
QNX® Software Development Platform 6.6

QNX® Software Development Platform 6.6

Video Capture Developer's Guide and
API Reference

©2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All rights
reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, February 20, 2014

Table of Contents

About this Guide and Reference ...5
Typographical conventions ...6

Technical support ...8

Chapter 1: Video Capture Developer's Guide ...9

Header files and libraries ..10

Implementing video capture ..12

Sample video capture program ...15

Properties applied to arrays ..17

Contexts ..19

Buffers ..20

Platform-specific considerations ...23

Chapter 2: Video Capture Library API Reference (capture.h) ...25

Properties ..26

Driver and device properties ...28

Data bus, and clock and data lane properties ...30

I2C decoder path and slave address ..31

Video standards ...31

Polarity ..33

Deinterlacing properties and enumerated values ...34

Source buffer properties ...36

Destination buffer properties ..37

Frame properties ...38

External source properties ..40

Helper macros ...41

capture_context_t ...43

capture_create_buffers() ..44

capture_create_context() ...47

capture_destroy_context() ..49

capture_get_frame() ..50

capture_get_free_buffer() ..52

capture_get_property_i() ..54

capture_get_property_p() ...56

capture_is_property() ..58

capture_put_buffer() ...60

capture_release_frame() ..62

capture_set_property_i() ..63

capture_set_property_p() ...65

capture_update() ..67

Video Capture Developer's Guide and API Reference

Table of Contents

About this Guide and Reference

The video capture framework provides applications the ability to capture frames from

a video input source. These frames can be passed to a graphics component such as

Screen for display.

See:To find out about:

Video Capture Developer's Guide (p. 9)How to use the video capture API

Header files and libraries (p. 10)The video capture header files and

libraries

Implementing video capture (p. 12)The tasks required to capture video

Sample video capture program (p. 15)A sample program you can use as a

reference

Properties applied to arrays (p. 17)Arrays used for video capture and the

properties that can be applied to them

Contexts (p. 19)Vidoe capture contexts

Buffers (p. 20)Dynamically allocated and statically

allocated video capture buffers

Platform-specific considerations (p. 23)Configuring your video capture

implementation for different platforms

Video Capture API Reference (p. 25)The video capture API

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About this Guide and Reference

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About this Guide and Reference

http://www.qnx.com

Chapter 1
Video Capture Developer's Guide

The video capture framework provides applications the ability to capture frames from

a video input source. These frames can be passed to a graphics component such as

Screen for display.

This guide describes the video capture framework and the tasks involved in

implementing video capture in your project. For detailed information about the video

capture API, see the “Video Capture Library API Reference (p. 25)”.

Video Capture on its own does not display the

frames.

Copyright © 2014, QNX Software Systems Limited 9

Header files and libraries

The video capture framework uses common and board-specific header files and libraries.

Header files

To use video capture your application needs to include the following header files:

• the common header file vcapture/capture.h

• the vcapture/capture-*-ext.h header file(s) for:

• the SOC (system-on-a-chip) on your board (e.g.,

vcapture/capture-j5-ext.h for a Jacinto 5 board)

• the decoder on your board (e.g., vcapture/capture-adv-ext.h for an

ADV* decoder

Libraries

Video capture is shipped with an empty implementation of the video capture library

libcapture.so. To link with this library use the -lcapture command.

libcapture-board-a-b.so

libcapture-soc-a.solibcapture-decoder-x.so libcapture-decoder-y.so

Figure 1: Overview of video capture libraries

At startup, you need to create an appropriate symbolic link (often a proc link) that

points to the actual implementation of this library for your board. For example:

ln –sP /usr/lib/libcapture-board-j5-evm.so /usr/lib/libcapture.so

The board DLL will pull in the board-specific decoder(s), the SOC, and all required

shared libraries.

Video capture uses board-specific versions of the following libraries:

libcapture-board-*-*.so

Mandatory library with knowledge of the board's SOC and decoder chip, and

the number of capture devices and sources available on the board. This

library redirects the video capture functions to libcapture-soc-*.so

and libcapture-decoder-*.so.

libcapture-decoder-*.so

10 Copyright © 2014, QNX Software Systems Limited

Video Capture Developer's Guide

Optional library that initializes and applies properties to decoders (e.g.

libcapture-decoder-tvp5158.so for the TI TVP5158 decoder). This

library implements only the context and property related capture_*_context()

and capture_*_property_*() functions. The source code for the functions in

this library is in decoder.c.

On some boards, the video capture framework doesn't include a

libcapture-decoder-*.so library, leaving control of the decoder to the

decoder utility. In this case, a special board DLL (e.g.

libcapture-board-*-no-decoder.so), which only pulls in a

libcapture-soc-*.so library is used.

libcapture-soc-*.so

Mandatory library for the board's SOC.

Every board-specific library has the definition of the entire API set, as defined in

capture.h. See Video Capture API Library Reference (p. 25) for more information.

Copyright © 2014, QNX Software Systems Limited 11

Header files and libraries

Implementing video capture

Video capture involves several tasks, including reserving memory, connecting to a

capture device, and releasing memory once the capture is finished.

Overview

To capture video, you need to:

• reserve memory for the video frame and metadata buffers

• connect to the capture device and set up the capture context

• validate the capture device's properties

• set the capture parameters

• start the video capture

• stop the capture

• destroy the buffers to release the memory they use

Note the following about video capture:

• The processes that use capture must be privileged processes.

• The video capture service does not handle displaying the captured video.

For this, you need to use another resource, such a Screen.

Video capture code that you can use for reference is available in “Sample video

capture program”.

Preparation

Before it starts video capture, your program needs to:

• Set up your video capture input, using the combination of

CAPTURE_PROPERTY_DEVICE and CAPTURE_PROPERTY_SRC_INDEX appropriate

for your board.

• Connect to a screen and create a window. See the Screen Graphics Subsystem

Developer's Guide for more information.

• Use your Screen API to create buffers and get pointers to these buffers, which you

can pass to the video capture functions.

If your hardware doesn't support dynamic memory allocation and it requires you to

use memory in a preallocated location, you will need to use capture_create_buffers()

to create your buffers. For more information about this special case, see “Video capture

buffers” in this guide.

12 Copyright © 2014, QNX Software Systems Limited

Video Capture Developer's Guide

Video capture tasks

To capture video, you need to perform the following tasks:

Set up context

1. Video capture requires a video capture context to which you can connect

your input device. To create a video capture context, call

capture_create_context(). This function returns a pointer to the capture

context in the capture_context_t data structure, which you will then

pass to your other functions during the video capture session.

Validate capture device properties

1. Call capture_get_property_p() to get information about the capture device.

2. Call capture_is_property() to check if the driver supports a property. Call

this function once for each property you need to check.

Set the capture parameters

1. Call capture_set_property_i() for each capture property you need to set,

using the CAPTURE_PROPERTY_* constants to set the device, brightness,

destination buffers, etc.

2. Call capture_set_property_p() to hand the pointer to your properties array

to the video capture library.

Capture the video frames

1. Make a final call to capture_set_property_i() with the second argument

set to CAPTURE_ENABLE and the third argument set to 1 (one) to instruct

the driver to start video capture when capture_update() is called.

2. Call capture_update() to start the video capture.

3. Create a loop to call capture_get_frame() to get the video frames from

the hardware.

4. You can use the Screen function screen_post_window() to post the video

frame for display in your screen window.

5. After you have posted a frame, mark the buffer that was used for the

frame as available for reuse by calling capture_release_frame().

Stop and clean up

1. When you want to stop video capture, call capture_set_property_i() with

the second argument set to CAPTURE_ENABLE and the third argument

set to 0 (zero) to disable video capture.

Copyright © 2014, QNX Software Systems Limited 13

Implementing video capture

2. Call capture_update() to stop video capture.

3. If you will not restart video capture again immediately (the session is

stopped rather than paused), your application must call

capture_destroy_context() to destroy all contexts before it releases the

capture buffers and exits.

• The capture_destroy_context() function is not signal handler

safe! For recommendations on how to use

capture_destroy_context() see the documentation for this

function.

• You can't count on the OS being able to adequately clean up

after your application exits, if the application does not destroy

all the contexts it created for video capture. Failure to destroy

a context before exiting can lead to memory corruption and

unpredicatable system behavior.

14 Copyright © 2014, QNX Software Systems Limited

Video Capture Developer's Guide

Sample video capture program

This sample video capture code can be used for reference when building an application

that uses video capture.

The following code sample shows how the video capture API can be used in an

application. Note that the sample code doesn't include error checking, which may be

quite useful in a production application.

main() {
 void *pointers[n_pointers] = { 0 };
 // connect to screen
 // create a window
 // create screen buffers
 // obtain pointers to the buffers

 // Connect to a capture device
 capture_context_t context = capture_create_context(flags);
 if(!context) {
 // TODO: Handle errors...
 }

 const char *info = NULL;
 capture_get_property_p(context, CAPTURE_PROPERTY_DEVICE_INFO, &info);
 fprintf(stderr, "device-info = '%s'\n", info);

 // Validate device's properties
 if(!capture_is_property(context, CAPTURE_PROPERTY_BRIGHTNESS)
 || !capture_is_property(context, CAPTURE_PROPERTY_CONTRAST)
 || !capture_is_property(context, ...)
) {
 capture_destroy_context(context);
 fprintf(stderr, "Unable to use buffer. Driver doesn't support some required properties.\n");
 return EXIT_FAILURE;
 }

 // setup capture parameters
 capture_set_property_i(context, CAPTURE_PROPERTY_DEVICE, 1);
 capture_set_property_i(context, CAPTURE_PROPERTY_BRIGHTNESS, 10);
 capture_set_property_i(context, CAPTURE_PROPERTY_DST_NBUFFERS, n_pointers);
 capture_set_property_pv(context, CAPTURE_PROPERTY_DST_BUFFERS, n_pointers, pointers);

 // tell the driver to start capturing (when capture_update() is called).
 capture_set_property_i(context, CAPTURE_ENABLE, 1);

 // commit changes to the H/W -- and start capturing...
 capture_update(context, 0);

 while(capturing) {
 int n_dropped;

 // get next captured frame...
 int idx = capture_get_frame(context, CAPTURE_TIMEOUT_INFINITE, flags);

 // the returned idx-ed pointer is 'locked' upon return from the capture_get_frame()
 // this buffer will remain locked until the capture_get_frame() is called again.

 // update screen
 screen_post_window(win, buf[idx], n_dirty_rects, dirty_rects, flags);

 // Mark the buffer identifed by the idx as available for capturing.
 capture_release_frame(context, idx);
 }

 // stop capturing...
 capture_set_property_i(context, CAPTURE_ENABLE, 0);
 capture_update(context, 0);

 ...
}

Copyright © 2014, QNX Software Systems Limited 15

Sample video capture program

The sample above posts then releases each frame buffer. In a production

application, you should use at least two frame buffers, so that you do not have

to release a frame before the next one is posted. This will avoid delays and

jitter.

16 Copyright © 2014, QNX Software Systems Limited

Video Capture Developer's Guide

Properties applied to arrays

Some of the properties defined in the video capture API are applied to arrays. Properties

applied to arrays require special attention.

About arrays

Your application must set pointers to the arrays for which it needs to set properties,

or for which it needs the capture library to get data from the video capture device.

These pointers are stored in the capture library's context, which the application created

by calling capture_create_context(). For instance, your client application can use the

access modifiers defined by the CAPTURE_PROPERTY_FRAME_* properties to access

and set or get the contents of the arrays in the current context.

Array resources such as CAPTURE_PROPERTY_FRAME_FLAGS and

CAPTURE_PROPERTY_FRAME_SEQNO are not allocated by default. They need to be

set, then passed to the video capture driver. Your application must:

1. Allocate the CAPTURE_PROPERTY_FRAME_* arrays with sufficient memory to

hold the information they need. The number of elements in each array must be at

least equal to the number of buffers you are using (set in

CAPTURE_PROPERTY_FRAME_NBUFFERS).

2. Call capture_set_property_p() to pass a pointer to the array to the capture library.

The capture library stores this pointer to the array and updates the array whenever

appropriate. Your applciation should read the data from the array to get updates

whenever appropriate.

To instruct the capture library to stop collecting and providing data for a property, set

the value of the property to NULL.

If the array for a property isn't set, the capture library won't request information

about that property from the hardware. Since requests to hardware are expensive

operations, this behavior reduces overhead.

Example

The code snippet below is an example of how to use arrays:

nbuffers = 3;
// allocate a seqno buffer.
uint32_t seqno[nbuffers];

// tell the capture library to use this array and update it when
// frames are captured.
capture_set_property_p(ctx, CAPTURE_PROPERTY_FRAME_SEQNO, &seqno);
...
// get a captured frame
int idx = capture_get_frame(ctx, ...);

Copyright © 2014, QNX Software Systems Limited 17

Properties applied to arrays

// the frame data and the buffer of the 'idx' frame is locked.
if(-1 != idx) {
// it is safe to access the contents of the seqno[idx]
printf("captured a frame, seqno = %u\n", seqno[idx]);
}
...
capture_release_frame(ctx, idx);
...
// no longer safe to access seqno[idx], since the data may
// no longer be valid.

18 Copyright © 2014, QNX Software Systems Limited

Video Capture Developer's Guide

Contexts

Video capture uses contexts for storing and communicating information, such as frame

properties.

About contexts

Contexts are used by the video capture framework to store and communicate device

and processing properties. They are created by calling capture_create_context(), which

returns a pointer to the context.

A video capture device can have one or more sources (or inputs). You can create

multiple contexts, but you can have only one operational context for each device-source

combination. For example, you can have an operational context for Device 1, Source

1, and another operational context for Device 1, Source 2, but you can't have a second

operational context for either of these.

If you create more than one context for a device-source combination, the first context

that enables capturing will be the context used by capture_get_frame(). Attempts to

use the other contexts for that device-source combination will fail when

capture_update() is called to apply instructions to the device.

Destroying contexts at exit

Your application must call capture_destroy_context() to destroy all contexts before it

releases the capture buffers and exits. You can't count on the OS being able to

adequately clean up after your application exits if the application doesn't destroy all

the contexts it created for video capture.

Failure to destroy a context before exiting can lead to memory corruption

and unpredictable system behavior.

Copyright © 2014, QNX Software Systems Limited 19

Contexts

Buffers

The driver or the client application can allocate memory for video frame data buffers.

Only the client application can allocate metadata buffers.

Buffer allocation

Video capture uses frame buffers to store the video capture frame data and metadata

buffers to store video capture metadata. Video frame buffers can be either

driver-allocated or application-allocated. Metadata buffers can only be

application-allocated. Both frame data and metadata buffers can also be not allocated.

Driver-allocated buffers

Driver-allocated memory is managed by the driver: the driver allocates and frees this

memory. The application can use buffers using this memory only when

capture_get_property_p() defines them as valid.

To allocate driver-controlled memory for video frame buffers or metadata buffers, call

capture_create_buffers(). Calling this function:

1. creates a video capture context

2. connects to video device

3. allocates buffer memory for this video capture context

Allocation of memory for driver-allocated buffer memory differs, based on several

conditions:

Hardware doesn't support dynamic buffer allocation

If the hardware doesn't support dynamic buffer allocation, then the driver

must always re-use previously allocated buffers (for example, memory that

was set aside for these buffers at startup).

Buffers may be at a predetermined (hard-coded) RAM address. The driver's

allocate function merely returns a pointer to this memory that

capture_get_property_p() mapped into the application's address space.

Hardware supports dynamic buffer allocation

If the hardware supports dynamic buffer allocation, the driver can either

allocate new buffers or reuse buffers it has used previously, provided that

these buffers were driver allocated and are suitable.

Application-allocated buffers and buffers that are not allocated can't be

reused as driver-allocated buffers. (See “Not allocated” below.)

20 Copyright © 2014, QNX Software Systems Limited

Video Capture Developer's Guide

To hand driver-allocated memory over so it can be controlled by the calling application,

call capture_set_property_p().

Application-allocated buffers

Application-allocated memory is managed by the application: the application allocates

and frees this memory. The driver can use the memory when the video capture API

marks it as valid.

Application-allocated memory includes any buffer that isn't allocated by the video

capture driver. For example, the application using video capture might acquire a buffer

from another component, such as Screen. Because the driver didn't allocate the buffer,

it is considered an application-allocated driver.

If your application allocates memory for your video capture buffers, then the driver

won't allocate any memory (unless the hardware requires such buffers to exist even

when they are not used by the application).

If the hardware doesn't support application-allocated memory, then your

application should use capture_create_buffers() to create buffers.

Not allocated

There are several case where a buffer can be not allocated:

• The client application expressly sets up the video capture context so that the video

capture library does not capture the video frames, but can still get frame metadata.

The application can call capture_get_frame() to get a frame index, then look up

the metadata for the frame. The video frame buffers must not be looked up or used.

See “Unintentional freeing of driver-allocated buffers” below.

• The special case that can occur when the driver or application has allocated a

buffer, but the driver later turns off an expensive (resource-intensive) hardware

feature that was supposed to use this buffer. When the feature is turned off, the

buffer becomes not allocated.

Unintentional freeing of driver-allocated buffers

Setting a buffer pointer to NULL sets the buffer to not allocated, which:

• causes the driver to cease using application-allocated buffer memory

• may cause the driver to free previously driver-allocated memory

Do not get a pointer to a buffer with capture_get_property_p(), then set the

same pointer with capture_set_property_p().

Copyright © 2014, QNX Software Systems Limited 21

Buffers

If the buffer is driver-allocated, this sequence of calls will cause the driver

to free the buffer referenced by the pointer, then assume that the application

owns the now nonexistent buffer, with unpredictable results.

If the buffer in question was initially application-allocated, then no ill effects

occur.

22 Copyright © 2014, QNX Software Systems Limited

Video Capture Developer's Guide

Platform-specific considerations

Video capture may require adjustments to accommodate how different hardware

platforms handle tasks such as buffer allocation.

Different hardware platforms handle tasks differently. To accommodate these

differences, you may need to make adjustments to how your system handles video

capture.

For example, we found that on some boards an unstable capture link could cause

apparently random system crashes:

• The capture buffers are allocated by the WFD driver, which usually allocates buffers

with the size specified by the application.

• Some synchronization data could be lost due to the unstable link, which causes

the hardware to write data beyond the buffer boundary, with suprising results.

The only restrictions our application could impose on the hardware were maximum

frame height and maximum frame width, selected from a limited set of values. To

solve the problem caused by the unstable capture link, we changed the WFD driver

to allocate the capture buffer of a size equal to the maximum frame height times the

maximum frame width (CAPTURE_PROPERTY_DST_HEIGHT *

CAPTURE_PROPERTY_DST_WIDTH).

For more information about buffer properties, see “Destination buffer properties”.

Copyright © 2014, QNX Software Systems Limited 23

Platform-specific considerations

Chapter 2
Video Capture Library API Reference (capture.h)

The video capture API includes all the functions, data structures, and constants needed

for video capture. It does not handle video display, which should be handled by another

component, such as Screen.

The video capture API is thread safe, unless stated otherwise for a specific

function.

Copyright © 2014, QNX Software Systems Limited 25

Properties

The video capture API includes constants, data types, enumerated values, and macros

specifying video capture properties.

The following constants can be passed as function arguments to specify video capture

behavior:

CAPTURE_PROPERTY macro

CAPTURE_PROPERTY stores bit maps of information, either retrieved from a video

capture driver and device, or specified by the user application and passed to the video

capture library, the video capture driver, and the device. These bit maps are placed

in the four bytes of a uint32_t value:

CAPTURE_PROPERTY(a, b, c, d)

((a) << 24 | (b) << 16 | (c) << 8 | (d))

Shifts the bits for CAPTURE_PROPERTY_* values.

Video capture behavior

CAPTURE_FLAG_LATEST_FRAME

0x0001

Get the latest frame and discard all the other queued frames.

CAPTURE_TIMEOUT_INFINITE

-1ULL

Never timeout; wait for frame indefinitely.

CAPTURE_TIMEOUT_NO_WAIT

0

Return immediately, even if there is no frame.

Interfaces, threads, offsets

The following values specify the video capture interface type, thread priority, and YUV

offsets:

CAPTURE_PROPERTY_PLANAR_OFFSETS

CAPTURE_PROPERTY('Q', 'P', 'L', 'O')

26 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

Read/Write [3] int32_t

The offset from the base address for each of the Y, U, and V components of

planar YUV formats.

CAPTURE_PROPERTY_THREAD_PRIORITY

CAPTURE_PROPERTY('Q', 'T', 'P', 'R')

Read/Write int

The scheduling priority of the capture thread. The default value is the priority

for the application + 20.

CAPTURE_PROPERTY_INTERFACE_TYPE

CAPTURE_PROPERTY('Q','P','I','F')

Read/Write uint32_t

The interface type. See “Interface types” below.

Interface types

The following enumerated values are used to specify the interface type:

enum capture_iface_type {
 CAPTURE_IF_PARALLEL = 0,
 CAPTURE_IF_MIPI_CSI2,
};

CAPTURE_IF_PARALLEL

0

The interface is parallel.

CAPTURE_IF_MIPI_CSI2

The interface is a MIPI CSI2 interface.

See also “Data bus, and clock and data lane properties”

Debugging

CAPTURE_PROPERTY_VERBOSITY

CAPTURE_PROPERTY('Q', 'V', 'B', 'R')

Read/Write uint32_t

Set the log verbosity level. Default is 0.; increase this value to increase log

verbosity for debugging.

Copyright © 2014, QNX Software Systems Limited 27

Properties

Driver and device properties

The video capture API includes constants and macros to be used when specifying and

retrieving driver and device properties.

The following define driver and device properties:

CAPTURE_PROPERTY_DEVICE_INFO

CAPTURE_PROPERTY('Q', 'I', 'N', 'F')

Read const char *

Returns string information about the video capture driver and device. All

drivers support this property.

CAPTURE_ENABLE

CAPTURE_PROPERTY('Q', 'E', 'N', 'A')

Read/Write uint32_t

Capture start (1) and stop(0).

CAPTURE_PROPERTY_NDEVICES

CAPTURE_PROPERTY('Q', 'N', 'D', 'V')

Read uint32_t

The number of supported capture units.

CAPTURE_PROPERTY_DEVICE

CAPTURE_PROPERTY('Q', 'D', 'E', 'V')

Read/Write uint32_t

The active capture device in this context.

CAPTURE_PROPERTY_NSOURCES

CAPTURE_PROPERTY('Q', 'N', 'S', 'R')

Readuint32_t

Number of available source inputs; available after the device is set.

CAPTURE_PROPERTY_SRC_INDEX

CAPTURE_PROPERTY('Q', 'S', 'I', 'D')

Read/Writer uint32_t

28 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

The device video capture unit.

CAPTURE_PROPERTY_CONTRAST

CAPTURE_PROPERTY('Q', 'C', 'O', 'N')

Read/Write int32_t

Contrast (-128 to 127).

CAPTURE_PROPERTY_BRIGHTNESS

CAPTURE_PROPERTY('Q', 'B', 'R', 'I')

Read/Write int32_t

Brightness (-128 to 127).

CAPTURE_PROPERTY_SATURATION

CAPTURE_PROPERTY('Q', 'S', 'A', 'T')

Read/Write int32_t

Color saturation (-128 to 127).

CAPTURE_PROPERTY_HUE

CAPTURE_PROPERTY('Q', 'H', 'U', 'E')

Read/Write int32_t

Color hue (-128 to 127).

CAPTURE_PROPERTY_DEINTERLACE_FLAGS

CAPTURE_PROPERTY('Q', 'D', 'E', 'I')

Read/Write uint32_t

Deinterlacing flag (bit-field).

CAPTURE_PROPERTY_DEINTERLACE_MODE

CAPTURE_PROPERTY('Q', 'D', 'E', 'M')

Read/Writeuint32_t

Deinterlacing mode; see “Deinterlacing”.

Copyright © 2014, QNX Software Systems Limited 29

Properties

Data bus, and clock and data lane properties

The video capture API includes values for the data bus width, and for the clock and

data lane properties.

Frame property arrays

The video capture API uses the CSI2 clock and data lane properties described below.

Lane positions are all specified as follows:

Number or positionValue

Position number.0 to 4

Don't set the number or the position. Use whatever default number

or position is already set in the hardware.

-1

CAPTURE_PROPERTY_DATA_BUS_WIDTH

CAPTURE_PROPERTY('Q', 'D', 'B', 'W')

Read/Write int The data bus width, for parallel interfaces. Valid values are

8, 10, 16, etc.

CAPTURE_PROPERTY_CSI2_NUM_DATA_LANES

CAPTURE_PROPERTY('Q','C','N','D')

Read/Write int Number of CSI2 data lanes.

CAPTURE_PROPERTY_CSI2_CLK_LANE_POS

APTURE_PROPERTY('Q','C','C','P')

Read/Write int Position of CSI2 clock lane.

CAPTURE_PROPERTY_CSI2_DATA0_LANE_POS

CAPTURE_PROPERTY('Q','C','D','0')

Read/Write int Position of CSI2 data lane 0.

CAPTURE_PROPERTY_CSI2_DATA1_LANE_POS

CAPTURE_PROPERTY('Q','C','D','1')

Read/Write int Position of CSI2 data lane 1.

CAPTURE_PROPERTY_CSI2_DATA2_LANE_POS

CAPTURE_PROPERTY('Q','C','D','2')

Read/Write int Position of CSI2 data lane 2.

30 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

CAPTURE_PROPERTY_CSI2_DATA3_LANE_POS

CAPTURE_PROPERTY('Q','C','D','3')

Read/Write int Position of CSI2 data lane 3.

I2C decoder path and slave address

The video capture API includes constants for specifying the path and slave address

for an I2C decoder.

The following specify the I2C decoder path and slave address:

CAPTURE_PROPERTY_DECODER_I2C_PATH

CAPTURE_PROPERTY('Q', 'D', 'I', 'P')

Read/Write const char *

Device path of the I2C decoder (e.g. /dev/i2c0).

CAPTURE_PROPERTY_DECODER_I2C_ADDR

CAPTURE_PROPERTY('Q', 'D', 'I', 'A')

Read/Write uint32_t

Slave address of the I2C decoder.

Video standards

The video capture API includes constants and macros to be used when specifying

video standards.

Standards definitions

The video capture API uses the following constants for standards:

CAPTURE_PROPERTY_NORM

CAPTURE_PROPERTY('Q', 'N', 'O', 'R')

Read/Write const char *

Set the video standard. See “Standards macros” below.

CAPTURE_NORM_AUTO

"AUTO"

Read/Write Use auto-detection to get the video standard.

CAPTURE_PROPERTY_CURRENT_NORM

Copyright © 2014, QNX Software Systems Limited 31

Properties

CAPTURE_PROPERTY('Q', 'Q', 'N', 'M')

Read const char *

Return the current detected video standard. See “Standards macros” below.

CAPTURE_NORM_NONE

"NONE"

There is no input.

CAPTURE_NORM_UNKNOWN

"UNKNOWN"

Detected standard is not known.

Standards macros

The following macros set standards values used by CAPTURE_PROPERTY_NORM and

CAPTURE_PROPERTY_CURRENT_NORM:

CAPTURE_NORM_NTSC_M_J

"NTSC_M_J"

CAPTURE_NORM_NTSC_4_43

"NTSC_4_43"

CAPTURE_NORM_PAL_M

"PAL_M"

CAPTURE_NORM_PAL_B_G_H_I_D

"PAL_B_G_H_I_D"

CAPTURE_NORM_PAL_COMBINATION_N

"PAL_COMBINATION_N"

CAPTURE_NORM_PAL_60

"PAL_60"

CAPTURE_NORM_SECAM

"SECAM"

32 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

Polarity

The video capture API includes definitions for specifying polarity.

All polarity properties are specified as follows:

PolarityValue

Set polarity to not inverted.0

Set polarity to inverted.1

Don't set the polarity. Use whatever polarity is already set.-1

CAPTURE_PROPERTY_INVERT_FID_POL

CAPTURE_PROPERTY('Q', 'L', 'F', 'I')

Read/Write int

Specifies whether the field ID signal polarity is inverted.

CAPTURE_PROPERTY_INVERT_VSYNC_POL

CAPTURE_PROPERTY('Q', 'L', 'H', 'S')

Read/Write int

Specifies whether the vertical synchronization polarity is inverted.

CAPTURE_PROPERTY_INVERT_HSYNC_POL

CAPTURE_PROPERTY('Q', 'L', 'V', 'S')

Read/Write int

Specifies whether the horizontal synchronization polarity is inverted.

CAPTURE_PROPERTY_INVERT_CLOCK_POL

CAPTURE_PROPERTY('Q', 'L', 'P', 'C')

Read/Write int

Specifies whether the clock polarity is inverted.

CAPTURE_PROPERTY_INVERT_DATAEN_POL

CAPTURE_PROPERTY('Q', 'L', 'D', 'E')

Read/Write int

Specifies whether the “data_en” pin/signal polarity is inverted.

CAPTURE_PROPERTY_INVERT_DATA_POL

Copyright © 2014, QNX Software Systems Limited 33

Properties

CAPTURE_PROPERTY('Q', 'L', 'D', 'A')

Read/Write int

Specifies whether the data input polarity is inverted.

Deinterlacing properties and enumerated values

The video capture API includes enumerated values that specify deinterlacing behavior.

About deinterlacing

Deinterlacing can use a variety of techniques:

Adaptive

Use a motion-adaptive filter. This type of deinterlacing is usually done by

the hardware.

Bob

Take the lines of each field and double them. This technique retains the

original temporal resolution.

Bob 2

Discard one field out of each frame to improve the video quality. The temporal

resolution is halved, however.

Weave

Combine two consecutive fields together. The temporal resolution is halved:

the resulting frame rate is half of the original field rate.

Weave 2

Similar to weave, but the resulting frame rate is the same as the original

field rate.

Bottom 3

Bottom 5

Bottom y

Field 2

Bottom field, line y

Bottom 1
BOB

...

Top 2

Top 4

Top x

Field 1

Top 0

...

Bottom 1

Bottom 3

Bottom 3

Frame 2

Bottom 1

...

Top 0

Top 2

Top 2

Frame 1

Top 0

...

Figure 2: Deinterlacing in BOB mode

34 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

Enumerated values

enum capture_deinterlace_mode {
 CAPTURE_DEINTERLACE_NONE_MODE = 0,
 CAPTURE_DEINTERLACE_WEAVE_MODE,
 CAPTURE_DEINTERLACE_BOB_MODE,
 CAPTURE_DEINTERLACE_BOB2_MODE,
 CAPTURE_DEINTERLACE_WEAVE2_MODE,
 CAPTURE_DEINTERLACE_MOTION_ADAPTIVE_MODE,
};

The following enumerated types are used for setting the deinterlacing mode:

CAPTURE_DEINTERLACE_NONE_MODE

0

Don't deinterlace.

CAPTURE_DEINTERLACE_WEAVE_MODE

Use weave deinterlacing mode.

CAPTURE_DEINTERLACE_BOB_MODE

Use bob deinterlacing mode.

CAPTURE_DEINTERLACE_BOB2_MODE

Use alternate bob deinterlacing mode.

CAPTURE_DEINTERLACE_WEAVE2_MODE

Use alternate weave deinterlacing mode.

CAPTURE_DEINTERLACE_MOTION_ADAPTIVE_MODE

Use motion adaptive deinterlacing mode.

Buffer properties

The CAPTURE_PROPERTY_*_BUFFER_ types store buffer properties:

CAPTURE_PROPERTY_MIN_NBUFFERS

CAPTURE_PROPERTY('Q', 'M', 'N', 'B')

Read uint32_t

Minimum number of buffers required for a specific deinterlacing mode.

For properties used for deinterlacing frames from external sources (e.g., USB stick)

see “External source properties”.

Copyright © 2014, QNX Software Systems Limited 35

Properties

Source buffer properties

The video capture API includes definitions for the source buffer properties.

Source buffer properties include:

CAPTURE_PROPERTY_SRC_FORMAT

CAPTURE_PROPERTY('Q', 'S', 'F', 'O')

Read/Writer uint32_t

Source buffer format.

CAPTURE_PROPERTY_SRC_STRIDE

CAPTURE_PROPERTY('Q', 'S', 'F', 'S')

Read/Writer uint32_t

Source buffer stride, in bytes.

CAPTURE_PROPERTY_SRC_WIDTH

CAPTURE_PROPERTY('Q', 'S', 'W', 'I')

Read/Writer uint32_t

The width of the source, in pixels.

CAPTURE_PROPERTY_SRC_HEIGHT

CAPTURE_PROPERTY('Q', 'S', 'H', 'E')

Read/Writer uint32_t

The width of the source, in pixels.

CAPTURE_PROPERTY_CROP_WIDTH

CAPTURE_PROPERTY('Q', 'C', 'W', 'I')

Read/Writer uint32_t

The source viewport width, in pixels.

CAPTURE_PROPERTY_CROP_HEIGHT

CAPTURE_PROPERTY('Q', 'C', 'H', 'E')

Read/Writer uint32_t

The source viewport height, in pixels.

CAPTURE_PROPERTY_CROP_X

36 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

CAPTURE_PROPERTY('Q', 'C', 'X', 'P')

Read/Writer uint32_t

Source viewport x offset.

CAPTURE_PROPERTY_CROP_Y

CAPTURE_PROPERTY('Q', 'C', 'Y', 'P')

Read/Writer uint32_t

Source viewport y offset.

Destination buffer properties

The video capture API includes definitions for the source buffer properties.

The video capture API uses the following definitions for destination buffer properties:

CAPTURE_PROPERTY_DST_FORMAT

CAPTURE_PROPERTY('Q', 'D', 'F', 'F')

Read/Writer uint32_t

Destination buffer format.

CAPTURE_PROPERTY_DST_WIDTH

CAPTURE_PROPERTY('Q', 'D', 'F', 'W')

Read/Writer uint32_t

Destination frame width, in pixels.

CAPTURE_PROPERTY_DST_HEIGHT

CAPTURE_PROPERTY('Q', 'D', 'F', 'H')

Read/Writer uint32_t

Destination frame height, in pixels.

CAPTURE_PROPERTY_DST_STRIDE

CAPTURE_PROPERTY('Q', 'D', 'F', 'S')

Read/Writer uint32_t

Destination frame stride, in bytes.

CAPTURE_PROPERTY_DST_NBYTES

Copyright © 2014, QNX Software Systems Limited 37

Properties

CAPTURE_PROPERTY('Q', 'D', 'F', 'B')

Read/Writer uint32_t

Size of destination buffer, in bytes.

For information about CAPTURE_PROPERTY, see “Properties”.

Each allocated destination buffer (CAPTURE_PROPERTY_DST_NBYTES) must

be at least the product of the destination stride and the destination frame

height (CAPTURE_PROPERTY_DST_STRIDE * CAPTURE_PROPER

TY_DST_HEIGHT).

Frame properties

The video capture API includes arrays for storing and communicating video frame

properties.

Frame property arrays

The video capture API uses the arrays below for video frame properties. All these

properties (except CAPTURE_PROPERTY_FRAME_BUFFERS, which is a pointer to the

capture buffers) are indexed by the buffer index:

CAPTURE_PROPERTY_FRAME_BUFFERS

CAPTURE_PROPERTY('Q', 'F', 'B', 'A')

Read/Write [] void*

Pointers to the video capture buffers.

CAPTURE_PROPERTY_FRAME_TIMESTAMP

CAPTURE_PROPERTY('Q', 'F', 'B', 'T')

Read [] uint64_t

An array of CLOCK_MONOTONIC timestamps.

CAPTURE_PROPERTY_FRAME_TIMECODE

CAPTURE_PROPERTY('Q', 'F', 'B', 'C')

Read [] struct smpte_timestamp

An array of SMTPE timestamps.

CAPTURE_PROPERTY_FRAME_SEQNO

CAPTURE_PROPERTY('Q', 'F', 'B', 'S')

38 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

Read [] uint32_t

An array of frame sequence numbers.

CAPTURE_PROPERTY_FRAME_FLAGS

CAPTURE_PROPERTY('Q', 'F', 'B', 'F')

Read [] uint32_t

An array of frame flags. See “Frame flags” below.

CAPTURE_PROPERTY_FRAME_NBYTES

CAPTURE_PROPERTY('Q', 'F', 'B', 'B')

Read [] uint32_t

An array of frame sizes, in bytes.

CAPTURE_PROPERTY_FRAME_NBUFFERS

CAPTURE_PROPERTY('Q', 'F', 'B', 'N')

Read/Writer uint32_t

The number of destination buffers that have been specified in

CAPTURE_PROPERTY_FRAME_BUFFERS.

For information about how to use arrays, see “Properties applied to arrays”.

Frame flags

The following flags specify properties for the CAPTURE_PROPERTY_FRAME_FLAGS

array:

CAPTURE_FRAME_FLAG_ERROR

0x0001

There is an error in the frame.

CAPTURE_FRAME_FLAG_INTERLACED

0x0002

The frame is interlaced. For more information about interlacing, see

“Deinterlacing enumerated values”.

CAPTURE_FRAME_FLAG_FIELD_BOTTOM

0x0004

TBD

Copyright © 2014, QNX Software Systems Limited 39

Properties

External source properties

The video capture API includes constants for managing the retrieval and deinterlacing

of frames brought in from an external source.

The following constants are used to set properties when getting and deinterlacing

frames from videos brought in from an external source such as a USB memory stick:

CAPTURE_FLAG_EXTERNAL_SOURCE

0x0002

Bit to set if the context to create is for an external source.

The following properties are used for deinterlacing frames brought in from an external

source. They are relevant only when the CAPTURE_FLAG_EXTERNAL_SOURCE flag

is set.

CAPTURE_FLAG_FREE_BUFFER

0x0002

Request a free buffer in which to put a frame from an external source.

CAPTURE_BUFFER_USAGE_RDONLY

0x001

Mark the buffer as read-only.

CAPTURE_PROPERTY_BUFFER_USAGE

CAPTURE_PROPERTY('Q', 'B', 'U', 'S')

Read/Write [] uint32_t

An array of buffer usage flags. Element i indicates if the capture driver has

only read (CAPTURE_BUFFER_USAGE_RDONLY) or read/write

(CAPTURE_BUFFER_USAGE_RDWR) permission for buffer >i. The default

is read-write permission.

CAPTURE_PROPERTY_BUFFER_INDEX

CAPTURE_PROPERTY('Q', 'B', 'I', 'X')

Write uint32_t

The index of the buffer to be injected by capture_put_buffer().

CAPTURE_PROPERTY_BUFFER_NFIELDS

CAPTURE_PROPERTY('Q', 'B', 'N', 'F')

40 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

Write uint32_t

The number of fields contained in the buffer injected by capture_put_buffer().

CAPTURE_PROPERTY_BUFFER_PLANAR_OFFSETS

CAPTURE_PROPERTY('Q', 'B', 'P', 'O')

Write [][3] int32_t

A per-buffer array. The array has one row per field. Each row indicates the

offset from the base address for each of the Y, U, and V components of

planar YUV formats.

CAPTURE_PROPERTY_BUFFER_FLAGS

CAPTURE_PROPERTY('Q', 'B', 'F', 'L')

Write [] uint32_t

A per-buffer array of buffer flag. The flag is a bit-field.

CAPTURE_PROPERTY_BUFFER_SEQNO

CAPTURE_PROPERTY('Q', 'B', 'S', 'N')

Write [] uint32_t

A per-buffer array of sequence numbers. Each element indicates the

sequence number of the field contained in the buffer.

Helper macros

The video capture API includes macros to help with common calculations.

Helper macros include:

Convert from interval

CAPTURE_INTERVAL_FROM_MS(x)

((x) * 1000000ULL)

CAPTURE_INTERVAL_FROM_US(x)

((x) * 1000ULL)

CAPTURE_INTERVAL_FROM_NS(x)

(x)

Convert to interval

Copyright © 2014, QNX Software Systems Limited 41

Properties

CAPTURE_INTERVAL_TO_MS(x)

((x) / 1000000ULL)

CAPTURE_INTERVAL_TO_US(x)

((x) / 1000ULL)

CAPTURE_INTERVAL_TO_NS(x)

(x)

Field-frame conversion

CAPTURE_INTERVAL_NTSC_FIELD

16668333

CAPTURE_INTERVAL_NTSC_FRAME

(CAPTURE_INTERVAL_NTSC_FIELD * 2)

42 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

capture_context_t

Pointer to a video capture context.

Synopsis:

#include <vcapture/capture.h>
typedef struct _capture_context *capture_context_t;

Library:

libcapture

Description:

The capture_context_t data structure is a pointer (or handle) to a video capture

context. It is populated by a successful call to capture_context_create().

For more information about video capture contexts, see “Contexts (p. 19)”.

Copyright © 2014, QNX Software Systems Limited 43

capture_context_t

capture_create_buffers()

Allocate memory for video capture.

Synopsis:

#include <vcapture/capture.h>

int capture_create_buffers(capture_context_t context,
uint32_t property)

Arguments:

context

Pointer to the video capture context.

property

The video capture frame properties set by capture_set_property_i().

Library:

libcapture

Description:

The capture_create_buffers() function reserves memory for video capture:

• If your hardware supports dynamic memory allocation, you can simply use your

Screen API to create buffers for video capture.

• If your hardware doesn't support dynamic memory allocation and requires you to

use memory in a preallocated location, you will need to use capture_create_buffers()

to create your buffers. For more information about buffers, see “Buffers”.

Calls to capture_create_buffers are synchronous. The function frees old buffers, creates

the new buffers, and returns immediately.

To free an existing buffer without creating a new one:

1. Call capture_set_property_p() to set the buffer property to NULL.

2. Call capture_create_buffers().

• Call this function only when video capture is not in progress.

• If the hardware doesn't support application-allocated memory, calling this

function will fail if it is called with a buffer pointer property set to anything

other than NULL.

44 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

• Systems with hardware that supports only driver-allocated memory can

simply reject any attempt to take a buffer out of driver-allocated state. On

these systems, setting a buffer property to NULL returns success, but has

no effect on memory allocation.

Do not get a pointer to a buffer with capture_get_property_p(), then set the

same pointer with capture_set_property_p().

If the buffer is driver-allocated, this sequence of calls will cause the driver

to free the buffer referenced by the pointer, then assume that the application

owns the now nonexistent buffer, with unpredictable results.

If the buffer in question was initially application-allocated, then no ill effects

occur.

Example:

The code snippet below may be a useful reference on how to use

capture_create_buffers().

capture_set_property_i(context, CAPTURE_PROPERTY_DST_NBYTES, 320 * 240 * 4);
capture_set_property_i(context, CAPTURE_PROPERTY_FRAME_NBUFFERS, 5);

// create 5 frame buffers with 320x240x4 bytes each.
capture_create_buffers(context, CAPTURE_PROPERTY_FRAME_BUFFERS);

// get the buffers..
void **frame_buffers;

capture_get_property_p(context, CAPTURE_PROPERTY_FRAME_BUFFERS, (void**)&frame_buffers);

Returns:

0

Success.

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid argument, or the argument is not a buffer property.

ENOMEM

Unable to allocate requested memory.

ENOSYS

Copyright © 2014, QNX Software Systems Limited 45

capture_create_buffers()

The driver doesn't support buffer allocation.

46 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

capture_create_context()

Establish a connection to the capture device and create a video capture context.

Synopsis:

#include <vcapture/capture.h>
capture_context_t capture_create_context(uint32_t flags)

Arguments:

flags

Bitmask parameter; set to either 0 if the context to be created is for a local

device, or to CAPTURE_FLAG_EXTERNAL_SOURCE if the context to be

created is for an external source.

Library:

libcapture

Description:

The function capture_create_context():

• connects to a video capture device

• creates a new context for video capture

• returns a pointer to the context in capture_context_t

You must create a context before you can set video capture properties and start video

capture. The context contains both mandatory information, such as the device ID and

input source ID (e.g. device 1, input source 2), and optional settings, such as

brightness.

You can create more than one context, but you can have only one context in use for

each device-source combination. If you have created multiple contexts for the same

device-source combination, capture_get_frame() will use the first context you have

enabled with capture_set_property_i(). Calls to capture_update() for the other contexts

will fail.

Before your application exits, it must call capture_destroy_context() to

destroy every context it created. Failure to destroy a context before exiting

can lead to memory corruption and unpredictable system behavior.

For more information about video capture contexts, see “Contexts (p. 19)”.

Copyright © 2014, QNX Software Systems Limited 47

capture_create_context()

Returns:

A pointer to a new context in capture_context_t.

Success.

NULL

An error occurred (errno is set).

Errors:

EBUSY

Unable to create a context because one is already in use.

EINVAL

Invalid flags.

48 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

capture_destroy_context()

Disconnect from the video capture device, and destroy the context.

Synopsis:

#include <vcapture/capture.h>
void capture_destroy_context(capture_context_t context);

Arguments:

context

The pointer to the video capture context to destroy.

Library:

libcapture

Description:

The function capture_destroy_context():

• disconnects from a video capture device

• destroys the specified context

When this function returns, you can safely release the video capture buffers you have

been using with this context.

This function is not signal handler safe! We recommend that your application

create a separate thread for signal handling. The signal thread can then

destroy the capture context by instructing another thread to call

capture_destroy_context().

For more information about video capture contexts, see “Contexts (p. 19)”.

Returns:

n/a

Errors:

n/a

Copyright © 2014, QNX Software Systems Limited 49

capture_destroy_context()

capture_get_frame()

Get a frame from the video capture device.

Synopsis:

#include <vcapture/capture.h>

int capture_get_frame(capture_context_t context,
uint64_t timeout, uint_32_t flags)

Arguments:

context

Pointer to the video capture context.

timeout

Wait before timing out. Set to any of:

• The number of nanoseconds the function should wait for a frame before

timing out. The function may return in less time than the period specified

by this argument.

• CAPTURE_TIMEOUT_INFINITE to wait indefinitey for a frame (never

time out).

• CAPTURE_TIMEOUT_NO_WAIT to return immediately, even if there is

no frame.

flags

Flag specifying how to handled queued frames. Set to one of:

• 0 (zero) to retrieve all queued frames in sequence.

• CAPTURE_FLAG_LATEST_FRAME to retrieve the latest frame, discarding

all the other queued frames.

Library:

libcapture

Description:

The function capture_get_frame() retrieves frames from the device. If more than one

frame is in the queue, depending on the behavior specified by the flags argument,

50 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

this function will either retrieve all queued frames in sequence or retrieve only the

latest frame, dropping the others. The function maintains the dropped frame counter.

The buffer used to get a frame is locked for exclusive use by the client app until

capture_release_frame() releases it back to the capture driver.

To avoid overwriting a frame before it has been displayed, your application should use

at least three capture buffers to:

1. Call capture_get_frame() to get the index of the captured video frame.

2. Hand the frame buffer over for display by a call to a Screen function such as

screen_post_window().

3. Call capture_get_frame() to get another frame.

4. When the frame in Step 1 has been displayed, call capture_release_frame() to

release the buffer for reuse by the capture driver.

Returns:

 0

Success: the index of the captured buffer.

-1

An error occurred, or the function has timed out (errno is set).

Errors:

ECANCELED

The capture was disabled. This error occurs when one thread calls

capture_get_frame() while capturing is enabled, then another thread disables

capturing before capture_get_frame() has finished.

EINVAL

Invalid argument.

EIO

Hardware input or output error.

ENOMEM

Capturing isn't possible because the client application has locked all buffers;

it has not released any buffers for use by the capture library.

ETIMEDOUT

The request for a frame has timed out; no frame was captured.

Copyright © 2014, QNX Software Systems Limited 51

capture_get_frame()

capture_get_free_buffer()

Get a free video capture buffer when bringing in video from an external source, and

call the video capture function.

Synopsis:

#include <vcapture/capture.h>

int capture_get_free_buffer(capture_context_t
context, uint64_t
timeout, (uint_32_t
flags | CAPTURE_FLAG_FREE_BUFFER)

Arguments:

context

Pointer to the video capture context.

timeout

Wait before timing out. Set to any of:

• The number of nanoseconds the function should wait for a buffer before

timing out. The function may return in less time than the period specified

by this argument.

• CAPTURE_TIMEOUT_INFINITE to wait indefinitely for a buffer (never

time out).

• CAPTURE_TIMEOUT_NO_WAIT to return immediately, even if there is

no buffer.

flags

For internal use at this time. Must be set to 0 (zero).

Library:

libcapture

Description:

The function capture_get_free_buffer() returns the index to a free buffer. After calling

this function, the client application should call capture_put_buffer() to place the

capture buffer in the video capture stream, then use another thread to call

capture_get_frame() to return a processed frame (for example, the frame is scaled or

deinterlaced).

52 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

Returns:

 0

Success: the index of the captured buffer returned by capture_put_buffer().

-1

An error occurred, or the function has timed out (errno is set).

Errors:

EINVAL

Invalid argument.

Copyright © 2014, QNX Software Systems Limited 53

capture_get_free_buffer()

capture_get_property_i()

Get video capture driver and device properties.

Synopsis:

#include <vcapture/capture.h>

int capture_get_property_i(capture_context_t context,
uint32_t prop, int32_t *value)

Arguments:

context

Pointer to the video capture context.

prop

The property to get.

value

A pointer to the location where the retrieved property is located.

Library:

libcapture

Description:

The function capture_get_property_i() retrieves video capture driver and device

properties, which may have been set by capture_set_property_p().

Returns:

 0

Success

-1

An error occurred (errno is set).

Errors:

ENOENT

This property can't be retrieved by the method used.

54 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

ENOTSUP

The driver or the device doesn't support the specified property.

Copyright © 2014, QNX Software Systems Limited 55

capture_get_property_i()

capture_get_property_p()

Get video capture driver and device properties.

Synopsis:

#include <vcapture/capture.h>

int capture_get_property_p(capture_context_t context,
uint32_t prop, int32_t **value)

Arguments:

context

Pointer to the video capture context.

prop

The property to get.

value

A reference to the location where the retrieved property will be placed.

Library:

libcapture

Description:

The function capture_get_property_p() retrieves video capture driver and device

properties, and then places them in an array, where they can be read.

Returns:

 0

Success: the number of filled elements in the array.

-1

An error occurred (errno is set).

Errors:

ENOENT

This property can't be retrieved by the method used.

56 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

ENOTSUP

The driver or the device doesn't support the specified property.

Copyright © 2014, QNX Software Systems Limited 57

capture_get_property_p()

capture_is_property()

Check if the connected video capture device supports a specified property.

Synopsis:

#include <vcapture/capture.h>

int capture_is_property(capture_context_t context,
uint32_t prop)

Arguments:

context

Pointer to the video capture context.

prop

The property for which device support is needed.

Library:

libcapture

Description:

The capture_is_property() function checks if the connected video capture device

supports the property specified in prop.

Example:

The code snippet below may be a useful reference on how to use capture_is_property().

void get_video_info(capture_context_t context)
{
 char *cur_norm = NULL;
 if(capture_is_property(context, CAPTURE_PROPERTY_CURRENT_NORM)) {
 capture_get_property_p(context, CAPTURE_PROPERTY_CURRENT_NORM, (void **)&cur_norm);
 }
 fprintf(stderr, "current norm: %s", cur_norm? cur_norm : "unavailable");
#ifdef CAPTURE_ADV
 int32_t lock = -1, fsclock = -1, freq = -1, wss = -1;
 if(capture_is_property(context, CAPTURE_PROPERTY_ADV_LOCK_STATUS)) {
 capture_get_property_i(context, CAPTURE_PROPERTY_ADV_LOCK_STATUS, &lock);
 }
 if(capture_is_property(context, CAPTURE_PROPERTY_ADV_FSCLOCK_STATUS)) {
 capture_get_property_i(context, CAPTURE_PROPERTY_ADV_FSCLOCK_STATUS, &fsclock);
 }
 if(capture_is_property(context, CAPTURE_PROPERTY_ADV_OUTPUT_FREQ)) {
 capture_get_property_i(context, CAPTURE_PROPERTY_ADV_OUTPUT_FREQ, &freq);
 }
 if(capture_is_property(context, CAPTURE_PROPERTY_ADV_WSS_STATUS)) {
 capture_get_property_i(context, CAPTURE_PROPERTY_ADV_WSS_STATUS, &wss);

58 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

 }
 fprintf(stderr, " lock:%d fsclock: %d freq: %d wss:%d", lock, fsclock, freq, wss);
#endif
 fprintf(stderr, "\n");
}

Returns:

1

The device supports the specified property.

0

The device doesn't support the specified property.

Copyright © 2014, QNX Software Systems Limited 59

capture_is_property()

capture_put_buffer()

Pass a buffer to the driver for deinterlacing a frame when bringing in video from an

external source.

Synopsis:

#include <vcapture/capture.h>

int capture_put_buffer(capture_context_t ctx,
uint32_t idx, uint32_t flags)

Arguments:

context

Pointer to the video capture context.

idx

The index to the frame buffer to inject into the capture driver.

flags

Flag specifying how to process the deinterlaced frame.

Library:

libcapture

Description:

This function capture_put_buffer() passes a buffer to the driver for deinterlacing frames

brought in from a video on an external source, such as a USB memory stick. It should

be used only when the CAPTURE_FLAG_EXTERNAL_SOURCE flag is set.

Interlaced video frames (typical of analog video) contain two sequential subfields,

which doubles the perceived frame rate and improves the video quality. To display

interlaced video in a system using a progressive display, the interlaced frames need

to be separated into two frames in the correct sequence. Thus, displaying an interlaced

video correctly on a progressive display requires two buffers for every interlaced frame.

The capture_put_buffer() function passes a buffer to the driver, which it can use for

the second frame extracted from the interlaced frame.

Returns:

0

60 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

Success.

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid index (idx) argument, or invalid sequence.

Copyright © 2014, QNX Software Systems Limited 61

capture_put_buffer()

capture_release_frame()

Release a video frame buffer.

Synopsis:

#include <vcapture/capture.h>

int capture_release_frame(capture_context_t context,
uint32_t idx)

Arguments:

context

Pointer to the video capture context.

idx

The index to the frame buffer to release.

Library:

libcapture

Description:

The function capture_release_frame() releases the frame specified in its idx argument

and returns it to the capture queue. Your application should call this function after it

has displayed a captured frame to ensure that the buffer locked by capture_get_frame()

is made available for reuse.

Returns:

0

Success.

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid index (idx) argument.

62 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

capture_set_property_i()

Set video frame capture properties.

Synopsis:

#include <vcapture/capture.h>

int capture_set_property_i(capture_context_t context,
uint32_t prop, int32_t value)

Arguments:

context

Pointer to the video capture context.

prop

The property to set.

value

The integer value of the property.

Library:

libcapture

Description:

The function capture_set_property_i() sets video capture properties to pass to the

video capture device driver.

Array resources, such as CAPTURE_PROPERTY_FRAME_FLAGS and

CAPTURE_PROPERTY_FRAME_SEQNO are not allocated by default. They need to be

set, then passed to the video capture driver. To do this you need to:

1. Call capture_set_property_i() for each capture property you need to set, using the

CAPTURE_PROPERTY_* constants to specify the device, brightness, destination

buffers, etc.

2. When you have set all the properties you need to specify, call

capture_set_property_p() to pass a pointer to this array to the video capture library.

The library stores this pointer and will update the array when appropriate.

You can instruct the video capture library to stop collecting and providing data for a

property by setting the location for property in the array to NULL.

Returns:

Copyright © 2014, QNX Software Systems Limited 63

capture_set_property_i()

0

Success.

-1

An error occurred (errno is set).

Errors:

EINVAL

Bad value or values.

ENOENT

The specified property can't be set by this method.

ENOTSUP

The driver or the device doesn't support the specified property.

EROFS

Unable to change read-only property.

64 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

capture_set_property_p()

Set video frame capture properties.

Synopsis:

#include <vcapture/capture.h>

int capture_set_property_p(capture_context_t context, uint32_t
prop, int32_t *value)

Arguments:

context

Pointer to the video capture context.

prop

The video capture frame property to set.

*value

Pointer to the array with the property to set.

Library:

libcapture

Description:

The function capture_set_property_p() passes the pointer to the array of video capture

properties to the video capture library.

Array resources, such as CAPTURE_PROPERTY_FRAME_FLAGS and

CAPTURE_PROPERTY_FRAME_SEQNO, are not allocated by default. They need to be

set, then passed to the video capture driver. To do this, you must set the properties

you need to specify by calling capture_set_property_i(), then pass a pointer to the

array with these properties by calling capture_set_property_p().

Allocate an array large enough to store the video capture properties. The

minimum number of elements in the array must be at least as large as the

corresponding capture property associated with the array you are setting. For

example, the minimum array sizes of CAPTURE_PROPERTY_FRAME_SEQNO

and CAPTURE_PROPERTY_FRAME_FLAGS are determined by the size of

CAPTURE_PROPERTY_NBUFFER.

Copyright © 2014, QNX Software Systems Limited 65

capture_set_property_p()

Returns:

0

Success.

-1

An error occurred (errno is set).

Errors:

EINVAL

Bad value or values.

ENOENT

The specified property can't be set by this method.

ENOTSUP

The driver or the device doesn't support the specified property.

EROFS

Unable to change read-only property.

66 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

capture_update()

Update the video capture device.

Synopsis:

#include <vcapture/capture.h>

int capture_update(capture_context_t context,
uint32_t flags)

Arguments:

context

Pointer to the video capture context.

flags

Reserved. Do not use.

value

A pointer to the location where the retrieved property is located.

Library:

libcapture

Description:

The function capture_update() applies (commits) all updates posted since it was last

called to the driver.

Functions such as capture_set_property_i() and capture_set_property_p() update

memory but they don't apply updates to the video capture device. To apply updates,

you must call capture_update(). This behavior allows the proper combining of discrete

properties, such as *DST_X, *DST_Y and *DST_WIDTH. Once these properties are

combined, a call to capture_update() commits all the changes to the device at the

same time.

If you want video capture to start immediately, set CAPTURE_ENABLE to 1 (one) when

you call capture_update().

Returns:

 0

Success

Copyright © 2014, QNX Software Systems Limited 67

capture_update()

-1

An error occurred (errno is set).

Errors:

EINVAL

Some parameters are in conflict; video capture isn't possible.

EIO

Hardware input or output error.

ENODEV

No video capture device with the specified device ID.

The driver may slog*() more detailed error information. Use sloginfo to

retrieve it.

68 Copyright © 2014, QNX Software Systems Limited

Video Capture Library API Reference (capture.h)

Index

_capture_context 43

A

application-allocated 20
buffers 20

arrays 17
set properties 17

B

buffer 21, 36, 37, 45, 49, 52, 60, 62
dangers of freeing unintentionally 21, 45
destination 37

properties 37
size 37

getting free for video capture 52
injection for delinterlacing 60
releasing 62
releasing video capture 49
source 36

properties 36
size 36

buffers 20, 23, 35, 38, 44
application-allocated 20
constraints when using unstable capture link 23
creating 44
deinterlacing 35
driver-allocated 20
frame 20
frame metadata 20
freeing 44
pointers 38

bus 30
data 30

C

capture_context_t 13, 43
capture_create_buffers() 44
capture_create_context() 13, 47
capture_destroy_context() 13, 19, 49
CAPTURE_ENABLE 13, 67
CAPTURE_FLAG_* 26, 40
CAPTURE_FLAG_EXTERNAL_SOURCE 52, 60
CAPTURE_FLAG_FREE_BUFFER 52
CAPTURE_FLAG_LATEST_FRAME 50
capture_get_frame() 50, 52
capture_get_free_buffer() 50
capture_get_property_i() 54
capture_get_property_p() 13, 56
capture_is_property() 13, 58
CAPTURE_NORM_* 31
CAPTURE_PROPERTY 26
CAPTURE_PROPERTY_* 13

CAPTURE_PROPERTY_*_BUFFER_ 35
CAPTURE_PROPERTY_CSI2_* 30
CAPTURE_PROPERTY_CURRENT_NORM 31
CAPTURE_PROPERTY_DATA_* 30
CAPTURE_PROPERTY_DEVICE 12
CAPTURE_PROPERTY_DST_* 23
CAPTURE_PROPERTY_DST_BUFFERS 50
CAPTURE_PROPERTY_FRAME_ 39
CAPTURE_PROPERTY_FRAME_* 17, 38
CAPTURE_PROPERTY_INVERT_* 33
CAPTURE_PROPERTY_SRC_INDEX 12
capture_put_buffer() 60
capture_release_buffer() 50
capture_release_frame() 50, 52, 62
capture_set_property_i() 13, 44, 63, 65
capture_set_property_p() 13, 17, 63, 65
CAPTURE_TIMEOUT_INFINITE 50
CAPTURE_TIMEOUT_NO_WAIT 50
capture_update() 13, 67
capture-adv-ext.h 10
capture.h 10
clock 30, 33

polarity 33
properties 30

context 19, 43, 47, 49
create 47
destroy 49
pointer 43

contexts 19
destroying at exit 19

create 44, 47
context 47
video capture buffers 44

creating 58
video capture buffers 58

D

data 30, 33
bus width 30
polarity 33

data lane 30
properties 30

decoder 31
I2C 31

decoder.c 10
deinterlacing 35, 40, 52, 60

buffers 35
frames frome external source 40, 52, 60
video 60

destroy 49
context 49

device 49, 54, 56, 58, 67
check properties for video capture 58
disconnect video capture 49
get video capture properties 56

Copyright © 2014, QNX Software Systems Limited 69

Video Capture Developer's Guide and API Reference

device (continued)
getting video capture properties 54
properties for video capture 58
update 67

disconnect 49
from device 49

driver 54, 56
get video capture properties 56
getting video capture properties 54

driver-allocated 20
buffers 20

dropped 50
video frames 50

E

exit 19
destroying video capture contexts 19

external source 40, 52, 60
deinterlace frames 40, 52, 60
get frames 40, 52, 60

F

field ID 33
polarity 33

flags 38
frame 38

frame 20, 26, 38, 40, 50, 52, 60, 62
buffers 20
deinterlace from external source 40, 52, 60
deinterlacing 60
discard setting 26
flags 38
getting 50
properties 38
releasing buffer 62
size 38
timecode 38
timestamp 38

frames 50
dropped 50

free 44
video capture buffers 44

G

getting 50
video frame 50

H

handle 43
for video capture context, See pointer

hardware 23
adjustments to accomodate specific behavior 23

header files 10
common video capture 10
SOC-specific 10

I

I2C 31
decoder 31

input 12
set up for video capture 12

interface 26
type 26

inversion 33
polarity 33

J

Jacinto 5 23

L

libcapture-board-*-*.so 10
libcapture-board-*-no-decoder.so 10
libcapture-decoder-*.so 10
libcapture-soc-*.so 10
libcapture.so 10
libraries 10

video capture 10

M

memory 19
clean up 19

metatdata 20
frame buffers 20

MIPI CSI2 27, 30

N

norms, See standards
NTSC 31

O

offsets 26
planar YUV format 26

P

PAL 31
pointer 43

for video capture context 43
pointers 38

frame capture buffer 38
polarity 33

inversion 33
priority 26

video capture thread 26
properties 17, 30, 36, 37, 38, 54, 56, 58, 63, 65, 67

applied to arrays 17
check for device support 58
data lane 30
destination buffer 37
get driver and device properties 56

70 Copyright © 2014, QNX Software Systems Limited

Index

properties (continued)
getting driver and device properties 54
iframe 38
setting 65
setting properties 63
source buffer 36
update video capture 67
video capture 58

R

releasing 49, 62
buffers 49
video capture buffers 49
video frame buffer 62

S

sample program 15
screen_post_window() 13
SECAM 31
set 26, 65

frame discard property 26
timeout property 26
video capture properties 65

signal 33
polarity 33

size 38
frame 38

SMPTE timestamps 38
standards 31

video 31
stride 36, 37

destination buffer 37
source buffer 36

synchronization 33
polarity 33

T

Technical support 8
thread 26

video capture priority 26

timecode 38
frame 38

timeout 26
set 26

timestamp 38
frame 38
SMPTE 38

Typographical conventions 6

U

update 67
video capture device 67

V

vcapture/capture-*-ext.h 10
verbosity 26

set property 26
video 12, 31, 50, 52

getting frames 50
getting free buffer 52
input setup 12
standards 31

video capture 10, 12, 54, 56, 63, 65
getting driver and device properties 54, 56
implementation 12
libraries 10
setting properties 63, 65
tasks 12

VPDMA 23

W

WFD 23
capture buffers 23

Wi-Fi Display, See WFD

Y

YUV 26
planar format offsets 26

Copyright © 2014, QNX Software Systems Limited 71

Video Capture Developer's Guide and API Reference

72 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About this Guide and Reference
	Typographical conventions
	Technical support

	Video Capture Developer's Guide
	Header files and libraries
	Implementing video capture
	Sample video capture program
	Properties applied to arrays
	Contexts
	Buffers
	Platform-specific considerations

	Video Capture Library API Reference (capture.h)
	Properties
	Driver and device properties
	Data bus, and clock and data lane properties
	I2C decoder path and slave address
	Video standards
	Polarity
	Deinterlacing properties and enumerated values
	Source buffer properties
	Destination buffer properties
	Frame properties
	External source properties
	Helper macros

	capture_context_t
	capture_create_buffers()
	capture_create_context()
	capture_destroy_context()
	capture_get_frame()
	capture_get_free_buffer()
	capture_get_property_i()
	capture_get_property_p()
	capture_is_property()
	capture_put_buffer()
	capture_release_frame()
	capture_set_property_i()
	capture_set_property_p()
	capture_update()

	Index

