See high availability

N

node ID 217
under /proc/mount 217

O

OCB 72, 80, 86
extensions for Web Counter 72
ioflag member 86
Web Counter extension for font 80

open() flag 157
O_CREAT 157
O_EXCL 157
O_RDWR 157
O_TRUNC 157
O_WRONLY 157

P

pathname 44, 207, 209, 210, 217, 218
and attributes structure 209
and symlink resolution 209
component verification 210
prefix 217
registering same name 217
resolution 209
resolution of 207
resolution, determining ordering 218
shadows within 44

PCL-711 103, 104, 106, 108, 109, 111, 112, 114, 115
big picture 109
card configuration 103
card features 103
channel assignments 108
configuration file processing 108
devctl() 112

DCMD_GET_ADIS 112
DCMD_GET_CONFIG 112
DCMD_SET_CPAO 112
DCMD_SET_CPBDO 112

digital input 115
digital output 115
extended attributes structure 111, 114
gain settings 106, 111
io_devctl() handler 111
jumpers 104
pcl711_read_analog() 112
reading an analog input 112
registering the mount point 108
sample configuration 106
setting the gain 114

pidin 219, 220
and memory 220
output for pipe 219
showing threads 219

polling 113, 114
calibration via nanospin_calibrate() 113
to prevent bus saturation 114
via nanospin() 113, 114

POSIX 178
tar format 178

process 52, 53, 54, 57, 58, 59, 215, 217, 219, 220, 221,
222, 223, 225, 226, 227, 228, 229, 231, 233,
237

and abstraction 57
and scalability 54
and send hierarchy 59
as building block 52
CPU usage 226
data sink 58
data source 58, 59
default thread priority 226
detecting reuse of IDs 227
directory under /proc 215
finding all 223
finding by name 221, 222, 223
finding in /proc 221, 222
flags 228
getting ID from /proc 237

264 Copyright © 2014, QNX Software Systems Limited

Index

process (continued)
granularity 52, 53
group ID information 226
hierarchy information 225
ID under /proc/mount 217, 219
isolating hierarchically 53
memory region information 228
memory regions 229
number of connected channels 228
number of connected file descriptors 228
number of interrupt handlers 233
number of threads 226
number of timers 228, 231
process group information 226
session ID information 226
signals ignored 226
signals pending 226
signals queued 226
stack location 226
stack size 226
umask 228
user ID information 226
virtual address space 220, 221

gaps 221
mapping 221

procnto 191
-F option 191

pulse 27, 60, 62
trade off vs message passing 60
used for unblocking resource manager 27
vs message passing for data 62

R

RAM disk 136, 137, 138, 139, 140, 141, 144, 147, 151,
154, 155, 156, 157, 159, 161, 162, 164, 166,
167, 168, 170, 171, 173, 174

and close() 168
and DCMD_FSYS_STATVFS 171
and devctl() 170
and iov_t 144
and O_CREAT 157
and O_EXCL 157
and O_RDWR 157
and O_TRUNC 157
and O_WRONLY 157
attributes structure 139
binding OCB 157
block access cases 144
closing a file 168
connect functions 136
creating a directory 166
creating a link 162
creating target 157
deleting a file 168
demultiplexing extended attributes structure 141
development path 138
directory entry structure 139
file vs directory read 141
hard links 141
I/O functions 137
inode 174

RAM disk (continued)
io_write() function 147
mount point management 173
pathname resolution 151
pathname to attributes structure conversion 154
permissions checks 151
reading block data 144
removing an entry 166, 167
rename 164
requirements 136
returning contents of symbolic link 161
root directory 140
storing data 144
storing data in attributes structure 140
storing symbolic link data 141
symbolic link handling 151
symbolic link redirection 156, 159
symbolic link resolution 154, 155
truncating target 157

resource manager 27, 41, 69, 85, 87, 88, 94, 201, 205
and complexity due to multi-threaded 27
and complexity due to unblock pulses 27
and filesystems 201, 205
and thread synchronization 27
and threads 27
and trailing data 85
arranging for obituaries 41
filename processing tricks 87
framework 69
meaning of offset in readdir() 94
mount point 87
multiple mounts versus directory 87
obituary via close() 41
pathname resolution 87
placing commands in the filename 87
speeding up directory searching 88

Rijndael encryption 197

S

scalability 54, 55, 56, 58, 59, 63, 64
analyzing a system 54
and "one central location" 55
and blocking 59
and communications overhead 54
and CPU capacity 63
and design decoupling 54
and distributed processing 64
and driver's license 64
and functional clustering 56
and message flow 58
and network traffic 58, 63
and polling 58
and threads 59
and timer 55
and trade shows 64
distributing work over a network 63
in security system 63
of control program 55
reducing the problem into sub-problems 63
zone controllers 63

Copyright © 2014, QNX Software Systems Limited 265

The QNX® Neutrino® Cookbook

security system 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64
and deadlock 59
and distributed processing 64
and door timer 55
and functional clustering 56
and message flow 58
and network traffic 58
and polling 58
and send hierarchy 59, 60
bottlenecks 54
control program 55
control program requirements 53
control program sending to swipe-card reader 61
control program using a pulse 60
data sink 58
data source 58, 59
distributability 53, 54
door-lock actuator requirements 54
door-lock actuators requirements 55
hardware overview 53
hiding implementation behind a common interface 55, 56
high-level architecture 53
message vs pulse trade offs 60
meta door-lock driver 56
requirements 53
scalability 53, 54, 63
setting the LED color 59, 60, 61
swipe-card reader requirements 54, 58
swipe-card reader sending to control program 61, 62
swipe-card reader using a pulse 60
transaction analysis 62
unreadability 53
upgradability 55
zone controllers 63

shared memory 104, 117, 119, 121, 122, 125, 127, 130
ADIOS adios_data_header_t 119
ADIOS steps to set up 117
and ftruncate() 122
and mmap() 121, 122
and munmap() 121
and pointers 122, 127
and shm_open() 121
and shm_unlink() 121
example of getting data 130
head and tail access 130
head and tail maintenance 125
in ADIOS 104
mmap()'s MAP_SHARED 122
mmap()'s PROT_READ 122
mmap()'s PROT_WRITE 122
set up by ADIOS 117
setting the size 122
synchronization 125

signal 226, 238
blocked (thread) 238
ignored (process) 226
information (thread) 238
pending (process) 226
pending (thread) 238
queued (process) 226

symbolic link 139, 141, 151, 154, 155, 156, 159, 161,
162, 195

absolute pathname 159
and pathname resolution 154
and RAM disk 154
and symlink() 162
as stored in RAM disk 141
creating 162
differences from hard link 162
in RAM disk attributes structure 139
in RAM-disk filesystem 151
redirection 159
redirection of 156
relative pathname 159
resolution of 155
resolving 159
returning contents of 161
used with indexed filesystem 195

T

Tag 104, 105, 106
ain keyword 106
database 104
din keyword 106
dout keyword 106
gain keyword 106
grammar 105
negative keyword 106
positive keyword 106
span keyword 106

tar 178, 179, 180, 181, 182, 183
ASCII octal data 181
block-oriented format 180
definition of fields 181
format 179
GNU format 178
header 180, 181
intermediate directories 183
POSIX format 178
subdirectories 182

tar filesystem 184, 185, 191
attributes structure 184
c_mount() 185
mount helper 191
mount point 185

Technical support 10
thread 27, 59, 226, 235, 236, 237, 238, 239, 240

and scalability 59
as blocking agent 59
blocked state information 239
blocking reason from /proc 237
channel ID information 240
complexity in multi-thread resource managers 27
CPU time 239
current system call from /proc 238
default priority 226
detecting reuse of IDs 238
flags from /proc 237, 238
floating-point registers via /proc 240
general registers via /proc 240
getting ID from /proc 237

266 Copyright © 2014, QNX Software Systems Limited

Index

thread (continued)
information from /proc 235
instruction pointer from /proc 237
iterating through all in process 236
kernel call timeout flags from /proc 238
last channel ID used from /proc 238
last CPU number from /proc 238
lazy-map paging information 240
local storage area (TLS) from /proc 237
message passing information 240
number in a process 226
policy from /proc 238
priority from /proc 238
signal information 238
signals blocked 238
signals pending 238
single vs multiple in resource manager 27
stack base from /proc 237
stack information 240
stack pointer from /proc 237
stack size from /proc 237
start time 238
state from /proc 238
STATE_JOIN information 239
STATE_RECEIVE information 240
STATE_REPLY information 240
STATE_SEND information 240
STATE_STACK information 240
STATE_WAITPAGE information 240
synchronization in resource manager library 27
synchronization information 239

timer 231, 232, 233
associated thread ID 232
clock ID 232
event 233
firing time 232
flags 232
information from /proc 231
notification type 232
overruns 232
remaining time 232

Typographical conventions 8

U

usage message 24, 26
definition 26

USENET news 192, 193, 194, 198
cnews 192
content of expiry-ordered file 194
Dr. Dobb's Journal 198
expiry-ordered files 194
filesystem for 192
improving on 193
NNTP 192
operation 192
problems with 193
UUCP 192
virtual filesystem 194

V

VFNews 192

W

Web Counter 68, 70, 71, 72, 73, 74, 79, 80, 81, 82, 83,
84, 86, 87, 88, 89, 90, 91, 94

7-segment LED engine 71
8x8 font engine 81
ability to write to resource 79
accumulating characters 83
adding a second pathname 81
adding io_write() 83
and multiple clients 73
changes from phase 2 to phase 3 87
changes to support directories 88
changing the count 79
converting ASCII to a count 86
determining end of file 74
determining the size of the resource 74
determining when data is written 84
directory versus file in io_read() 90
execut_resmgr() changes 82
execute_resmgr() changes 81, 83, 89
extended attributes structure 72
extended OCB 72
filename processing tricks 87
first bug 72
font selection 80
font-selection 79
GIF encoder (not included) 70
handling client's write() 79
include files 71
inode numbering 89
io_close_ocb() 70, 74
io_close_ocb() changes 86
io_open() 70
io_read_file() 90
io_read() 70, 74
io_read() changes 90
io_read() modification 81
managing directories 87, 91
my_attr_t 72
my_ocb_t 72, 80
OCB extension for font 80
option processing changes 90
persistent count file 79, 80, 87, 90, 94
persistent count file changes 88
phase 2 requirements 79
phase 3 code 87
placing commands in the filename 87
plain text rendering 79, 81
premature end of file 74
read_file() changes 94
registering the pathname 89
registering the second pathname 82
requirements 68
resmgr_attach() 82
second bug 73
source files 71
theory of operation 70

Copyright © 2014, QNX Software Systems Limited 267

The QNX® Neutrino® Cookbook

Web Counter (continued)
using inode to index attributes structure 89
write_file() changes 94
writing to 83

weird stuff 31, 35, 41, 45, 48, 58, 59, 63, 95, 115, 202
are we there yet? 58
boolean typecast operator 115
dying a horrible death after a fire drill 63
how to get yourself fired 45
infinite money 41

weird stuff (continued)
infinite time 41
laziness 95
lies, damn lies, and statistics 31
Microsoft not inventing something 202
only failing during a demo 59
power blackout of August 14, 2003 35
RK drones on about his home systems again 48
VAX/VMS directory names 202

268 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Foreword to the First Edition by Brian Stecher
	Preface to the First Edition by Rob Krten
	What's in this book?
	Philosophy
	The Basics
	High Availability
	Design Philosophy

	Recipes
	Web-Counter Resource Manager
	ADIOS — Analog / Digital I/O Server
	RAM-disk Filesystem Manager
	The tar Filesystem Manager

	References
	What's not in this book?
	Other references
	Thanks!
	Century Aluminum

	The Basics
	In the beginning...
	The main() function
	Command-line processing — optproc()
	Common globals
	Usage messages

	Threaded resource managers

	High Availability
	Terminology
	Lies, damn lies, and statistics
	Increasing availability
	Increasing the MTBF
	Decreasing the MTTR
	Parallel versus serial
	Series calculations
	Parallel calculations
	Aggregate calculations

	Failure modes and recovery models
	Cascade failures
	System startup and HA

	Overlords, or Big Brother is watching you
	Cold, warm, and hot standby
	Achieving cold standby
	Achieving warm standby
	Achieving hot standby
	Problems

	Detecting failure
	Obituaries

	Graceful fail-over
	Using shadows
	In-service upgrades
	Policies

	Implementing HA
	RK drones on about his home systems again
	Other HA systems

	Design Philosophy
	Decoupling design in a message-passing environment
	Door-lock actuators
	At this point...

	Managing message flow
	Swipe-card readers
	Control program sends to the swipe-card reader
	Swipe-card reader sends to control program
	Using a keypad challenge — control program sends to the swipe-card reader
	Using a keypad challenge — swipe-card reader sends to control program

	Scalability
	Distributed processing

	Summary

	Web Counter Resource Manager
	Requirements
	Using the web counter resource manager

	Design
	Generating the graphical image

	The code — phase 1
	Operation
	Generating the graphical image

	Step-by-step code walkthrough
	Include files and data structures
	Source files
	The code
	The execute_resmgr() function
	The io_open() function
	The io_read() function
	The io_close_ocb() function
	The render_7segment() function
	The encode_image() function

	The code — phase 2
	Persistent count file
	Font selection
	Plain text rendering
	Writing to the resource
	Adding the io_write() handler
	The io_write() function
	The io_close_ocb() function

	The code — phase 3
	Filename processing tricks
	Changes
	Globals
	The new-and-improved execute_resmgr()
	Option processing
	Handling io_read()
	Operating on a file
	Operating on a directory
	The persistent counter file

	Enhancements
	References

	ADIOS — Analog/Digital I/O Server
	Requirements
	Design
	Driver Design
	DIO-144
	ISO-813
	PCL-711

	Shared Memory Design
	Tags database design

	The Driver Code
	Theory of operation
	Code walkthrough
	main() and friends
	The resource manager modules
	The card interface modules
	Card configuration
	Analog input
	Analog output
	Digital input
	Digital output

	The ADIOS server code
	The usual stuff
	The shared memory region
	Calculating the sizes of data structures
	Open and check the shared memory
	Truncate and map shared memory

	Acquiring data

	The showsamp and tag utilities
	The showsamp utility
	The tag utility

	References

	RAM-disk Filesystem
	Requirements
	Connect functions
	I/O functions
	Missing functions

	Design
	The code
	The extended attributes structure
	The io_read() function
	The io_write() function
	The c_open() function
	Finding the target
	The pathwalk() function
	The connect_msg_to_attr() function

	Fun with symlinks
	Analyze the mode flag
	Bind the OCB and attributes structure
	Finally, the c_open() code walkthrough
	Walkthrough
	The redirect_symlink() function

	The c_readlink() function
	The c_link() function
	The c_rename() function
	The c_mknod() function
	The c_unlink() function
	The io_close_ocb() function
	The io_devctl() function
	Mounting options
	Filesystem statistics

	The c_mount() function

	References

	TAR Filesystem
	Requirements
	Design
	Creating a .tar file

	The code
	The structures
	The functions
	The c_mount() function
	The analyze_tar_file() function
	The add_tar_entry() function
	The io_read() function and related utilities

	The mount helper program

	Variations on a theme
	Virtual filesystem for USENET news (VFNews)
	How does USENET news work?
	So why is this a problem?
	How can this possibly be made better?
	Operation

	Strange and unusual filesystems
	Indexed filesystem
	Executing commands

	Secure filesystem
	Line-based filesystem

	References

	Filesystems
	What is a filesystem?
	Hierarchical arrangement
	Data elements
	The mount point and the root

	What does a filesystem do?
	Filesystems and QNX Neutrino
	How does a filesystem work?
	Mount point management
	Unnamed mount registration
	Special device registration
	Mount point registration

	Pathname resolution
	Directory management
	Data element content management

	References

	The /proc Filesystem
	The /proc/boot directory
	The /proc/mount directory
	The /proc by-process-ID directories
	Operations on the as entry
	Discontiguous address space
	Someone else's virtual address space

	Finding a particular process
	Iterating through the list of processes

	Finding out information about the process
	DCMD_PROC_INFO
	Process information
	Memory information
	Signal information
	CPU usage information
	Miscellaneous

	DCMD_PROC_MAPINFO and DCMD_PROC_PAGEDATA
	DCMD_PROC_TIMERS
	DCMD_PROC_IRQS
	Finding out information about the threads
	The DCMD_PROC_TIDSTATUS command
	Blocked thread information
	The DCMD_PROC_GETGREG and DCMD_PROC_GETFPREG commands

	References

	Sample Programs
	Web-Counter resource manager
	ADIOS — Analog / Digital I/O Server
	RAM-disk and tar filesystem managers
	The /proc filesystem

	Glossary
	Index

